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Vehicular Congestion Detection and Short-Term
Forecasting: A New Model With Results
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Abstract—While vehicular congestion is very often defined in
terms of aggregate parameters, such as traffic volume and lane
occupancies, based on recent findings, the interpretation that
receives most credit is that of a state of a road where traversing
vehicles experience a delay exceeding the maximum value typically
incurred under light or free-flow traffic conditions. We here pro-
pose a new definition according to which a road is in a congested
state (be it high or low) only when the likelihood of finding it
in the same congested state is high in the near future. Based on
this new definition, we devised an algorithm that, exploiting probe
vehicles, for any given road 1) identifies if it is congested or not and
2) provides the estimation that a current congested state will
last for at least a given time interval. Unlike any other existing
approach, an important advantage of ours is that it can generally
be applied to any type of road, as it neither needs any a priori
knowledge nor requires the estimation of any road parameter
(e.g., number of lanes, traffic light cycle, etc.). Further, it al-
lows performing short-term traffic congestion forecasting for any
given road. We present several field trials gathered on different
urban roads whose empirical results confirm the validity of our
approach.

Index Terms—Intelligent transportation systems, traffic fore-
casting, vehicular software technology for congestion detection,
vehicular traffic congestion definition.

I. INTRODUCTION

TWO main approaches have emerged with the aim of
limiting the business and societal costs of vehicular con-

gestion. The first approach amounts to provide aggregate traffic
information (such as the intensity of traffic volumes and lane
occupancy rates) to transportation authorities, which, in turn,
feed this information into advanced traffic management systems
(ATMSs) to control traffic lights. The second approach is more
pervasive and is based on the idea of gathering road traversal
times from probe vehicles [1]–[7]. This information is then
managed by advanced traveler’s information systems (ATISs),
which, in turn, supply single drivers with feedback on traffic
and with suggestions on the best routes to a destination as a
function of real-time traffic conditions (simplistic examples of
ATIS are personal navigation devices (PNDs) [5]).
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Although the importance of providing updated information
on traffic conditions, on a per single vehicle basis, is widely
understood, to date, the most amount of research has been
devoted to devise traffic estimation and forecast algorithms
to be used by ATMSs. As such, these algorithms are mostly
concerned with the problem of keeping under control specific
locations (e.g., highways and principal arterial roads) subject to
high volumes of traffic [8], [9]. Roads where flow intensities
are high, as in freeways, are easy to monitor since they usually
have a small number of interconnections with other roads while
representing a small subset of the whole urban map.

It is, instead, hard to obtain a comprehensive road-by-road
picture of urban traffic since such roads are tightly inter-
connected and consequently subject to high traffic variability.
Therefore, traffic information is not widely available in this
specific context, with only a few of the main transportation
authorities of the most densely populated cities having the tools
to monitor (a small subset of) urban roads. As an example, only
cities of the magnitude of Los Angeles, CA, and Milan, Italy,
are currently provided with a pervasive monitoring infrastruc-
ture composed of induction loops and video cameras, which,
however, do not cover the entire urban area [10].

However, things may change as soon as wireless sensor
technologies enter the game and play a primary role. For ex-
ample, recent market research forecasts that the 88% of PNDs
mounted on vehicles in 2015 will integrate a GPS and a cellular
connection [11]–[14], thus paving the way to the deployment
of a mobile traffic sensing infrastructure comprised of vehicles
that provide on the fly the time they spend to traverse a given
portion of road. As a result, all this information sensed by a
multitude of vehicles could be processed and put to good use to
guide each single driver through the least congested path toward
its destination.

It is hence not surprising that many researchers have recently
shifted their attention to the design of mechanisms able to
detect, as well as to forecast, the congestion state of any given
segment of a road, even if not classifiable as a principal arterial
way [15]–[18]. Most of such schemes rely on the idea of
collecting and processing the traversal time data from all the
vehicles that pass through a given road. Obviously, vehicles
should be equipped with a GPS receiver, a wireless communica-
tion interface, and a software protocol needed to exchange data
with a centralized entity. In turn, the centralized entity should
process these data and subsequently distribute it to drivers, thus
providing a useful aid for routing decisions.

The challenge, at this point, is to design a set of algorithms
capable of detecting and forecasting traffic congestion based
on a pervasive traffic sensing infrastructure [16]. Obviously, the
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starting point of all these research initiatives is a good definition
of what vehicular congestion is for any given road segment.
Indeed, such definition has been available for a long time and
sounds as follows: congestion is the travel time or delay in
excess of that normally incurred under light or free-flow travel
conditions [19].

Although clear in theory, this definition has not found a
successful algorithmic counterpart as it does not provide an
unambiguous method, independent of any parameter and ap-
plicable to any road, to find the traversal time value T ∗,
which distinguishes a congested from a noncongested road. To
overcome this problem, we provide a brand new definition that
identifies the state of congestion of a given road as a state that
lasts for at least S units of time and during which travel times
or delays exceed the time T ∗ normally incurred under light or
free-flow travel conditions.

Following our definition, a road is congested when the traver-
sal times of vehicles exceed T ∗ and all he subsequent vehicles
that enter the road within a time S keep exceeding the same
value. The intuition behind this is given by observing that even
when the input flow to a congested road suddenly drops, the
inertia of the existing queue causes the road segment to be
seen as congested also by those vehicles that enter the road
within time S. From this observation, we can logically draw
that if a vehicle traverses a road segment when congested, then
a second vehicle will very likely experience a similar traversal
time if it enters the road segment within S units of time from the
first vehicle. It is exactly this kind of consideration that allows
one to understand how our congestion detection definition may
also be used for estimating the duration of congestion states,
thus providing a simple and effective tool useful for traffic
forecasting.

From the foregoing considerations, assuming S is known, an
algorithm able to compute the congestion threshold T ∗ for any
given road is straightforward. The idea at the basis of such an
algorithm is as follows. Take a set of all the pairs of vehicles
entering a given road, which are separated in time of at most
S units, we say that a road segment is in a congested state if
the number of pairs of subsequent vehicles, for both of which
the traversal time exceeds T ∗, is much greater than the number
of pairs for which the traversal time of only the first vehicle
of the pair exceeds T ∗ (being this ratio N : M , for example).
Obviously, with the phrase “pairs of subsequent vehicles,” we
indicate, for example, a couple of vehicles i and j, with i
entering that road segment earlier than j, but independent of
the number of vehicles between i and j. Conversely, a road
segment is in a noncongested state if the amount of pairs of
subsequent vehicles, for both of which the traversal time is
below T ∗, is much greater than the amount of pairs for which
the traversal time of only the first vehicle of the pair is lower
than T ∗ (we can suppose this ratio is K : H). Assuming that
N : M , K : H , and S are known, it is as easy as pie to find
T ∗. The rationale is that we see congestion as that state where
the number of vehicles for which the traversal times are all
stably high outnumber the number of vehicles for which their
traversal times gracefully drop to a nonhigh value. Similarly,
we deem a road segment as not congested when a much greater
and steady number of vehicles with low travel times traverse

that road with respect to the number of vehicles with high
travel times.

The issue of quantifying the ratios N : M and H : K is
crucial and should be left to the experience and sensibility of
who is in charge of tuning our mechanism for managing traffic
operations (typically the traffic operations manager). However,
a good choice can be based on the following consideration.
A general reasoning can be conducted observing that human
beings (and drivers as well) require a high reliability on the
information they process to make their decisions. Specifically,
drivers perceive a road as congested when a high rate of
vehicles suffers from delays, which are above a congestion
threshold. The point of how high this rate should be is still
open. Obviously, any value exceeding 60%/70% matches that
sense of “perceived congestion” drivers have in mind. Indeed,
authors of [20] identify in the 80th percentile (more precisely
the 80th–50th interquartile difference) a reasonable level of
reliability, which drivers require on the traffic information they
receive.

Now, we have not yet provided any precise recipe for de-
termining S. It is worthwhile to mention that a reasonable
assumption of S is of great importance for our approach as it
helps in determining the congestion threshold T ∗. Not only,
given the nature of our algorithm, S gives us the means of
providing a forecast of traffic. To this aim, we can consider a
study from the American National Bureau of Transportation
Statistics that can be of help as it reveals that the average
American driver spends 55 min a day behind the wheels [21].
Considering that the average daily traffic pattern for any driver
is from home to work in the morning and back in the late
afternoon, and assuming similar travel time values for both
directions, we find that the average one-way travel time is equal
to 27.5 min. This indicates a plausible reference value for S as
an average driver will not spend more than such value stuck in
traffic. As per a minimum value of S, a good choice could be
that of 2 or 3 min; this being, on average, the traversal time of
a typical urban road without traffic.

Once implemented, to confirm the validity of our traffic
detection algorithm, we carried out real experiments amounting
to 450 mi of travelled roads throughout different locations in the
world. We report in this paper results from those experiments,
which have validated our approach.

To conclude this section, we emphasize that our scheme
differs from any other we are aware of on one important
point, i.e., it computes a congestion threshold dynamically as
a function of the congestion duration S. We think that this
design choice brings at least three advantages over all the other
alternative schemes:

1) A road’s congestion threshold solely depends on the
probe vehicle traversal times and does not require any
other contextual information.

2) Our scheme binds the detection of congestion (or no con-
gestion) to the prediction of its duration, while the other
algorithms either ignore this relationship or separately
address these two problems.

3) Our algorithm takes into account that S may change
because of sudden differences in a road’s capacity, traffic
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light cycles, or varying weather conditions, for example,
and adapts accordingly.

The rest of this paper is organized as follows: In Section II,
we review the main schemes proposed as effective means to
detect traffic congestion in urban roads. In Section III, we pro-
vide both the intuition behind and the formal implementation of
our algorithm. A description of the experimental scenario and
with empirical results may be found in Section IV. We finally
conclude in Section V.

II. RELATED WORK

A great amount of research has been carried out over the past
few years, working on the problem of evaluating the perfor-
mance of urban road networks by means of new congestion
metrics. In most of such works, a congested state is distin-
guished from a noncongested state by analyzing the traversal
times of the vehicles that flow through a given road segment
and comparing them with some fixed threshold [22]–[27]. In the
following, we will describe how three relevant traffic detection
algorithms work. The first two methods both rely on the use of
probe vehicle data for the detection of congestion, whereas the
third is based on the highway capacity manual delay formula
for signalized intersections and will serve, as we shall see in
Section IV-A, as a benchmark for the validation of our results.

The methodology described in [23] is based on the use
of fixed speed thresholds to determine whether a given road
segment is congested or not. In such work, vehicle probes are
periodically collected from a fleet of four thousand taxis op-
erating in Shanghai and averaged out, providing instantaneous
traversal times and speeds at specific locations. In practice,
traffic is classified according to the average speed experienced
by a group of taxis that traverse a given road segment, as
follows. If, in urban contexts, the taxis result moving at a speed
that exceeds 30 km/h, hence traffic is classified as very smooth.
If instead the taxis’ speeds are between 25 and 30 km/h, then
the traffic is smooth. Finally, if the average speed falls in one
of the [16, 25), [11, 16) or [0, 11) km/h intervals, then traffic
is defined as medium, congested, and very congested, respec-
tively. Such methodology has these two important drawbacks.
The first drawback amounts to the fact that an a priori traffic
classification based on predetermined values of speed is too
rigid. A given road may exist where a speed of 20 km/h cannot
be considered as a symptom of congestion simply because this
is the maximum speed cars can reach due, for example, to
a specific traffic light cycle. The second problem is that this
mechanism lacks the ability to predict how long a state of
congestion will last.

The second method, which was termed surface street traffic
estimation, was specifically proposed to identify congestion
on signalized road segments, which are road segments whose
downstream intersection is managed by a traffic light [28].
Indeed, congested traversals are distinguished from noncon-
gested traversals by analyzing the GPS traces collected by
vehicles. Two different algorithms cooperate to this aim. The
first algorithm estimates the red light duration of a traffic light
as the 95th percentile of the stopping duration of vehicles. The

second algorithm computes two thresholds. The first threshold
is an average speed, which is computed as the road segment
length divided by the sum of the fifth percentile of traversal
times plus the red light duration. The second threshold is a
space mean speed, which is computed as the fifth percentile
of the spatial mean speed values that exceed the first threshold.
While the meaning of the first threshold is clear, as a vehicle
that experiences an average speed below this value traversed
the road with a delay that is above the free flow traversal
time (FFTT) plus the red light duration, it is worth spending
a few more words on the meaning of the second threshold. The
space mean speed of a vehicle is the arithmetic mean of the
instantaneous speed samples taken at fixed locations. Therefore,
this second threshold differentiates the values given by those
vehicles that traverse a road with a stop-and-go pattern from the
values of those vehicles that, instead, smoothly flow through
the road. Summarizing, vehicles that exceed both thresholds
are classified in a free flow state, whereas vehicles that fall
below both thresholds are classified as congested. While this
strategy is clear, as it identifies congestion as queueing, this
algorithm falls short in two main aspects. The first is that
this method does not provide any forecasting information,
thus being questionable as to its utility. The second is that
this method focuses on segments with signalized intersections,
being not clear on how it may be extended to more general
cases. Finally, an approach often used to distinguish congested
from noncongested states is based on the highway capacity
manual (HCM) delay formula for signalized intersections [8],
[29]–[31]. This formula computes the average traversal time
T̄HCM of a vehicle as the sum of three values. The first d0 is the
average traversal time per vehicle in free flow conditions. The
second d1 is equal to the additional average delay per vehicle
due to traffic light phases. Finally, d2 amounts to an additional
average delay experienced by a vehicle because of congestion.
While d0 can simply be obtained by dividing the length of a
road segment by its speed limit, d1 and d2 are functions of the
capacity of the road (determined by the number of lanes and the
length of traffic light phases), the average amount of vehicles
entering the road within a given time, and the expected duration
of the given analysis conditions. In summary, the T̄HCM value
may be computed on a per-vehicle basis assuming that the
input traffic volume of a road matches its capacity and that the
analysis period is long enough. This value is finally exploited
to differentiate congested from noncongested portions of roads.
While this approach exploits the duration of the analysis with
the aim of capturing the future state of a road segment, it has,
indeed, a limit given by its inability to adapt to the capacity fluc-
tuations of a road segment (being the capacity of a street subject
to a number of modifications caused by obstructing vehicles and
maintenance works, for example). Moreover, accurate results
require accurate estimates of the parameters that influence the
capacity of a road, which are not easy to obtain on a large-scale
basis. Summarizing, the foregoing approaches either 1) do not
couple the congestion identification and forecasting problem as
one, thus risking to identify as congested roads that will not
last in that state any longer in time or 2) excessively rest upon
statically chosen parameters, jeopardizing their adaptability to
new and different road settings. We will show that our approach
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is successful in overcoming both of the previous problems as it
does not need the a priori setting of any parameter. Hence, we
are confident that it can represent a good candidate for traffic
estimation and forecasting in pervasive urban traffic scenarios.

III. NOVEL CONGESTION DETECTION MODEL

Before proceeding with a detailed explanation of our con-
gestion detection algorithm, we briefly account for the general
context where it should be exploited (e.g., within the frame of
an ATIS [32], [33]). In particular, we assume vehicles mounting
an advanced PND integrated with a GPS receiver and a full-
duplex communication device.

First of all, any given segment of a road must be put under
observation for a duration of half a day/a day, as the idea is
that, upon completion of that given road segment traversal, any
vehicle sends to a centralized entity a message that includes
an identifier of that road segment and its entry and exit times
(i.e., the traversal time). As soon as the centralized entity has
completed the observation activity and collected a sufficient
number of samples from probing vehicles, it has a clear picture
of the congestion states characterizing that given segment of a
road. At this point, our method steps through a second phase
that requires 1) choosing a value S, 2) taking all the pairs of
traversal times of those vehicles where the second one entered
the road no later than S units of time after the first during the
given observation period, and 3) applying the methodology that
we will later describe to compute the congestion threshold T ∗.

If S and T ∗ can be found satisfying a set of requirements
cleared later, then they can be put to good use as follows.

Suppose that afterward (10 min later or even 2 days after)
another vehicle traverses that road experiencing a travel time
equal to T and transmits this information to the centralized
entity. Depending whether T > T ∗ or T ≤ T ∗, the centralized
entity is in the condition to inform all the subsequent vehicles
that plan to traverse that road that they will incur, with a given
likelihood (typically 80%), in a congested or not congested state
of duration of at least S.

In simple words, our mechanism has not been designed to
provide static information to drivers like “on Monday evening
at 5 P.M. you will incur in congestion” but dynamically treats
traversal times larger than the congestion threshold T ∗ as a
symptom that is preannouncing a congestion event of duration
of at least S to be advertised to the surrounding vehicles.

Obviously, the initial observation phase required to tune
the system may be performed only once in a given period or
repeated with a frequency to be obtained by the transportation
authority on a per road basis.

Let us explain now how the algorithm needed to detect and
forecast congestion works.

A. Congestion Detection and Forecasting Algorithm

We first begin by recalling the general definition given in
Section I, which is as follows.

Definition 3.1: A road segment R is in a congested state
if the travel times or delays of the traveling vehicles exceed
the time T ∗ normally incurred under light or free-flow travel

conditions, and this congested state lasts for at least S units of
time.

Owing to this generic definition, it is possible to infer a
further set of operational definitions from which a simple
algorithm can be derived to identify when a road segment is
in a state of high or low congestion. Let us start with a set
of definitions aimed at identifying two different types of sets
of vehicles entering a road segment under diverse congestion
conditions.

Definition 3.2 (Platoon): Let us define a platoon Pt,S of
vehicles as a group of vehicles entering a road segment R, with
the first vehicle of the platoon entering R at time t and the last
vehicle entering R no later than time t + S.

In essence, the concept of platoon captures all those vehicles
that entered a road segment within a time span S, but depending
on the point in time when the first of them entered that road
(beginning at time t).

To extend this concept, we can introduce the definition of
a fleet F , which, for a given S, aims at addressing not only
the cars of a single platoon but all those pairs of cars (i, j),
separated by at most S units of time, which enter a given road
segment generically during a period of observation of duration
Z. This definition is as follows.

Definition 3.3 (Fleet): A fleet FS of pairs of vehicles is de-
fined as FS = {(i, j)|(i, j) ∈ Pt,S × Pt,S ,∀t ∈ [0, Z − S], i <
j}, where < is meant to induce a natural order between subse-
quent vehicles.

Definition 3.4 (High Congestion Vehicle Set): Taking a fleet
FS , HighCongestionT∗

1
is defined as the set of all the pairs of

vehicles i, j (with i entering R before j) of this fleet for which
their traversal times, say T ∗

i and T ∗
j , both exceed the congestion

threshold T ∗
1 (i.e., (T ∗

i > T ∗
1 ) ∧ (T ∗

j > T ∗
1 )). We also define as

Noise1T∗
1

the set of all the pairs of vehicles, say h, k, for which
the traversal time T ∗

h of only the first vehicle h exceeds T ∗
1 (i.e.,

(T ∗
h > T ∗

1 ) ∧ (T ∗
k ≤ T ∗

1 )).
In essence, HighCongestionT∗

1
represents the amount of all

those vehicles suffering from a stable situation of congestion.
Indeed, all their traversal times lie above the congestion thresh-
old T ∗

1 . Instead, Noise1T∗
1

represents the set of those vehicles,
a part of which is leaving the congestion state. The traversal
times of those vehicles lie below the congestion threshold T ∗

1 .
Definition 3.5 (Low Congestion Vehicle Set): Taking the

same fleet FS , NoCongestionT∗
2

is defined to be the set of
all the pairs of vehicles of this fleet, say i, j (with i entering
R before j), for which their traversal times, say T ∗

i and T ∗
j ,

are both below the congestion threshold T ∗
2 (i.e., (T ∗

i < T ∗
2 ) ∧

(T ∗
j < T ∗

2 )). We also define as Noise2T∗
2

the set of all the pairs
of vehicles, say h, k, for which the traversal time T ∗

h of only the
first vehicle h is below T ∗

2 (i.e., (T ∗
h < T ∗

2 ) ∧ (T ∗
k ≥ T ∗

2 )).
Similarly, as before, NoCongestionT∗

2
groups all the cars

incurring in a stable situation of no congestion (i.e., all their
traversal times are below T ∗

2 ). In this case, instead, Noise2T∗
2

represents a situation where the second car of most pairs is
entering in a new congestion state as their traversal times
exceed T ∗

2 .
Given the preceding sets, we now introduce the indica-

tor functions of those sets with the aim of providing a tool
with which the number of vehicles of a fleet FS entering a
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road segment R can be counted under different congestion
conditions.

Definition 3.6 (High Congestion State): Let
1HighCongestionT∗

1
: FS → {0, 1} be defined as

1HighCongestionT∗
1

((i, j)) =

⎧⎪⎪⎨
⎪⎪⎩

1, (i, j) ∈
HighCongestionT∗

1

0, (i, j) /∈
HighCongestionT∗

1
.

Let 1Noise1T∗
1

: FS → {0, 1} be defined as

1Noise1T∗
1

((h, k)) =
{

1, (h, k) ∈ Noise1T∗
1

0, (h, k) /∈ Noise1T∗
1
.

Definition 3.7 (No Congestion State): Similarly, for non-
congested states, let 1NoCongestionT∗

2
: FS → {0, 1} be de-

fined as

1NoCongestionT∗
2

((i, j))=
{

1, (i, j) ∈ NoCongestionT∗
2

0, (i, j) /∈ NoCongestionT∗
2
.

Let 1Noise2T∗
2

: FS → {0, 1} be defined as

1Noise2T∗
2

((h, k)) =
{

1, (h, k) ∈ Noise2T∗
2

0, (h, k) /∈ Noise2T∗
2
.

At this point, we are able to count 1) the number of pairs
of vehicles that suffers high congestion versus the number
of pairs of vehicles that is leaving a congested situation, and
2) the number of pairs of vehicles that does not suffer con-
gestion versus the number of pairs of vehicles that is entering
in a congestion state. This allows us to provide the following
propositions on which our congestion detection algorithm is
based.

Proposition 3.1 (Congestion): A given road segment R is
congested for a period of length at least S if the following holds:∑

(i,j)∈FS
1HighCongestionT∗

1
(i, j)∑

(i,j)∈FS
1Noise1T∗

1
(i, j)

≥ N

M
(1)

with N/M = 80%/20%, as discussed in Section I [20].
The same can be drawn for a noncongested state as follows.
Proposition 3.2 (No Congestion): A given road segment R is

not congested for a period of length at least S if the following
holds: ∑

(i,j)∈FS
1NoCongestionT∗

2
(i, j)∑

(i,j)∈FS
1Noise2T∗

2
(i, j)

≥ H

K
(2)

again with H/K = 80%/20% [20].
The rationale of Proposition 3.1 is simply that if the number

of cars in a stable situation of congestion largely exceeds
the number of cars that are leaving a congestion state, then
that state can be confirmed as a congested state. Conversely,
Proposition 3.2 states that if the number of cars suffering no
congestion outnumbers the set of those entering in a congested
situation, then that state can be confirmed as a noncongested
state.

B. Efficient Implementation

Up to this point, we have devised a mathematical model that
can be used to distinguish a congested state of a road segment
R from a noncongested state based on the computation of two
congestion thresholds, namely, T ∗

1 and T ∗
2 . Before explaining

how to compute the values of T ∗
1 and T ∗

2 , we have to anticipate
here that it is not only a matter of the choice of an adequate
mathematical model but a matter of its application to only those
real cases where it can return an effective solution that meets
the drivers’ needs in terms of knowledge about the fact if a
given road is congested or not. We here appeal to a principle of
reality, which says that it makes sense to apply our algorithm
to all those roads where congested and noncongested states
alternate, whereas it does not make sense to apply it when only
one of the two mentioned states can be found on a road at
any given time because in such a case there is no reason for
using any existing model. In this latter case, we would find
paradoxical T ∗

1 and T ∗
2 values. Take, for example, this case

showing when our algorithm should not be used. Consider a
road segment R for which we know for sure it is congested, with
a certain set of vehicles running on it. Take now Proposition 3.1
and apply it to the traversal times returned by those vehicles.
Obviously, this proposition will be able to find a T ∗

1 value that
is exceeded by the traversal times of all the vehicles. Take then
Proposition 3.2 and apply it to the set of the same traversal times
as before. Obviously, again, a new value T ∗

2 can be obtained
exceeding all those traversal times. In this way, we would have
obtained the paradox of having T ∗

2 > T ∗
1 without any possibility

of understanding if our road is in a congested state or not.
Indeed, this is not a problem of our algorithm, but its

application was wrong. Instead, the right way to apply our
procedure is that of working on a set of data that, for a given
road R, can be sampled both from states of congestion and
from states of no congestion. From an operational viewpoint,
this means that, for our algorithm to work correctly, a given
road must be put under observation for a period whose duration
is long enough to capture both congested and noncongested
traffic situations. Hence, if the traversal times are sampled
correctly, then applying both Propositions 3.1 and 3.2 returns
two threshold values T ∗

1 and T ∗
2 ordered according to their

natural way, that is, T ∗
2 ≤ T ∗

1 .
Based on the preceding considerations, an efficient way to

implement the statements of both Propositions 3.1 and 3.2 goes
through two different steps. The first step amounts to searching
the pair (T̄ ∗

1 , T̄ ∗
2 ) that maximizes 1) the number of pairs of vehi-

cles whose traversal times are both larger than T̄ ∗
1 (congestion)

and 2) the number of pairs of vehicles whose traversal times
are both below T̄ ∗

2 (no congestion). Simultaneously, of minimal
size should be 3) the amount of pairs of vehicles for which the
traversal times of only the latter vehicle is smaller than T̄ ∗

1 and
4) the amount of pairs of vehicles for which the traversal time
of only the latter vehicle is larger than T̄ ∗

2 (noisy conditions).
All this can be obtained with (3), shown at the bottom of the
next page. where Δ =

∑
(l,m)∈FS

1HighCongestionT∗
1
(l,m) −∑

(a,b)∈FS
1NoCongestionT∗

2
(a, b).

In essence, Δ is a term accounting for a few noisy traversal
time values that could have a negative effect on the computation
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of the congestion threshold. This is the problem of a situation
where two well-defined and different clusters of traversal time
values coexist with a few isolated samples (either very high or
very low), which, in turn, may have the effect of shifting the
value of the congestion threshold. Δ, therefore, ensures that
the two clusters of samples contain the maximum number of
points each by minimizing the difference between their sizes.
In other words, subtracting Δ guarantees that if, for example,
an isolated point lies along the x–y bisector right below (or also
right above) all the other points plotted on a congestion graph,
our mechanism returns a solution where the T̄ ∗

1 and T̄ ∗
2 values

simply separate the two clusters, whereas it is excluded the
possibility that a solution exists where T̄ ∗

1 and T̄ ∗
2 separate the

isolated points from the union set that contains the two clusters.
The second step amounts to taking the just computed

(T̄ ∗
1 , T̄ ∗

2 ) values, respectively replacing them in (1) and (2), and
finally checking if the inequalities are satisfied. The motivation
behind the execution of this second step is that Step 1 could
complete, giving us a percentage of pairs of vehicles in the
state of congestion equal to N , with N < 80%, thus resulting
in a percentage of pairs of vehicles in a noisy situation above
the level of 20% (we name this kind of check Check1(T̄ ∗

1 )). A
similar situation could occur also with the percentage of pairs
of vehicles in a noncongested state, which could be less than
80% (we name this kind of check Check2(T̄ ∗

1 )).
Unfortunately, a reason for the checks to fail could be that of

having chosen a too large duration S for the state of congestion
of interest. This would mean that for many pairs of subsequent
cars the following holds: The congested (or noncongested) state
a first vehicle incurs in does not last in time as a second
vehicle no longer finds the same state. However, this could be
a problem simply concerned with the duration of the S we
have chosen, whereas a smaller value for S could exist, in
principle, for which both the subsequent cars incur the same
state of congestion. The idea is hence that of looking for such
a value by reducing S until a situation is captured where both
the subsequent vehicles of the pair experience a similar state of
congestion (or no congestion).

While no rule prevents us from starting with a value of S
equal to the length of the observation period Z (e.g., half a day),
such a choice would very probably result in a waste of time,
as for values of S close to Z no correlation can be observed
between the traversal times of subsequent vehicles (hence, our
methodology would fail). Hence, reminding the reference value
of 27.5 min as discussed in Section I, our algorithm starts its
search from S = 27.5 × 3 = 82.5 min and completes when it
reaches the final value of 2 min. Obviously, if the search is
completed without the possibility of identifying a congestion

TABLE I
CONGESTION THRESHOLD DETECTION ALGORITHM

or noncongestion state, whatever the value of the chosen S, this
means that for that given road segment, it is not possible to
distinguish any congestion state of interest. In such a particular
case, our algorithm completes by returning an adequate alert
message.

To conclude, we sketch in Table I the main phases of the
algorithm we have so far discussed. It shows an algorithm
that, after some iterations on the S values, finds the congestion
thresholds T̄ ∗

1 and T̄ ∗
2 of a given road segment (provided that

both these thresholds exist).

C. Representing Congestion With Graphs

We now proceed showing how the results of our algorithm
can be graphically represented. To do so, we define what a
congestion graph is.

Simply, a congestion graph of a road segment R is a scatter
graph of points (x = Ti, y = Tj), where the x- and y-axis
values of each point represent the traversal time of a pair of
subsequent vehicles. In particular, for each pair of vehicles, the
x value of a point on the graph is equal to the traversal time of
the first vehicle of the pair that entered R, whereas the y value is
equal to the traversal time of the second vehicle that entered R
within S seconds later. Each congestion graph can be indexed
with a value of S, with S being the maximum difference in time
between the moment when the first vehicle of a pair entered
R and the moment when the second vehicle of the same pair
entered R for any given pair of vehicles on that graph.

As significant examples, consider the leftmost, central, and
rightmost graphs in Fig. 1 representing three different conges-
tion graphs for three different S values. The leftmost graph has
been filled with data coming from vehicles running on a road
segment that either suffers from congestion or not, depending
on the specific moment of the day (in particular that road was
under observation for 7 h). Within any given S, there was a
traversal of only two cars. As expected, running our algorithm
on the data shown on this graph returns the values of S, T̄ ∗

1 ,
T̄ ∗

2 , N , M , H , and K, respectively, as follows: T̄ ∗
1 = 93 s,

T̄ ∗
2 = 89 s, N = 92%, M = 8%, H = 84%, and K = 16%.

(
T̄ ∗

1 , T̄ ∗
2

)
= (T ∗

1 , T ∗
2 )

s.t.

{
max
T∗

1 ,T∗
2

∑
(i,j)∈FS

(
1HighCongestionT∗

1
(i, j) + 1NoCongestionT∗

2
(i, j) − 1Noise1T∗

1
(i, j) − 1Noise2T∗

2
(i, j)

)
− |Δ|

}

(3)
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Fig. 1. (Left) Congestion graph with (1) and (2) satisfied and S = 6 min. (Center) Congestion graph with S = 3 h, with (1) and (2) not satisfied.
(Right) Congestion graph with S = 5 s, no interesting situation.

Indeed, the T̄ ∗
1 and T̄ ∗

2 thresholds are plotted on the graph by
means of two different couples of intersecting lines.

An interesting, even if expected, phenomenon, shown by this
example, is that if T̄ ∗

1 and T̄ ∗
2 exist, as returned by our algorithm,

then they take very close values (often almost coincident).
This is a natural consequence of the physical reality where in
practice, only one congestion threshold exists, above which,
we have congestion, and below which, we do not. Further,
in all the experiments we have carried out (and discussed in
Section IV), the value δ = [(T̄ ∗

1 − T̄ ∗
2 )/T̄ ∗

1 ] × 100% was
always smaller than 3%. For this reason, with the aim of
simplifying this matter, in the remainder of this paper, we will
exploit the value T̄ ∗

1 as a unique representative of the congestion
threshold of a given road.

The congestion graph at the center of Fig. 1 represents
instead a clear situation where no reasonable values for T̄ ∗

1

and T̄ ∗
2 can be found. This is not surprising as the data for the

traversal times plotted in this graph were sampled with a value
of S = 3 h for a road where congestion states did last always
less than 30 min. Clearly, if we take such a huge value for
S in this situation, we are making the mistake of establishing
a correlation between two cars that traversed the same road
segment in very different moments subject to very different
states of congestion.

As a final and interesting example, consider the case of the
rightmost graph in Fig. 1. There were sampled data with an
extremely small value for S (S = 5 s). If we tried to apply the
conditions expressed in (1) and (2) to this graph, we would find
values for T̄ ∗

1 and T̄ ∗
2 that could apparently look like reasonable.

Again, this would be a mistake as the problem is that there
is no interest in identifying congestion when its duration is
5 s. Indeed, there is no reasonable congestion state that lasts
so shortly. This is why our algorithm has a lower limit on
S = 2 min.

Obviously, with the cases of the central and the rightmost
graphs in Fig. 1, we wanted to represent the abnormal situations
we would get if we used wrong values for S. Specifically, if we
chose a value of S that is too large, we would have obtained
sparse points in the graph, accounting for a situation where no
relationship between vehicle pairs exist. Instead, if S was cho-
sen too low, we would have obtained points concentrated along
the x–y bisector, accounting for a situation where vehicles are
too close to each other to be useful for any kind of decision.

To better explain these specific experiments, the rightmost
graph reports the traversal time pairs recorded in a situation
where the road was observed for only half an hour, since with
S = 5 s, after half an hour, we obtained a sufficient number of
sample points. Obviously, the unhealthy choice of S = 5 was
deliberately taken to demonstrate that our mechanism works for
values of S that are at least as long as a couple of minutes.

Vice versa, with the central plot, we took into consideration
a different road section where our objective was that of demon-
strating that if S is too large (3 h), then there is little or no
correlation between the traversal times of subsequent vehicles.
To emphasize this, we plotted a sufficient number of pairs of
traversal times (comparable to those of the other examples)
collected between 2 and 3 h one from the other. Clearly, in this
case, the observation period was a few days long (we could only
collect a few samples during a day).

D. Running the Formula

To test its validity, we have input to (3) a fleet of pairs of ve-
hicles where the balance between congested and noncongested
vehicles varied in all possible ways.

In particular, given 100 simulated pairs of traversal
times, we tested all the following combinations (where NC
stands for the set of pairs of traversal times both below
the threshold T ∗ = 100 s, and CON stands for the set
of pairs of traversal times both above the threshold T ∗):
{|NC| = 10, |CON | = 90}, {|NC| = 20, |CON | = 80},
{|NC| = 30, |CON | = 70}, {|NC| = 40, |CON | = 60},
{|NC| = 50, |CON | = 50}, {|NC| = 60, |CON | = 40},
{|NC| = 70, |CON | = 30}, {|NC| = 80, |CON | = 20},
and {|NC| = 90, |CON | = 10}.

We ran 100 experiments for each specific combination,
where each traversal time (above or below the threshold) was
taken randomly from a uniform distribution. In Fig. 2, we
plotted the average computed value of T ∗ with superimposed
shape of the objective function as a function of the number
of pairs that fell in each of the two given sets. As can be
observed, T ∗ was exactly equal to 100 when the average
value of the objective function reached its maximum, and the
numbers of pairs of vehicles that fell in the two sets were equal
(50–50). However, even when the sizes of the two sets became
unbalanced (e.g., 90 congested versus 10 noncongested, and
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Fig. 2. T ∗ and objective function as a function of the number of pairs of
traversal times corresponding to vehicles in the noncongested and congested
sets (average values + standard deviation).

Fig. 3. T ∗ and objective function as a function of the number of pairs of
traversal times corresponding to vehicles in a noisy set (average values +
standard deviation).

vice versa), our formula found a T ∗ value that was remarkably
close to the correct value.

We also developed a further experiment where, keeping
fixed the number of pairs of traversal times corresponding to
congested and noncongested vehicles (50–50), we gradually
increased the number of pairs of traversal times corresponding
to vehicles that fell in the 1Noise2T∗

2
(i, j) set. Our expectation

was that our algorithm would compute a threshold of T ∗ =
100 s until the point that the amount of introduced noise became
too large. This is what exactly happened, as reported in Fig. 3,
where, again, on the y-axis to the T ∗ values (seconds) the shape
of the objective function is superimposed. This result is another
confirmation that our algorithm works.

IV. EXPERIMENTAL ASSESSMENT

We carried out a set of nine different experiments to verify
the validity of our congestion detection and forecasting algo-
rithm discussed in the previous section. Each of these experi-
ments was conducted by managing the vehicular data sampled
and transmitted by a set of cars driven over a real section of
the road. With the term section, we both indicate a single road
segment and two or more adjacent segments separated by one
or more intersections. Eight out of nine sections of roads taken
into consideration were in Los Angeles, whereas one was in
Pisa, Italy. All the information concerning these roads is listed
in Table II, where the road identifier and the name of the road,
the section of the road under analysis, its length, its traversal
time under free flow conditions, its entire traffic light cycle time

(CT), and, finally, the green time (GT) duration of the cycle
are provided. For the sake of conciseness, we will identify a
given road, and its section under analysis, by the sole use of
its corresponding road identifier in all the tables that follow,
displaying the result of our experiments.

Of a certain importance is also the consideration that all the
examined roads in Los Angeles are wide and provided with
an advanced ATMS infrastructure, whereas the road in Pisa is
narrow and crowded with both pedestrian and vehicular traffic.
The motivation behind the choice of these two cities is that they
represent two very different traffic situations, both from a traffic
management and driving style standpoint. To collect data, each
vehicle was equipped with an onboard system comprised of a
laptop with a GPS and an evolution-data-optimized interface
used to store a digital map of the area under analysis. As
discussed in the previous section, upon traversal of a given road
section R, a car transmitted its traversal time to a centralized
entity. As soon as a sufficient amount of data required to
distinguish congestion from noncongestion on R was available
(typically after a dozen hours during the daytime), our system
computed an estimate of T̄ ∗. The road section traversal times
were sampled by performing loops on tracks over those roads.
Tracks were, in general, comprised of a first part of the road
section chosen as it presented a high varying traffic pattern plus
a second part with little or no traffic. The rationale underlying
this choice was to be able to perform subsequent observations of
a given road section as close in time so as to exploit the same set
of cars. In Pisa, for example, we chose a track that included Via
Bonaini, Via B. Croce, P.zza Guerrazzi, and Via Gian Battista
Queirolo, as Via B. Croce could become very crowded, whereas
the other road sections in the track rarely experienced intense
vehicular flows (the track is highlighted in Fig. 4).

In the following section, we are going to present the results
we have obtained from our experiments.

A. Results

Our results are shown in Table III, where for each road is
respectively listed the number of loops on tracks, the congestion
threshold T̄ ∗ computed using our mechanism, the duration
of the congestion S, our measure N of how many pairs of
subsequent vehicles suffer a stable congestion situation, and
the measure H of how many pairs of subsequent vehicles
experience no congestion. Further, to verify the validity of the
results we have obtained, we have computed for each examined
road section the value T̂ = TFFTT + (CT − GT ) based on the
methodology proposed in [28]. T̂ amounts to the time a car
would spend traversing that road, in case it incurs not a traffic
congestion situation but that of waiting for the traffic light
situated at the end of the intersection to become green. Cars
are assumed to stop in queue for an entire red light time (this
resembles a typical situation where drivers enjoy an experience
of a very moderate congestion).

Values for T̂ have been inserted in Table IV as they represent
a figure of merit against which our obtained T̄ ∗ results must be
contrasted.

Examining the results in Table IV, we can draw the following
considerations. First, roads from 1 to 5 were all the roads where
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TABLE II
EXPERIMENT INFORMATION: LOCATION, ROAD SECTION, ROAD LENGTH, FFTT, TRAFFIC LIGHT CT, AND GT

Fig. 4. Experiment site map in Pisa.

TABLE III
ROAD DATA: NUMBER OF LOOPS, CONGESTION

THRESHOLD T̄ ∗, S, N , AND H

TABLE IV
COMPARISON: T̂ AND T̄ ∗

situations of high traffic congestion alternated with situations
of no congestion. This is revealed by the values of N and H
that were both above the threshold of 80%. The validity of
these results is also witnessed by the value of the congestion

threshold T̄ ∗ we derived, which was always larger than the
value of T̂ , thus confirming that our algorithm was able to
find a congestion threshold value above which cars really
incurred in congestion. Indeed, the alternating between states
of high congestion and no congestion revealed by our algorithm
matches with the empirical knowledge of the traffic situation
over those roads.

Of particular interest are also roads from 6 to 8. We delib-
erately chose these road sections as they are well known to be
roads that almost never experience states of congestion. Our
results confirm this fact in two different ways. First, for each
of these roads, the value T̂ is always larger than that provided
by our algorithm, thus confirming that cars over these roads
enjoy a smooth drive, rarely incurring in a red light, due to
the existence of a green wave. Second, the very small values
we obtained for N (corresponding to failures of the Check1
procedure in our algorithm) further corroborate the fact that
almost no congestion is visible over those roads.

Finally, a very specific case is given by road # 9. This road
section would seem to reveal a stable high congestion state as
resulting from a high value of N and a small value of H . How-
ever, the obtained T̄ ∗ value is smaller than the value of T̂ , thus
providing a contrasting argument against our initial statement.
The motivation for this paradox is as follows: Indeed, this road
section often experiences severe congestion on S. Monica Blvd.
Nonetheless, the drivers involved in our experimentation were
instructed to take a right turn on Sepulved Blvd. to maintain
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TABLE V
ROAD DATA: NUMBER OF LOOPS, CONGESTION THRESHOLD

T̆ , CT̆ , AND NCT̆

the route on the predetermined tracks. Hence, as this traffic
light permits to turn right on red, only very seldom our cars
incurred in the delay given by a red light time. This motivates
the low value of T̄ ∗, particularly in comparison with that of
T̂ . To overcome this, we carried out a couple of additional
experiments with cars going straight at that intersection. As
expected in this case, the value of T̄ ∗ always surpassed that
of T̂ .

Moreover, in addition to what was just discussed, we re-
garded as important to further extend our experimentation
to include a comparison of our results with those that can
be obtained exploiting the scheme proposed in [23], where
samples coming from probe vehicles are contrasted with a set
of static thresholds to determine the existence of congestion.
While the authors of [23] defined four different thresholds to
distinguish among five different levels of congestion, we are
simply interested in differentiating between only two situations:
the presence of congestion (including medium, congested, and
very congested states in [23]) or the absence of congestion
(including smooth and very smooth states in [23]). Hence, as
the authors distinguish between these two situations with a
25 km/h threshold on roads where the enforced speed limit is
40 km/h, we adapted such a value to the roads we drove on,
maintaining the same threshold value for the experiment carried
out on the narrow road in Pisa, whereas we increased to 28 km/h
the congestion threshold for the experiments conducted on the
wide Los Angeles streets. At this point, we converted these
speed thresholds into traversal time thresholds T̆ and inserted
those values in Table V. Table V also reports the percentages of
traversals classified as congested (CT̆ ) and those classified as
noncongested (NCT̆ ), computed based on the scheme in [23].

Examining CT̆ and NCT̆ , it is evident how the method
described in [23] has the tendency to overestimate the situations
of congestion, whereas the states of no congestion are underes-
timated. This bad attitude is confirmed not only by contrasting
the values reported in Table III with those obtained with our
method in Table V but by resorting to the empirical knowledge
of the traffic situation over those roads as well.

As a comparison with [23] cannot be considered sufficient
to validate our method because of the tendency of [23] to
overestimate congestion, we carried out an additional and final
comparison. In particular, we contrasted the values of T̄ ∗ with
those provided by the HCM method for each of the road
sections under analysis. As reported in Section II, the HCM
method exploits the value T̄HCM that should be interpreted as
the average traversal time cars experience when driving on a

TABLE VI
COMPARISON: T̄HCM AND PERCENTAGE DIFFERENCE

given road as a function of the intensity of traffic and of the
peak capacity of that road [30]. We provide in Table VI a
comparison between T̄ ∗ and T̄HCM. As can be seen from the
rightmost column of Table VI, the two parameters give almost
converging results. In particular, for roads # 5, 6, 8, and 9,
the matching between T̄ ∗ and HCM is nearly perfect. This is
due to the fact that the Los Angeles Transportation Authority
has provided very accurate and updated estimates for the peak
capacities of those road sections to be used in the HCM formula
[10]. Instead, the values of the peak capacities for roads # 1, 2,
3, 4, and 7 to be used in the HCM method were less precise as
simply drawn from the HCM general manual. This motivates
why the difference between T̄ ∗ and T̄HCM in percentage may
exceed 20% in these particular cases.

B. Study of Two Specific Cases

To provide further evidence of the validity of our approach,
we here discuss in more detail a set of specific cases drawn from
the two tracks shown in Fig. 2 (traversing Via B. Croce, Pisa,
in a counterclockwise direction) and Fig. 3 (traversing N. S.
Monica Blvd., Los Angeles, in a clockwise direction), respec-
tively. In particular, we studied the cases and contrasted the
results coming from a comparison between roads # 1 and 4,
as well as those coming from a comparison between roads # 3
and 7. The motivation for choosing these cases is as follows.

Roads # 1 and 4 were chosen as they exhibited similarities
(e.g., length, traffic light phase and speed limit), but differed
in terms of the number of traffic lights (two on the S. Monica
Blvd. and one at the end of the via B. Croce), lanes reserved
for through traffic (two for S. Monica Blvd. and one for via
B. Croce), and driving discipline (although we cannot provide
any supporting data, our drivers reported that traffic discipline
was more strictly adhered to in Los Angeles). The purpose
of this first comparison is to argue how these characteristics
influenced the value of S on both roads.

The case of roads # 3 and 7 was taken into consideration
as these two sections are different but consecutive parts of the
same street. Nonetheless, as discussed previously, our algo-
rithm was able to distinguish congestion from noncongestion
on road # 3, whereas it was unable to perform as well on
road # 7. Our aim, hence, is to better clarify such a situation,
showing how the results given by our algorithm should be
interpreted, avoiding a misuse that may lead to a contradictory
and inefficient selection of travel routes (see Fig. 5).
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Fig. 5. Experiment site map on S. Monica Blvd., between Wilshire Blvd. and
Bedford Dr.

Fig. 6. Congestion graph for S. Monica Blvd., between Wilshire and Bedford.

Road # 1 Versus Road # 4: What is interesting that emerges
from this comparison is that these two roads, namely, # 1 and 4,
have very different values of S in spite of a series of similarities
in terms of both road characteristics (see Table II) and the
results provided by our algorithm (see Table III).

A clear explanation of this phenomenon can be given by ob-
serving the congestion graph for these two road sections (Figs. 6
and 7, respectively). What emerges is the following. The points
in the graph of Fig. 6 are more clustered and concentrated
almost exclusively in the two regions of congestion (top-right
area) and of no congestion (bottom-left area). Hence, as in this
case, it is easier to intercept both congested and noncongested
states; also, the horizon of predictability (the S value) grows
larger. This does not apply, instead, to the graph in Fig. 7,
where the points are in some sense more scattered on the left
semiplane. Here, the 16% of points lies in the top-left area

Fig. 7. Congestion graph for Via B. Croce, between Piazza Guerrazzi and via
Queirolo.

Fig. 8. Congestion graph for S. Monica Blvd., between Wilshire and Roxbury.

(noisy situation). As a result, the value of S concerning the
length of forecasting drops lower.

Obviously, there are real facts behind the explanation we just
provided. The fact essentially is related to the number of lanes
per considered road. Normally, roads with higher capacities
(two lanes or more) or even smaller capacity fluctuations (no
presence of obstructing vehicles) experience a faster transition
from a congested to a noncongested state. This is exactly what
happened to the two-lane road # 4, as confirmed in Fig. 6,
whereas the relatively high percentage of scattered points in the
left semiplane of Fig. 7 reveals that road # 1 is a one-lane street
that easily transitions from a noncongested to a congested state.

Road # 3 Versus Road # 7: What could seem a paradox
here is that although road # 3 and 7 are sections of roads
belonging to the same street, the former alternates states of no
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Fig. 9. Congestion graph for S. Monica Blvd., between Roxbury and Bedford.

congestion to states of congestion, whereas the latter almost
always experiences a noncongested situation. These situations
are highlighted by the corresponding graphs in Fig. 8 (road #
3) and Fig. 9 (road # 7). Indeed, the graph in Fig. 8 has almost
no scattering, whereas the graph in Fig. 9 presents a high per-
centage of scattered points, particularly in the right semiplane
devoted to represent congestion. Again, this graphical pattern is
easy to explain based on what happens in reality. Indeed, road
# 7 has the road section between Roxbury Dr. and Bedford Dr.
of very short length. Further, the traffic light at Bedford Dr. is
coordinated with all the downstream traffic lights, thus easing
the outflow of vehicles that are stuck in queue. For these two
reasons, this street experiences a fortunate situation where the
shift from a congested to a noncongested state is made easier.

To conclude, the cases we here discussed confirm that our
algorithm is really precise in identifying even those situations
where abnormal facts may occur.

C. Dealing With Nonrecurrent Traffic Congestion Causes

Our mechanism has been designed with the aim of detecting
congestion in the situation when both it is determined by
recurrent traffic patterns and its cause is due to nonrecurrent
(or abnormal) events. The suitability of our mechanism in
recognizing congestion in all types of circumstances derives
from its ability to follow the evolution in time of the congestion
threshold T̄ ∗ of a given road segment as any of its physical
properties change (e.g., diminished capacity due to mainte-
nance work) or as it experiences nonrecurrent traffic patterns
(e.g., accidents).

To better explain how our mechanism can deal with nonre-
current congestion events, take the following example where a
two-lane road, due to scheduled maintenance work, is reduced
to a single-lane road starting from 1 P.M. In such a scenario,
clearly, vehicles running through that road between 8 A.M. and
1 P.M. enjoy a noncongested situation. After 1 P.M., since the
capacity of the road is halved, vehicles will take longer to tra-

verse it, thus experiencing congestion. If a sufficient number of
vehicles traversed that road during the morning, as well as after
1 P.M., then our mechanism would have been able to determine
an adequate congestion threshold T̄ ∗ (of value, say, 100 s)
that allows one to distinguish states of no congestion from
states of congestion. We can also assume that the maintenance
work lasts for a few days. Suppose now that the day after, at
a given time, an accident occurs, blocking the flow of cars for
a very long time (i.e., a large number of cars incur in a state
of severe congestion). Under these circumstances, our scheme
would have identified a much larger congestion threshold, say
200 s (provided that a sufficient number of cars has incurred
in this abnormal event). Up to this point, we have described
how our algorithm works in its present form. Obviously, it
is not difficult to devise an extension of our model that is
able to distinguish different causes of congestion (recurrent
and nonrecurrent) simply by observing how the congestion
threshold fluctuates provided that a sufficient number of cars
experience that specific traffic situation.

As a real example, take into consideration what we observed
during one of our experiments in Via Benedetto Croce in Pisa.
During a situation where a moderate level of congestion was
experienced (the traversal times fluctuated around 100 s), a
pedestrian suddenly fell on the sidewalk and, very rapidly, a few
minutes later an ambulance arrived, at first stopping and then
slowing the flow of vehicles. The problem was fixed, taking
no more than 15 min; thus, only a limited amount of vehicles
experienced this abnormal event, with traversal times reaching
approximately 220 s. As the duration of this event was too short,
it did not significantly influence the magnitude of the value of
the congestion threshold T̄ ∗. Needless to say, a longer duration
of this abnormal event would have had a more serious impact
on the value of the congestion threshold, thus allowing one to
distinguish it as a new and more severe cause of congestion,
with respect to the previous situation (moderate congestion).

In summary, while other mechanisms exist, which are de-
signed to detect nonrecurrent congestion states [34], [35], these
typically address the problem of identifying the cause of the
events that are at the basis of congestion (e.g., accidents).
Instead, our mechanism, as the aforementioned examples con-
firm, is concerned with the issue of revealing the severity and
duration of a congestion state. Nonetheless, our mechanism
can easily be adapted to distinguish recurrent congestion from
nonrecurrent congestion, thus also resulting in a valuable tool
for detecting accident events, for example.

V. CONCLUSION

We have presented a simple and efficient general-purpose
vehicular congestion detection and short-term forecasting algo-
rithm. Our algorithm has been checked on a real testbed driving
over 450 mi throughout Pisa and Los Angeles. We have pro-
posed a new definition of congestion, where a road is congested
only when the likelihood of finding it in the same congested
state is high in the near future. This makes our algorithm easy to
implement and effective in providing significant results. Given
its characteristics, we believe that this algorithm is well suited
for guiding drivers around critical traffic states.
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