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Abstract— It is widely accepted that the steady increase of urban 

vehicular congestion requires the implementation of adequate 

countermeasures. Intelligent Transportation Systems (ITSs) 

represent one of the possible solutions, as they strive to optimize 

the use of the available road network resources. Within this 

domain, the Advanced Travel Information Systems (ATISs) 

specifically address the vehicular congestion problem as they 

provide travelers, by means of a wireless channel, with updated 

road information. On receiving such information, travelers use 

their onboard Personal Navigation Devices (PNDs) to decide the 

best route to their destination. Clearly, ATISs become 

increasingly reliable the more they accurately identify the roads 

that are congested.  We here propose a new model for detecting 

congestion that supports the accurate estimation and short-term 

forecasting of the state of a road to be used with ATISs. Such 

model can be generally applied to any type of street, as it does not 

require any a-priori knowledge, nor an estimate of any street 

parameter. We present the results of several experiments, 

performed on different urban roads, which confirm the efficacy of 

our proposal.  

Intelligent transportation systems, Advanced traveler 

information systems, Vehicular congestion detection and 

forecasting, mobility models. 

I.  INTRODUCTION  

In the past few years, Advanced Traveler Information 
Systems (ATISs) have been highly referenced as of the most 
promising application of Intelligent Transportation Systems 
(ITSs). The purpose of ATIS policies is to provide all drivers 
with useful mobility information regarding their planned routes 
(e.g., travel time through multiple alternative paths) by having 
all cars sensing how rapidly they move (e.g., road traversal 
time) and utilizing a wireless channel to efficiently exchange 
such information between all vehicles and a centralized entity. 
Once the centralized entity has received a sufficient amount of 
information, such that an accurate picture of the levels of 
congestion can be built, vehicles’ Personal Navigation Devices 
(PNDs) are fed with this information in order to compute the 

fastest route to destination [1]-[3].  

The possible applications of ATISs are not limited to 
vehicular mobility, but also comprise pollution management, 
safety, entertainment and many more application fields (e.g., 

[4]-[8]). In many, if not all, of such, an accurate knowledge of 
both the current and the future traffic conditions could offer 
consistent advantages. For example, a pollution management 
application could use such information to divert traffic flows 
when the pollution levels due to carbon dioxide rise above a 
given threshold, and a safety application could alert 
transportation authorities when congestion abruptly builds up on 

a given street, thus indicating an accident might have occurred.  

It is, however, very difficult to track the trend of traffic 
mobility in urban areas, as streets display variable traffic 
patterns and can easily become congested. In fact, even if a 
fine-grained network of vehicles were used to sense traffic, this 
should still need the support of an ATIS that efficiently 
determines and forecasts its mobility rate, distinguishing the 

streets that are congested from those that are not.  

Clearly, the first step in building such type of ATIS consists 
of providing it with an operative definition of what traffic 
congestion is for any given street. Although many definitions of 
vehicular congestion exist, we were unable to find one that 
returned unambiguous results and was contemporarily 
independent of any assumed street parameter. We therefore 
devised a brand new one, by drawing our inspiration from the 
packet pair schemes that estimate the capacity of an Internet 
connection [9]. Our definition derives from the simple 
consideration that if a first car travels across a street when it is 
congested, a second car will probably experience the same 
congestion granted that it entered the street not too far away in 
time from the first car. Such phenomenon is due to the inertia of 
vehicular queues, which causes a street to be seen as congested 
also by those vehicles that later enter it  (say within a time span 
S). This consideration allows us to define congestion as a state 
that lasts for at least S units of time and during which travel 
times or delays exceed the time T* normally incurred under 

light or free-flow travel conditions.  

The scope of this paper is to present a novel algorithm to be 
used with ATISs, which is able to detect vehicular congestion 
situations, as well as its duration, based on the congestion 
definition mentioned before. The novelty of our algorithm is 
that it works for any type of road without any prior knowledge, 
while it is able to perform short-term congestion forecasting by 

simply analyzing the information gathered by probing vehicles.  



We validated our approach carrying out over 450 miles of 
on the road experiments, performed in two very different cities, 

Los Angeles (CA), and Pisa (Italy), during 2008 and 2009. 

The rest of our paper is organized as follows. In Section II 
we provide a succinct review of the schemes that fall closest to 
distinguishing congested from non-congested roads. In Section 
III we sketch the model that led to the design of our algorithm 
and show how this can be integrated within an ATIS in Section 
IV. The experimental assessment with empirical results is 

presented in Section V. We finally conclude with Section VI. 

 

II. RELATED WORK 

Although a wealth of work in the area of congestion 
detection and forecasting algorithms exist, for the sake of 
brevity, we here only describe two approaches that most easily 

can be integrated with an ATIS [10]-[16].  

The first one, termed Surface Street Traffic Estimation, was 
proposed to identify congestion on streets that ended on traffic-
light controlled junctions [14]. In brief, based on this approach 
vehicles are considered to experience congestion if they incur in 
one of the two following situations that may slow down their 
flow. They could waste time by either moving following a stop 
and go pattern, or by waiting in queue for at least one full red 
light cycle.  This approach is recognized to fall short as it lacks 
of any forecasting power and it is only defined for streets that 
end at signalized intersections, thus leaving its extension to 

more general cases unsolved. 

The second approach is based on the Highway Capacity 
Manual (HCM) delay formula for signalized intersections [15]. 
This formula assesses the average delay dHCM experienced by a 
vehicle traversing a street as a function of: the length of the 
street, its speed limit, its capacity (which depends upon its 
number of lanes and on the length of its traffic light phases) and 
the average amount of vehicles entering it within a given time. 
The dHCM value, computed when the ingress traffic volume 
matches its capacity, returns useful information to distinguish 
when a given section of road is congested or not. The main limit 
of such approach is given by the fact that it relies upon statically 
chosen road parameters, hence jeopardizing its adaptability to 

new road settings.  

In the following, we will show a new approach able to 
detect and forecast congestion, while avoiding any of the 

pitfalls mentioned here. 

 

III.  CONGESTION DETECTION AND FORECASTING: 

A SUMMARY 

Based on the traffic congestion definition provided in 
Section I, it is easy to compute the congestion threshold T* as 
well as the time S for which congestion or non-congestion 
persists on any given road R. This mechanism is as follows. We 
regard a road R as congested if it is possible to find a value of 
T* for which, when a vehicle requires more than T* units of 
time to traverse it, the majority of subsequent cars (e.g., 80%) 
that later enter R (say within a time span S) still need at least T* 

units of time to exit it. If, instead, the percentage of subsequent 
cars that experienced a traversal time above T* units of time 
were low (e.g., much below 80%), this would mean that R is 
leaving a state of congestion. Similarly, R is non-congested 
when, if a vehicle requires less than T* units of time to traverse 
it, the majority of subsequent vehicles that flow through (e.g., 
80%) it still require less than that time. Alternatively, in the 
event that the percentage of subsequent vehicles that 
experienced a traversal time below T* were low (e.g., much 
below 80%), this would mean that R is moving into a congested 
state. The 80% value has been inspired from literature [17]. 
Obviously, different values can be taken depending on the 

specific road under consideration. 

It is now straightforward to map the above ideas into a more 
formal modeling setting from which we will derive our 

congestion detection and short-term forecasting algorithm.  

We will provide in the following formal tools (Definitions 
3.1, 3.2, 3.3 and 3.4) with which we will be able to count and 
compare: a) the number of pairs of vehicles which suffer of high 
congestion (HC(T1

*
)) versus the number of pairs of vehicles 

which are leaving a congested situation (N1(T1
*
)), and b) the 

number of pairs of vehicles which do not suffer of congestion 
(NC(T2

*
)) versus the number of pairs of vehicles which are 

entering in a congestion state (N2(T2
*
)).  

Definition 3.1 (High Congestion Set). Consider a group P of 
vehicles entering a street R, with the first vehicle of the group 
entering R at time t0 and the last one entering R no later than 
time t0 + S. HC(T1

*
) is defined as the set of all the pairs of 

vehicles, (i, j), in P for which both their traversal times, say Ti
*
 

and Tj
*
, exceed the congestion threshold T1

*
. We also define as 

N1(T1
*
) the set of all the pairs of vehicles, say (h, k), in P for 

which the traversal time Th
*
 of only the first vehicle h exceeds 

T1
*
. 

Definition 3.2 (Low Congestion Set). Take the same group of 
cars P entering R within a time span of the same length as 
before. NC(T2

*
) is defined to be the set of all the pairs of cars, 

say (i, j), in P for which both their traversal times, say Ti
*
 and 

Tj
*
, are below the congestion threshold T2

*
. Consequently, 

N2(T2
*
) is the set of all the pairs of cars, say (h, k), in P for 

which the traversal time Th
*
 of only the first vehicle h is below 

T2
*
. 

Definition 3.3 (High Congestion State). Let  

I
HC(T

1

*
)
: (P  P) {0, 1} be defined as: 

I
HC(T

1

*
)
((i, j )) =

1 (i, j )  HC(T
1

*
)

0 (i, j )  HC(T
1

*
).

 
 
 
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Let I
N1(T

1

*
)
: (P  P) {0,1} be defined as: 

 

I
N1(T

1

*
)
((i, j )) =

1 (i, j )  N1(T
1

*
)

0 (i, j )  N1(T
1
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Similarly, for non congested states: 



Definition 3.4 (No Congestion State). Let 

I
NC(T

2

*
)
: (P  P) {0,1} be defined as: 

I
NC(T

2

*
)
((i, j )) =

1 (i, j )  NC(T
2

*
)

0 (i, j )  NC(T
2

*
).
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Let I
N 2(T

2

*
)
: (P  P) {0, 1} be defined as: 

I
N 2(T

2

*
)
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1 (i, j )  N 2(T
2

*
)

0 (i, j )  N 2(T
2
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Following our ideas, we now provide the two following 
Propositions 3.1 and 3.2, aimed at verifying if the percentage of 
cars experiencing congestion or not satisfies the threshold of 

80%.  

Proposition 3.1: (Congestion). A given street R is congested 

for a period S if the following holds: 

I
HC(T

1

*
)
(i, j )( i, j )PP

I
HC(T

1

*
)
(i, j )( i, j )PP + I

N1(T
1

*
)
(i, j )( i, j )PP

100  80%. 

   

The same can be drawn for a non-congested state, as 

follows: 

 Proposition 3.2: (No Congestion). A given road segment R 

is not congested during a period S if the following holds: 

I
NC(T

2

*
)
(i, j )( i, j )PP

I
NC(T

2

*
)
(i, j )( i, j )PP + I

N 2(T
2

*
)
(i, j )( i, j )PP

100  80%.

 

                 

An efficient way to solve our problem is to first determine 
the values of T1

*
 and T2

*
. This step is performed in the 

following searching for the pair (T1
*
, T2

*
) which maximizes the 

size of the HC(T1
*
) and NC(T2

*
) sets (congested and non-

congested states, respectively) and, contemporarily, minimizes 

the size of the N1(T1
*
) and N2(T2

*
) sets (noisy states). 

Proposition 3.3: Given a set of traversal time pairs on R 
sampled during both congested and non-congested states, a 
congestion threshold T1

*
 and a non-congestion threshold T2

*
 can 

be obtained as: 

(T
1

*
, T

2

*
) = (T

1
, T

2
) s.t.

{
T
1
,T
2

max I HC(T
1
)

( i, j )PP

 (i, j ) +

+ INC(T
2
) (i, j ) +

 IN1(T
1
) (i, j ) +

 IN 2(T
2
) (i, j )}.

 

 

Once T1
*
 and T2

*
 have been obtained, they are to be checked 

to verify that the inequalities expressed in Propositions 3.1 and 

3.2 are satisfied. This ends our model.  

IV. A NOVEL CONGESTION DETECTION 

ALGORITHM FOR ATIS  

In Table I we now explain how the model above can be 

implemented and deployed within an ATIS.  

Specifically, the centralized entity within the ATIS observes 
and gathers traversal time data concerning a given road R as 
returned by a set of probing vehicles. On receiving traversal 
time samples from vehicles, this entity keeps adding them to an 
internal data structure (line 2, Table I) until a sufficient number 
of observations have been collected and that road has been 
observed for half a day (lines 3 and 4). At the end of this initial 
process, the entity quits gathering information about the street 
(line 5) and builds its picture of the congestion states 
characterizing that given street, using the CTDF() function 

(line 6). The CTDF() function amounts to the implementation 

of Proposition 3.3, as explained later. If any time later, be it one 
hour or one month, a vehicle traverses that given street 
exceeding the computed congestion threshold T1

*
, the entity can 

exploit this information to, for example, send a congestion alert 
message to all those vehicles that are approaching its area (line 

11). 

TABLE I.  ATIS ALGORITHM 

 

Now, it is the turn to describe how the CTDF() function 
works (Table II). As already said, it implements the mechanism 
described in Proposition 3.3. Namely, it seeks for the values T1

*
 

and T2
*
 that both maximize the two sets of high congestion 

(HC(T1
*
)) and no congestion (NC(T2

*
)) and minimizes the 

Input: Traversal time T of a vehicle that traverses a given road 

R. 

Output: Road R congestion information. 

1.   if collectingData == true then 

2.            collectedTraversalTimes.Add(T); 

3.            if R.observationTime > 12 h  and  

4.               collectedTraversalTimes.Length > 100 then  

5.                   collectingData = false; 

6.        (S, T1
*
,T2

*
)CTDF(collectedTraversalTimes); 

7.     end  

8.   end  

9.   else 

10.      if T > T* 

11.                 alertCongestion(R); 

12.      end 

13.  end 



remaining two sets N1(T1
*
) and N2(T2

*
) (lines 2 and 5). After 

the size has been assessed of the two sets HC(T1
*
) and NC(T2

*
), 

a check is performed to verify if this surpasses the critical value 
of 80%. If so, the function ends successfully, returning the 
values of S, T1

*
 and T2

*
. Unfortunately, a reason for the checks 

to fail could be that of having chosen a too large duration S for 
the state of congestion of interest. This would mean that for 
many pairs of subsequent cars the following holds: the 
congested (or non congested) state a first vehicle incurs in does 
not last in time, as a second vehicle does not find the same state 
any longer. However, this could be a problem simply concerned 
with the duration of the S we have chosen, while a smaller value 
for S could exist, in principle, for which both the subsequent 
cars incur in the same state of congestion. The idea is hence that 
of looking for such value, by reducing S until a situation is 
captured where both the subsequent vehicles of the pair 
experience a similar state of congestion (or no congestion). This 
motivates the iterative structure of the CTDF() function. As a 
final note, it is important to consider that our experiments show 
that the difference between T1

*
 and T2

*
 is always confined 

within a 3% value difference. This is reasonable and largely 
expected, and justifies the fact that from now on we will only 

use   a   unique   congestion     threshold  value  T*,  obtained  as  

T*= T1
*
  T2

*
. 

TABLE II.  CONGESTION THRESHOLD DETECTION FUNCTION  

V. EXPERIMENTAL ASSESSMENT 

We carried out a set of nine different experiments in 2008 
and 2009 with a fleet of cars driving through traffic to verify the 
effectiveness of our mobility congestion detection and 
forecasting algorithm. Eight of these experiments were run in 
Los Angeles, CA, while one in Pisa, Italy. All the main 
information concerning these roads is listed in Table III (name, 
section, length, free flow traversal time, full and green traffic 
light cycles).Each vehicle carried an onboard system consisting 
of a laptop, a GPS receiver and an EVDO interface. Upon each 
traversal of a given road section R a car sent its traversal time to 

an ATIS, which, in turn, computed an estimate of T* when a 
sufficient amount of data was available. Our results are briefly 

described in the following Subsection. 

 

A. Results 

Our results are listed in Table IV where we reported, for 
each street, the number of times it was traversed, its congestion 
threshold T*, the duration of its congestion S and the values of 
N and H (namely, the percentage of how many pairs of vehicles 
experienced stable congested and non-congested states, 
respectively). In addition, for each street we compare T* to the 
delay a car would experience when traversing it and waiting for 

no more than a full red light time ( ˆ T =TFFTT + (CT GT )), 

assuming this a reasonable traversal time under non-congested 
conditions. Based on the results, the following observations are 
in order. Streets 1 through 5 all experienced alternated situations 
of congestion and non-congestion. The values of N and H 
confirm this conclusion, as they both surpass the 80% threshold. 
Moreover, for each of these streets the value of T* is larger than 

the value of ˆ 
T , which means that our algorithm found 

congestion threshold values above which cars really 
experienced congestion. Streets 6 through 8, instead, were 
deliberately chosen since they are empirically known as almost 
never congested. Our results corroborate this knowledge in two 

different ways. First, for each of these streets ˆ 
T >T * , thus 

proving cars almost always enjoy a smooth drive, due to the 
existence of a green wave. Second, the very small values of N 
confirm that no stable congestion was visible over those streets. 
Finally, street # 9 requires a different discussion. A high value 
of N and a small value of H seem to reveal a stable high 

congestion state. Despite this fact, is greater than T*. This 
paradox can be explained observing that as the traffic light at 
the junction with Sepulveda Blvd. permits to turn right on red, 
only very rarely our cars stood waiting for a full red light time. 
To prove this was the correct explanation, we performed a few 
more laps with cars going straight at that intersection. As 
expected, during such laps the value of T* always exceeded that 

of . A more extensive set of experiments and results may be 
found in [18]. In conclusion, our algorithm was able to meet our 
expectations, detecting when congestion occurred and 
estimating its minimum persistence in time. As such, and thanks 
to its simplicity, we believe it is the ideal candidate to be 

integrated in modern ATISs.  

 

VI. CONCLUSION 

We introduced a simple general-purpose traffic congestion 
detection and short-term forecasting algorithm, validated on a 
real testbed driving over 450 miles.  Our main contribution lies 
in the proposal of a new definition of congestion, where a street 
is defined as congested only when there is a high likelihood of it 
remaining in that state in the near future. This makes our 
definition easy to translate into an algorithm that results 

effective in providing significant results.  

ˆ T 

ˆ T 

Input: A list of traversal times. 

Output: S, T*. 

1.  S 
max

 minutes; 

2.   (T1
*
, T2

*
)  (T1, T2) s.t. Max(T1, T2); 

3.   while ¬Check1(T1
*
)¬Check2(T2

*
)S > 

min
 do 

4.      S S   minutes; 

5.                (T1
*
, T2

*
)  (T1, T2) s.t. Max(T1, T2); 

6.   end 

7.   if  ¬Check1(T1
*
) ¬Check2(T2

*
) then 

8.                 return null; 

9.   else 

10.                 return (S,   T1
*
,  T2

*
); 

11. end 





TABLE III.  EXPERIMENT INFORMATION: LOCATION, ROAD SECTION, FREE FLOW TRAVERSAL TIME, TRAFFIC LIGHT CYCLE 

TIME AND GREEN TIME. 

 

 

 

 

 

 

 

TABLE IV.  ROAD DATA: NUMBER OF LOOPS, T*, S, N, H AND 
ˆ 
T . 
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 Street Section Length [m] TFFTT  [s] CT [s] GT [s] 

1 Via B. Croce P.zza Guerrazzi-Via Queirolo, left 380 34 85 55 

2 S.Monica Blvd. Veteran-Sepulveda, left 380 61 120 15 

3 S.Monica Blvd. Wilshire-Roxbury, straight 280 17 90 54 

4 S.Monica Blvd. Wilshire-Bedford, right 390 30 90 54 

5 Lincoln Blvd. Fiji-Venice, back 2300 205 120 60 

6 Wilshire Blvd. Midvale-Westwood, right 130 7 150 80 

7 S.Monica Blvd. Roxbury-Bedford, right 100 7 90 54 

8 Wilshire Blvd. Veteran-Westwood, right 340 33 150 80 

9 S.Monica Blvd. Westwood-Sepulveda, right 680 75 120 50 

 
Street Section # of loops T* [s] S [s] N H ˆ 

T  [s] 

1 Via B. Croce P.zza Guerrazzi-Via Queirolo, left 111 93 362 92% 84% 64 

2 S.Monica Blvd. Veteran-Sepulveda, left 134 175 608 80% 87% 166 

3 S.Monica Blvd.               Wilshire-Roxbury, straight 77 62 987 94% 100% 53 

4 S.Monica Blvd. Wilshire-Bedford, right 77 82 987 92% 100% 63 

5 Lincoln Blvd. Fiji-Venice, back 30 354 900 100% 97% 265 

6 Wilshire Blvd. Midvale-Westwood, right 71 36 454 39% 98% 77 

7 S.Monica Blvd. Roxbury-Bedford, right 77 42 987 46% 83% 43 

8 Wilshire Blvd. Veteran-Westwood, right 71 74 454 37% 100% 103 

9 S.Monica Blvd. Westwood-Sepulveda, right 67 121 493 90% 54% 145 


