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Abstract

We present a variational technique for finding low curvature smooth approx-
imations to trajectories in the plane. The method is applied to short segments
of a vehicle trajectory in a known ground plane. Estimates of the speed and
steering angle are obtained for each segment and the motion during the seg-
ment is assigned to one of the four classes:ahead , left , right , stop .
A hidden Markov model for the motion of the car is constructed and the
Viterbi algorithm is used to find the sequence of internal states for which the
observed behaviour of the vehicle has the highest probability.

1 Introduction

As the density of road traffic increases it becomes ever more important to detect quickly
accidents or other abnormal events, both to save lives and to reduce the disruptive effects
on traffic flow. Certain events can already be detected automatically using the image
sequences obtained by fixed surveillance cameras which already line many motorways
and main roads. These events include build ups in traffic density and vehicles coming to a
halt. It is sufficient to use 2D or ‘blob based’ tracking provided the camera is placed high
enough to avoid occlusions [4]. 2D tracking is not sufficient to recover the more detailed
information needed for accurate monitoring and control of road traffic. This information
can only be obtained by taking into account the 3D nature of the scene. For example, the
trackers described in [5,10,11] obtain a time sequence of measurements of the 3D position
of a vehicle from a monocular image sequence by matching a wire frame model of the
vehicle to the images.

Once a sequence of measurements is obtained, the trajectory of the vehicle can be
classified. For this we use a hidden Markov model (HMM). The method is similar to one
applied successfully to speech recognition [8,9]. The measurement sequence is divided
into overlapping segments. In each segment the trajectory of the car is approximated by
a smooth function and then assigned to one of four categories:ahead , left , right or
stop . In this way the list of segments is reduced to a string of symbols drawn from the
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setfa; l; r; sg, where each letter corresponds to the appropriate category. The string of
symbols is classified using the HMM.

2 Low Curvature Approximation

The motion of the vehicle is confined to a known ground plane, thus it is only necessary to
approximate a 2D trajectory. In previous papers [6,7] vehicle motion in the ground plane
was modelled by a set of stochastic differential equations driven by the tangential velocity
V and the steering angle�. The equations are realistic in that they enforce the constraints
on trajectories arising from the fact that under normal conditions a vehicle does not slip
sideways. In particular, the velocity vector is always directed along the axis of the car.

The motion model assigns to each possible trajectoryp of the car a costC1(p) which
is high if p has a high acceleration or a rapidly changing curvature. The trajectory carries
an additional costC2(p) which depends on the compatibility betweenp and the measure-
ments. The total cost is the sumC(p) = C1(p) + C2(p). The most likely trajectory is
estimated by minimisingC(p) over a suitable finite dimensional space of trajectories. An
expression forC(p) is given in [7].

The direct estimation of the most likely or minimum cost trajectory is difficult because
C(p) is a highly non-linear function ofp. Instead the following method for obtaining an
approximation to the minimum cost trajectory is employed. Letzi, 1 � i � n be the
measurements of the position(x; y) of the vehicle in the ground plane obtained at times
t1 < : : : < tn comprising one of the segments chosen from the total set of measurements.
The aim is to find a trajectorys 7! p(s) which has a low curvature and which has a low
value ofkp(ti)� zik for eachi, 1 � i � n. In this application the total timetn � t1 for
each segment is only 1.6 s; the trajectory cannot have a complicated shape over so short a
time.

Let the components of the measurements bezi = (zxi ; z
y
i ), 1 � i � n. The x

componentszxi are approximated by a second degree polynomial

f̂(s) = f̂0 + f̂1s+ f̂2s
2

where thef̂i are chosen such that

nX
i=1

(f̂(ti)� zxi )
2

is minimised. Note that a higher degree polynomial may be needed in applications where
n is large and the underlying trajectory is complicated. In the current application degree
two is sufficient. Thezyi are approximated by a polynomialĝ in a similar way. The
functionss 7! f̂(s), s 7! ĝ(s) fit closely to the measurements, but in generalf̂ , andĝ
have high second order derivatives, which result in high curvatures for the ground plane
trajectorys 7! (f̂(s); ĝ(s)).

The polynomialf̂ is replaced by a function which fits the measurements closely and
which has a low second order derivative. This function is the global minimum of the
functionalV defined by

V (e) = �4
Z tn

t1

(e(s)� f̂(s))2 ds+

Z tn

t1

�
d2e

ds2

�2
ds (1)
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The constant� is determined experimentally. The value� = 62:5 s�1 is used in the
experiments reported below inx5. Letf be the global minimum ofV . The first integral
on the right-hand side of (1) ensures thatf is close tof̂ and hence thatf(ti) is close to
zxi for 1 � i � n. The second integral on the right-hand side of (1) ensures thatf has a
small second order derivative.

The Euler-Lagrange equation [1] forV is linear,

d4e

ds4
+ �4e = �4f̂ (2)

The polynomialf̂ has degree two thuse = f̂ is a solution to (2). The general solutionem
to (2) is [2]

em(s) = exp

�
�sp
2

��
a1 cos

�
�sp
2

�
+ a2 sin

�
�sp
2

��

+ exp

�
� �sp

2

��
a3 cos

�
�sp
2

�
+ a4 sin

�
�sp
2

��
+ f̂(s) (3)

where theai are arbitrary real numbers. The expressionV (em) is a quadratic polynomial
in theai. This polynomial is minimised, and the values ofai at which the minimum is
attained are substituted intoem to yield f . A functiong approximating to the measure-
mentszyi is obtained similarly. The trajectoryp defined bys 7! (f(s); g(s)), t1 � s � tn
has a low curvature and passes close to the measurements. As a result,C(p) is low, where
C is the cost referred to at the beginning of this section.

3 Segment Classification

Each of the measurement segments is assigned to one of the classesahead , left ,
right , stop . Let t1 < : : : < tn be the times of the measurements in the segment
of interest. As explained inx2, a smooth approximations 7! (xs; ys), t1 � s � tn to the
trajectory of the car is obtained. The least speedu of the car in the time interval[t1; tn] is
estimated by

u = minf
p

_x2s + _y2s ; t1 � s � tng
Let t 2 [t1; tn] be the time at which the curvature of the trajectory attains its maximum

absolute value and letw be the wheelbase of the car. The greatest steering angle� of the
car in the time interval[t1; tn] is estimated by

� = w
�yt _xt � �xt _yt
( _x2t + _y2t )

3=2

The quantity� = u�=w is an estimate of the greatest rate of change of orientation during
[t1; tn]. The segment is classified asa, l , r or s according to Table 1. The list of
segments for the entire trajectory is thus reduced to a string of symbols drawn from the
setfa; l; r; sg.

The next task is to find a global classification of the entire trajectory. The problem here
is that the classifications for individual segments are not a reliable guide to the behaviour
of the car over a long trajectory. For example, in a left turn executed over a time of several
seconds many individual segments may be labelleda or evenr , although the majority of
the segments are likely to be labelledl . The classification of the global motions of the
car is carried out using an HMM, as described in the next section.
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class condition
a �1=2 � � � 1=2
l � > 1=2
r � < �1=2
s u < 1

Table 1. Thresholds for classifying a measurement segment. The value� is given in
rad�s�1, andu in ms�1

4 Hidden Markov Model

As explained in [8], an HMM contains a finite set of states and a finite set of observation
symbols. The state transition probability distribution is described by a matrixA with
rows and columns indexed by the states. The observation symbol distribution is described
by a matrixB with rows indexed by the states and columns indexed by the observation
symbols. If the system is in statei, then the probability of a transition to statej is given
byAij . If the system makes a transition to statej then the probability of the observation
k isBjk. The initial state distribution is given by a vector� indexed by the states.

The model contains four states which are in orderA, L, R, S. These are the true states
of the car, corresponding to ahead, turning left, turning right, stopped. They are to be
inferred from the measurements. The HMM has four output symbols in ordera, l , r , s .
These are the symbols obtained from the measurement segments as described inx3.

The matricesA, B and the vector� are learnt from a subset of the trajectories, seg-
mented by hand.

Figure 1. A typical image.
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5 Experimental Results

This method has been tested on a set of 21 image sequences showing a car moving in a
car park. The images were taken by a Canon MV1 digital video camera looking through
a second floor window. A typical image is shown in Figure 1.

x

y

Figure 2. A left turn.

The car had a known geometrical model, and the same car was used for all the se-
quences. The wheelbase wasw = 2:5 m. The camera was calibrated using the method
described in [13] and measurements were obtained using the model based tracker de-
scribed in [11]. The tracker measures the position(x; y) of the centre of the rear axle and
the orientation� of the vehicle. In these experiments only the(x; y) measurement was
used. The angle measurements were discarded. The calibration included the determina-
tion of the ground plane position relative to the camera. The tracker was initialised by
hand in the first frame of each sequence.

The sequence of measurements for each trajectory was divided into overlapping seg-
ments, each containing 10 measurements. Each pair of adjacent segments overlapped
by 9 measurements. The time between the first measurement in a segment and the last
measurement was 1.6 s. Experiments showed that the performance of the algorithm was
degraded if the overlap between adjacent segments was reduced.

The matricesA, B and the vector� are given by

A =

0
B@

111=121 5=121 3=121 2=121
1=32 31=32 0 0
5=69 0 64=69 0
2=63 2=63 3=63 56=63

1
CA

B =

0
B@

114=132 6=132 10=132 2=132
9=34 24=34 1=34 0
28=73 1=73 42=73 2=73
0 0 0 1

1
CA
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Although the diagonal entries ofB are large (for example, if the state of the car isA, then
there is a high probability, 114/132, of observing the symbola) they are not equal to 1,
because there is a small probability that the observed symbol will not correspond to the
true state of the car.

The probabilities inA, B, � were obtained by the hand segmentation of 21 training
sequences showing the motions of a car in a car park.

x

y

Figure 3. A right turn with a stop.

For each trajectory, the list of segments was reduced to a string of symbols using the
method described inx2. The Viterbi algorithm [8] was used to calculate the sequence
of possible states for which the probability of producing the observed string of output
symbols was greatest.

A typical trajectory of the car is shown in Figure 2. The car moves from bottom
right to top left. The arrow represents the normal to the trajectory, drawn as if the driver
were extending the right arm out of the window. The base points of the arrows are the
coordinates of the vehicle on each sample. The sequence of extracted symbols and the
most likely sequence of states, as identified by the Viterbi algorithm, are

a a a a a a a a l l l l l a a
a l l a a l l l
A A A A A A A A L L L L L L L
L L L L L L L L

A more complicated trajectory is shown in Figure 3. The trajectory begins at the top
left and then turns right. The sequence of observed symbols and the sequence of inferred
states are
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x

y

Figure 4: A more complicated trajectory.

s s s s s s s s s s s s s s s s r r
a a a r r r r a a a a r r r r r r a
S S S S S S S S S S S S S S S S R R
R R R R R R R R R R R R R R R R R R

which means that the driver stops, and then turns to the right.
A final trajectory is shown in Figure 4. The car moves from bottom left to top right.

The sequence of observed symbols and the sequence of states obtained by the Viterbi
algorithm are, respectively:

a a a a a l l l l l l l l a a
l l l l l a a a a a r r r
A A A A A L L L L L L L L L L
L L L L L A A A A A R R R

Some errors in the classification of the measurement segments are resolved, but others,
for example at the end of the sequence in Figure 4, are not.

The entire algorithm is implemented in Mathematica [12], with a literate program-
ming approach [3]. The functions are available at

http://www.cvg.cs.rdg.ac.uk/˜rvf/ta/

6 Conclusions and Further Work

We have described a method for finding low curvature approximations to segments of the
trajectory of a car and then using quantised data from the sequence of approximations
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and a hidden Markov model (HMM) to classify the entire trajectory. The low curvature
approximations are obtained only for short segments, but the approximation method can
be extended to longer and more complicated trajectories.

The trajectory classification method has only been applied to a limited number of
trajectories. The results suggest that HMMs can be the basis of fast and reliable algo-
rithms for classifying trajectories and for identifying ones arising from abnormal driver
behaviour. Abnormal behaviour can be learnt by the HMM in the sense that the probabil-
ity of an unusual sequence of states is low.

Further work will involve extending the methods to a wider variety of vehicles and
road situations. Integration of this method in a full decision system, taking into account
site-dependent knowledge, such as the information given by visual traps, would have
commercial applications.
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