
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Vehicular Computation Offloading for Industrial
Mobile Edge Computing

Abstract—Due to the limited local computation resource,
industrial vehicular computation requires offloading the com-
putation tasks with time-delay sensitive and complex demands
to other intelligent devices (IDs) once the data is sensed and
collected collaboratively. This paper considers offloading partial
computation tasks of the industrial vehicles (IVs) to multiple
available IDs of the industrial mobile edge computing (MEC),
including unmanned aerial vehicles (UAVs), and the fixed-position
MEC servers, to optimize the system cost including execution
time, energy consumption, and the ID rental price. Moreover,
to increase the access probability of IV by the UAVs, the
geographical area is divided into small partitions and schedule the
UAVs regarding the regional IV density dynamically. A minimum
incremental task allocation (MITA) algorithm is proposed to
divide the whole task and assign the divided units for the
minimum cost increment each time. Experimental results show
the proposed solution can significantly reduce the system cost.

Index Terms—Mobile edge computing, task allocation, un-
manned aerial vehicles, game theory, industrial vehicular com-
putation offloading.

I. INTRODUCTION

THE demand for the internet of things (IoTs) in industrial
production has been increasing along with the rapid

development of the industrial IoTs [1]. In the production
site, with vehicular networks (VNs), industrial vehicles (IVs)
need to execute the computation tasks of applications to
achieve intelligent manufacturing including data collection and
analysis, on-site safety exploration, obstacle early warning,
and task dispatch. These applications are often time-delay sen-
sitive and complex, where high latency can cause unforeseen
consequences, and even affect the safety of the operator’s life.
However, at present, it will be very costly to equip powerful
computing device for a large number of IVs. As a result,
most of the IV computing capacity is not enough to complete
complex applications within the maximum latency.

Computation offloading is one of the key technologies
to solve the issues stated above. For vehicular computation
offloading, the IVs without enough computing power can
offload all or part of their computation tasks to other intelligent
devices (IDs) through wireless access [2], [3], [4]. Then, these
IDs will work on behalf of the vehicle to execute computation
tasks and return the results to the requesting vehicle. In
addition, global information is needed to make a decision for
vehicle computation offloading while the interconnection of
global network depends on VNs. However, VNs are easily
affected by dynamic topology changes, which will lead to
the instability of IVs wireless links. This cannot guarantee
the stability of the information exchange. The emergence of
software-defined network (SDN) architecture opens up new
doors to solve the issue of VNs [5], [6]. SDN architecture
separates the control plane and data plane to realize flexible

and intelligent control of the network. The SDN controller can
collect the data uploaded by each vehicle and the IDs in real-
time, such as location and speed to realize the interconnection
of the global network. Moreover, mobile edge computing
(MEC) can provide users with a computing platform with
strong computing power and fast response through wireless
access [7]. However, due to the high construction cost, the
temporary industrial production sites are with less infrastruc-
ture in most remote areas; the signal of IVs transmitted may
be blocked by the obstacles for instance buildings, which will
lead to weak transmission signals or even interruption. All
these factors lead to the enormous challenges of offloading
the computation task of IVs through wireless communication.

Unmanned aerial vehicle (UAV) can solve the problems
stated above with its advantages of small size, simple de-
ployment, and low price [8]. In the industrial production site,
deploying multiple UAVs with strong computing power can
provide computing services for IVs. As all services are priced
at present, IVs need to pay a certain fee to offload computation
tasks to UAVs or MEC to hire them to execute computation
tasks instead of themselves. Hence, it is a key challenge for the
whole system to minimize the cost (i.e., execution time, energy
consumption and rental price) of executing the computation
tasks of IVs.

In this paper, we formulate the optimization of computation
task offloading cost of IVs based on SDN architecture in
the temporary production site with less infrastructure. The
SDN controller offers the global IVs to obtain information
regarding the offloading computation task. Multiple IDs are
deployed in the system, including multiple UAVs and a MEC
server to provide computing services for IVs. An IV can
offload its computation task to multiple IDs that can establish
a wireless connection. Then, the decision-making problem
of multi-IV computation task offloading as a multi-device
for multi-user sequential game and prove the existence of
Nash equilibrium is formulated. With the objective of jointly
optimizing the execution time, energy consumption and price
of computation tasks, we designed the minimum incremental
task allocation (MITA) algorithm to dynamically assign the
computation tasks of IVs to multiple IDs that can establish
wireless communication. Different from the existing work [2],
to save local computing resources, we consider offloading part
of the computation task of IV. Moreover, different from [9],
we offload the computation task to multiple available IDs, in
which multiple IDs and local parallel execution of computation
task can greatly reduce the execution time of the task. The
main contributions are summarized as follows.
• Multi-device for multi-user computation offloading

game. IVs can assign computation tasks to multiple
available IDs to execute the task in parallel, which



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

can greatly improve the computing efficiency. This is
unlike [9]. Moreover, we formulate the multiple-target
computation offloading for multiple IVs as a multi-device
for multi-user computation offloading sequential game,
by optimizing the system cost of performing computation
tasks to develop the optimal offloading scheme. Here,
we consider that the system cost is mainly composed of
execution time, energy consumption and rental IDs price.

• Vehicle density-based UAV dispatch. In order to pro-
mote the probability of establishing wireless links be-
tween IVs and UAVs, a dynamic scheduling scheme
for UAVs based on the IVs density of small partitions
is introduced. The residence time of the UAV in the
destination partition scheduled by the SDN controller
depends on the current density of vehicles in the partition.

• Minimum incremental task allocation (MITA) algo-
rithm. We formulate a task allocation algorithm for IVs
to offload part of the computation tasks to multiple IDs.
MITA can minimize the system cost of executing tasks
and work out the optimal multi-target task allocation
scheme.

The rest of this paper is organized as follows. In Section
III, we introduce the system scenario. We next formulate
the problem in Section IV. Then, Section V introduces our
proposed MITA algorithm. The evaluation results are shown
in Section VI. Finally, Section VI concludes the paper.

II. RELATED WORK

In the recent years, the existing work of the SDN assisted
VNs emerges in an endless stream [5], [6], [10], [11]. Within
the SDN framework, the controller updates the data in real-
time, adjusts and schedules the network in a centralized man-
ner to improve the performance of the VNs. In addition, large
number of emerging VN applications not only provide services
in terms of security, also entertainment services [12],which can
enrich people’s travel experience. These network applications
usually demand high computational load and time-delay sen-
sitive. Therefore, the vehicle needs to consider offloading all
or part of the complex computation tasks to other IDs via the
wireless medium to perform the tasks instead of itself. The
existing studies of vehicle computation offloading is generally
offload vehicular computation tasks to the cloud via wireless
links, where cloud computing can supply efficient computing
services for vehicles, for instance in [2], [4]. However, most
of the base stations that provide cloud computing services are
far away from users, in which offloading computation tasks
will increase the cost of energy and latency. In this context,
the MEC server can provide computing and caching services
to users nearby to improve response speed and service qual-
ity [7]. Some other work [3], [13], [14] considers offloading
the computation tasks of mobile users to the MEC server to
provide users with efficient computing services. In addition,
in [15], [16], [17], the authors combine the cloud computing
with MEC to provide computing services for mobile users.
In [15], considering the remote cloud computing capability is
stronger than the edge cloud with a far distance, rational use
of the computing resources of these two devices is applied

to minimize energy consumption. Wang et al. introduce the
real-time traffic management of the fog-based Internet of Ve-
hicles (IoV) system in [18] to optimize the offloading scheme
by minimizing the average response time of offloading. How-
ever, transferring the entire computation task to another de-
vice will result in the waste of local computing resources and
data transmission energy of the vehicle. Moreover, the wireless
communication link of the vehicle is easily affected by dense
buildings and various interference signals, which can result in
a reduction in transmission rate or even communication link
interruption. This will affect the efficiency of computation of-
floading. Therefore, deploying UAVs to assist the computation
offloading is one of the effective solutions to this problem.

Recently, UAVs have been widely deployed in various fields,
in particular used to assist ground communication and com-
puting. For instance, as described in [8], UAVs are applied
in civilian due to the nature of low price, easy deployment,
and ignorance of terrain. In some other studies [19], [20], in
order to expand the communication range of ground nodes
and improve the quality of communication services, UAVs are
also deployed as air base stations. Specially, in [21], UAVs can
also assist the MEC server to compute tasks and cache data by
alleviating the resource scheduling problem of ground nodes.
In order to reduce the workload of the vehicle and improve
the efficiency of data processing, in [22], UAVs are used as
a relay nodes to assist the vehicle when forwarding data to
the MEC server. Therefore, the deployment of UAVs can help
to solve a variety of ground communication and computing
problems, while deployment of UAVs-assisted vehicles is one
of the solutions to realize intelligent transportation.

Consequently, how to allocate resources in the system rea-
sonably and efficiently has become a challenging issue. [9],
[23] offload partial computation tasks to other devices, which
improve the service quality by optimizing resource allocation,
reducing delay and energy consumption. Since the total re-
sources of the system are limited, how to operate scheduling
and allocation dynamically according to the overall demands
is the key to enable users to deal with various complex appli-
cations efficiently. In [24], an adaptive resource management
scheme is proposed where the cost of resource management
is greatly reduced without performance degradation. In [25],
Zhang et al. propose a three-layer computing offloading en-
vironment, in which the resource allocation problems such as
partial offloading and wireless resource scheduling are con-
sidered with the goal of optimizing energy consumption. The
IDs in the system provide users with computing, caching, and
other services, in which users need to pay corresponding fees
for various services provided by suppliers. In [26], authors
propose a unified pricing scheme according to the different de-
gree of sparsity of user distribution, and schedules resources on
basis of the price and transmission power. [27] studies the pric-
ing and power distribution of the spectrum network, finds the
equilibrium point of the solution by adopting the game theory,
and enables the user to obtain the optimal profit. On the other
hand, [28] focus on the optimization of energy distribution
of UAV, and dynamically price the service of UAV according
to the remaining resources and hover time. To sum up, most
existing studies [2], [5] of computation task offloading aim at



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

SDN controller

MEC 
server

UAVs
Collect and 

forward info.

Ground IVs

IVs

MEC server

UAVs

Data plane Control plane

Offloading link
Data link

Fig. 1. System Model

optimizing execution time and energy consumption only. To
be more realistic, this paper counts the price of renting IDs to
provide computing services as one of the costs of performing
tasks.

Different from existing work [2], [9], we consider offloading
partial computation task of IV to multiple IDs at the same time.
In addition, we adopt the method of sequential game theory
to make the offloading decision. The optimal task allocation
algorithm, MITA, is designed by jointly optimizing the exe-
cution time, energy consumption, and the price of computing
services provided by IDs. Therefore, IVs can independently
work out the optimal task allocation scheme.

III. SYSTEM MODEL

This section introduces the system model of IVs offloading
computation tasks as shown in Fig. 1. We set up a set
N = {1, 2, 3, ..., n} to represent the IVs driving in the
temporary industrial production site who generated a set of
computing complex and time-delay sensitive computation task
A. There is only one MEC server in the area that can provide
the service of offloading computation for the IVs in which this
MEC server is with strong computing capability. However,
there are some buildings in the scenario, which may block
the communication signal between the IVs and MEC server.
In addition, as the MEC server is far away from the IVs,
it can consume a lot of energy to offload the computation
tasks through wireless transmission. Thus, we deploy multiple
UAVs with certain computational power to provide computing
services for IVs. We consider a set of M = {1, 2, 3, ...,m}
to represent the UAVs in the region. The interference of
wireless communication signal increases due to the possibility
of vehicle density in some small areas. Hence, we schedule
UAVs according to the vehicle density of each small area.
Then, more UAVs are dispatched to the area with higher
IV density to provide services for this partition. We design
an IVs computation offloading architecture based on SDN.
The controller of SDN is applied to collect and forward the
relevant information of devices in the system, so as to reduce
the communication pressure if we use the vehicle to collect
the information. Moreover, different from the static scenario

of existing work [2], we intend to make our scenario more
realistic by allowing the vehicles and UAVs moving. As the
computation model and communication model are the key
factors of the task offloading, we will introduce the two models
in the following.

A. Communication Model

We consider two schemes by having the scheme set as
K = {0, 1}, where kn = 0 represents that IVn cannot
establish a wireless link with any other device, but can only
execute the computation task locally; kn = 1 denotes that IVn

can establish wireless links with other IDs and offload the
computation tasks to these devices to execute instead of itself.
According to the scheme set K, we can give the transmission
rate of the IVn offloading computation task A to the target
device D through wireless communication as

rn(D) = Wlog2(1 +
PnHn,D

N0 +
∑

i∈N,i6=n PnHi,D
) (1)

where W is the channel bandwidth, and Pn is the transmis-
sion power of the IVs; N0 is the background noise power;
Hn,D = gh−∂V

n,D is the channel gain between the IVn and
target device D (i.e., UAVs or MEC server) in which g is the
fading component, and dn,D is the distance between the IVn

and target D;
∑

i∈N,i6=n PnHi,D means the IVs (excluding
IVn) send data to the same target D via wireless access
simultaneously. We can observe it from (1), the more other
IVs (excluding IVn) send data to the target D via wireless
access at the same time, which will cause severe interference
and the reduction of transmission rate.

B. Computation Model

IVs can generate computation tasks in real-time. Here, let
An = (Bn, Dn, Jn), An ∈ A to represent the computa-
tion task generated by the IVn. Bn denotes the number of
Central Processing Unit (CPU) cycles needed for executing
computation task An; Dn denotes the size of offloading
computation task An data; Jn means the returned result size
of the computation task An.

In the scenario, the IVs are not equipped with strong com-
puting power which means they cannot complete executing
complex and time-delay sensitive computation tasks within
the maximum time-delay. Therefore, when a IV generates
a computation-intensive and delay-sensitive task that needs
to be executed, the IV will consider offloading the partial
computation task to other IDs via wireless links. In this paper,
IVs can offload computation tasks to UAVs and a MEC server
if they can establish wireless connections. However, as the
total resources of the system are limited, it is a key challenge
to make IVs adopt these resources reasonably with minimized
system costs. Next, we will introduce the computation model
according to different schemes.

1) Local computing: In one circumstance, IVn cannot
establish a communication connection with any other ID.
Consequently, IVn needs to execute all computation task An

locally. In this way, the execution time of the computation task
An depends on the computing power (FV

cpu) of the IVn, that



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

is, the cycles per second of the CPU. Hence, we can simply
calculate the execution time as

TL
n =

Bn

FV
cpu

(2)

Moreover, the energy consumption of IVn for executing the
computation task An locally depends on the energy consump-
tion per CPU cycles (LV

cpu). Then, we can give that the energy
consumption of IVn for executing computation task An locally
as

EL
n = BnL

V
cpu (3)

2) Computation offloading: In the case of IVn accessible
to other IDs, the IDs that can provide computing services for
IVn containing a MEC server and multiple UAVs. In addition,
we also set a waiting queue for each ID, which is used to store
computation tasks and make full use of the resources of the
ID. When a complex and time-delay sensitive computation
task generated by IVn needs to be executed at the current
time, IVn will first broadcast the request signal to request the
computing service. Then, the ID that can receive the request
signal will send a signal that can be offloaded to the IVn.
Thus, we set Q = {1, 2, 3, ...,m,m+ 1} ,m ∈M to indicate
the number of the MEC server and UAVs that can establish
wireless links with IVn. In order to fully utilize the resources
of all devices in the system and improve the throughput(i.e.,
the number of computation tasks executed in the system per
minute), we enable the IVn to offload a portion of computation
task An to the other IDs with the wireless connection, that
is, execute task An locally in parallel with these available
IDs. The execution time of the offloading part (T off

n ) is the
maximum value of the execution time of all the IDs providing
computing services for IVn. Hence, the total execution time
of computation task An is the combination of the maximum
value of the local execution time (T loc

n ) and the execution
time of the offloading part (T off

n ). In addition, we set XQ =
{x1, x2, ..., xq}, where each value of this set represents the
percentage of computation task An that ID is offloaded. In
addition, xq represents the percentage of computation task An

offloaded to the MEC server, in which the remaining part of
the task is offloaded to UAVs. Then the total execution time
of the offloading scheme of computation task An is

TO
n = max(T loc

n , T off
n ) (4)

where
T loc
n =

(1−
∑q

i=1 xi)Bn

FV
cpu

(5)

T off
n = max

0<q≤m+1

{
T 1
off , T

2
off , ..., T

q
off

}
(6)

and
T 1
off =

x1Dn

rn(1)
+

x1Bn

FUAV
cpu

+
x1Jn
rn(1)

+ T 1
wait (7)

T 2
off =

x2Dn

rn(2)
+

x2Bn

FUAV
cpu

+
x2Jn
rn(2)

+ T 2
wait (8)

...

T q−1
off =

xq−1Dn

rn(q − 1)
+
xq−1Bn

FUAV
cpu

+
xq−1Jn
rn(q − 1)

+ T q−1
wait (9)

T q
off =

xqDn

rn(q)
+

xqBn

FMEC
cpu

+
xqJn
rn(q)

+ T q
wait (10)

where T 1
off , T 2

off and T q−1
off represent the execution time of

the partial computation task An executed by UAV1, UAV2

and UAVq−1 respectively; Moreover, if IVn offloads part of
the computation task An to multiple UAVs that can establish
communication links, the task execution time of the UAV can
be calculated according to equation (7), (8) and (9); T q

off

denotes the execution time of the partial computation task
An executed by MEC server; FMEC

cpu represents the comput-
ing capability of the MEC server; T 1

wait, T
2
wait and T q

wait

indicate the current waiting queue length of UAV1, UAV2

and UAVq−1, respectively; T q
wait is the waiting queue length

of MEC server; (T loc
n ) and (T off

n ) represent the execution
time of the local execution part and the execution time of
the offloading part, respectively. In addition, if the vehicle
cannot establish a communication link with a certain ID, the
percentage of task An allocated to the device is xi = 0. Since
all the IDs providing computing services for IVn are parallel
computing, the longest execution time of the offloaded IDs is
defined as the total execution time of the offloading part. Next,
we can give the energy consumption of executing computation
task An in the computation offloading scheme (EO

n ) as the
sum of the energy consumption of the local part (Eloc

n ) and
the energy consumption of the offloading part (Eoff

n ). We
have that

EO
n = Eloc

n + Eoff
n (11)

where

Eloc
n = (1−

q∑
i=1

xi)Bn ∗ LV
cpu (12)

and
Eoff

n = E1
off + E2

off + ...+ Eq
off (13)

where E1
off to Eq−1

off denotes the energy consumption of exe-
cuting part of the computation task An of UAV1 to UAVq−1;
Eq

off represents the energy consumption of the computation
task An of MEC server. We give details as follow

Eoff
n = xqDnL

V
send +

q−1∑
i=1

xiBnL
UAV
cpu +

q−1∑
i=1

xiDnL
V
send+

q−1∑
i=1

xiJnL
UAV
send

(14)

The rental price is one cost component of the computation
task offloading. Computation task offloading is a service
in which other IDs lease the computing resources to IVs
to improve computing efficiency. However, a certain fee is
required for rental of computing services, i.e., the IV needs to
pay a certain amount for each CPU cycle of rented ID. In this
paper, we define that the price of computing service supplied
by UAVs and the MEC server is not the same, the price of each
one CPU cycle that IVs hire from UAVs and MEC server is
puavcpu and pmec

cpu respectively. Then, the total price of offloading
computation task An scheme can be given as

PO
n = xqBn ∗ pmec

cpu +

q−1∑
i=1

xiBn ∗ puavcpu (15)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Hovering UAV

Cruising UAV

Dispatched UAV

Area of common 
service

IV node

Assignment 
destination

Fig. 2. The UAV trajectory model

C. Payoff Function

The cost of the system mainly consists of execution time,
energy consumption and rental price. The payoff function
is used to measure the cost of executing computation task
generated by the IV. We can then calculate the total cost of
the performing computation task as follows

Cn = αTn + βEn + γPn (16)

where α, β, and γ represent the weight of execution time,
energy consumption, and rental price of the computation task
in the cost, respectively, where α + β + γ = 1. The weight
represents the proportion of the cost factor in the total utility.
For instance, the higher the weight of execution time is, the
better the scheme with shorter execution time is when selecting
the optimal scheme. Because of the different requirements of
the computation tasks, each task is set with weight values,
including execution time, energy consumption and rental price.
In the case of local execution, the price cost of renting IDs
is not involved. Therefore, according to (2) and (3), the total
cost of the IVn executing computation task An locally can be
calculated as

CL
n = αTL

n + βEL
n (17)

and for the payoff function of the offloading computation
scheme, the cost of renting computing resources from other
IDs is considered. We have that

CO
n = αTO

n + βEO
n + γPO

n (18)

In particular, if the user desires to reduce the cost of the
price, the user can increase the weight of rental price to achieve
the expected objective; If the computation task generated by
the user is time-delay sensitive, the weight of execution time
can be increased appropriately.

D. The UAV Trajectory Model

In this subsection, the trajectory of the UAVs will be
presented. The trajectory of UAVs can be divided into two
types, where the first is with a fixed trajectory, the other is
dynamic scheduling based on regional vehicle density. First,
we divide the whole topology into four equally sized partitions.
For the fixed trajectory, we deploy four UAVs to cruise at
a constant speed on a fixed trajectory in each partition and
deployed a UAV that hovered at the center point of the entire

topology. For dynamic scheduling UAVs, except for five UAVs
with fixed trajectory, other UAVs conduct dynamic scheduling
according to the regional vehicle density of each partition
provided by the SDN controller. The higher the regional
vehicle density in the current partition, the more likely the
UAV will be dispatched to this partition. When the UAV needs
to be dispatched to a certain partition, the destination of this
dispatch is set as the midpoint of the partition. As the UAV
reaches the destination, the hovering time is determined by the
regional vehicle density of the partition at that time. Until the
end of hover, the UAV will accept the new scheduling again.
The trajectory model of UAVs in the system is shown in Fig.
2 with illustrating various moving modes of UAV. Here, the
assigned UAVs are briefly shown in the figure. The number
of UAVs to be assigned depends on the total number of UAVs
deployed in the system (i.e., the total number minus 5).

IV. MULTI-DEVICE FOR MULTI-USER SEQUENTIAL GAME

In this section, we formulate the scenario in which multiple
IDs provide computing services. Each IV performs local com-
puting or offloading part of the computation task as a multi-
device for multi-user sequential game. The main objective is to
optimize the system cost of executing vehicular computation
tasks, including the execution time, energy consumption, and
rental price. By studying the existence of Nash equilibrium
point in this game, we can find the optimal utility of each user
in the system, and then we can make the mutually satisfactory
offloading decision.

Game theory is to study the interaction between participants
and design game mechanism to get the optimal decision.
Through the game mechanism, we can design the computa-
tion task offloading mechanism to get mutually satisfactory
benefits. Hence, no participant has the motivation of private
deviation. Game theory is a typical idea that can devise a
distributed mechanism, in which each participant can plan
their own satisfactory offloading scheme. This can reduce
the computational pressure of centralized management and
scheduling of central controller.

A. Game Mechanism

We formulate the decision-making problem of multi-device
service for multi-user computation task offloading as multi-
device for multi-user sequential game. Each user makes the
offloading decision in a certain order. Users should observe
the actions of users who have made previous decisions, then
make relevant decisions. By deploying the SDN controller to
collect and send global information to users in the system,
users can make decisions under the condition of complete
information (i.e., waiting queue length, geographic location,
and CPU computing power of available IDs) and improve the
efficiency of IV decision-making. The multi-device for multi-
user sequential game can be defined by G(N,K,U) and the
three elements of the game can be given as

1) N = {1, 2, 3, ..., n, ..., e}, represents the vehicle players
who produce time-delay sensitive and complex compu-
tation tasks in the game.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

2) Ke = {k1, k2, ..., kn, ..., ke}, means the strategy set
of vehicle players, where strategy kn = 0 represents
the vehicle n chooses to execute the computation task
locally, and kn = 1 represents that vehicle n selects
to offload part of the computation task to other IDs to
perform this part of the computation task instead of the
vehicle n. These IDs can establish a wireless connection
with vehicle n , including UAVs and MEC server.

3) Utility function, Un represents a function that measures
the cost when vehicle player n performs a computa-
tion task. The cost mainly includes the execution time,
energy consumption and the price of renting IDs. The
utility function of the player n kn(kn ∈ Ke) can be
given as

Ukn
n = (1− kn) ∗ CL

n + kn ∗ CO
n (19)

where we consider the offloading decision of vehicle player
n is kn ∈ {0, 1}. In addition, the computation offloading
decision of other vehicle players except player n is k−n =
(k1, ..., kn−1, kn+1, ..., ke). Hence, player n intends to choose
a strategy to minimize the cost of execution time, energy
consumption and rental price of executing computation task,
which can be expressed as

min
kn∈{0,1}

Un(kn, k−n),∀n ∈ N

According to (15), we can give the cost of user n as follows

Un(kn, k−n) =

{
CL

n , if kn = 0,
CO

n , if kn = 1.
(20)

Next, we will investigate the existence of the Nash equilib-
rium (NE).

Definition 1. A strategy profile K∗e = (k∗1 , k
∗
2 , ..., k

∗
n, ..., k

∗
e)

for the sequential game G(N,K,U) and if

Un(k∗n, k
∗
−n) ≤ Un(kn, k

∗
−n),∀kn ∈ Ke (21)

then the strategy profile K∗e is the NE of the game G. When
at the NE, no player can increase its profit by deviating from
this strategy.

We can conclude that, when the game G is at the NE, each
IV makes the optimal decision to minimize its computing cost.
Next, we will study the optimal strategy of IVs.

B. Best Strategy for Users

For IVn, in order to maximize its own profits , user n needs
to solve the following problems to get the optimal strategy k∗n.

µn(kn) = arg min
{Tn,En,Pn}

Ukn
n = (1−kn)∗CL

n +kn∗CO
n (22)

According to (22), it can be easily proved that the formula
for solving the optimal strategy is convex.

∂2Ukn
n (Tn, En, Pn)

∂2Tn
= 0,

∂2Ukn
n (Tn, En, Pn)

∂2En
= 0,

∂2Ukn
n (Tn, En, Pn)

∂2Pn
= 0

(23)

From the previous equations, we can conclude that (22) is a
convex equation. Hence, there is an optimal strategy, and it

Algorithm 1: Calculation Cost Increment
Input: The parameters of computation task

An = (Bn, Dn, Jn) generated by IVn,
including the number of CPU cycles needed for
computation task An to be executed (Bn); the
size of offloading computation task An data
(Dn); the result size of the computation task
An (Jn), Compute Twait, Tassigned and Tmax;

Output: Allocate unit size computation task An to
device I , the incremental size of system cost.

1 Initialization: Available device I executes unit task
An, the system cost increment ∆u = 0, time
increment ∆t = 0 and the increment of energy
consumption and price ∆ep = 0.

2 Compute the execution time Tunit of unit task An,
Uep
unit the weighted sum of cost in addition to time

(i.e., energy consumption and price).
3 if Tmax < Twait + Tassigned + Tunit then
4 set ∆t is the utility of

Twait + Tassigned + Tunit − Tmax

5 set ∆ep is the utility of Uep
unit

6 set ∆u = ∆t+ ∆ep
7 return ∆u
8 end
9 else

10 set ∆u = ∆ep
11 return ∆u
12 end

exists NE in the multi-device service for multi-user sequence
game. Then, the optimal strategy k∗n of IVn can be given as

k∗n = µn(kn) =


arg min
{Tn,En,Pn}

CL
n if kn = 0

arg min
{Tn,En,Pn}

CO
n if kn = 1

(24)

V. COMPUTATION TASK OFFLOADING ALLOCATION
MECHANISM

In this section, we propose a minimum incremental task
allocation (MITA) algorithm to ensure the efficient execution
of vehicular computation task, keeping the system cost to a
minimum. Next, we divide it into two steps to get the optimal
offloading decision, and introduce the design of the mechanism
in detail.

A. Calculate Cost Increment
In this paper, offloading vehicular computation task to

multiple IDs, including UAVs and MEC server with commu-
nication connections is considered. Our proposed algorithm is
to minimize the system cost of executing computation task by
minimizing the utility increment of the unit task. Here, we
will introduce the method of assigning unit size computation
task to the available devices and calculating system utility
increment. Therefore, when a computation task An generated
by the IVn needs to be executed, the IV first broadcasts
the offloading signal to determine which IDs can establish



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Algorithm 2: Minimum Incremental Task Allocation

1 Initialization: ϕ = 0.
2 while ϕ < 1 do
3 Compute the utility incremental ∆u of each

available device to perform unit computation task
An according to Algorithm 1

4 Compare the incremental size of each available
device ∆u1, ...,∆ui to execute unit task An

5 Allocation computation task An of unit size for
the device with the smallest utility increment

6 Set the value of ϕ plus the computation task An of
unit size allocated this time

7 end

wireless links with themselves. After that, the IV should
decide how to assign the computation task to multiple available
devices. Hence, we design this algorithm to calculate the utility
increment (i.e., cost increment) of each available device. Next,
the process of assigning computation task An generated by
IVn is represented.

The IVn first divides computation task An into small parts
(an) of the unit size, then performs Algorithm 1 to calculate
the system cost increment of task an of each available device,
and assigns the computation task of the an size to the device I
with the smallest system increment. Here, the devices contain
the available IDs and the vehicle itself. Before performing
Algorithm 1, the IVn needs to calculate the waiting time Twait

of the waiting queue of device I; the execution time Tassigned
for part of task An previously assigned to device I and the
current maximum time Tmax (i.e., waiting time and execution
time of assigned part of task An) of each available device
of IVn. After these parameters are calculated, Algorithm 1 is
performed to calculate the utility increment of unit task an to
device I . The calculation cost increment is given in Algorithm
1.

According to Algorithm 1, the increment system cost of
each available device for executing unit task an can be calcu-
lated. Next, we will allocate computation task An according
to the calculated utility increment of each available device.

B. Minimum Incremental Task Allocation Algorithm
In this subsection, we represent the main process of assign-

ing computation task An generated by IVn to each available
device. In addition, we define the percentage of task An that
has been assigned as ϕ. Then, the MITA algorithm is described
in Algorithm 2.

We propose the MITA algorithm as shown in Algorithm
2. Here, we can solve the problem of allocating tasks to
multiple devices with the motivation of minimum system cost.
Multiple IVs generate the time-delay sensitive and complex
computation tasks in the system with less infrastructure (only
one MEC server). Each IV will independently make a task
execution decision that is mutually satisfactory with other
users. To synchronize the clock signal, we use the clock signal
from wireless access MEC server for synchronization. The
algorithm ends when all users’ tasks have been completed and
achieved NE.

TABLE I
MAIN PARAMETERS

Parameters Description Value
Bn Computation cycles for task [4000,...,5000

An (Megacycles)
Dn Offload data size of task An (K bytes) [2000,..., 25000]
Jn Results data size of task An (K bytes) [50,..., 150]
W Wireless channel bandwidth (MHz) 20
Pn Transmission power of vehicle (mWatts) 100

Ruav Communication radius of UAV (m) 400
FV
cpu CPU computing power of IV 0.7

(GHz)
FUAV
cpu CPU computing power of UAV 10

(GHz)
FMEC
cpu CPU computing power of MEC server 70

(GHz)
LV
cpu Energy consumption per CPU 1

cycles of IV (J/Megacycles)
LUAV
cpu Energy consumption per CPU 1

cycles of UAV (J/Megacycles)
LV
send Energy consumption of IV send one 20

data unit through wireless channel (J/KB)
LUAV
send Energy consumption of UAV send one 20

data unit through wireless channel (J/KB)
pmec
cpu Price per CPU cycles of MEC server 10−5

(Megacycles)
puavcpu Price per CPU cycles of UAV (Megacycles) 3× 10−5

VI. NUMERICAL RESULTS

A. Configuration
In this section, we evaluate the performance of MITA

algorithm to offload IV computation task to multiple IDs
in terms of optimizing system energy consumption and im-
proving system throughput. In order to simulate a more
realistic vehicular computation offloading scenario, we use
Java to build a multi-device assisted multi-vehicle computation
offloading platform which has been made open-source (Link:
https://github.com/ykqykq/MITA). The platform includes com-
munication module, computing module, and mobility module.
These modules are executed in parallel by multiple threads
(i.e., UAV threads, the MEC server thread, and vehicle threads)
to implement mobile computation offloading. Moreover, We
adopt a 2000m × 2000m topology and use the traffic simula-
tion software SUMO (Simulation of Urban MObility) to sim-
ulate the trajectory of multiple vehicles. The CPU computing
power of MEC server is considered ten times powerful than
that of UAV. However, the UAVs are close to the user which
also enable IVs to be served faster. In addition, the computing
power of IVs is poor, and the CPU computing power of MEC
server is 100 times higher than that of IVs. This study also
considers that the energy consumed by vehicle and UAV to
transmit unit size data through wireless access is 40 times more
than the local computation energy cycle of the same data unit
on the vehicle and UAV. As for the price, the price per CPU
cycle of UAV is three times that of MEC server. However, the
MEC server is far away from users and the wireless link may
be blocked by obstacles, in this case, only UAVs can provide
computing services for users. The simulation parameters of
this paper are shown in Table I by considering the experimental
parameters of related work[2], [29].



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 3. System average cost and throughput in different scenarios

B. Performance

In this part, we simulate the performance of the MITA
algorithm based on the sequential game and several other
scenarios under the same or different parameters to show the
usability of our algorithm. The other scenarios include: 1) All
IVs execute computation tasks locally (Local computing, LC);
2) Only a MEC server in the system can provide computing
services for IVs while there is no UAV in the system (No
UAV, NU); (3) IVs offload all their computation tasks to other
IDs; when users choose to offload computation tasks, local
resources are idle (Full offload, FO).

In Fig. 3, we show the system average cost and throughput
of different scenarios under the same parameters. In these
scenarios, we set the data size of computation tasks generated
by IVs to 7800KB, and the number of CPU cycles required to
execute the task to 18570 Megacycles. Moreover, the number
of IVs in the system is N = 100, and the IDs that can provide
computing services for these users include M = 9 UAVs and
one MEC server. In Fig. 3, IV chooses to execute computation
task locally, which results in a significant increase in system
cost, and the throughput is the lowest compared with other
scenarios. In addition, the proposed MITA algorithm shows
excellent performance under the same parameters, which can
reduce the system average cost and improve the system
throughput to the greatest extent. The figures also show that
NU outperforms the average cost and throughput of other
scenarios except for MITA. Because NU also uses the task
allocation method of MITA algorithm. However, as no UAV
can provide services for users in NU, by comparing NU with
MITA, it can be proved that the existence of UAV is beneficial
to the system. Furthermore, the comparison of FO and MITA
can prove that MITA algorithm is effective to minimize
system cost and improve throughput. As shown in Fig. 3 (a)
and (b), MITA considers offloading partial computation task
to multiple IDs that can establish communication links and
deploying UAVs to provide computing services for IVs, which
can effectively increase the throughput and reduce the system
costs. Results show that the average cost of the proposed MITA
is 39.7%, 10.6%, and 13.4% lower than that of LC, NU, and
FO, respectively, while the throughput of LC, NU and FO is
71.0%, 43.2% and 45.6% lower than MITA.

Fig. 4 illustrates the impact of computation tasks of differ-

Fig. 4. System average cost and throughput under the change of computation
task size generated by IVs

ent sizes generated by IVs on the system average cost and
throughput. With the increase of the size of the computation
task data generated by IVs, the average cost of the system
presents an upward trend in and the throughput also decreases.
The increases in data size also push up the performance of
MITA. In terms of system average cost and throughput, MITA
shows better performance compared with other scenarios. It
can be concluded from Fig. 4 (a) that with the increase of
data size, the cost of optimizing the system by MITA is more
obvious than other strategies. In addition, Fig. 4 (b) shows
that the MITA task allocation algorithm significantly improves
throughput as the data size is small. It can be seen that MITA
can greatly optimize the task execution efficiency under the
same conditions. The numerical results show that, with the
increase of task data size, the system average cost of our
proposed MITA is decreased from 13.8% to 37.1% compared
with other scenarios, while the throughput of other scenarios
is decreased from 27.9% to 67.7% compared with MITA.

In order to evaluate the impact of the number of IVs in the
system on the vehicular computation task offloading system,
we also evaluate the system average cost and throughput with
different number of IVs in Fig. 5 (a). With the increase in
the number of IVs, the throughput of our proposed MITA
task allocation policy has maintained an upward trend in
throughput, and the system average cost has also shown an
upward trend. This is because as the number of vehicles
increases, the number of computation tasks to be processed
grows, then the number of tasks in the waiting queue increases,
thus increasing the cost of execution time. Moreover, in Fig.
5 (b), the influence of the number of UAVs on the vehicular
computation task offloading system is investigated. According
to the results, with the increase in the number of UAVs, the
average cost of the system presents a gradual downward trend,
while the throughput gradually increases. It can be concluded
that although the increase of UAV number has enriched the
computing resources of the system, it also increased the energy
consumption of the system. Therefore, reasonable increment of
the number of UAVs is the key to the effective implementation
of multiple UAVs assisted vehicular computation offloading.

Next, we will discuss the performance comparison between
our proposed MITA and the task allocation algorithms [9] and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 5. System average cost and throughput vs. the number of IVs and UAVs

[23]. The algorithm latency minimization (LM) [23] is to min-
imize the execution time under the premise of ensuring the
maximum energy consumption, by considering offloading the
computation tasks of mobile users to multiple cloud servers.
In addition, the task allocation algorithm MECO [9] is to of-
fload computation task of mobile user to an optimal intelli-
gent device. The simulation results are shown in Fig.6 (a) and
Fig.6 (b). The proposed MITA algorithm calculates the optimal
task distribution method as the size of the computation task
changes, and it shows good performance in terms of system
average cost and throughput. As shown in Fig. 6, the proposed
MITA performs better than MECO which proves distributing
computation task to multiple IDs is a wise way. Moreover,
the LM algorithm is based on the idea of offloading compu-
tation task to multiple cloud servers at the same time, so as
to minimize the execution time of tasks and formulate a not
bad allocation scheme. However, the idea of our proposed task
allocation algorithm MITA is to allocate the task of unit size
to the device with minimum cost increment. Hence, MITA can
ensure that the task allocation scheme can make the system
cost as small as possible and improve the throughput.

VII. CONCLUSION

This paper investigates the offloading strategy for industrial
sensing vehicles in temporary manufacturing sites with less
infrastructure by introducing multiple UAVs to assist the job.
It is considered that IV can assign the computation task
to multiple IDs that can establish wireless communication.
Then, these available IDs and the vehicle itself can execute
computation tasks in parallel, to maximize the utilization of
system computing resources. This can improve the computing
efficiency and minimize the system average cost. Based on the
idea of sequence game in the SDN framework, we make the
decision of players’ mutual satisfaction and propose the MITA
algorithm to allocate computation tasks to multiple available
devices to minimize the system cost. As one of the cost
elements, we add the computing services provided by hiring
IDs, which is closer to the reality that the temporal industrial
site can contain multiple manufacturers. Numerical results
show that deploying multiple UAVs to provide computing
services is a reliable and low-cost solution to satisfy the IV
with scared computational resources. Moreover, the proposed

Fig. 6. The performance comparison of MITA and related work

MITA algorithm can greatly minimize the average cost of
computation tasks generated by IVs and improve system
throughput.

REFERENCES

[1] Z. Ning, X. Hu, Z. Chen, M. Zhou, B. Hu, J. Cheng, and M. S. Obaidat,
“A cooperative quality-aware service access system for social internet of
vehicles,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2506–2517,
2018.

[2] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2015.

[3] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Transactions on Signal and Information Processing over Networks,
pp. 89–103, 2015.

[4] M. Kamoun, W. Labidi, and M. Sarkiss, “Joint resource allocation and
offloading strategies in cloud enabled cellular networks,” in 2015 IEEE
International Conference on Communications (ICC), 2015, pp. 5529–
5534.

[5] H. Li, M. Dong, and K. Ota, “Control plane optimization in software-
defined vehicular ad hoc networks,” IEEE Transactions on Vehicular
Technology, vol. 65, no. 10, pp. 7895–7904, 2016.

[6] Q. Zheng, K. Zheng, H. Zhang, and V. C. M. Leung, “Delay-optimal
virtualized radio resource scheduling in software-defined vehicular net-
works via stochastic learning,” IEEE Transactions on Vehicular Tech-
nology, pp. 7857–7867, 2016.

[7] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust,
“Mobile-edge computing architecture: The role of mec in the internet
of things,” IEEE Consumer Electronics Magazine, pp. 84–91, 2016.

[8] J. Wang, C. Jiang, Z. Han, Y. Ren, R. G. Maunder, and L. Hanzo,
“Taking drones to the next level: Cooperative distributed unmanned-
aerial-vehicular networks for small and mini drones,” IEEE Vehicular
Technology Magazine, pp. 73–82, 2017.

[9] C. You and K. Huang, “Multiuser resource allocation for mobile-edge
computation offloading,” 2016 IEEE Global Communications Confer-
ence (GLOBECOM), pp. 1–6, 2016.

[10] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task offloading in vehicular
edge computing networks: A load-balancing solution,” IEEE Transac-
tions on Vehicular Technology, pp. 1–1, 2019.

[11] N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane, “Software defined
networking-based vehicular adhoc network with fog computing,” in 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), 2015, pp. 1202–1207.

[12] A. M. Vegni and V. Loscrı́, “A survey on vehicular social networks,”
IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp. 2397–2419,
2015.

[13] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computa-
tion task scheduling for mobile-edge computing systems,” 2016 IEEE
International Symposium on Information Theory (ISIT), pp. 1451–1455,
2016.

[14] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–
3605, 2016.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

[15] R. Duan, J. Wang, J. Du, C. Jiang, T. Bai, and Y. Ren, “Power-delay
trade-off for heterogenous cloud enabled multi-uav systems,” in ICC
2019 - 2019 IEEE International Conference on Communications (ICC),
2019, pp. 1–6.

[16] T. Zhao, S. Zhou, X. Guo, and Z. Niu, “Tasks scheduling and resource
allocation in heterogeneous cloud for delay-bounded mobile edge com-
puting,” in 2017 IEEE International Conference on Communications
(ICC), 2017, pp. 1–7.

[17] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial compu-
tation offloading scheme for mobile edge computing enabled internet of
things,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4804–4814,
2019.

[18] X. Wang, Z. Ning, and L. Wang, “Offloading in internet of vehicles: A
fog-enabled real-time traffic management system,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 10, pp. 4568–4578, 2018.

[19] X. Yang, Z. Li, and X. Ge, “Deployment optimization of multiple uavs in
multi-uav assisted cellular networks,” in 2019 11th International Con-
ference on Wireless Communications and Signal Processing (WCSP),
2019, pp. 1–7.

[20] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication
design for multi-uav enabled wireless networks,” IEEE Transactions on
Wireless Communications, vol. 17, no. 3, pp. 2109–2121, 2018.

[21] N. Cheng, W. Xu, W. Shi, Y. Zhou, N. Lu, H. Zhou, and X. Shen,
“Air-ground integrated mobile edge networks: Architecture, challenges,
and opportunities,” IEEE Communications Magazine, vol. 56, no. 8, pp.
26–32, 2018.

[22] Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint task offloading and resource
allocation in uav-enabled mobile edge computing,” IEEE Internet of
Things Journal, vol. 7, no. 4, pp. 3147–3159, 2020.

[23] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Transactions on Communications, vol. 64, no. 10, pp. 4268–4282,
2016.

[24] S. Kim, S. Park, M. Chen, and C. Youn, “An optimal pricing scheme for
the energy-efficient mobile edge computation offloading with ofdma,”
IEEE Communications Letters, vol. 22, no. 9, pp. 1922–1925, 2018.

[25] L. Zhang, Z. Zhao, Q. Wu, H. Zhao, H. Xu, and X. Wu, “Energy-aware
dynamic resource allocation in uav assisted mobile edge computing over
social internet of vehicles,” IEEE Access, vol. 6, pp. 56 700–56 715,
2018.

[26] X. Kang, R. Zhang, and M. Motani, “Price-based resource allocation for
spectrum-sharing femtocell networks: A stackelberg game approach,”
IEEE Journal on Selected Areas in Communications, vol. 30, no. 3, pp.
538–549, 2012.

[27] Y. Wu, T. Zhang, and D. H. K. Tsang, “Joint pricing and power allocation
for dynamic spectrum access networks with stackelberg game model,”
IEEE Transactions on Wireless Communications, vol. 10, no. 1, pp. 12–
19, 2011.

[28] X. Wang and L. Duan, “Dynamic pricing and capacity allocation of uav-
provided mobile services,” in IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications, 2019, pp. 1855–1863.

[29] A. Alioua, S. Senouci, S. Moussaoui, H. Sedjelmaci, and M. Messous,
“Efficient data processing in software-defined uav-assisted vehicular
networks: A sequential game approach,” Wireless Personal Communi-
cations, vol. 101, pp. 2255–2286, 2018.


