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1. Aims and plan of the paper

The modeling of self-propelled particles, as it is known, can be developed at the

mesoscopic (kinetic) scale by a suitable generalization of the tools of the mathe-

matical kinetic theory, classically referred to the celebrated Boltzmann equation 65.

The mesoscopic scale acts as a bridge between the microscopic scale corresponding

to individual-based models and the macroscopic one which generates hydrodynamic

type models.

The important difference of the kinetic theory of classical particles, with re-

spect to the theory applied to self-propelled particles, is that in the former case

interactions are reversible and satisfy conservation of mass, momentum and energy,

while in the latter case interactions are generated by individual and/or collective

strategies which pursue a certain idea of individual and/or collective well-being. As

a consequence, interactions are nonlinearly additive, non-reversible, and generally

also non-local. These features are properly enlightened in the books 179 and 16,

while nowadays the term active particles is used to refer to particles having these

specific features 21.

Scientists who are involved in the modeling of self-propelled particles, more in

general of active particles, occasionally dispute on the choice of the most appropriate

scale to be used. It is often argued that only the microscopic approach is the most

appropriate for systems having a finite number of degrees, while the macroscopic

representation requires unrealistic assumptions on the continuity of the matter and

consequently it kills some heterogeneity features of the individual behaviors.

The kinetic theory approach can be regarded as an approximation of discrete

states by which the overall state of the system is defined by a probability distribution

over the microscopic states. This approach needs the assumption of continuity of the

said probability density function over position and velocity of the particles (or other

representative variables such as oscillation phase, frequency, aggregation capacity,

etc.) which is reasonable only when their number is sufficiently large in some sense

to be properly specified. Therefore, kinetic type models can provide a reasonable

description of the collective dynamics just when individual-based models have to

face the technical complexity of multiple interactions and excessively large number

of equations.

Our bias suggests that modeling presents, at each scale, a number of advantages,

both analytic and computational, but at the same time, a number of restriction

appears. Hence, rather than disputing on the selection of the most appropriate

scale, we suggest that a comparison can be made only once the modeling approach

has been developed at each scale, possibly focusing on well-defined case studies.

It is worth stressing that the derivation of models cannot be developed inde-

pendently at each scale. In more detail, the derivation by kinetic theory methods

requires a well-defined description of interactions at the microscopic scale, while

the derivation of hydrodynamic models can be achieved by asymptotic methods ap-

plied to kinetic type models, where the distance between particles is made tending
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to zero 47. Indeed, we are aware that the consistency of the modeling approach at

each scale is a highly challenging perspective that will be discussed in the last part

of our paper.

Our survey is developed taking these considerations into account. We will focus

on the models of vehicular traffic, human crowds and swarms developed and pre-

sented in the last decade and, concerning with the first two, we also take advantage

of the review 22. The presentation accounts for the specific common features of

the class of systems under consideration which should be taken into account in the

modeling approach.

The paper is structured into six sections and in some of them the authors draw

the attention of the reader to possible research perspectives. In details:

Section 2 defines some basic requirements, shared by the three classes of behav-

ioral systems, which represent a common target of all possible models required to be

able to depict them. Indeed, the various models which are proposed in the existing

literature do not yet exhaustively account for the features that have been listed

above. However, an important objective of the modeling approach consists in the

achievement of a descriptive ability of models towards the aforementioned features.

In general, collective behaviors cannot be straightforwardly related to those of a

few entities. This is a specific feature of all living, hence complex, systems due to

their ability to develop a self-organizing intelligence. In addition, learning ability 50

progressively modifies the rules of the interactions.

Section 3 presents a review and critical analysis on the modeling of vehicular

traffic and human crowds, where the first step of the modeling approach is the

derivation of a mathematical structure suitable to capture the main feature of the

systems specifically treated in the section. This structure is deemed to offer the

conceptual framework for the derivation of models by implementing into it the

mathematical description of interactions at the microscopic scale. A review of the

mathematical models proposed in the literature referring them to the said struc-

ture and a mathematical statement of problems, typically initial-boundary value

problems. Finally, some research perspectives are brought to the attention of the

reader.

Section 4 introduces the mechanical and thermodynamical Cucker-Smale flock-

ing models and their corresponding kinetic/hydrodynamic models. For the intro-

duced models, we present analytical results such as global well-posedness, asymp-

totic emergent dynamics, uniform stability and uniform-in-time mean-field limit

from the particle models to the corresponding kinetic models. We also discuss some

open problems for future works and some possible applications of flocking algorithm

in practical field of study.

Section 5 deals with the transition from kinetic descriptions to macroscopic

equations that model collective behavior of species (swarming, flocking, school-

ing, synchronization, etc.). To understand the difficulties of obtaining macroscopic

models, we will accordingly distinguish two main types of microscopic descriptions:
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First and second-order microscopic models, which give rise to a large family of

variants: smooth (Lipschitz) or singular interaction kernels, anisotropies, hetero-

geneities, white noise or inertial effects, among others. In particular, we will recall

why singular forces are strongly relevant in order to describe finite-time clustering of

a population into subgroups. Although we shall present the general picture, we will

just focus on two prototypical models of first and second order: the Kuramoto model

and the Cucker–Smale model. Obtaining macroscopic models for non-smooth inter-

action forces will require dealing with special tools like measure-valued solutions

and solutions to the characteristic system in the Filippov sense together with an

accurate control of the dissipation of kinetic energy due to alignment interactions.

Section 6 is devoted to computational methods and control problems applied to

kinetic models. In the first part we discuss a class of fast algorithms for mean field

swarming models based on Monte Carlo methods. The core idea of these methods

is based on a binary interaction approximation of the dynamic, whose consistency

is proved using the so-called grazing limit of the corresponding Boltzmann-type

model. Numerical results show the efficiency of these methods compared to the

quadratic cost required by a direct techniques for the non-local kinetic models. The

second part of the section is devoted to optimal control of kinetic equations. Dif-

ferent type of control problems, and their numerical treatment are discussed. In

particular we focus on: selective control, where the control action is localized in the

phase-space domain; leaders-followers mechanisms: where microscopic leaders and

continuum followers are modeled by a coupled ODE-PDE system. Numerical exper-

iments illustrates different applications in the context of swarming and pedestrian

dynamics.

Section 7 looks ahead to research perspectives towards possible developments of

the modeling approach with the aim of improving the descriptive ability of models.

The main focus of this final section is on a multiscale vision of the modeling of

vehicular traffic, crowds and swarms starting from the main features to be captured

by the modeling approach.

2. Complexity features of traffic, crowds and swarms

Large systems of driver-vehicles, humans in crowds, and living entities in swarms

should be viewed as living systems which exhibit various complexity features typi-

cal of living entities and hence essentially different from those of the inert matter.

These features can have an important impact on the overall collective dynamics.

Indeed, unlike inert matter, the behavioral ability of living entities to develop spe-

cific strategies and to adapt them to the context makes observable effects which

arise from causes that often do not appear evident. As a consequence, the overall

dynamics of these systems cannot simply rely on deterministic causality principles.

The aforementioned behavioral strategy is inspired by interactions. It can be

rational or even irrational 3, although it is motivated by a well-defined goal. In

the case when the strategy is rational, it may not even be the best possible one,
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and emergent collective irrational behaviors can be generated under certain cir-

cumstances. In some extreme cases, for instance in crowd dynamics, the presence

of stress situations caused by incidents or overcrowding, can generate results rather

distant from any predictable outcome.

A very first requirement for the modeling approach consists in looking for models

which should have the ability to depict the behavioral features that have been out-

lined above. Therefore, following the conceptual approach proposed in the book 16,

we list below some key features that are typical of the living systems under consid-

eration which are different from those of the inert matter, see also 27.

1. Ability to express a strategy. Living entities have the ability to develop

specific strategies related to their organization ability. These strategies are

not defined once and for all, but depend on the state of the entities in their

surrounding environment including its geometrical shape and quality.

2. Heterogeneity. The said strategy is heterogeneously distributed and it

can also include different targets and groups, for instance, leaders who aim

at driving all other entities to their own strategy. All types of heterogeneity

can induce various stochastic features in the interactions. In particular,

irrational behaviors of a few entities can generate large deviations from the

standard dynamics observed in rationality situations.

3. Nonlinear interactions. Interactions are nonlinearly additive and non-

local as they could involve not only immediate neighbors but also distant

entities. In some cases, the topological distribution of a fixed number of

neighbors rather than all the entities in the visibility domain can play a

prominent role in the interactions. In addition, quality of environment,

namely weather conditions, geometry of the venue, abrupt changes of di-

rections, luminosity conditions, and many others can modify the dynamics

of interactions.

4. Learning dynamics. Living entities receive inputs from the external en-

vironment and have the ability to learn from past experience. Therefore,

their strategic ability and the rules of interactions can evolve in time and

space.

5. Multiscale aspects. The mathematical approach always needs multiscale

methods. Indeed, a single observation and representation scale is not gener-

ally sufficient to describe the overall collective dynamics of living systems.

For instance, the dynamics at the microscopic scale defines the conceptual

basis toward the derivation of models at the mesoscopic scale. Models at

the higher scale, corresponding to observable macroscopic quantities can be

obtained from kinetic models by letting the distance between individuals

to zero.

The selection we have proposed have extracted the features which appear to us

the most relevant ones. However, our choice does not claim to be exhaustive and

possible additional ones can be included. In principles, one has to look for mathe-
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matical structures flexible enough to include the said additional ones, if consistent

with the specific physical situation which is object of modeling. The main difficulty

in the search of these structure appears to the attempt to capture the most relevant

complexity features of living systems in general. Subsequently one might special-

ize the approach to each specific class of systems by a detailed interpretation of

interactions.

3. On the modeling of vehicular traffic and human crowds

The idea of modeling vehicular traffic by means of the kinetic theory approach has

been presented for the first time in the pioneer paper of Prigogine and Hermann 189

which has also the great merit to have introduced the use of mathematical tools of

the kinetic theory to model the dynamics of self-propelled particles. This scientific

initiative has been revisited in 180, where the heterogeneous behavior of the micro-

scale system “driver-vehicle” has been proposed as a key issue of the model.

Both pioneer papers have been followed by a rich stream of scientific contribu-

tions, for example 79,88,153,173 which have already reviewed in 22 and hence their

analysis is not repeated here. We simply remark that the novelty of 79,88 has been

the development of a discrete velocity framework that takes the granular nature

of the traffic into account. Indeed, as observed also in 83, vehicles do not span the

whole set of the admissible speed to justify its continuity. This criticism has not ne-

glected by applied mathematicians who have attempted to account for it in different

ways. For instance, discrete velocity models have been proposed both for vehicular

traffic and human crowds as a possible reply to 83.

Referring to the literature reviewed in 22 and specifically to discrete velocity

models, let us stress the difference between 88 and 79. In 88 the authors have used

a fixed velocity grid {vi} in which each velocity vi, interpreted as velocity class, is

constant with respect to both time and space. On the contrary in 79 the authors have

introduced a grid in which each velocity vi depends on the local traffic conditions

by means of the macroscopic density.

Further developments have been proposed in the last decade, most of them

referring to 88, while the ideas of 79 have not been extensively exploited despite the

fact that the idea of using a grid depending on the local density is clever and deserves

attention as it contributes, at least partially, to the aforementioned inconsistency of

the continuity assumption. The idea of using discrete velocity models appeared in

various papers. For instance in 132 a simple two velocity model with Enskog-type

interactions has been developed and investigated.

The kinetic theory approach to crowd dynamics shows a shorter story by contri-

butions which mainly developed after the survey 22, where only a few hints where

given starting from a literature already well settled for the approach at the micro-

scopic and macroscopic scales, however only at an initial stage as far as the approach

at the mesoscopic scale is concerned. Here we simply mention that the known liter-

ature shows both discrete velocity models, for example 17, and models continuous
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over the velocity variable, for example 23. The motivations towards the use of dis-

crete velocity models rely, also in the case of crowds, on the need of providing a

constructive reply to the criticisms presented in 83.

The systems treated in this section present some common features, but also

features which differ from vehicular traffic to human crowds. These are mainly

related to their specific venues where the dynamics occurs, namely roads, which

can be confined by tollgates in highways or nodes in networks of road, in the case of

vehicles and complex venues, which can include obstacles and walls, in the case of

crowds. Both systems can be subdivided into different populations, technically called

functional subsystems, which correspond to groups pursuing different strategies or

even the same strategy, but expressed by different manners.

As in the classical kinetic theory we refer to the microscopic state to denote the

state of each individual, generally identified by position, velocity, and an additional

variable corresponding to the ability of the driver and/or the quality of the vehicle,

in the case of vehicular traffic, and corresponding to the emotional state and/or

walking ability in the case of human crowds. Moreover, we will consider the time

and the position as independent variables and a probability distribution function

over the microscopic state as a dependent variable. Dimensionless variables are used

by dividing each of them by a characteristic quantity of the system. Technical details

are given in the next two subsections, while we simply mention here that the use of

dimensionless quantities is an essential feature of the systems under consideration

as well as it contributes to a rational approach to computational tools.

A description of the contents of the next subsections follows the above general

introduction. Subsections 3.1 and 3.2 deal with modeling, respectively, vehicular

traffic and human crowds. The presentation follows analogous guidelines as it focuses

firstly on the derivation of the mathematical structures which are appropriate to

capture the main phenomenological features of the two systems, and then focus on

a survey and a critical analysis of the research achievements known in the literature.

Subsection 3.3 shows some sample simulations accounting also for the problem of

validation of models and looking ahead to research perspectives. Subsection 3.4

presents some research perspectives which are selected according to the authors’

experience and bias.

3.1. Kinetic models of vehicular traffic

3.1.1. Mathematical structures towards modeling

Let us consider a one dimensional flow of vehicles along a road of length ℓ and let

us introduce the following dimensionless independent variables useful to describe

the system at the time t

• the position x obtained by dividing the real space by the length ℓ;

• the velocity v scaled with respect to vℓ that is the maximum velocity which

cannot be passed, simply for mechanical characteristic of the vehicles or
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imposed speed of velocity or environmental conditions.

Consequently, also the time t is scaled with respect to the time tc =
ℓ

vℓ
i.e. the time

that the fastest vehicle needs to travel on the whole road.

In the sequel, we will also consider a further variable u that in addition with

the position and the velocity describes the microscopic state (x, v, u) of the driver-

vehicle subsystem. Such variable, named activity, belongs to the interval [0, 1] and

identifies the quality of the subsystem. In details, the value u = 0 is related to bad

quality conditions while the value u = 1 is meant for the good ones.

In the analysis that follows, we also take the quality of the environment into

account by means of a parameter α ∈ [0, 1]. Analogously to u, α = 0 stands for the

worst environmental conditions and α = 1 for the best ones. Generally, α can also

depend on the position x in order to consider, for instance, the presence of curves,

local restrictions, etc.

Once the microscopic state of the subsystem driver-vehicle is introduced, the

state of the whole system can be described by a kinetic distribution function

f = f(t, x, v, u) : R+ × [0, 1]× [0, 1]× [0, 1] → R+ (3.1)

such that f(t, x, v, u) dx dv du is the infinitesimal number of vehicles that at time t

are located in [x, x+ dx], travel with a speed belonging to [v, v + dv] and have an

activity in [u, u+ du].

Then, the macroscopic quantities like the car density can be computed as the

zeroth-order moment of f

ρ(t, x) =

∫ 1

0

∫ 1

0

f(t, x, v, u) dv du, (3.2)

and a further integration over the space

N(t) =

∫ 1

0

∫ 1

0

∫ 1

0

f(t, x, v, u) dx dv du (3.3)

turns out the total number of vehicles at time t.

Let us point out that the density is referred to the maximum number of cars

ρM corresponding to bumper-to-bumper traffic jam.

Analogously, we can also recover the local dimensionless mean velocity as the

first-order moment

ξ(t, x) =
1

ρ(t, x)

∫ 1

0

∫ 1

0

vf(t, x, v, u) dv du, (3.4)

which allow us to compute the flux

q(t, x) = ξ(t, x)ρ(t, x),

as well as higher order momenta that is the average kinetic energy E and the

variance of the velocity σ

E(t, x) =
1

2

∫ 1

0

∫ 1

0

v2f(t, x, v, u) dv du (3.5)
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and

σ(t, x) =
1

ρ(t, x)

∫ 1

0

∫ 1

0

[
v − ξ(t, x)

]2
f(t, x, v, u) dv du. (3.6)

Let us now derive the mathematical structure by stating an evolution equation

in time and space for the distribution function f . To this end, we need to describe

the interactions among the vehicles which occur in the visibility zone of the vehicle

Ω ≡ Ω(x) = [x, x+R] where R is the visibility length which depends on the quality

of the environment.

The interactions are conservative in the sense that they preserve the total num-

ber of vehicles and are binary in the sense that they involve not more that two

vehicles. Specifically, the interactions we are going to consider involve the candidate

vehicle with state w∗ = (t, x, v∗, u∗) which is the “candidate” to change its state and

the field vehicle with state w∗ = (t, x, v∗, u∗) which is the cause of such a change.

In addition to these two vehicles, the so called test-vehicle is also involved in the

description of such interactions even if it is not involved directly. Its usefulness in

identifying an ideal vehicle of the system whose microscopic state w = (t, x, v, u) is

targeted by a hypothetical observer.

Such interactions are described quantitatively by the following two quantities:

• The encounter rate η which models the frequency of the interactions among

candidate and field vehicles;

• The transition probability density A which gives the probabilities that can-

didate vehicles get the test state after interacting with field vehicles.

Remark 3.1. The actual modeling is based on the assumption that these quantities

depend not only on the microscopic state of the interacting particles, but also on

the distribution function f which induces a nonlinearity in the models evidenced

by square brackets. In addition, these interaction terms are allowed to depend also

on the quality of the road modeled, as mentioned, by a parameter α ∈ [0, 1]. Let

us also remark that, A is required to satisfy the probability density condition:

A[f ;α] ≥ 0,

∫

[0,1]

A[f ;α](v∗ → v|w∗, w
∗, α)dv = 1,

for all possible inputs w∗, w∗, and parameter α.

The evolution equation reads as

∂tf(t, x, v, u) + v ∂xf(t, x, v, u) = J [f ](t, x, v, u) (3.7)

where J is an operator acting on the distribution function f describing the inter-

actions and their effects on the states of the vehicles. It is split into the difference

of a gain operator G[f ] and a loss operator L[f ] which gives the amount of vehicles

per unit time that get and lose the state (x, v, u), respectively. Specifically, such
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operators take the form

G[f ](t, x, v, u) =

∫

[0,1]3
η[f ](v∗, v

∗, u∗, u
∗, α)A[f ;α](v∗ → v|v∗, v∗, u∗, u∗, α)

× f(t, x, v∗, u) f(t, x, v∗, u∗)dv∗ dv∗ du∗,
and

L[f ](t, x, v, u) = f(t, x, v, u)

∫

[0,1]2
η(f ; v∗, v

∗, u∗, u
∗, α) f(t, x, v∗, u∗)dv∗ du∗.

As announced at the beginning of this Section 2, discrete microscopic states of

the vehicles have been developed and extensively investigated in order to take into

account the intrinsic granularity of the distribution of the vehicles.

With reference to the continuous model described above, in 30 the authors relax

not only the continuous variable of the velocity v as done in 79,88 but also the

activity variable u. Then they introduce two discrete grids with a fixed number of

points Iv = {vi}Ii=1 and Iu = {uj}Jj=1 and identify the microscopic state of such a

vehicle at time t by (t, x, vi, uj)

Hence, the physical system is described by I × J distribution functions

fij = fij(t, x) : R+ × [0, 1]→ R+

such that fij(t, x) = f(t, x, vi, uj) or in the distributional sense

f(t, x, v, u) =

I∑

i=1

J∑

j=1

fij(t, x) δ(v − vi) δ(u− uj). (3.8)

Thus, the classical macroscopic average quantities can be easily derived. In fact

the vehicle density ρ, the flux q and the average speed ξ is given by

ρ(t, x) =
I∑

i=1

J∑

j=1

fij(t, x), q(t, x) =
I∑

i=1

J∑

j=1

vjfij(t, x), ξ(t, x) =
q(t, x)

ρ(t, x)
.

In this way the general mathematical structure is given by

∂tfij(t, x) + vi ∂xfij(t, x) = Jij [f ](t, x) (3.9)

where the interaction operator reads as

Jij [f ](t, x) = Gij [f ]− Lij [f ]
with

Gij [f ] =

I∑

h,p=1

J∑

k,q=1

∫

Ωv

η[ρ(t, x∗), x]Aijhk,pq(vh → vi, uk → uj |vh, vp, uk, uq, ρ(t, x∗))

× fhk(t, x)fpq(t, x∗)dx∗,
and

Lij [f ] = fij(t, x)

∫

Ωv

I∑

p=1

J∑

q=1

η[ρ(t, x∗), x]fpq(t, x
∗)dx∗.
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Here, the interaction rate η as well as the table of games A are assumed to

depend on the density ρ. For details the interested reader can consult 30.

Some technical developments can be rapidly indicated looking ahead to research

perspectives. In more details, the following are brought to the attention of the

reader:

(1) Vehicles can be subdivided into a number n of functional subsystems, in

short FS, corresponding to different types of vehicles, from slow trucks to

cars with different speed ability, while the activity variable is left hetero-

geneous. Accordingly each FS is represented by a probability distribution

function fk with k = 1, . . . , n, while interactions involve vehicles belonging

to all FSs.

(2) An additional subdivision can be introduced for the variable u which can

be subdivided into tracts corresponding to discrete values of the driving

ability.

(3) Multi-lane flows can be accounted by modeling the transition of vehicles

from one lane to the other depending on the local density conditions in

contiguous lanes.

In the next subsection we discuss the discrete microscopic states models that

have been developed after the paper 30. For the sake of clarity, and in order to

treat all the recent studies, we will focus on both the spatially homogeneous and

inhomogeneous problem.

3.1.2. A survey of mathematical models

Let us now provide a survey of recent modeling approach to vehicular traffic by

kinetic theory methods. As already mentioned, different scientists developed the

original idea of 88 toward new modeling issues and applications.

In details, a model which takes into account the emotional state of the drivers

has been developed in 30 where a qualitative analysis (existence of solution) has

been also presented for a road with periodic boundary conditions. Simulations have

shown some interesting features of the predictive ability of the model. In particu-

lar numerical experimentations focus on the interaction of a cluster of fast vehicles

with a cluster of slow vehicles. The interaction generates four, out of the initial two,

clusters, namely a small groups of fast vehicles which rapidly passed the slow ones,

a group of fast vehicles following the previous ones, a group of slow vehicles, and a

small group of slow vehicles which were rapidly passed by fast vehicles, and conse-

quently left behind. Some simulations are also presented to show how the model is

able to reproduce empirical data as the homogeneous case is also considered in this

paper. In practice, the velocity diagram, in which the mean velocity is represented

as a function of the macroscopic density, is given as well as the fundamental dia-

gram, describing as the macroscopic flux varies with the density, is presented. The
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tests also show a good agreement with the quality of the road over the shape of the

diagram.

The role of the ability of drivers in real dynamics is not, as observed in 49,

simply described by a parameter, but it should be depicted by a variable which

might change in time and space due to interactions. This topic appears to be even

more important in crowd dynamics as we shall see in the next subsection.

One of the possible criticisms to continuous modeling of vehicular traffic is that

even in the kinetic theory approach the number of vehicles is not sufficiently large

to justify a continuous description of the probability distribution function over the

microscopic state. The use of discrete velocities contributes to a realistic description

referring to the velocity variable, but not to space. Accordingly a discrete model with

double discretization, space and velocity, has been proposed and applied in 98. This

model has been further developed towards the challenging objective of modeling

traffic flows on networks 100, thus developing a useful mathematical tool for models

delivered by the kinetic theory approach.

Finally, let us mention that the application of models to real flow conditions

has generated some interesting analytic problems. We have already mentioned the

qualitative analysis of solutions and we can add the derivation of macroscopic,

namely hydrodynamical, models from the underlying description at the micro-scale

as delivered by the kinetic theory approach, as an example 19.

In 161 the authors apply both Chapman-Enskog expansion and Grad’s moment

method in order to construct a second-order continuum traffic model which is very

similar to the Navier-Stokes model for viscous fluids. Specifically, the model, which

is able to simulate the standard traffic operations in real-life traffic, presents a traffic

viscosity coefficient which is not introduced in an ad hoc way, but comes into play

through the derivation of a constitutive relation to the traffic pressure.

In 138 the kinetic theory of traffic proposed by Prigogine and Herman in which

the Boltzmann equation is adapted to vehicular traffic is reviewed. In particular, the

paper contains a novel distribution of desired velocities that is more suitable for de-

scribing real traffic conditions and an analysis of the stationary velocity distribution

at the transition between individual and collective flow patterns.

In 190 a kinetic model for vehicular traffic with a new structure which accounts

for the heterogeneous composition of traffic flow is presented. Here the model is

again built by assuming a discrete space of microscopic speeds and by expressing

vehicle interactions in terms of transition probabilities among the admissible speed

classes, but the approach differs from standard kinetic models in that the authors

consider two distribution functions describing two classes of vehicles with different

physical features, namely the typical length of a vehicle and its maximum speed.

In 191 following the classical Boltzmann-like setting of binary interactions, the

authors study a kinetic model based on a continuous velocity space and analyze

the space homogeneous case to study the asymptotic behavior of the distribution

function together with the resulting flux-density diagrams. Later 192, such a model

has been extended to the case of more than one class of vehicles, characterized
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by a few parameters accounting for the microscopic differences which allow one to

distinguish two (or more) type of vehicles.

Regarding the control problems in kinetic traffic modeling, in 207 a mathemat-

ical approach with particular reference to road risk mitigation issues have been

described. The starting point of the authors is that the difference in the speeds of

the vehicles is one of the major risk factors. Thus they propose two different possible

control strategies for the reduction of the speed variance in the stream of vehicles

have been proposed.

In 133 two-dimensional kinetic traffic model which takes into account speed

changes both when vehicles interact along the road lanes and when they change

lane have been presented. By means of suitable numerical methods, precisely struc-

ture preserving and direct Monte Carlo schemes, the authors use the model to

compute theoretical speed density diagrams of traffic both along and across the

lanes, including estimates of the data dispersion, and validate them against real

data.

3.2. Kinetic models of human crowds

3.2.1. Mathematical structures towards modeling

The contents of this subsection is presented along the same guidelines followed for

the review of the vehicular traffic. We refer both to a human crowd in unbounded

domain in R
2 with walkers who move along one or more prefixed directions, as well

as to a crowd confined in a two dimensional domain Σ with one or more exit doors.

The domain can include internal obstacles and the whole set of walls is denoted by

∂ Σ.

The assessment of dimensionless parameters and variables simply requires a few

technical modifications with respect to the case of vehicular traffic. In more detail:

(i) ℓ is selected either by the diameter of the circular domain containing Σ or, in

the case of unbounded domain, by the diameter of the circular domain containing

the domain Σ0 initially occupied by the crowd.

(ii) Dimensionless position and velocity variables are two dimensional vectors de-

noted, respectively, by x and v, where the components of x are referred to ℓ, while

the speed v is referred to vℓ, respectively, where vℓ is a limit velocity defined as in

Subsection 3.1. Often it is useful using polar coordinates v = {v cos θ, v sin θ}, with

obvious meaning of notations.

(iii) Dimensionless time, denoted by t, is obtained by dividing the real time by

tc = ℓ/vℓ.

(iv) The variable u ∈ [0, 1] denotes a specific emotional state which can be defined

within the framework of each specific case study under consideration.

(v) The parameter α ∈ [0, 1] denotes the quality of the venue, where the dynamics

occur, while the variable u ∈ [0, 1] denotes a specific emotional state which can be

defined within the framework of each specific case study under consideration.
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(vi) Walkers have a visibility zone Ωv = [θ − Θ, θ + Θ] × [0, R], where Θ and R

define, respectively, the visual angle and distance.

The overall state of the system is described by the distribution function over

the state at the microscopic scale f = f(t,x,v, u), or f = f(t,x, v, θ, u) when polar

coordinates are used, namely v = {v cosθ, v sinθ}, where θ ∈ [0, 2π) denotes the

direction of the velocity. The distribution function f is made to refer to ρM so that,

if f is locally integrable, f(t,x,v, u) dx dv du denotes the dimensionless density of

vehicles which, at time t, are in the phase elementary domain [x, x + dx] × [v, v +

dv]× [u, u+ du].

Macroscopic quantities, for example local density, total number of walkers, local

dimensionless mean velocity and flow, can be obtained precisely as in the case of

vehicular traffic simply accounting for the fact the now integration over space and

velocity is in two dimensions. Calculations are not repeated, but we simply report

the recovering of the local density when polar coordinates are used.

In particular, the local density, also referred to ρM , is given by

ρ(t,x) =

∫

Dv

∫ 1

0

f(t,x,v, u) dv du =

∫ 1

0

∫ 2π

0

∫ 1

0

f(t,x, v, θ, u) v dv dθ du (3.10)

while the total number of vehicles at time t is computed by an additional integration

over space. Mean speed and flow can be computed by calculations analogous to those

of Subsection 2.1 simply by transferring them in a two dimensional setting.

The derivation of a mathematical structure, deemed to provide a general frame-

work for the derivation of models, can be developed referring to 23 along the same

line followed for vehicular traffic. Hence interactions involve candidate, field, and the

test particle which is representative of the whole system. In general, the modeling

of interactions can be achieved by means of the encounter rate η(f ;v∗,v∗, u∗, u∗α)
the transition probability density A(v∗ → v|f, α,v∗,v∗, u∗, u∗) whose integral over

all outputs is equal to one, as in Eq. (3.14) for all input variables and parameters.

Remark 3.2. Both Ωv and vℓ should be related to the shape and quality of the

venue where the dynamics occurs. The geometrical shape of the venue, for instance

the presence of walls, can reduce both visibility angle and distance. The same simple

relation of Remark 3.4, can be used to link R to vL by α.

The mathematical structure is obtained by equating the transport of f to the

net flow in the elementary volume of the space of microscopic states as it is induced

by interactions. A fairly general structure is as follows:

∂tf(t,x,v, u) + v · ∇xf(t,x,v, u)

=

∫

Dv

∫

Dv

∫ 1

0

∫ 1

0

η(f ;v∗,v
∗, u∗, u

∗, α)A(v∗ → v|f, α,v∗,v
∗, u∗, u

∗)

×f(t,x,v∗, u) f(t,x,v
∗, u∗) dv∗ dv

∗ du∗du
∗

−f(t,x,v, u)
∫

Dv

∫ 1

0

η(f ;v∗,v
∗, u∗, u

∗, α) f(t,x∗,v∗, u∗)dv∗ du∗. (3.11)
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Some technical developments can be rapidly indicated looking ahead to research

perspectives. In more details, the following are brought to the attention of the

reader:

(1) Particles can be subdivided into a number n of functional subsystems cor-

responding to different types of walking directions or exits in case of evac-

uation.

(2) Hybrid models have been proposed where the velocity directions can attain

a number of finite values, while the speed is continuous along each direction.

(3) Quantities which play a role in the dynamics of interactions are estimated

by a weighted average within the visibility domain.

It is worth reporting the mathematical structures used for the two classes of

models indicated above, as both of them have been used by models proposed in the

literature. Let us first consider the case where the whole crowd is subdivided into

different groups, viewed as functional subsystems, while the state of each of them is

delivered by the probability distribution function fi with i = 1, . . . ,m. A technical

generalization of Eq. (3.11) is as follows:

∂tfi(t,x,v, u) + v · ∇xfi(t,x,v, u)

=

n∑

k=1

∫

Dv

∫

Dv

∫ 1

0

∫ 1

0

ηik(f ;v∗,v
∗, u∗, u

∗, α)Aik(v∗ → v|f , α,v∗,v
∗, u∗, u

∗)

×fi(t,x,v∗, u) fk(t,x,v
∗, u∗) dv∗ dv

∗ du∗du
∗

−fi(t,x,v, u)
n∑

k=1

∫

Dv

∫ 1

0

ηik(f ;v∗,v
∗, u∗, u

∗, α)fk(t,x,v
∗, u∗)dv∗ du∗, (3.12)

where the encounter rate ηik and the transition probability density Aik accounts

for interactions with the same FS and across FSs.

A variety of models have made use of discrete velocity models somehow in-

spired on the same principles presented for vehicular traffic. Here the basic as-

sumption is that the velocity can attain only a finite number of directions: {θ1 =

0, . . . , θi, . . . , θm = 2π/(n − 1)}. A structure can be derived referring to both to

Eq. (3.11) and Eq. (3.12). We report simply the former case leaving the latter to

the interested reader. A simple technical generalization is as follows:

∂tf
i(t,x,v, u) + v · ∇xf

i(t,x,v, u)

=

n∑

k=1

∫ 1

0

∫ 1

0

ηik(f ;vi∗,v
∗k, u∗, u

∗, α)Aik(vi∗ → vk|f , α,vi∗,v∗k, u∗, u
∗)

×f i(t,x,vi∗, u) fk(t,x,v∗k, u∗) du∗du
∗

−f i(t,x,vi, u)
∫ 1

0

ηik(f ;vi∗,v
∗k, u∗, u

∗α)fk(t,x,v∗k, u∗) du∗, (3.13)

where f i correspond to probability distribution function over the velocity vi, f is the

set of all discrete velocities, η and Aik are, respectively the encounter rate and the
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transition probability density related to each pair of interacting discrete velocities.

In addition, one might rapidly consider an additional subdivision into FSs, for

instance FSs corresponding to different types of walking ability, hybrid models where

the emotional state can attain different values and various others. However we limit

our presentation to the above structures, namely to those which have been effectively

used in the literature.

3.2.2. A survey of mathematical models

Mathematical models of crowd dynamics have been proposed referring initially to

the mathematical structure corresponding to discrete velocity directions delivered

by Eq. (3.13). This modeling approach was introduced in 17 under the assumption

that the speed was shared by all walkers, while the velocity direction was supposed

to be distributed over a fixed number of velocity directions. A detailed modeling

of the dynamics of interactions has been proposed by assuming that the candidate

walker changes velocity direction by a weighted selection of three stimuli, namely

the desire of following a prescribed local direction, avoiding overcrowded areas and

attraction by the mean stream (following what all the others do).

The selection is weighted by the local density which enhances the desire of

avoiding overcrowded areas, with respect to the prescribed velocity direction, as

the density increases to the limit value ρ = 1. After this preliminary decision,

a parameter modeling the level of stress is used as a weight to account for the

attraction toward the main stream. Namely this attraction increases when the level

of stress increases.

A technical development has been proposed in 2 by a hybrid model, where the

velocity direction is assumed to attain a finite number of velocity directions, while

the speed is assumed to be continuous in the domain [0, 1] being modeled by the

so called velocity diagrams delivered by empirical data 197,199 which suggest that

the dimensionless speed decays from one to zero when the density increases to the

maximal value.

Discrete velocity models have been applied in 94 to compute the evacuation time

from a venue that includes internal obstacles. The authors show how the qualitative

analysis, proposed in 17, for the solutions to the initial vale problem in unbounded

domains can be technically generalized to include interactions with boundaries.

An analytic study has been developed in 15 to derive models at the macroscopic

scale from the underlying description delivered by kinetic models. This approach

refers the derivation of macroscopic models to the dynamics at the low, individual

based, scale rather than by conservation equations closed by heuristic models of

material behaviors.

The approach to modeling by continuous velocity variable has been developed

in 23,24, where 23 is devoted to modeling behavioral interactions between walkers and

between walkers and walls which generates nonlocal boundary conditions, while 24 is

focused on the validation of models. In more details, validation has been interpreted
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as the ability of models to reproduced quantitatively data measured in steady uni-

form flows and qualitatively emerging behaviors that are observed corresponding to

well defined physical conditions.

The validation problem has been treated in 24 according to the idea that mod-

els should reproduce quantitatively empirical data which are generally obtained in

steady uniform flow and that, in addition, models should reproduce qualitatively

collective emerging behaviors which are repetitively observed in appropriate phys-

ical conditions. An important aspect of the process is that both dynamics should

not be artificially inserted into models, while they should be delivered by solution

of problems.

The main source of quantitative empirical data is the so called velocity diagram

which reports the mean velocity versus density. This topic has been studied by

various authors. We mention again that the interesting results delivered in 197,199,

where also dispersion of data is reported. Models should provide also the dependance

of the velocity diagram on the quality of the venue where walkers mode, namely on α.

This topic has been studied in 24, based on a model derived as a technical variation

of 23. It has been shown that a simple model of interaction at the microscopic scale

leads to a diagram parameterized with respect to α. This idea is analogous to that

proposed in 99 for a simple discrete velocity model of vehicular traffic.

An additional analysis has been developed in 24 focusing on emerging behaviors

in segregation problems which arise in counter-flows in corridors, where it has been

observed that walkers which initially move randomly organize themselves into lanes.

This is precisely what has been described by the model which has shown also how

the segregation depends on the density of the crowd and on the emotional state of

the walkers.

All models either based on discrete velocity assumptions or on the use of a con-

tinuous velocity require a detailed analysis of interactions at the microscopic scale,

blue namely, on the analysis of the various strategies expressed by walkers to se-

lect their trajectories, choose, segregated paths, and react to the presence of other

walkers. Interesting contributions have been delivered in 169,170, where the authors

take advantage of empirical data delivered by experiments specifically organized to

achieve the aforementioned interpretations. Granular behaviors and contact prob-

lems have been studied in 97,162, while the implementation of the dynamics at the

microscopic scale into possible hierarchies of models has been developed in 84,85.

Additional research activity of the collection and interpretation of empirical data

on crowd behaviors is reported in 77,78,137. All papers which have been reviewed

above account for the emotional state of the walkers spans from the lowest value

β = 0, which corresponds to the absence of walking desire, to the highest value

β = 1 which correspond to the highest level of stress. This state, as mentioned,

increases the speed, but also the attraction toward the main stream. However, a

very important problem has been left open, namely the propagation in space of the

emotional states by contagion/communication, in the crowd. Indeed, this propaga-

tion can play an important role in the case of incidents or of evacuation indications
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as an excess of stress, may be to perception of danger, might generate overcrowding.

This topic has been initiated in 33,212 in the simple case of one dimensional motion.

The contagion dynamics is modeled by a consensus interaction somehow analogous

the the BGK model of the Boltzmann equation 65.

However, the modeling of contagion should account for communications by vocal

or visual signs of walkers who transfer emotional state across the crowd. It is a

problem of collective learning 50 which can induce significant modification in the

overall self-organization, and hence on the collective dynamics, of the crowd. A

modeling approach has been developed in 25. We will return to this topic in the last

subsection as it can be viewed as a challenging research perspective.

3.3. Sample simulations

Two specific case studies have been selected here to show, also with tutorial aims,

how the output of models can be interpreted.

Let us firstly consider the so called segregation dynamics in counter-flows which

has been treated in 23. The mathematical model specifically refer to the structure

Eq. (3.12). The initial state of the flow is supposed to be delivered by walkers that

move toward two opposite directions in a corridor, the flow is initially randomly

distributed corresponding to two groups of walkers moving in a corridor towards

two opposite directions, while gradually in time walkers segregate into four streams,

namely two main streams moving to left and right segregated, respectively to an

upper and lower band, and two small lanes close to the walls moving towards direc-

tions opposite to the main streams. Segregation appears only if the number density

of walkers is sufficiently high, otherwise for low densities walkers move randomly in

the corridor. Patterns with the four lanes are shown in Figure 2.

These simulations have been obtained in 23, where no artificial dynamics has

been additionally inserted to induce the aforementioned segregation, and where the

following band-index has been proposed in the said paper to account quantitatively

assess the band index:

YB(t) =
1

LxLy

∫ Ly

0

∣∣∣∣
∫ Lx

0

ρ1(t,x)− ρ2(t,x)
ρ1(t,x) + ρ2(t,x)

dx

∣∣∣∣ dy. (3.14)

Figure 3, shows how the Band Index reaches an asymptotic value after a transient

time. In the case of 150 walkers the value is high and anticipates the segregation

of lines, while in the case of 10 walkers the value of the Band Index keeps the

initial value which corresponds to chaotic motion. These simulations have been

used also to show the ability of the model to depict observed flow patterns, which

are systematically observed, to be interpreted as emerging behavior. Indeed, this is

one of the necessary steps towards the validation of models 24.

The second case study refers to the evacuation dynamics from the platform of a

metro-station, where individuals are, at initial time, uniformly distributed over the

platform as shown in Figure 4. Subsequently, due to an evacuation signal, people

starts moving towards the two exits as described by the model. Figures 5 and 6
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Figure 2. Band Index for two walkers densities

show the flow patterns at two subsequent times, say t1 and t2 = 3 t1. Simulations

enlighten the densities of the flow patterns which indicate the onset and expansion

of high density areas. Indeed, the ability of models to depict high density patterns

can contribute to managing crisis situations.

3.4. Critical analysis towards perspectives

A review of various achievements on the modeling of vehicular traffic and human

crowds has been presented in the previous subsections. The survey indicates that,

despite some interesting achievements, a broad variety of problems appears to be

still open to be viewed as possible research perspectives. However, rather than pre-
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Figure 3. From the top to the bottom: the initial distribution over the platform; the flow patterns
at t = t1 and the flow patterns at t = 3t1.

senting a long list of open problems we have selected a specific research perspective

which can be addressed both to vehicular traffic and crowd dynamics.

An interesting open problem consists in showing how the general tools, reviewed

in Section 3, can be developed into a systems approach and this more general tool

can be used to support safety problems, where mathematical and computational

tools can be addressed to support crisis managers and designers of venues according

to safety requirements 193,194,196,213.

A systems approach should account for the following modeling hallmarks. The

presentation enlightens the technical differences related to the two possible appli-

cations, namely traffic and crowds.

(1) The overall venue is constituted by a network of areas each of them labeled

by a well defined value of the parameter α corresponding to the quality of

the streets or (venue). Moving across a network of streets (or of venues)

implies moving through different values of the said parameter by junctions
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to be properly modeled 42,75.

(2) Tuning of the parameters α should account that the quality of each area can

be time dependent due to variable quality of the environment. For instance

the presence of fog or smoke reduces the quality and hence the speed.

(3) The overall geometry of networks can be technically modified to account

for different modifications induced by incidents, for instance the closure of

stress or venues can be induced by incidents.

(4) Different qualities of drivers or walkers can be accounted for. In the case

of crowds it might include the presence of individuals with limited mobil-

ity and trained leaders who are supposed to contribute to the evacuation

process.

A systems approach followed by simulations can contribute to managing net-

works. As an example, in the case of crowds, the optimization of the design of

geometry of venues by testing how different designs of the venue, however consis-

tent with the overall design of buildings, induce safe evacuation conditions. Hence

the approach appears necessary to support crisis managing by means of platforms

where the process of selecting the most appropriate actions towards safety can be

developed by predictive engines which refer the real flow dynamics to a database,

where a huge number of simulations are stored. Some perspective ideas to achieve

this important result have been proposed in 20.

In the case of vehicular traffic, the systems approach contributes to the modeling

of the dynamics over networks and the subsequent optimization problems can be

focused on the objective of reducing the time spent on roads with implication also

to reduction of pollution of the environment.

The system approach, in both cases vehicles and crowds, can take advantage of

a multiscale vision which consists in developing a bottom-up derivation of models,

where a detailed modeling of individual based interactions, namely at the micro-

scopic scale, are used firstly to derive individual based, namely at the microscopic

scale and, subsequently, to model the interaction terms η and A to derive kinetic

type models, namely at the mesoscopic scale. Subsequently asymptotic methods can

be developed to obtain hydrodynamical models from the underlying description at

the lower scale. It is worth mentioning that and interesting research path has been

initiated in 41, where a dynamics with interactions between vehicles and walkers has

bee studied referring to flow networks. A multiscale vision can definitely contribute

to develop this interesting idea.

The micro-macro derivation looks ahead to a unified approach to physical sci-

ences as inspired by the sixth Hilbert problem 135. In fluid dynamics, this problem

has been interpreted as the derivation of hydrodynamical models from the descrip-

tion delivered by the Boltzmann equation, the literature on the application of the

approach to large systems of active particles can be recovered in 47,48. This perspec-

tive refers both to models of vehicular traffic and crowd dynamics, where some very
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preliminary results have been recently achieved 15,19, however limited to models

in unbounded domains. This result has been achieved as a direct development of

an approach initiated, as reviewed in 18, referring to multicellular systems by con-

sidering a stochastic perturbation of the spatially homogeneous dynamics. Then,

an expansion of the solution to the system is generated and properly truncated by

ad hoc techniques, for instance moment closure or a detailed analysis of trend to

equilibrium.

However, dealing with the same problem in domains with boundaries cannot be

straightforwardly obtained by the same approach. In fact, the presence of obstacles

and walls generates large deviations from equilibrium which cannot be treated in a

general framework of small perturbation. Hence, it ought to be regarded as an open

problems which requires ne mathematical tools to be properly treated. In addition

to this approach, various other examples of limits based on averaging methods can

be mentioned 45,87,131.

Finally, let us return to the problem of modeling crowd dynamics with propa-

gation of social behaviors already mentioned referring to 25,33,212 as well as to col-

lective learning 50 and repulsion attraction dynamics 126. It is an important topic

as the present of stress, as well as of high emotional state can induce significant

modification in the overall self-organization, and hence on the collective dynamics.

The modeling approach proposed in 25 has shown that the derivation of computa-

tional models and a system approach to social dynamics 3 should march together

as a deep understanding of possible social dynamics can contribute to account for

the interactions of different groups, called functional subsystems, and for specific

exchanges of social behaviors. For instance including the presence of leaders and

even of antagonist groups. Some reasonings on the modeling of crowd dynamics can

contribute to the derivation of new models of swarms along the approach proposed

in 26,28.

4. Modeling on swarming and flocking of agents

Collective behaviors of self-propelled agent(particle) systems often appear in our

natural biological, chemical and physical systems, e.g., flocking of birds, schooling

of fish, and herding of sheep are prototype examples of such collective phenomena.

In these examples, self-propelled agents are willing to align with their neighboring

agents. In this sequel, we use a jargon “flocking” to denote a phenomenon in which

agent’s velocities tend to common velocity asymptotically. From the pioneering work

of Viscek 209, there have been many mechanical models describing flocking behav-

ior of self-propelled systems. Among many flocking models in literature, our main

interest in this section lies on the well-known Cucker–Smale(CS) model 81 which is

one of the most successful model in applied mathematics. The CS model describes

dynamic evolution of position and velocity variables of agents in d-dimensional Eu-

clidean space. Let (xi,vi) ∈ R
2d be the position and velocity of the i-th CS particle.



February 12, 2019 12:8 WSPC/INSTRUCTION FILE TCS-Kin-Rev-
Submission-12-02-19

Vehicular traffic, human crowds and swarms 23

Then, their dynamics is governed by the Cauchy problem to the CS model:

dxi
dt

= vi, t > 0, i = 1, · · · , N,

dvi
dt

=
κ

N

N∑

j=1

ψ(‖xi − xj‖)(vj − vi),

(xi(0),vi(0)) = (xi0,vi0).

(4.1)

Here, ‖ · ‖ is the standard ℓ2-norm in R
d, the nonnegative constant κ is called the

coupling strength(gain) which characterizes the overall intensity of communication,

and the function ψ : R+ → R+ is called the communication weight (or commu-

nication kernel). This function is in general nonincreasing, bounded and Lipschitz

continuous function. The typical example of communication weight function is the

Cucker-Smale type communication weight, depending on the parameter β ∈ [0,∞):

ψβ(r) :=
1

(1 + r2)β/2
. (4.2)

The non-increasing property of communication weight implies that the intensity of

communication becomes weaker as the distance between agents getting farther. The

velocity flocking algorithm is encoded in the second equation of (4.1). At any time t,

agents look around all other neighboring agents and adjust its velocity according to

the weighted sum of a relative velocities. Thus, all agents can adjust their velocities

toward the common value.

The kinetic theory for the flocking of CS particles was first introduced in 125,

where a Vlasov type kinetic equation was derived by using standard BBGKY hierar-

chy argument based on the molecular chaos assumption which enable to close hierar-

chical system at the level of the one-particle distribution function. Let f = f(t,x,v)

be the one-particle distribution function of the CS ensemble with velocity v at po-

sition x, at time t. Then the kinetic CS equation reads as follows.

∂tf + v · ∇xf +∇v · [F [f ]f ] = 0, (x,v) ∈ R
2d, t > 0,

F [f ](t,x,v) := κ

∫

R2d

ψ(‖x− x∗‖)(v∗ − v)f(t,x∗,v∗) dx∗ dv∗.
(4.3)

Although the CS flocking model has been quite successful for the description of

flocking behavior, obviously, it has several defects, to name a few, it can only

describe a mechanical movement of agents, ignoring the characteristics inherent

in each agent. To resolve this deficiency, a new invariant of “Thermomechanical

Cucker-Smale (TCS) model" was proposed in 124 motivated from the gas mixture

of fluids. The TCS model incorporates the additional variable, called a temperature

other than the mechanical variables x and v. The exact TCS model can be written
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as

dxi
dt

= vi, (xi,vi) ∈ R
2d, t > 0,

dvi
dt

=
κ1
N

N∑

j=1

φ(‖xi − xj‖)
(
vj

θj
− vi

θi

)
,

dθi
dt

=
κ2
N

N∑

j=1

ζ(‖xi − xj‖)
(

1

θi
− 1

θj

)
,

(xi(0),vi(0), θi(0)) = (xi0,vi0, θi0).

(4.4)

Here, θi = θi(t) ∈ R+ represents the temperature of the i-th TCS particle. The

coupling strengths κ1 and κ2 and communication weights φ and ζ are also defined

similar to those of the CS model. Note that the TCS model is consistent with the

physical principles such as Galilean invariance and entropy principle, and is reduced

to the Cucker-Smale model (4.1) for the constant common temperature θi(t) = θ∞.

A BBGKY hierarchy can also be applied to the TCS model to yield a kinetic

equation for one-particle distribution function f = f(t,x,v, θ) with thermomechan-

ical observable (x,v, θ):

∂tf + v · ∇xf +∇v · [F [f ]f ] + ∂θ[G[f ]f ] = 0, t > 0, (x,v, θ) ∈ R
2d × R+,

F [f ](t,x,v, θ) := κ1

∫

R2d×R+

φ(‖x− x∗‖)
(
v∗

θ∗
− v

θ

)
f(t,x∗,v∗, θ∗) dx∗dv∗dθ∗,

G[f ](t,x, θ) := κ2

∫

R2d×R+

ζ(‖x− x∗‖)
(
1

θ
− 1

θ∗

)
f(t,x∗,v∗, θ∗) dx∗dv∗dθ∗.

(4.5)

4.1. Emergent dynamics of Cucker-Smale ensemble

In this subsection, we will briefly survey the emergent dynamics of the CS flocking

models, particle model (4.1), kinetic model (4.3) and hydrodynamic model (4.13).

4.1.1. The particle CS model

In this part, we present some selective results on the emergent dynamics for the

particle CS model (4.1), including flocking estimates and uniform stability which

are connected to the kinetic CS equation. First, we recall the concept of the

global(mono-cluster) flocking for (4.1) as follows.

Definition 4.1. Let P := {(xi,vi)}Ni=1 be a solution to the CS model (4.1). Then,

the ensemble P exhibits a global(mono-cluster) flocking, if and only if the following

two relations hold.

(1) The relative positions are uniformly bounded:

sup
0≤t<∞

max
1≤i 6=j≤N

‖xi(t)− xj(t)‖ <∞.
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(2) The relative velocities decay to zero:

lim
t→∞

max
1≤i 6=j≤N

‖vi(t)− vj(t)‖ = 0.

From the CS model (4.1), it is easy to see that the system is Galilean invariant.

Hence, without loss of generality, we may assume that the center of mass is fixed

at the origin.

xc :=
1

N

N∑

i=1

xi = 0, vc :=
1

N

N∑

i=1

vi = 0.

Under these assumptions, the flocking conditions in Definition 4.1 are equivalent to

sup
0≤t<∞

‖xi(t)‖ <∞, lim
t→∞

‖vi(t)‖ = 0, 1 ≤ i ≤ N.

A result on the emergence of flocking for the CS model was first reported in the

paper of Cucker and Smale 81 for the communication weight of type (4.2), and

this result was further generalized in 122,125. In particular, in the reference 122,

authors introduced a Lyapunov functional approach for a general communication

weight, and we briefly discuss the Lyapunov functional approach below. For the CS

ensemble {(xi,vi)}Ni=1, we set

X := (x1, · · · ,xN ), V := (v1, · · · ,vN ),

‖X‖2 :=
N∑

i=1

‖xi‖2, ‖V‖ :=
N∑

i=1

‖vi‖2.

Then, these total ℓ2-norms satisfy the following system of dissipative differential

inequality 122:
∣∣∣∣
d

dt
‖X‖

∣∣∣∣ ≤ ‖V‖,
d

dt
‖V‖ ≤ −κψ(‖

√
2X‖)‖V‖, t > 0. (4.6)

Now, we introduce a Lyapunov functional L±:

L±(t) := ‖V(t)‖ ± κ
∫ ‖X(t)‖

0

ψ(
√
2s) ds, t ≥ 0. (4.7)

Then, we differentiate (4.11) with respect to (4.11) using (4.10) to get

d

dt
L±(t) = −ψ(

√
2‖X(t)‖)

(∣∣∣ d
dt
‖X(t)‖

∣∣∣− ‖V(t)‖
)
≤ 0,

which results in the stability estimate:

‖V(t)‖+ κ
∣∣∣
∫ ‖X(t)‖

‖X(0)‖
ψ(
√
2s)ds

∣∣∣ ≤ ‖V(0)‖, t ≥ 0.

Theorem 4.1. 122 Let {(xi,vi)}Ni=1 be a solution to the CS model (4.1) with initial

data {(xi0,vi0)}Ni=1 satisfying

‖V(0)‖ < κ

∫ ∞

‖X(0)‖
ψ(
√
2s) ds.
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Then, there exists a xM ≥ 0 such that

‖V(0)‖ = κ

∫ xM

‖X(0)‖
ψ(
√
2s) ds, ‖X(t)‖ ≤ xM , ‖V(t)‖ ≤ ‖V(0)‖e−κψ(

√
2xM )t t ≥ 0.

Remark 4.1. Note that the result in Theorem 4.1 requires the condition on total

ℓ2-norm of initial data, namely |x| and |v|, which depends on the number of particles

N . However, to attain a uniform-in-time mean field limit which will be presented

in the next subsection, we need the flocking estimates with the condition on the

initial data that is regardless of the number of particles. There have been several

results of this kind, but we provide the most recent result 116 here. We present the

flocking estimate in terms of the diameter of ensemble Dx and Dv defined as

Dx(t) := max
1≤i 6=j≤N

‖xi − xj‖, Dv(t) := max
1≤i 6=j≤N

‖vi − vj‖.

Then, if initial data satisfy

Dv(0) < κ

∫ ∞

Dx(0)

ψ(s) ds,

there exists a positive constant x∞ such that

sup
0≤t<∞

Dx(t) ≤ x∞, Dv(t) ≤ Dv(0)e
−κψ(x∞)t, t > 0.

Finally, we close this subsection by presenting the uniform stability result. This

uniform stability result is necessary to derive uniform-in-time mean-field limit from

the particle CS model to the kinetic CS equation.

Theorem 4.2. 116 Suppose that initial data {(xi0,vi0)}Ni=1 and {(x̃i0, ṽi0)}Ni=1 sat-

isfy

N∑

i=1

vi0 =

N∑

i=1

ṽi0 = 0, κ > max

{
Dv(0)∫∞

Dx(0)
ψ(s) ds

,
Dṽ(0)∫∞

Dx̃(0)
ψ(s) ds

}
,

and let {(xi,vi})Ni=1 and {(x̃i, ṽi})Ni=1 be two solutions to the CS model with the ini-

tial data {(xi0,vi0)}Ni=1 and {(x̃i0, ṽi0)}Ni=1 respectively. Then, there exists a generic

constant G independent of t such that
(

N∑

i=1

‖xi − x̃i‖qp

)1/q

+

(
N∑

i=1

‖vi − ṽi‖qp

)1/q

≤ G



(

N∑

i=1

‖xi0 − x̃i0‖qp

)1/q

+

(
N∑

i=1

‖vi0 − ṽi0‖qp

)1/q

 ,

where ‖ · ‖p denotes ℓp-norm of vector in R
d.

Remark 4.2. Note that for any given autonomous system ẋ = f(x) with smooth

bounded function f , the difference between solutions x(t) and x̃(t) originated from

x0 and x̃0 has stability up to any finite time:

‖x(t)− x̃(t)‖ ≤ C‖x0 − x̃0‖, 0 ≤ t ≤ T, (4.8)
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where C may depend on the final time T . The uniform stability result in Theorem

?? implies that stability estimate (4.8) holds for T =∞ and the constant C does not

depend on time anymore. This uniform stability estimate uses the flocking estimate

in Theorem 4.1. See 116 for detailed derivation.

4.1.2. The kinetic CS model

In this part, we briefly sketch the kinetic theory for the CS ensemble. As mentioned

before, the formal derivation of kinetic equation (4.3) from particle CS flocking

model (4.1) can be done by applying BBGKY hierarchy to the Liouville equation

for N -particle distribution function. We review the derivation of the kinetic CS

equation introduced in 125.

Let fN = fN (t,x1,v1, . . . ,xN ,vN ) be the N -particle probability density func-

tion on the state space R
2Nd. Since all particles cannot be distinguished from each

other, we may assume that the density function fN is symmetric in the exchange

transform (i↔ j):

fN (t, . . . ,xi,vi, . . . ,xj ,vj , . . .) = fN (t, . . . ,xj ,vj , . . . ,xi,vi, . . .). (4.9)

Then, N -particle distribution function fN satisfies the Liouville equation:

∂tf
N +

N∑

i=1

vi · ∇xi
fN +

κ

N

N∑

i=1

∇vi
·
(

N∑

i=1

ψ(‖xi − xj‖)(vj − vi)f
N

)
= 0. (4.10)

Now, we consider the one-particle density function, i.e., marginal density func-

tion fN (t,x1,v1) defined as

fN (t,x1,v1) :=

∫

R2(N−1)d

fN (t,x1,v1,x−,v−) dx− dv−,

where

(x−,v−) := (x2,v2, . . . ,xN ,vN ).

If we integrate (4.10) over (x−,v−), we can obtain the PDE for the marginal

density function. More precisely, the transportation part becomes

∫

R2(N−1)d

N∑

i=1

vi · ∇xi
fN dx− dv− = v1 · ∇x1

fN (t,x1,v1),

and the alignment force term can be calculated in a similar manner as

κ

N

N∑

i=1

∫

R2(N−1)d

N∑

j=1

∇vi
· (ψ(‖xi − xj‖)(vj − vi)f

N ) dx− dv−

=
κ

N

∫

R2(N−1)d

N∑

j=2

∇v1 · (ψ(‖x1 − xj‖)(vj − v1)f
N ) dx− dv−

=
κ(N − 1)

N

∫

R2(N−1)d

∇v1
· (ψ(‖x1 − x2‖)(v2 − v1)f

N ) dx− dv−,
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where the last relation is due to (4.9). Now, we define the two-particle density

function as

gN (x1,v1,x2,v2, t) :=

∫

R2d(N−2)

fN dx3 dv3 . . . dxN dvN .

Then, the kinetic equation describing the dynamics of one-particle density function

becomes

∂tf
N + v1 · ∇x1f

N + κ

(
1− 1

N

)
∇v1 ·

∫

R2d

ψ(‖x1 − x2‖)(v2 − v1)g
N dx2 dv2 = 0.

(4.11)

Now, we take a mean-field limit (N → ∞) and assume that there exist limiting

functions f(x1,v1, t) and g(x1,v2,x2,v2, t) satisfying

f(x1,v1, t) := lim
N→∞

fN (x1,v1, t), g(x1,v2,x2,v2, t) := lim
N→∞

gN (x1,v2,x2,v2, t).

Then, we take a formal limit N →∞ on (4.11) to obtain

∂tf + v1 · ∇x1
f + κ∇v1

·
∫

R2d

ψ(‖x1 − x2‖)(v2 − v1)g dx2 dv2 = 0. (4.12)

Since the kinetic equation (4.12) for f(x1,v1, t) is not closed, we need further as-

sumption to close equation (4.12) in an appropriate manner. For this closure con-

dition, we use the molecular chaos assumption which means

g(x1,v1,x2,v2, t) = f(x1,v1, t)f(x2,v2, t).

Now, after relabeling variables (x1,v1) and (x2,v2) to (x,v) and (x∗,v∗) respec-

tively, we can close kinetic equation (4.12) as

∂tf + v · ∇xf +∇v · [F [f ]f ] = 0, (x,v) ∈ R
2d, t > 0,

F [f ](t,x,v) := κ

∫

R2d

ψ(‖x− x∗‖)(v∗ − v)f(t,x∗,v∗) dx∗ dv∗,

which is exactly the same as the previously introduced kinetic CS equation (4.3).

There have been numerous results about the kinetic CS equation. Among them,

the first result about the kinetic CS equation is the finite-in-time stability and the

rigorous proof of finite–time mean–field limit 122. To describe the result in a precise

way, we introduce several notation. We denote the set of all positive Radon measure

by M(R2d), and denote by dBL the bounded Lipschitz distance between measures

in M:

dBL(µ1, µ2) := sup
g∈V

∣∣∣∣
∫

R2d

gdµ1 −
∫

R2d

gdµ2

∣∣∣∣ ,

where

V :=

{
g : R2d → R : ‖g‖L∞ ≤ 1, and Lip(g) := sup

x 6=x∗∈R2d

|g(x)− g(x∗)|
‖x− x∗‖ ≤ 1

}
.



February 12, 2019 12:8 WSPC/INSTRUCTION FILE TCS-Kin-Rev-
Submission-12-02-19

Vehicular traffic, human crowds and swarms 29

Theorem 4.3. 125 Suppose that initial measure µ0 ∈ M(R2d) is compactly sup-

ported in R
2d. Then, the following assertions hold.

(1) There exists a unique measure-valued solution µ = µ(t) satisfying the ki-

netic CS equation (4.3) in the distributional sense.

(2) Suppose we choose a sequence of empirical measure µN0 of the form

µN0 =
1

N

N∑

i=1

δ(xi(0),vi(0))

such that

lim
N→∞

dBL(µ
N
0 , µ0) = 0.

Consider the empirical measure µN (t) generated from initial empirical mea-

sure µN0 and the particle CS dynamics:

µN (t) :=
1

N

N∑

i=1

δ(xi(t),vi(t)).

Then,

lim
N→∞

dBL(µ
N (t), µ(t)) = 0, t ≥ 0.

After this finite-time mean–field limit in Theorem 4.3, recently uniform-in-time

mean–field limit was established in 116. Before we state the result on the uniform–

in–time mean–field limit, we clarify the difference between the new result and finite

time mean–field result in Theorem 4.3. The mean-field limit result in Theorem 4.3

(2) holds only for fixed t ≥ 0. Although this limit holds for arbitrary large time t, the

decay depends on the final time t. In the following, we use the additional flocking

estimates and asymptotic behavior to guarantee that, with a well-prepared initial

data, the mean–field limit procedure can be made uniform-in-time, independent

of the final time t. This is possible due to the uniform-in-time stability result in

Theorem 4.2.

Theorem 4.4. 116 Suppose that initial measure µ0 ∈ M(R2d) is compactly sup-

ported in R
2d, and the coupling strength and communication weight satisfy

κ >
Dv(0)∫∞

Dx(0)
ψ(s) ds

,

where Dx and Dv are defined parallel to those of the particle system:

Dx(t) := sup
x,x∗∈supp

x
µ(t)

‖x− x∗‖, Dv(t) := sup
v,v∗∈supp

v
µ(t)

‖v − v∗‖.

Then there exists a unique measure-valued solution µ = µ(t) to (4.3) with initial

data µ0. Moreover, µ(t) is approximated by the empirical measure µN (t) uniformly

in time:

lim
N→∞

sup
0≤t<∞

dBL(µ
N (t), µ(t)) = 0.
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Remark 4.3. Note that the uniform-in-time mean-field limit holds for some class

of initial data which guarantees the emergence of exponential flocking. In contrast,

the finite-in-time mean-fields limit described in Theorem 4.3 holds for any initial

data.

As in the particle CS model, the flocking behavior in kinetic level has been

studied using a functional approach. In 61,125, the flocking behavior of the kinetic

CS equation with communication weight (4.2) was studied and flocking estimate for

general coupling strength was further investigated in 116. In literature, the flocking

estimate for the kinetic CS equation is done using the following Lyapunov functional:

Λ(µ(t)) :=

∫

R2d

‖v − vc‖2dµ(t),

where

vc :=

∫

R2d

v dµ =

∫

R2d

v dµ0,

which is usually assumed to be 0 thanks to the Galilean invariance. We provide the

result in 116, which is the most general result about flocking estimate in the kinetic

level.

Theorem 4.5. 116 Suppose that initial measure µ0 ∈ M(R2d) has a compact sup-

port in R
2d, and the coupling strength and communication weight satisfy

κ >
Dv(0)∫∞

Dx(0)
ψ(s) ds

,

and let µ = µ(t) be a measure-valued solution to (4.3) with initial data µ0. Then,

there exists xM and positive constant C such that

Λ(µ(t)) ≤ Ce−κψ(xM )tΛ(µ0).

The kinetic CS equation coupled with various types of fluids are also studied in

the serial works 11,12. The coupling between particle ensemble with fluid, such as a

flow of red blood cells in blood vessel or movement of birds through the air flow, can

be easily found. In this context, it is highly desirable to study the coupling between

particle ensemble with fluid. In the aforementioned works, a global existence of

solutions of the kinetic CS model coupled with compressible/incompressible Navier-

Stokes equation, as well as the large time behavior of the coupled system are also

developed (see a recent survey article 69. The numerical simulation for the kinetic

CS equation coupled with fluid is also done 13.

4.1.3. The hydrodynamic CS model

In this part, we briefly discuss the macroscopic description of the CS flocking. In

order to compare with results from the kinetic level. The hydrodynamic model for

the CS model can be formally derived from the kinetic CS model using the moment
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system and the mono-kinetic ansatz 125 and this formal procedure was rigorously

justified under the help of local alignment term in 104. The resulting hydrodynamic

equation is a pressure-less Euler system with non-local source term:

ρt +∇x · (ρu) = 0, t > 0, x ∈ R
d,

(ρu)t +∇x · (ρu⊗ u) = κ

∫

Rd

ψ(‖x− x∗‖)(u(x∗)− u(x))ρ(x)ρ(x∗) dx∗,

(ρ, u)|t=0 = (ρ0, u0).

(4.13)

We also refer to Section 6 for another hydrodynamic model arising from a suitable

scaling limit. The well-posedness theory for system (4.13) was studied in 117,118. To

describe flocking behavior in the macroscopic level, we again introduce the following

Lyapunov functionals:

Dx(t) := sup
x,x∗∈suppρ(t)

‖x− x∗‖, Du(t) := sup
x,x∗∈suppρ(t)

‖u(x, t)− u(x∗, t)‖.

Theorem 4.6. 69 Suppose that the initial data, coupling strength and communica-

tion weight satisfy

Du(0) < κ

∫ ∞

Dx(0)

ψ(s) ds,

and let (ρ, u) be any smooth solution to (4.13) with compactly supported initial data

(ρ0, u0). Then, there exists a positive constant C such that

sup
t≥0

Dx(t) ≤ C, lim
t→∞

Du(t) = 0.

4.1.4. Numerical simulations

In this section, we provide several numerical simulations on the particle and kinetic

CS model presenting flocking behaviors. Figure 4 shows the numerical simulation

for the particle CS model. We did not take a mean zero velocity assumption to

show flocking behavior much more clearly. Initially, velocity of each particle seems

not aligned with each other (Figure 4 (a)). However, after sufficiently large time, all

particles become aligned with the same velocity, which clearly shows the flocking

behavior.

The kinetic CS equation is also simulated here (see Figure 2). For a clear visu-

alization, we tested the 1-D CS equation with a spatially periodic domain. We take

an initial data with an oval shape on the phase space. Then, as we can found in

Figure 5, velocity support shrinks and finally, CS ensemble is concentrated on the

single velocity value.

4.2. Emergent dynamics of Cucker-Smale ensemble with

temperature

In this subsection, we will briefly survey the emergent dynamics of the thermome-

chanical CS flocking models, particle model (4.4), kinetic model (4.5) and hydro-
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(a) Initial CS particle (b) CS particle at t = 20

Figure 4. Particle CS model

dynamic model (4.19). As we mentioned, the motivation for the TCS model is to

consider a flocking model with internal variable such as a temperature. A new flock-

ing model was introduced in 124 motivated by the analogous theory of gas mixtures

in the context of rational thermodynamics. Below, we briefly review the heuristic

derivation of the TCS model. To fix the idea, let ρα,vα, εα, qα and tα be the density,

velocity, specific internal energy, heat flux and stress tensor of fluid α, respectively.

Then, the dynamics of the mixture can be described by the following balance laws:

∂tρα +∇ · (ραvα) = τα, (x, t) ∈ R
d × R+, α = 1, 2, . . . , N,

∂t(ραvα) +∇ · (ραvα ⊗ vα − tα) = mα,

∂t

(
1

2
ρα‖vα‖2 + ραεα

)
+∇ ·

{(
1

2
ρα‖vα‖2 + ραεα

)
vα − tαvα + qα

}
= eα,

(4.14)

where τα, mα and eα denotes production terms from the interaction between con-

stituents. We assume that the total mass, momentum and energy are conserved so

that the sums of production terms are vanish.

N∑

α=1

τα = 0,

N∑

α=1

mα = 0,

N∑

α=1

eα = 0.



February 12, 2019 12:8 WSPC/INSTRUCTION FILE TCS-Kin-Rev-
Submission-12-02-19

Vehicular traffic, human crowds and swarms 33

(a) t = 0 (b) t = 0.25

(c) t = 0.5 (d) t = 1

(e) t = 2 (f) t = 3

Figure 5. Kinetic CS model

Under this condition, the global mixture quantities ρ,v, ε, t and q defined as below

ρ :=

N∑

α=1

ρα, v :=
1

ρ

N∑

α=1

ραvα,

ε :=
1

ρ

N∑

α=1

ραεα +
1

2ρ

N∑

α=1

ρα‖uα‖2, uα := vα − v,

t :=

N∑

α=1

(tα − ραuα ⊗ uα), q :=

N∑

α=1

{
qα + ρα

(
εα +

1

2
‖uα‖2

)
uα − tαuα

}
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satisfy conservation laws

∂tρ+∇ · (ρv) = 0, (x, t) ∈ R
d × R+,

∂t(ρv) +∇ · (ρv ⊗ v − t) = 0,

∂t

(
1

2
ρ‖v‖2 + ρε

)
+∇ ·

{(
1

2
ρ‖v‖2 + ρε

)
v − tv + q

}
= 0.

(4.15)

We combine two descriptions of dynamics of gas mixture (4.14) and (4.15) as

∂tρ+∇ · (ρv) = 0, (x, t) ∈ R
d × R+,

∂t(ρv) +∇ · (ρv ⊗ v − t) = 0,

∂t

(
1

2
ρ‖v‖2 + ρε

)
+∇ ·

{(
1

2
ρ‖v‖2 + ρε

)
v − tv + q

}
= 0,

∂tρi +∇ · (ρivi) = τi, i = 1, 2, . . . , N − 1,

∂t(ρivi) +∇ · (ρivi ⊗ vi − ti) = mi,

∂t

(
1

2
ρi‖vi‖2 + ρiεi

)
+∇ ·

{(
1

2
ρi‖vi‖2 + ρiεi

)
vi − tivi + qi

}
= ei.

(4.16)

We close the above system according to universal principles of thermodynamics,

such as Galilean invariance and entropy principle 124. The Galilean invariance en-

force the production term as

τb = τ̂b, mb = τ̂bv + m̂b, eb = τ̂b
‖v‖2
2

+ m̂b · v + êb,

where the variables with hat denote variables that are independent of the velocity.

Here, we consider the simplest case where there is no chemical reaction, i.e., τα = 0.

In this case, the entropy principle requires

m̂i =
1

N

N−1∑

j=1

φij

(
uN

θN
− uj

θj

)
, êi =

1

N

N−1∑

j=1

ζij

(
1

θj
− 1

θN

)
.

Now, for simplicity, we consider the case when mixtures are spatially homogeneous

and assume ρα = 1, εα = θα, and v = 0. Then, system (4.16) becomes

dvi
dt

=
1

N

N−1∑

j=1

φij

(
vj

θj
− vi

θi

)
, t > 0, i = 1, 2, . . . , N − 1,

d
(
θi +

1
2‖vi‖2

)

dt
=

1

N

N−1∑

j=1

ζij

(
1

θi
− 1

θN

)
,

vN = −
N−1∑

i=1

vi, θN =
N∑

α=1

(
θ0α +

1

2
‖v0

α‖2
)
−
N−1∑

i=1

θi −
1

2

N∑

α=1

|vα|2.
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This dynamics of N -constituents can be recovered to the original form:

dvi
dt

=
κ1
N

N∑

j=1

φij

(
vj

θj
− vi

θi

)
,

d
(
θi +

1
2‖vi‖2

)

dt
=
κ2
N

N∑

j=1

ζij

(
1

θi
− 1

θj

)
,

(4.17)

after simple transformation. This is the very original form of the TCS model derived

in 124, and in the same reference, the simplified model is also introduced in which

the quadratic term in the dynamics of second equation in (4.17) is neglected. Al-

though the coefficients φij and ζij are originally independent of spatial variable xi,

considering the similarity of formulation with the CS model, it is natural to consider

that these interacting coefficients possibly depend on the spatial difference. Then,

together with the definition of velocity dxi

dt = vi, we obtain the TCS model (4.4)

under the small diffusion velocity assumption. In the sequel, we present emergent

dynamics of particle, kinetic and fluid TCS models.

4.2.1. The particle TCS model

In this part, we briefly recall emergent dynamics of the particle TCS model. We

first present the concept of flocking for the TCS model which is is almost similar to

that of the CS model, except that the temperature alignment is added in Definition

4.1.

Definition 4.2. Let P̄ := {(xi,vi, θi)}Ni=1 be a solution to the TCS model (4.4).

Then, the ensemble P̄ exhibits a global(mono-cluster) flocking, if and only if the

following three relations hold.

(1) The relative positions are uniformly bounded:

sup
0≤t<∞

max
1≤i 6=j≤N

|xi(t)− xj(t)| <∞.

(2) The relative velocities and temperatures decay to zero asymptotically:

lim
t→∞

max
1≤i 6=j≤N

|vi(t)− vj(t)| = 0, lim
t→∞

max
1≤i 6=j≤N

|θi(t)− θj(t)| = 0.

Different from the CS model, the TCS model has a singularity on the right-hand

side when the temperature variable θ becomes zero. Therefore, it is highly needed

that the temperature variable does not touch zero during its evolution in order to

get a well-posedness of the model. Fortunately, this is easily guaranteed for the TCS

model (4.4). In fact, for 0 ≤ s ≤ t,
max

1≤i≤N
θi(t) ≤ max

1≤i≤N
θi(s), min

1≤i≤N
θi(t) ≥ min

1≤i≤N
θi(s).

In other words, the support of temperature variable shrinks over time. In particular,

this guarantees that if the initial temperatures are positive, then all temperature
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variables cannot touch zero on whole time interval.

θm0 := min
1≤j≤N

θj0 ≤ θi(t) ≤ max
1≤j≤N

θj0 =: θM0, t ≥ 0.

This monotonicity property of the particle TCS model can also be extended to the

kinetic TCS equation as well. Before we move on to the kinetic TCS equation, we

provide several recent results on the particle TCS model related to the mean-field

limit of the TCS model.

Theorem 4.7. 120 Suppose that there exists a positive constants C and x∞ such

that the initial data and coupling strength satisfy the following relations

Dθ(0) ≤
θ2m0φ(Dx(0))

2CθM0
, Dv(0) ≤

κ1
2θM0

∫ x∞

Dx(0)

φ(s) ds,

8

3C
φ(Dx(0)) ≤ φ(x∞) ≤ φ(Dx(0)),

and let {(xi,vi, θi)}Ni=1 be a solution to the TCS model with initial data

{(xi0,vi0, θi0)}Ni=1. Then, the TCS model exhibits the flocking behavior in the sense

of Definition 4.2:

sup
0≤t<∞

Dx(t) ≤ x∞, Dθ(t) ≤ Dθ(0)e
− κ2

θ2
M0

ζ(x∞)t
,

Dv(t) ≤ Dv(0) exp

[
−κ1φ(x

∞)

θM0
t+

2κ1θ
2
M0Dθ(0)

κ2θ2m0ζ(x
∞)

]
.

4.2.2. The kinetic and hydrodynamic TCS models

The derivation of kinetic equation (4.5) can be done by performing exactly identical

procedure with that of the CS model. The only difference is that the TCS model

has an additional temperature variable, which does not cause extra difficulty in

deriving the kinetic equation (4.5). The first interest on this model is again rigorous

justification of the mean-field limit. Since the kinetic TCS model (4.5) is a transport

equatiion as the kinetic CS equation, finite-in-time mean-field limit can be made as

in Theorem 4.3. Moreover, with extra flocking estimate in Theorem 4.7, depending

only on the diameter of initial data and independent of the number of particles,

we can also derive the uniform stability estimate 120 at particle level similar to

Theorem ??. Again, we use this to derive the uniform-in-time mean-field limit for

the TCS model for some class of initial data. This is summarized in the following

theorem.

Theorem 4.8. 120 Suppose that there exists a positive constants C and x∞ such

that the initial measure µ0 ∈M(R2d ×R+) is compactly supported in R
2d, and the

coupling strength and communication weight satisfy

Dθ(0) ≤
θ2m0φ(Dx(0))

2CθM0
, Dv(0) ≤

κ1
2θM0

∫ x∞

Dx(0)

φ(s) ds,
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8

3C
φ(Dx(0)) ≤ φ(x∞) ≤ φ(Dx(0))

where Dx, Dv and Dθ are defined parallel to those of the particle system:

Dx(t) := sup
x,x∗∈supp

x
µ(t)

‖x− x∗‖, Dv(t) := sup
v,v∗∈supp

v
µ(t)

‖v − v∗‖,

Dθ(t) := sup
θ,θ∗∈supp

θ
µ(t)

|θ − θ∗|.

Then there exists the unique measure-valued solution µ = µ(t) to (4.5) with initial

data µ0. Moreover, µ(t) is approximated by the empirical measure µN (t) uniformly

in time:

lim
N→∞

sup
0≤t<∞

dBL(µ
N (t), µ(t)) = 0.

The coupling of the kinetic TCS model with compressible / incompressible fluids

are also studied 67,68. For example, the coupling between the kinetic TCS equation

and incompressible Navier-Stokes (NS) equation can be done via the drag force:

∂tf + v · ∇xf +∇v · (F [f,u]f) + ∂θ(G[f ]f) = 0,

∂tu+ (u · ∇)u+∇p−∆u = −
∫

Rd×R+

(u− v)f dv dθ,
(4.18)

where adjusted nonlocal force term F [f,u] is defined as

F [f,u](t,x,v, θ) := F [f ](t,x,v, θ) + u(t,x)− v.

A global well-posedness theories of weak and strong solutions to the TCS-NS system

(4.18) for the 3-dimensional spatially periodic domain, as well as the asymptotic

flocking behavior are done in 67. More precisely, we define the following Lyapunov

functional L to measure the degree of flocking

L(t) :=
∫

T3×R3×R+

‖v−vc‖2f dz+
∫

T3×R3×R+

|θ−θc|2f dz+
∫

T3

‖u−uc‖2 dx+
1

2
‖uc−vc‖2,

where

vc :=

∫

T3×R3×R+

vf dz, uc :=

∫

T3

u dx, θc :=

∫

T3×R3×R+

θf dz.

Here, dz is an abbreviated notation for dx dv dθ. Then, the decay of Lyapunov func-

tional L was proved 67, which implies that flocking behavior emerges in the coupled

TCS-NS system for some well-prepared initial data.

We close this section by briefly reviewing the hydrodynamic description of the

TCS model. Similar to the CS model, mono-kinetic ansatz yields a hydrodynamic
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description of the TCS model 119:

ρt +∇x · (ρu) = 0, t > 0, x ∈ R
d,

(ρu)t +∇x · (ρu⊗ u) = κ1

∫

Rd

φ(|x− x∗|)
(
u(x∗)

e(x∗)
− u(x)

e(x)

)
ρ(x)ρ(x∗) dx∗,

(ρe)t +∇x · (ρue) = κ2

∫

Rd

ζ(|x− x∗|)
(

1

e(x)
− 1

e(x∗)

)
ρ(x)ρ(x∗) dx∗,

(ρ, u, e)|t=0 = (ρ0, u0, e0).

(4.19)

A well-posedness theory of classical solution to (4.19) under the spatially periodic

domain and smallness assumption of initial data was done in 119. The asymptotic

flocking estimate is also done in the same literature. Before we state the result, we

define mean temperature and energy functional as follows.

ec(t) :=

∫
Td ρ(t,x)e(t,x) dx∫

Td ρ(t,x) dx
, E(t) := 1

2

∫

Td

ρ(t,x)|u(t,x)|2 dx, t ≥ 0.

Theorem 4.9. 119 Let (ρ, u, e) be a classical solution to (4.19) with initial data

(ρ0, u0, e0) satisfying

0 < em < min
x∈Td

e0(x) < max
x∈Td

e0(x) =: eM .

Then, there exist positive constants C1, C2 and C3 such that

|e(x, t)− ec| ≤ max{(eM − ec), (ec − em)}e−C1t, E(t) ≤ E(0)e−C2t+C3 .

4.3. Research perspective

In this subsection, we discuss some possible research perspectives. The flocking is

one of interesting collective phenomena which appears in biological and social com-

plex systems. Despite of extensive research on the CS-type models in last ten years,

there are still lots of open problems in the particle/kinetic CS models, not to men-

tion the TCS model. In the sequel, we briefly mention two open problems. First,

the complete clustering predictability problem of the CS model in multi-dimensions

is one of the interesting open problems in relation with the clustering problem of

big data. Recently, this clustering predictability problem is completely resolved in

one-dimension 114 using the first-order reduction of the CS model. However, when

the physical dimension is larger than or equal to two, it is completely open to

predict how many clusters will emerge from given initial data and system param-

eters. Second, it is still not known whether the kinetic CS model with a singular

communication weight is globally well-posed or not. Although the local-in-time well-

posedness for the kinetic CS model with a singular communication is studied in 56,

extension of this local well-posedness result to a global one is a nontrivial matter.

The singular communication weight can exclude collisions in microscopic level, when
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the singularity is sufficiently strong. Thus, investigation of singular interactions will

be an interesting research topic.

Of course, aforementioned two problems can also be posed for the TCS type

models. So far, all flocking results for the TCS model were focused on the flocking

of both velocity and temperature at the same time. Thus, it is still not clear whether

the additional temperature variable in the TCS model generates different behaviors

compared to the CS model. This remains as a future work.

Beside the analytic point of view, the flocking algorithm inherent in the CS

model can be applied to more practical research. For example, the analytical re-

sults for the CS model can be employed to the robust design of meta-heuristic

optimization algorithms such as particle swarm optimization 59. The flocking algo-

rithm can also be applied to the control theory where the desired patterns emerges

using decentralized formation control 74. The engineering applications of flocking

dynamics has just begun in the control theory of multi-agent systems, and it is

expected to be applied to broader fields in future.

5. Macroscopic equations of swarms from microscopic interactions

As explained above, macroscopic fluid-type models for large crowds or swarms can

always be proposed in two different ways. On the one hand, we can always close the

continuity equation of the continuous density through a phenomenological speed-

density relation, giving rise to first order models. On the other hand, we can also

propose second order models by closing the balance equation of momentum via

the addition of appropriate terms to the Euler equations. Such terms are aimed to

explain, in an indirect way, the dynamics of the agents towards their goal along

with the effect of the environment and obstacles. All these two approaches are

phenomenological and do not care at all about the real inter-particle interactions

of agents within the given population.

In general, tackling the latter approach is a convoluted task. Notice that, de-

pending on the nature of the population, such inter-particle interactions may not

be clear at first glance and might require an interdisciplinary point of view in or-

der to elucidate which are the fundamental variables and laws governing the social

relations between agents. However, in some particular situations we may give light

to the problem with part of the dynamics. Specifically, a real crowd is actually a

complex system and, as such, it involves plenty of physical, social, biological and

cognitive variables. However, we may be able to simplify the complete dynamics of

the system by disregarding the secondary variables and just looking at the effect

of the main variables related to a given feature of the population. Although this

will not be a valid description for every the scenario, in this way, we can obtain a

simpler and more manageable model that still recasting some of the most important

features of the population: for instance, emergence of some type of global collective

behavior.

The interest on collective dynamics models has notably raised during the
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recent years. From the applied side, this is specially interesting since simple

rules governing pairwise interactions between agents, leads to global emergent

behavior of the total population as a whole. As it can be seen for instance in
31,55,60,66,105,112,121,160,178,187,188,200,205,206 and references therein, collective dynam-

ics models have proved relevant in several areas of soft active. From the theoretical

point of view, collective dynamics can be regarded as a rich source of problems in

mathematics. Indeed, many recent strong techniques in mathematics have arisen as

a consequence of such models, what highlights that the feedback and exchange of

ideas between the applied and theoretical communities is undoubtedly positive.

In this part we will focus on a few collective dynamics models that obey a

similar structure and have been analyzed in the literature during the last years.

At the agent based level they consist of a system of N first order coupled ODEs,

one for each agent. Although the kinetic description is the objective of this work,

together with its macroscopic limit, we highlight in this part its relation with the

microscopic description of which the mesoscopic description inherits a large part of

its properties. Specifically, assume that each subject is located at a given position

xi = xi(t). Then, all these first order systems take the following form

dxi
dt

= νi + Fe(xi) +
κ

N

N∑

j=1

mjF(xi,xj),

xi(0) = xi,0,

(5.1)

for i = 1, . . . , N . Here, xi are regarded as positions in R
d or T

d (for periodic

domains). Nevertheless, xi do not necessarily restrict to positions, but they can

rather represent any other physical, social, state or internal variable of the agents

that we are interested in. The parameter mi is the mass of the i-th agent, νi ∈ R are

often called natural velocities and introduce some heterogeneities in the population,

Fe = Fe(x) represents an external force acting on the system and F = F(x,x∗)
is some interaction kernel governing the force that any subject at x∗ exerts on a

subject at x.

To start, let us now list some of the main collective behavior models of first order

type that embed into the above formulation (5.1). In all of them we will disregard

the effect of a possible external force, i.e., Fe ≡ 0 with the sake of focusing on the

communication part between agents:

(1) If the internal variables are chosen to be the phases of oscillators in the

unit circle, xi ≡ θi ∈ R, F(x,x∗) = sin(x∗ − x), νi ≡ Ωi are the natural

frequencies and mi = 1, then (5.1) is nothing but the Kuramoto model for

coupled oscillators

dθi
dt

= Ωi +
κ

N

N∑

j=1

sin(θj − θi),

θi(0) = θi,0.

(5.2)
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This is a classical model that was proposed by Kuramoto as a prototype

system exhibiting emergence of synchronization 93,111,115,121,158. It is in-

timately related to opinion dynamics and the heterogeneities νi play the

role of a biased tendency of agents to move at their own frequency while

being influenced by their neighbors. The values θi sometimes represents the

phases of the neuronal signals, and θ̇i represents the firing frequencies of

neurons in the brain. In this setting, the Kuramoto model consists in a first

approach towards a mathematical description of neuronal synchronization
195,210,214,215, that is known to rule many cognitive process of the brain that

are activated when a specific group of neurons fire together forming a clus-

ter. Of course, this model can be made more realistic by adding coupling

weights governing the plasticity of connections via learning mechanisms
82,123,176,183,198, inertia terms and delays in time 70,71,72,73, noise or many

other features like singular couplings 178,187. We will review some of this

associated models later on.

(2) If the heterogeneities are neglected νi ≡ 0, mi = 1 and F(x,x∗) =

−∇xW (x − x∗), then (5.1) agrees with the aggregation equation with a

given potential function W

dxi
dt

= − κ

N

N∑

j=1

∇Wx(xi − xj),

xi(0) = xi,0,

(5.3)

This is probably one of the best known models in this family. It represents

swarming of a population of bacteria or other entities, that try to aggregate

and from a unique group or cluster. Depending on the nature of potential

W , one might include both attractive and repulsive interactions, then en-

riching the dynamics. This is one of the reason why this model has specially

pulled the attention of the scientific community during the last years, indeed

it has the ability to generate dynamics converging to equilibria that exhibit

relevant patterns in biological contexts, see 35,46,44,60,63,95,96,167,166,205,206.

(3) If d = 2, we neglect heterogeneities, mi ≡ ωi ∈ R and F(x,x∗) = (x−x
∗)⊥

2π‖x−x∗‖2

(where (z1, z2)
⊥ = (−z2, z1) for any z = (z1, z2) ∈ R

2), then (5.1) is the N

vortex system

dxi
dt

=
1

N

∑

1≤j≤N
j 6=i

ωj
(xi − xj)

⊥

2π‖xi − xj‖2

xi(0) = xi,0.

(5.4)

Here, the values ωi denote the strength of the vortices. This model has been

widely studied in the fluid mechanics community. Specially, its associated

PDE macroscopic model agrees with the 2D Euler equation in vorticity

form for an perfect incompressible fluid. When, white noise is also added,

we recover the well known Navier–Stockes system for viscous fluids.
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Before we talk about the macroscopic counterparts of (5.1), let us link the above

system (5.1) with the classical well known second order models arising form New-

ton’s second law. It is a very well known fact in classical mechanics with applications

to statistical mechanics called overdamped or Smoluchowski limit, specially when

some white nose is added to the system. Here, we will work with second order

deterministic systems as follows

dxi
dt

= vi,

dvi
dt

= −1

τ
vi + Fe(xi) +

κ

N

N∑

j=1

mjF(xi,xj),

xi(0) = xi,0, vi(0) = vi,0,

(5.5)

where we have included a friction term with the environment with a relaxation time

τ .

The overdamped dynamics is the regime where damping dominates inertia. It

can be recast in the following scaled equation

ε
dvi
dt

= −vi + Fe(xi) +
κ

N

N∑

j=1

mjF(xi,xj). (5.6)

Taking limits ε ց 0 in (5.6), the inertia term vanishes and make all the second

order dependence of the system disappear. Then, the first order system (5.1) arises

naturally. Such arguments can be made rigorous for Lipschitz-continuous forces via

Tikhonov’s theorem 145. See 95,96,102,103,110,185,188 for some recent advances in this

line both for smooth and singular kernels at the microscopic and macroscopic levels.

Of course, such models (5.1) give rise to a large family of variants when, instead

of smooth, kernels are singular at the origin (as in the classical Vlasov–Poisson or

Euler systems) or, instead of isotropic, they include some more realistic anisotropy.

Also, the addition of some noise that distorts the deterministic dynamics can be

relevant. In this part we will be mostly interested in non-smooth forces. Indeed,

the lack of smoothness in forces not only is expected in real system, but it also

has proved strongly relevant in order to describe real scenarios with finite-time

clustering. Specifically, such “sticky” behavior of particles in general, and crowds’

opinion in particular, allows pushing subjects into the formation of distinguished

groups in finite time with an eventual global collapse into a final unique cluster

(or in severeal ones), see for example 178,187. Here, we will be mostly interested in

system (5.2), but some vague ideas and references will be provided for the readers’

convenience, specially regarding (5.3) and some anisotropic versions.

5.1. Mean field limit and propagation of chaos

There are two classical approaches in the literature in order to derive rigorously

the large crowd limit, or mean field limit, as N → ∞ in (5.1) o (5.5): the empir-

ical measure approach and the BBGKY hierarchy approach. The second method
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is stronger and harder to follow, but it has proved a strong method as it is in-

timately related to propagation of chaos in many particle systems. As it will be

seen, the later has to do with a control of the fall-off of inter-particle correla-

tions as the amount of agents N becomes large. For more accurate descriptions,

see 127,128,139,140,141,142,144,164,165,174,203. Let us assume that agents are all identical

and mass are normalized to 1. Since the natural velocities in the discrete model

(5.1) are constant parameters, we can equivalently restate the system as follows

dxi
dt

= νi + Fe(xi) +
κ

N

N∑

j=1

F(xi,xj)

ν̇i = 0,

(xi(0),νi(0)) = (xi,0,νi,0 ≡ νi).

Then, both xi an νi are regarded as variables, although the dynamics of νi is trivial.

On the one hand, for the first empirical measures approach let us recover the

sequence of empirical measure of such N agents

µN (t,x,v) :=
1

N

N∑

i=1

δ(xi(t),vi(t)), (5.7)

for every t ≥ 0. Then, it it is clear for Lipschitz forces that µN solves the following

Vlasov equation in the sense of distributions

∂tµ
N +∇x ·

[(
ν + Fe(x) + κ

∫

Rd×R

F(x,x∗)µN (t, dx∗, dν∗)

)
µN
]
= 0. (5.8)

We now take the initial data such that µN0 weakly-* converges towards the initial

probability distribution f0 ∈ P(Rd × R) by virtue of some law of large numbers,

e.g. 208. Then, our goal is to show that the compactness is propagated uniformly in

compact intervals of time and we get

µN → f ∈ C([0, T ],P(T× R)− narrow).

In such case, we may pass to the limit in (5.8) to recover the Vlasov equation

∂tf +∇x ·
[(

ν + Fe(x) + κ

∫

Rd×R

F(x,x∗) f(t, dx∗, dν∗)

)
f

]
= 0. (5.9)

Such ideas are widely known for W 1,∞ kernels and can be found in detail in
174. Indeed, the following Dobrushin-type inequality with respect to the bounded-

Lipschitz distance dBL holds true for any two measure-valued solutions f, g ∈
C([0,+∞),P1(R

d × R)− narrow)

dBL(f(t), g(t)) ≤ et(‖Fe‖W1,∞+κ‖F‖
W1,∞ )dBL(f0, g0), t ≥ 0. (5.10)

That provides an explicit control justifying how the discrete system (5.1) can be

approximated by (5.9) for large N

dBL(µ
N (t), f(t)) . eCtN− 1

d+1 . (5.11)
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Indeed, under such Lipschitz condition the characteristic flow is well defined and bi-

Lipschitz, thus guaranteeing that absolutely continuous initial data f0 propagates

the same L1 integrability for all times. Then, no way that Dirac masses emerge

from smooth initial data. Of course, the lack of Lipschitz-continuity breaks most of

the above arguments down.

On the other hand, the BBGKY approach departs from the hierarchy of Liouville

equations for the joint laws fN = fN (t,x1, . . . ,xN ,ν1, . . . ,νN ) ∈ Psym(RdN×RdN )

reads

∂tf
N +

N∑

i=1

∇xi
·




νi + Fe(xi) +

κ

N

N∑

j=1

F(xi,xj)


 fN


 = 0. (5.12)

Notice that since fN0 ∈ Psym(RdN × R
dN ), in the sense that interchanging i-th

and j-th positions and natural velocities let the measure invariant, then the same

continues happening for all times by virtue of the properties of the system. Define

the projection onto the first k ∈ {1, . . . , N} variables,

π
k,N : RdN × R

dN −→ R
dk × R

dk,

(XN ,νN ) 7−→ (Xk,N ,νk,N ).

where for any (XN = (x1, . . . ,xN ),νN = (ν1, . . . ,νN )) ∈ R
dN × R

dN we are are

denoting

Xk,N := (x1, . . . ,xk) and ν
k,N := (ν1, . . . ,νk).

Consider the marginal measures fk,N (t) := π
k,N
# (fN (t)) ∈ Psym(Rdk × R

dk).

Thanks to the assumed symmetry in the system, integration in (5.12) yields

∂tf
k,N +

k∑

i=1

∇xi
·
[(

νi + Fe(xi) +
κ

N

k∑

j=1

F(xi,xj)

)
fk,N

+ κ
N − k
N

∫

Rd×R

F(xi,xk+1)f
k+1,N (t,x1, . . . ,xk, dxk+1,ν1, . . . ,νk, dνk+1)

]
= 0.

(5.13)

Via a diagonal argument we can obtain weak limits of an appropriate subsequence

fk,∞ := weak ∗ − lim
N→∞

fk,N .

Although (5.13) is not closed for fixed N , some way to try to close it in the limit

is via propagation of chaos as follows. For simplicity, denote f := f1,∞ and assume

that all the initial values are tensorized, that is fk,∞0 = f⊗
k

0 . Then, propagation of

chaos means that such tensorization remains true for all times, i.e.,

fk,∞(t) = f(t)⊗
k

, for all t ≥ 0.

Such property can be shown to happen for this Lipschitz kernels. Then, we can

pass to the limit as N → ∞ in (5.13) in the equation of f1,N and recover (5.9).
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The key problem is to derive estimates for the distance between the marginals fk,N

and the solution f⊗
k

. Notice that the case k = 1 would yield a similar bound to

the Dobrushin inequality (5.11). Such bound has been studied by using Wasserstein

distances as well in 128,164,165 and others references. However, in 140,141,142 a different

strategy has been followed to quantify chaoticity for a large class of models with

non-smooth forces. Nevertheless, some presence of noise guaranteeing existence of

entropy solutions of (5.12) is required. In other case, for the deterministic situation

some condition close to Lipschitz is required. Assume for the moment that the

heterogeneities νi are neglected and we focus on forces F(x,x∗) = F(x−x∗). Then,

for fN = fN (t,x1, . . . ,xN ) entropy solution to (5.12) and f = f(t,x1, . . . ,xN )

solution to (5.9) respectively, one can measure their closeness in the sense of entropy

by defining the scaled entropies

HN (fN (t)|f(t)⊗N

) :=
1

N

∫

RdN

fN (t) log

(
fN (t)

f(t)⊗N

)
dx1 . . . dxN .

Then,

Theorem 5.1. 142 Assume that ∇·Fe ∈ L∞(Td), ∇·F ∈ L∞(Td) and that either

F ∈ L∞(Td) or for d ≥ 2, F is an odd kernel and ‖x‖F ∈ L∞(Td). Then, there

exists a constant M > 0 depending on κ, f0 and ‖∇ · Fe‖L∞(Td) such that

HN (fN (t)|f(t)⊗N

) ≤ eM‖F‖∞t

(
HN (fN0 |f⊗

N

0 ) +
1

N

)
,

for every N ∈ N and t ≥ 0. Here,

‖F‖∞ :=

{‖F‖L∞(Td) + ‖∇ · F‖L∞(Td), if F ∈ L∞(Td),

‖‖x‖F‖L∞(Td) + ‖∇ · F‖L∞(Td), if d ≥ 2, F is odd and ‖x‖F ∈ L∞(Td).

Notice that for every k ≤ N one has the relation

Hk(fk,N (t)|f(t)⊗k

) ≤ HN (fN (t)|f(t)⊗N

),

then Theorem 5.1 amounts to quantitative estimates of propagation of chaos of

system (5.1). Indeed, from it we can recover the standard propagation of chaos in

L1 and Wasserstein distances by virtue of Csiszár–Kullback–Pinsker and Talagrand

inequalities respectively

‖fk,N (t)− f(t)⊗k‖L1(Tdk) ≤
√
2kHk(fk,N (t)|f(t)⊗k),

Wp(f
k,N (t), f(t)⊗

k

) ≤ C(f(t), p)
(
kHk(fk,N (t)|f(t)⊗k

)
)1/2p

,

for any p ≥ 1, N ≥ k and t ≥ 0.

In the following, we will come back to Kuramoto model (5.2) where all the above

theory works. In addition, we will review a singularly weighted version, that has

been proposed by some of the authors in 178,187. In such model, ∇·F is not bounded

anymore but it can even become a singular measure at x = x∗. We will also review

an adapted Dobrushin-type inequality like (5.10) that has been proposed in 187 and

will skip propagation of chaos, that will not be studied here.
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5.2. The classical Kuramoto model of coupled oscillators

The Kuramoto model with mean field coupling (5.2) (see 155,156) has been exten-

sively studied during the last years as a first a approach to synchronization of agents.

Their eventual applications are well known and many of them are addressed in the

review 1. Although Kuramoto initially proposed it for synchronization in chemical

reactions, it is a captivating cooperative phenomena that is also observed in bio-

logical, physical, and social systems and it has attracted the interest of scientists

for centuries. Such mechanism governs the synchronization of flashing of fireflies
43, chorusing of crickets, beating of cardiac cells, metabolic synchrony in yeast cell

suspension, etc. Here, we are mainly interested in the above-mentioned application

on synchronization of the frequencies of synaptic firing of neurons in the brain. In

particular, it allows explaining phase transitions from disordered to ordered states

at a critical coupling strength, that is one of the main features of this model and

will be slightly addressed later for the readers’ convenience. For some applications

to the human connective network and how the realistic connectome maps that are

available in the literature affect the emergence of synchronization, see 210 and ref-

erences therein. Those ideas exploit that the human connectome turns out to be

organized in modula (characterized by a much larger intra than inter connectiv-

ity) structured in a hierarchical nested fashion across many scales, affecting to the

neural dynamics 195,214,215.

From a mathematical point of view, there have been important contribution in

the analysis of phase and frequency synchronization in the system. The reader may

want to look in 93,111,115,121,158 and references therein. Here we will sketch some of

the most relevant results in the study of synchronization. On the one hand, when the

heterogeneities disappear and all the agents are identical, there is complete phase

synchronization.

Theorem 5.2. 111 Let Θ(t) = (θ1(t), . . . , θN (t)) be a smooth solution to (5.2) with

Ωi = 0 and assume that DΘ(0) < π. Then, we have an asymptotic complete phase

synchronization and, moreover,

e−κtDΘ(0) ≤ DΘ(t) ≤ e−κCtDΘ(0), t ≥ 0,

where C = sin(DΘ(0))
DΘ(0) and, again, we denote the phase diameter

DΘ(t) := max
1≤i 6=j≤N

|θi(t)− θj(t)|.

Although some other approaches had been explored, most of them produced

N -dependent rates that do not fit the mean field scaling and, to our best knowl-

edge, this is the first result that avoids that issue. Of course, complete frequency

synchronization of identical oscillators is the clear from the above result with a new

exponential rate on the diameter. Regarding non-identical oscillators, one cannot

expect global phase synchronization. However, one still expects frequency synchro-

nization when the coupling strength κ is large enough. Indeed, when the decay rate
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is fast enough it implies emergence of phase-locked states. Those equilibria are char-

acterized by the fact that the inter-particle distances remain constant while rotating

in the unit circle. There are several approaches to that we will shortly sketch. On

the one hand, the first approach is based on an uniform bound of the phase diameter

under appropriate conditions, that can be used to achieve an explicit exponential

decay of the frequency diameter of the system. Specifically,

Theorem 5.3. 111 Assume that 1
N

∑N
i=1 Ωi = 0, DΩ > 0, κ > DΩ and let Θ(t) =

(θ1(t), . . . , θN (t)) be a smooth solution to (5.2) such that DΘ(0) < D∞ and θi,0 6=
θj,0 for every i 6= j, where D∞ ∈ (0, π2 ) is the unique root of

DΩ

κ
= sinx, x ∈

(
0,
π

2

)
.

Then, the phase diameter keeps bounded by D∞ for all times and, in addition, we

have asymptotic complete frequency synchronization

D
Θ̇
(t) ≤ D

Θ̇
(0)e−κ cos(D∞)t, t ≥ 0.

Again, we denote the frequency diameter by

D
Θ̇
(t) := max

1≤i 6=j≤N
|θ̇i(t)− θ̇j(t)|.

Some other improvements are given in 93 and later in 115, where emergence of

phase locked states was proved for any initial configuration. The main restriction in

such extensions is the lack of estimate for the frequency decay, that in the general

case is still an open problem.

The second approach exploits the gradient system structure of (5.2). Specifically,

notice that for

V (Θ) = −
N∑

i=1

θiΩi +
κ

2N

N∑

i,j=1

(1− cos(θi − θj)), Θ = (θ1, . . . , θN ) ∈ R
N , (5.14)

system (5.2) is nothing but the gradient flow of V , i.e.,

Θ̇ = −∇ΘV (Θ). (5.15)

Indeed, V is an analytic potential, what in particular implies Łojasiewicz gradient

inequality. Namely, for every Θ∗ ∈ R
N there exist γ ∈

[
1
2 , 1
)
, L > 0 and a ball

BR(Θ) centered at Θ∗ such that

|V (Θ)− V (Θ∗)|1−γ ≤ C‖∇ΘV (Θ)‖2, Θ ∈ BR(Θ∗).

That can be used to prove that whenever one has a bounded trajectory Θ = Θ(t),

frequency has to converge to zero as t → ∞ and a phase-locked state emerges,

see 121. However, the explicit rate is not given since it is known to depend on the

explicit Łojasiewicz exponent γ of the phase-locked state Θ∗. See 158 where some

decay rates have been given in particular cases.

Regarding the macroscopic model, notice that according to the above part,

Neuzert’s techniques 174 yields the rigorous mean field limit of (5.2), thanks to
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the regularity of the kernel F (x, y) = sin(y−x). Indeed, the Vlasov equation agrees

with the well known Kuramoto-Sakaguchi equation

∂tf + ∂θ

((
Ω+ κ

∫

T×R

sin(θ∗ − θ)f(t, dθ∗, dΩ∗)

)
f

)
= 0. (5.16)

Such idea was first proposed in 157, where L1 solutions where obtained. However, a

more recent approach in 55 also address measure-valued solutions and a contractivity

estimate was given in a sort of Dobrushin inequality 5.10 with negative exponential

decay. The authors used such information to transfer the above dynamical properties

of agent-based system to the macroscopic system.

On the one hand, the mean field limit allows transferring complete phase syn-

chronization in the identical case.

Theorem 5.4. 55 Suppose f0 ∈ P(T×R) such that all the oscillators are identical,

i.e., g = δ0(Ω) where g = (πΩ)#f0 is the Ω-marginal, or distribution of natural

frequencies. Assume that
∫

[0,2π)×R

θf0(θ,Ω) dθ dΩ = π, Dθ(f0) < π and κ > 0.

Then, the measure-valued solution f to (5.16) issued at f0 satisfies

Dθ(f(t)) ≤ Dθ(f0)e
−κCt,

where C = sin(Dθ(f0))
Dθ(f0)

. In particular,

lim
t→∞

dBL(f(t), f∞) = 0,

where the equilibrium reads f∞ = δπ(θ)⊗ δ0(Ω).
Here, Dθ(f(t)) = diam(suppθ f(t)) is the diameter of the θ-support of f(t), that

is, suppθ(f(t)) = πθ(supp f(t)), where πθ stands for the projection onto the variable

θ, i.e..

πθ : T× R −→ T

(θ,Ω) 7−→ θ.

The Ω-support of f(t) and DΩ(f(t)) can be similarly defined. Regarding complete

frequency synchronization of non-identical oscillators, the necessary result is the

aforementioned contractivity estimate.

Theorem 5.5. 55 Suppose that two initial measures f0, f̃0 ∈ P(T × R) and κ > 0

satisfy

(1) 0 < Dθ(f̃0) ≤ Dθ(f0) < π.

(2)

∫

[0,2π)×R

θf0(θ,Ω) dθ dΩ =

∫

[0,2π)×R

θf̃0(θ,Ω) dθ dΩ = π.

(3) κ > DΩ(f0) ·max

{
1

sin(Dθ(f0))
,

1

sin(Dθ(f̃0))

}
.
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Let f, f̃ be two measure-valued solutions to (5.16) corresponding to the initial data

f0 and f̃0 respectively. Then, there exists t0 > 0 and some D∞ ∈ (0, π2 ) such that

W̃p(f(t), f̃(t)) ≤ exp

(
−2κ cosD∞

π
(t− t0)

)
W̃p(ft0 , f̃t0),

for every t ≥ t0 and 1 ≤ p ≤ ∞.

Using such result frequency synchronization of non-identical oscillators takes

place.

Corollary 5.6. 55 There exists a unique stationary state f∞ in the set of probability

measures fulfilling the properties in Theorem 5.5 such that for any other f0 ∈ P(T×
R) in such set, the solution f of (5.16) issued at f0 verifies

W̃p(f(t), f∞) ≤ exp

(
−2κ cosD∞

π
(t− t0)

)
W̃p(f(t0), f∞).

In the above result, W̃p is not the usual Wasserstein distance in T × R as one

might expect. Instead, it is the Wasserstein distance in [0, 2π)×R after one unwraps

T into the segment [0, 2π). Of course, depending on the point in the torus where we

unwrap T, a different Wasserstein distance in an interval arises. The real Wasserstein

distance in T is exactly the infimum of all them. In the next part we will used the real

Wasserstein distance in T and will introduce some results in the singular coupling

case without needing such “artificial” Wasserstein distances W̃p on intervals.

In most of the above result, the cornerstone is the phase diameter. Then, such

results are nothing but a transference towards the continuous level of the results at

the discrete level. However, as explored in 115 and other papers, there is a classi-

cal quantity that simplifies the understanding of the dynamics, namely, the order

parameter. For the continuous case (the reader can easily adapt to the agent-based

system), the order parameters R = R(t) and φ = φ(t) are given by the relation

R(t)eiφ(t) =

∫

T×R

eiθ f(t, dθ, dΩ), t ≥ 0. (5.17)

The parameter R is a measure of order in the system, ranging from disordered

states with R = 0 to global phase synchronized states with R = 1. In fact, such

parameters allow restating (5.16) as follows

∂tf + ∂θ (Ω− κR sin(θ − φ)f) = 0.

Therefore, we may want to analyze the dynamics of (5.16) in terms of the above

macroscopic order parameters (5.17). This approach has been addressed in par-

ticular in 31,112. The aim in such ideas is to get rid of the diameter assumption

in preceding results and, it has been successfully achieved in certain cases. Let us

comment on the above improvements of such idea.

On the one hand, the identical case g = δ0 is much simpler since (5.16) can be

restated in terms of the macroscopic density ρt = (πθ)#ft (that is, the θ-marginal
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of ρ or zeroth-order moment of ft)

∂tρ+ ∂θ(−κR sin(θ − φ)ρ) = 0. (5.18)

In addition, straightforward computations show that R is non-decreasing and, as

shown in 31, φ(t) converges to an asymptotic value. On the other hand, the station-

ary states read

ρ∗(θ) = σδφ∗(θ) + (1− σ)δφ∗+π(θ), (5.19)

for a parameter σ ∈ [ 12 , 1). With all these ingredients, the following result holds

true.

Theorem 5.7. 31 Consider ρ0 ∈ P(T) and consider the measure-valued solution ρ

to (5.18). Then, there exists φ∗ ∈ R and σ ∈ [ 12 , 1) such that

ρ(t)→ ρ∗ narrow in P(T),

as t→∞, where ρ∗ is defined in (5.19). In addition, if ρ0 is non atomic then σ = 1,

i.e., there is complete phase synchronization.

Such result also has also been proved in 112 , showing concentration of mass

around φ(t) with exponential fall-off of the L2 norm around φ(t) + π. Regarding

non-identical oscillators, the distribution of natural frequencies g = (πΩ)#f plays

a role. Specifically, for compactly supported g and large enough κ compared to

its support, there are stationary solutions that play an analogue role to the above

two-delta functions

f∗(θ,Ω) = g+(Ω)δϑ+(Ω)(θ) + g−(Ω)δϑ−(Ω)(θ), (5.20)

where g = g+ + g−, ϑ+(Ω) = φ+ + arcsin
(

Ω
κR

)
and ϑ−(Ω) = φ+ + π+ arcsin

(
Ω
κR

)
.

In addition, the order parameter R has to verify the consistency relation

κR2 =

∫

R

√
(κR)2 − Ω2 (g+ − g−)(dΩ) (5.21)

However, in such case, the results in 31 are just conditional and do success on

proving any convergence of the order parameters but only characterize the possible

equilibria.

Proposition 5.8. 31 Consider f0 ∈ P(T×R) non-atomic and let ft be the solution

to (5.16) issued at f0. If R(t) → R∗ with supp g ⊆ [−κR∗, κR∗] and φ(t) → φ∗ as

t→∞, then

f(t)
∗
⇀ f∗ weakly ∗ in P(T× R),

where f∗ is given by (5.20) with g− ≡ 0.

To the authors’ best knowledge, the first unconditional result was analyzed in
112. In that result, emergence of phase concentration for non identical oscillators was

detected independently on the size of the diameterDθ(f0) of the initial configuration
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as long as R(0) > 0 and κ larger that a large enough critical value depending on

R(0) and the size of supp g.

Theorem 5.9. 112 Let f be a classical solution to (5.16) with R(0) > 0 and assume

that the distribution of natural frequencies has compact support supp g ⊆ [−M,M ].

Then, for large enough κ compared to 1
R0

and M

lim inf
t→∞

R(t) ≥ R∞ := 1 +
M

κ
−
√
M2

κ2
+ 4

M

κ
,

and

lim
t→∞

∥∥f(t)χ(T\L∞(t))×R

∥∥ = 0.

Here L∞(t) is the interval centered at φ(t) with constant width larger, but arbitrarily

close to

arccos



√

1−
[
M

κ

(1 +R∞)

R2
∞

+
1−R∞
R∞

]2

 .

Notice that as κ→∞, the with can be made arbitrarily small and R∞ tends to one.

The lower bound of the order parameter was essential and is the first result in

this line. Also, it is reminiscent of practical synchronization at the agent-based level.

That is, κ has to be large enough, in order for the order parameter R to oscillate

arbitrarily close to 1.

As mentioned before, one of the most interesting features of the Kuramoto model

in the mean field limit is the presence of a phase transition at a given critical

coupling strength from disordered to ordered states. This was initially conjectured

by Kuramoto, and was later rigorously obtained by several authors by analizing the

bifurcation diagram, see 66

Theorem 5.10. 66 Assume that g = g(Ω) is the Gaussian distribution or a rational

function which is even, unimodal and bounded. Consider the Kuramoto transition

point κc := 2
πg(0) and let finc(θ,Ω) = g(Ω)

2π be the incoherent state. Then, the fol-

lowing results hold true:

(1) (Instability of the incoherent state) If κ > κc, then finc is linearly unstable.

(2) (Local stability of the coherent state)If 0 < κ < κc, there exists δ > 0 such

that if f0 has distribution of natural frequencies equals g, i.e., (πΩ)#f0 = g

and
∣∣∣∣
∫

T×R

einθ d(θ,Ω)f0

∣∣∣∣ < δ, for all n ∈ N, (5.22)

then, R(t) decays to zero exponentially fast.
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(3) (Bifurcation) There exist ε, δ > 0 such that if κc < κ < κc+ ε and f0 fulfils

(5.22) then

R(t) =

√
−16

πκ4cg
′′(0)

√
κ− κc +O(κ− κc) as t→∞.

Similar results were also obtained in 32,89. Notice that the second item can be

regarded as Landau damping in the vicinity of the incoherent state, a phenomenon

that was first observed in Vlasov equation. Third result actually states that a pitch-

fork bifurcation arises after κ = κc, thus generating stable inhomogenous partially

locked states. In relation with it, Landau damping towards those partially locked

states was introduced in 90,91.

5.3. The Kuramoto model with singular couplings

The above Kuramoto–Sakaguchi equation is still subject of deep study due to the

complicatedness of the dynamics and its applications in many areas of Science.

In particular, recall that in 195,210,214,215 such model has been applied to model

neuronal synchronization. Each node represents neurons in a specific area of the

brain and the firing frequencies evolve through the coupled laws (5.2) (or (5.16)

for macroscopic description consisting of many nodes). However, uniform coupling

weights between neurons are unrealistic in general. Specifically, connections should

change with time and adapt to the dynamics itself:

dθi
dt

= Ωi +
κ

N

N∑

j=1

aij sin(θj − θi),

θi(0) = θi,0,

(5.23)

that is, aij = aij(t) are time-evolving and coupled with the dynamics of phases.

This is called plasticity and can be modelled via a learning rule 82,123,176,183,198, for

instance

daij
dt

= η(Γ(θi − θj)− aij). (5.24)

The function Γ = Γ(θ) is called plasticity function and η > 0 determines the

learning parameter. According to the neuroscientist D. O. Hebb 130, any two cells

or systems of cells that are repeatedly active at the same time will tend to become

associated, so that activity in one facilitates activity in the other. In our setting,

it means that Γ must achieve a maximum at the origin so that neurons in phase

become associated and increase the coupling weights. The choice Γ(θ) = cos(θ)

was proposed in the above references as a prototype of Hebbian learning. However,

negative (unrealistic) coupling weights might eventually arise. As a modification of

such choice, the following plasticity function was proposed in 178

Γ(θ) :=
σ2α

(
σ2 + |θ|2o

)α , (5.25)
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where σ ∈ (0, π), and |θ|o is the geodesic distance of eiθ to 1 along the unit circle,

that is

|θ|o := |θ̄| for θ̄ ≡ θ mod 2π, θ̄ ∈ (−π, π].

In order to achieve a new dynamics that is relevant in this paradigm of the Kuramoto

model, the following regime with fast learning and singular weights was proposed.

By scaling

η → ε−1, σ → ε, κ→ κε−2α,

the formal limit ε ց 0 in (5.23)-(5.25) produces the following model with singular

weights

dθi
dt

= Ωi +
κ

N

N∑

j=1

h(θj − θi),

θi(0) = θi,0,

. (5.26)

where the interaction kernel reads

h(θ) :=
sin θ

|θ|2αo
, θ ∈ R. (5.27)

This is a sort of Kuramoto–Daido model with three regimes of singularity: sub-

critical for α ∈ (0, 12 ), critical for α = 1
2 and supercritical for α ∈ ( 12 , 1). The

well-posedness of global-in-time absolutely continuous solutions of the agent-based

system was analyzed in 178; specially in the critical and supercritical regime, where

the kernel is discontinuous and solutions in the sense of Filippov were proposed.

Filippov solutions are nothing but solutions to the differential inclusion into the

Filippov set-valued map of the system. For the more singular cases, the Filippov

set-valued map at Θ ∈ R
N consist of the values (ω1, . . . , ωN ) ∈ R

N parameterized

by

ωi = Ωi +
κ

N

∑

1≤j≤N
θ̄j 6=θ̄i

h(θj − θi) +
κ

N

∑

1≤j≤N
θ̄j=θ̄i

yij , (5.28)

for some skew-symmetric matrix Y = (yij)1≤i,j≤N with general items in R if α ∈
( 12 , 1) or items in [−1, 1] if α = 1

2 . Although one-sided uniqueness follows for α ∈
(0, 12 ] (because the Filippov set-valued map (5.28) is one-sided Lipschitz), it is not

clear yet for the supercritical regime α ∈ ( 12 , 1). Indeed, two different methods to

obtain solutions were proposed in such paper: rigorous limit εց 0 and continuation

criterion of classical solutions after collision times. Checking whether they agree is

an open problem yet that has only be solved in 178 for two oscillators. In this

part, we are interested in the rigorous derivation of macroscopic equations from

the underlying description (5.26)-(5.27) at the microscopic scale. Before reviewing

such results in 187, let us briefly emphasize the main novelties that this new model

introduces: finite-time sticking and clustering into groups.
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Theorem 5.11. 178 Consider Θ = (θ1, . . . , θN ), the global-in-time classical solu-

tion to (5.26)-(5.27) for α ∈ (0, 12 ). Assume that two oscillators collide at t∗, i.e.,

θ̄i(t
∗) = θ̄j(t

∗) for some i 6= j. Then, the following two statements are equivalent:

(1) θi and θj stick together for all t ≥ t∗.
(2) Their natural frequencies agree, i.e., Ωi = Ωj .

However, some richer phenomena arises in the critical regime.

Theorem 5.12. 178 Consider Θ = (θ1, . . . , θN ) the global-in-time Filippov solution

to (5.26)-(5.27) for α = 1
2 . Assume that t∗ is some collision time and fix any formed

cluster with indices in the set E ⊆ {1, . . . , N} and size #E = n. Then, the following

two statements are equivalent:

(1) The n oscillators in the cluster E stick all together after t = t∗.
(2) The next condition takes place

∣∣∣∣∣
1

n

∑

i∈E
Ωi −

1

m

∑

i∈I
Ωi

∣∣∣∣∣ ≤
κ

N
(n−m), (5.29)

for every 1 ≤ m ≤ n and every I ⊆ E such that #I = m.

Then, oscillators with different natural frequencies are still allowed to stick in

finite time after a collision takes place as long as condition (5.29) holds true. This

is a conditional result, since we have not show yet that finite-time collision can

take place. However, explicit sufficient conditions for global phase synchronization

in finite time were also obtained in 178 for identical oscillators (Ωi = 0) initially

confined to the half circle both in the subcritical and critical regime. It is an analogue

to the above asymptotic complete phase synchronization of identical oscillators in

Theorem 5.2.

Theorem 5.13. Let Θ = (θ1, · · · , θN ) be the classical solution to (5.26)-(5.27) with

α ∈
(
0, 12

)
for identical oscillators (Ωi = 0). Assume that the initial configuration

Θ0 is confined in a half circle, i.e., 0 < DΘ(0) < π. Then, there is complete phase

synchronization at a finite time not larger than Tc, where

Tc =
DΘ(0)1−2α

2ακh(DΘ(0))
.

Theorem 5.14. Let Θ = (θ1, · · · , θN ) be the Filippov solution to (5.26)-(5.27) with

α = 1
2 for identical oscillators (Ωi = 0). Assume that the initial configuration Θ0

is confined in a half circle, i.e., 0 < DΘ(0) < π. Then, there is complete phase

synchronization in a finite time not larger than Tc, where

Tc =
DΘ(0)

κh(DΘ(0))
.

Indeed, such result would remain true in the supercritical regime if the Filippov

solutions obtained through the above two methods agreed 178 . However, there are
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still some open problems regarding the non-identical case in the critical and super-

critical regimes. Such problem was easily solved in the subcritical regime, yielding

purely asymptotic complete frequency synchronization of non-identical oscillators

and emergence of phase-locked states 178 .

Since in this paper we are interested in the kinetic description, we will not

give more unnecessary details about the microscopic scale others than the above-

mentioned tools that are required in order to properly understand the kinetic scale.

Notice that the kernel h in (5.27) is no longer Lipschitz-continuous and the above

techniques by H. Neunzert 174 that were used in 55,157 do not work for these more

singular regimes. Also, the approach in Theorem 5.1 does not yield any result since

the divergence (derivative in 1D) of the coupling force is not bounded anymore in

any of the regimes α ∈ (0, 1). A new approach was introduced in 187 to deal with

this sort of kernels for α ∈ (0, 12 ]. It produced weak measure-valued solutions (in

the sense of the Filippov flow for α ∈ 1
2 ) to the kinetic singular Kuramoto model.

Here, we will first recall the subcritical and critical regimes whilst the supercritical

case will be sketched later. On the one hand, it is clear that the kinetic singular

Kuramoto model stands for

∂tf + ∂θ

((
Ω+ κ

∫

T×R

h(θ∗ − θ)f(t, dθ∗, dΩ∗)

)
f

)
= 0,

for all t ≥ 0, (θ,Ω) ∈ (−π, π]×R, with periodic boundary conditions f(t,−π,Ω) =
f(t, π,Ω). In order to avoid it, a standard trick was used in 187 to identify a transport

equation along T× R




∂f

∂t
+∇ · (V [f ]f) = 0, (z,Ω) ∈ T× R,

f(0) = f0,
(5.30)

where the divergence is considered along T × R and the non-linear transport field

reads

V [f ](z,Ω) := (P[f ](z,Ω)iz, 0), (5.31)

P[f ](z,Ω) := Ω + κ

∫

T\{z}

∫

R

h(θ∗ − θ)f(dθ∗, dΩ∗),

for any (z = eiθ,Ω) ∈ T × R. Obviously, the transport field only makes sense for

α ∈ (0, 12 ] because ft is merely measure-valued. Indeed, the integral is intentionally

considered off {z} to avoid concentration issues for α = 1
2 . Notice that it is totally

consistent with the microscopic dynamics as yii = 0 in (5.28). It does not make any

sense for α ∈ ( 12 , 1) unless ft enjoys some extra integrability, that we do not expect

to propagate due to concentration phenomena at the microscopic scale.

Existence and sided-uniqueness of classical flow for α ∈ (0, 12 ) (respectively Filip-

pov flow for α = 1
2 ) of the transport field V [f ] was guaranteed in 187 due to the fact

that the transport field is continuous with linear growth at infinity for α ∈ (0, 12 )

(respectively, it is locally bounded with linear growth at infinity for α = 1
2 ) and

it is one-sided Lipschitz continuous. In addition, the mean-field limit approach was
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shown to work despite the fact that Theorem 5.1 does not apply. Specifically, em-

pirical measures supported on classical (respectively Filippov) solutions to (5.26)

were proved to be solutions to (5.26) that converge to the unique weak measure-

valued solution (respectively, solution in the sense of the Filippov flow) to (5.30)

as N →∞. Indeed, a similar Dobrushin-type estimate to (5.10) was obtained, thus

quantifying the mean field limit.

Theorem 5.15. 187 Consider α ∈ (0, 12 ], κ > 0 and two time-dependent proba-

bility measures f, f̃ ∈ ACloc([0,∞), C∞
c (T × R)∗ − weak ∗), solving (5.30) weakly

(respectively in the sense of Filippov flow) with initial data f0, f̃0 ∈ P2(T × R).

Then,

W2(f(t), f̃(t)) ≤ e(
1
2+2κL0)tW2(f0, f̃0),

for every t ≥ 0, where L0 is the one-sided Lipschitz constant of −h.

Here, P2(T × R) represents the metric space of probability measures on T × R

with finite second order moment endowed with the 2-Wasserstein distance W2. The

extra tightness in P2 is required in order for W2 to make sense. It allows obtaining

a quantitative mean field limit when f̃ = µN and the initial empirical measures

approximate the initial datum f0, i.e.,

lim
N→∞

W2(µ
N
0 , f0) = 0.

Nevertheless, the mean field limit is still valid in P1(T×R) without a control on rates.

In addition, notice that uniqueness follows by simply choosing f0 = f̃0 ∈ P2(T×R).

One can still obtain uniqueness for general probability measures f0 ∈ P(T × R)

by virtue of a similar Dobrushin inequality with respect to a modified Wasser-

stein distance. Specifically, if f, f̃ ∈ P(T × R) are probability measures with

g := (πθ)#f = (πθ)#f̃ and {f(·|Ω)}Ω∈T, {f̃(·|Ω)}Ω∈R are the families of condi-

tional probabilities or disintegrations, then we can define the fibered 2-Wasserstein

distance

W2,g(f, f̃) :=

(∫

R

W2

(
f(·|Ω), f̃(·|Ω)

)2
g(dΩ)

)1/2

.

The following result directly implies uniqueness in the full sense.

Theorem 5.16. 187 Consider α ∈ (0, 12 ], κ > 0 and two time-dependent proba-

bility measures f, f̃ ∈ ACloc([0,∞), C∞
c (T × R)∗ − weak ∗), solving (5.30) weakly

(respectively in the sense of Filippov flow) with initial data f0, f̃0 ∈ P(T×R). Con-

sider the distribution of natural frequencies g = (πΩ)# f0 and g̃ = (πΩ)# f̃0. If both

distributions of natural frequencies agree g = g̃, then

W2,g(f(t), f̃(t)) ≤W2,g(f0, f̃0)e
2κL0t,

for every t ≥ 0, where L0 is the one-sided Lipschitz constant of −h.
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In addition, the mean-field limit allows transferring Theorems 5.13 and 5.14

towards the macroscopic equation (5.30).

Theorem 5.17. 187 Set α ∈ (0, 12 ) and consider any initial datum f0 ∈ P(T × R)

with identical distribution of natural frequencies, namely, g = (πΩ)#f0 = δ0. Let f

be the unique global-in-time weak measure-valued solution to (5.30) issued at f0 and

assume that 0 < Dθ(f0) < π. Then,

f(t) = f∞ for all t ≥ Tc,

where Tc = Dθ(f0)
1−2α

2ακh(Dθ(f0))
, the equilibrium f∞ is given by the monopole f∞ :=

δzav(0)(z)⊗ δ0(Ω) and zav is the average phase of the oscillators.

Theorem 5.18. 187 Set α = 1
2 and consider any initial datum f0 ∈ P(T×R) with

identical distribution of natural frequencies, namely, g = (πΩ)#f0 = δ0. Let f be the

unique global-in-time measure-valued solution to (5.30) in the sense of the Filippov

flow issued at f0 and assume that 0 < Dθ(f0) < π. Then,

f(t) = f∞ for all t ≥ Tc,
where Tc = Dθ(f0)

κh(Dθ(f0))
, the equilibrium f∞ is given by the monopole f∞ :=

δzav(0)(z)⊗ δ0(Ω) and zav is the average phase of the oscillators.

5.4. From Kuramoto to Cucker–Smale

Recall that the Cucker–Smale model was introduced in Section 4 as an adequate

second order model for swarms 81. At the microscopic level, the Cucker–Smale model

describes a system of N interacting agents under the influence of self-alignment

effects through the dynamical system (4.1). The idea is that each agent should

modify its velocity to mimic some average relative velocity of the remaining N − 1

agents. The most natural setting is the homophilious case (4.2)

ψ(r) =
1

(1 + r2)β/2
,

where weights depend decreasingly on the distance between agents (the closer the

agents, the stronger the influence). Here, ψ plays the role of the communication

kernel or influence function and κ stands for the strength of the influence. The

non-negative exponent β controls the asymptotic fall-off of long range interactions.

Here, we will briefly mention a link between Kuramoto and Cucker–Smale mod-

els. It does not only work to relate the classical Kuramoto to Cucker–Smale model

with smooth influence function, but also between the above singular Kuramoto

model and the Cucker–Smale model with weakly singular influence functions. In

general, consider a Kuramoto–Daido model as follows

θ̇i = Ωi +
κ

N

N∑

j=1

φ(θj − θi),

θi(0) = θi,0,

(5.32)



February 12, 2019 12:8 WSPC/INSTRUCTION FILE TCS-Kin-Rev-
Submission-12-02-19

58 G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato, J. Soler

for some periodic force φ. If it is smooth, differentiation implies

θ̇i = ωi,

ω̇i =
κ

N

N∑

j=1

ψ(θj − θi)(ωj − ωi),

(θi(0), ωi(0)) = (θi,0, ωi,0),

(5.33)

where ψ := φ′. Notice that the initial and natural frequencies are related through

the rule

ωi,0 = Ωi +
κ

N

N∑

j=1

φ(θj,0 − θi,0).

This amounts to say that Kuramoto–Daido model (5.32) agrees with Cucker–Smale

model (5.33) for well-prepared initial data. In other words, the Kuramoto–Daido

model (5.32) implicitly describes the evolution of swarms. In particular, when

φ(θ) = sin θ, one obtains that the classical Kuramoto model agrees with the Cucker–

Smale model with an influence function ψ(θ) = cos θ This can be used to understand

frequency synchronization as a flocking phenomenon and allows transferring tech-

niques between both models in 1D. See 113, where it was introduced and used to

derive an alternative kinetic description for synchronization of oscillators

∂tF + ω∂θF + ∂ω

[
κ

(∫

T×R

cos(θ∗ − θ)(ω∗ − ω)F (t, dθ∗, dω∗, dΩ∗)

)
F

]
= 0.

Regarding the singular cases, in the subcritical regime frequencies enjoy a minimum

regularity required to describe the augmented second order equation. Namely,

Theorem 5.19. 178 Consider a classical solution Θ = (θ1, . . . , θN ) to (5.26) with

α ∈ (0, 12 ). Then, the frequencies verify θ̇i ∈ W 1,p([Tk−1, τ ]), for 1 ≤ p < 1
2α , every

k ∈ N and every τ ∈ (Tk−1, Tk). In addition, they verify the following equation in

weak sense

θ̈i =
κ

N

∑

j /∈S(i)(Tk−1)

h′(θj − θi)(θ̇j − θ̇i), (5.34)

for all t ∈ [Tk−1, τ ]. Here, {Tk}k∈N are the new collision times after some oscillators

have stick together and Si(Tk−1) means the set of indices j of oscillators that stick

with the i-th one at t = Tk−1.

In other words, the singular Kuramoto model in the weakly singular regime

agrees with the Cucker–Smale model with influence function

ψ(θ) = h′(θ) =
1

|θ|2αo

[
cos θ − 2α

sin |θ|o
|θ|o

]
∼ 1

|θ|2αo
,

Similar piecewise solutions were obtained in 181,182 for the genuine Cucker–Smale

model in general dimensions endowed with the standard weakly singular kernel

ψ(r) =
1

rβ
, (5.35)
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for the range β ∈ (0, 1). Notice that here, the parameter β for the weakly singular

Cucker–Smale model (4.1)-(5.35) agrees with the parameter 2α in the singular Ku-

ramoto model (5.26)-(5.27). Since such piecewise regularity becomes global in the

smaller range β ∈ (0, 12 ), the authors used it to produce measure-valued solutions

to the associated kinetic Cucker–Smale model (4.3) with weakly singular weights

(5.35), namely,

∂tf + v · ∇xf +∇v · [F[f ]f ] = 0, (x,v) ∈ R
2d, t ≥ 0,

F[f ](t,x,v) := κ

∫

R2d

ψ(‖x− x∗)(v∗ − v)f(t,x∗,v∗) dx∗ dv∗,

ψ(r) = r−β , r > 0.

(5.36)

in such regime β ∈ (0, 12 ) via the mean field limit approach, see 171. This is the

content of the next result.

Theorem 5.20. 171 . Let us consider 0 < β < 1
2 . For any compactly supported

initial data f0 ∈ P(R2d) and any T > 0, (5.36) admits at least one weak measure-

valued solution f ∈ L∞(0, T ;M(R2d)) with ∂tf ∈ Lp(0, T ;C1
c (R

2d)∗) for some

p > 1. Moreover, if f0 is of the form

f0(x,v) :=

N∑

i=1

miδ(xi(0),vi(0)),

with
∑N
i=1mi = 1, then f remains atomic of the form

f(t,x,v) :=

N∑

i=1

miδ(xi(t),vi(t)).

In particular, it is a unique measure-valued solution to (5.36) (weak atomic unique-

ness).

Notice that the main difference between the (singular) Kuramoto and (singular)

Cucker–Smale models is the periodicity assumption along with the fact that for

the Kuramoto model, the influence function is not always positive. Indeed, it also

attains negative values near θ = π. This means that Kuramoto oscillators with far

apart phases are pushed away from the flock. Nevertheless, as shown in 31,112, the

periodicity conditions recovers the unique flock when the natural frequencies agree.

5.5. Hydrodynamic limits in the Cucker–Smale model

In this subsection we will introduce several hyperbolic hydrodynamic limits that

have been analyzed in the literature for the kinetic Cucker–Smale model (4.3). In

the first part, we will focus on Lipschitz influence functions ψ, e.g. (4.2), which

corresponds to the classical Cucker–Smale model. It produces a method to derive

the well known Euler-alignment model when the influence function is smooth. Later,

since the full hydrodynamic limit in the singular regimes is still a hard open problem,

we will introduce a singular hyperbolic hydrodynamic limit of vanishing inertia type
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for the weakly singular case. Such method yields a reduced first order fluid model

where inertia in the balance equation of momentum has been neglected in the

flavour of the overdamped or Smoluchowski limit ε ց 0 in (5.6). Finally, due to

its relation to this last case, we will show that a similar approach can be done to

derive weak measure-valued solutions of the kinetic singular Kuramoto model (5.30)

in the supercritical regime α ∈ ( 12 , 1). We will sketch a similar singular hyperbolic

hydrodynamic limit of vanishing inertia type on an augmented Kuramoto model

with inertia and regularized weights.

5.5.1. Hydrodynamic limits for Lipschitz influence function

When the weight function is Lipschitz (e.g., given by (4.2)) and if the masses mi

are normalized to one, the BBGKY approach success 122,125 and we can rigorously

deduce the kinetic Cucker–Smale model (4.3) with regular weights (4.2). Regarding

the weakly singular cases (5.36) the only results that are available in the literature

were introduced in 171 and, more specifically, they take the form of the preceding

Theorem 5.20.

To derive macroscopic hydrodynamic models from the classical (Lipschitz inter-

actions) kinetic model of Cucker–Smale, new terms were introduced in 148. Specifi-

cally, the following (hyperbolic) scaled model was considered

∂tfε + v · ∇xfε +∇v · [F(fε)fε] =
1

ε
∇v · [∇vfε + (v − uε)fε],

F(fε)(t,x,v) := κ

∫

R2d

ψ(‖x− x∗‖)(v∗ − v)f(t,x∗,v∗) dx∗ dv∗.
(5.37)

Notice that such model includes velocity noise (through a Fokker–Planck term) and

a local alignment effect of the velocity towards the mean velocity field

uε(t,x) =

∫
Rd vfε(t,x,v) dv∫
Rd fε(t,x,v) dv

.

The hyperbolic scaling sets a regime with large noise and strong local alignment

but weak nonlocal alignment of Cucker–Smale type, Notice that such local align-

ment term can be regarded as linear damping towards the macroscopic velocity

field and provides no effect on the balance equation of momentum by virtue of its

cancellations ∫

RN

v∇v · [(v − uε)fε] dv = −
∫

RN

(v − uε)fε dv = 0.

This local alignment term (v − u)f was introduced in 168 as the singular limit

ψ → δ0 of in the Mostch–Tadmor nonlinear alignment term

FMT (f)(t,x,v) =
κ
∫
R2d ψ(‖x− x∗‖)(v∗ − v)f(t,x∗,v∗) dx∗ dv∗
∫
R2d ψ(‖x− x∗‖)f(t,x,v∗) dx∗ dv∗ . (5.38)

The main idea in (5.38) is to normalized the pairwise interactions ψ(‖xi − xj‖)
between agents in terms of a relative influence. Of course, it breaks the symmetry
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of the initial Cucker–Smale model, what in particular causes severe problems to

recover such kinetic model as mean field limit of the corresponding agent-based

problem.

When ε→ 0, relative entropy methods were used in 148 to obtain the hydrody-

namic limit of (5.37), that takes the form

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u)

= −∇xρ+
∫
Rd ψ(‖x− x∗‖)(u(t,x∗)− u(t,x))ρ(t,x)ρ(t,x∗) dx∗.

Note that such models maintain nonlocal alignment effects but does not include any

local damping, but it disappeared in the limit. Indeed, the strong local alignment

in (5.37) was only introduced as an extra term that helps the system reach the

hydrodynamic regime. Also, notice that a pressure term −∇xρ has appeared as a

consequence of the velocity noise in the Fokker–Planck term of the right hand side

of (5.37).

In relation with such scaling, the method was very recently improved in 104 to

remove the velocity term noise. Specifically, the following system was considered

∂tfε + v · ∇xfε +∇v · [F(fε)fε] =
1

ε
∇v · [(v − uε)fε],

F(fε)(t,x,v) := κ

∫

R2d

ψ(‖x− x∗‖)(v∗ − v)f(t,x∗,v∗) dx∗ dv∗.
(5.39)

Again, similar relative methods allow recovering the well known pressureless Euler-

alignment model

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u)

=
∫
Rd ψ(‖x− x∗‖)(u(t,x∗)− u(t,x))ρ(t,x)ρ(t,x∗) dx∗,

(5.40)

where the above pressure term in the right hand side of the momentum equation

has disappeared. Such model arises as the monokinetic antsatz of the Cucker–Smale

model but the rigorous hydrodynamic limit towards such monokinetic distribution

has not been proved yet without the help of any extra damping or strong local

alignment terms. The pressureless Euler-alignment system has been analysed by

many authors during the recent years 58,92,129,151,152,200,201,202,204. Specially, one of

the main topics of interest is the study of the phenomenon of critical threshold on

the initial data, that discriminates initial data enjoying blow-up from data enjoying

global regularity depending on the properties of the “magic quantity”

G = ∂xu+ ψ ∗ ρ.

Another close approach was given in 147. The velocity noise and nonlocal Cucker–

Smale alignment term in (5.37) were neglected but the strong local alignment was

kept and linear damping was also added to the system

∂tfε + v · ∇xfε − λ∇v · (vfε) =
1

ε
∇v · ((v − uε)fε).
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In this case, a similar analysis provides the limiting system

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u) = −λu

Again, the strong local alignment is lost in the macroscopic system, but a linear

damping has been recovered in the limit. In the same line, when agents are driven

by a fluid, the following coupled system with fluids has been considered in 57

∂tfε + v · ∇xfε +∇v · ((Uε − v)fε) =
1

ε
∇v · (∇vfε + (v − uε)fε),

where Uε is the velocity field of the fluid, which evolves according to the incom-

pressible Navier–Stokes system, i.e.,

∂tUε + (Uε · ∇x)Uε = −∇xpε + ν∆Uε +

∫

RN

(v −Uε)fε dv,

∇x ·Uε = 0,

where ν ≥ 0 is the viscosity and pε stands for the pressure of the fluid. In such

paper, an entropy method in the spirit of 148 was derived to pass to the limit ε→ 0

and the following limiting macroscopic system was obtained

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u) +∇xρ = ρ(U− u),

coupled with the limiting Navier–Stokes system

∂tU+ (U · ∇x)U = −∇xp+ ν∆U+ ρ(u−U),

∇x ·U = 0.

For the readers’ convenience, let us mention another alternative to the above

hydrodynamic limits in wich the scaling lead to a vanishing inertia effect on the

macroscopic limit, thus reducing the second order dynamics to the Smoluchoski first

order dynamics. In particular, this line has been developed in 29,110,175,185 for the

Vlasov–Poisson–Fokker–Planck system, that give rise to the aggregation equation

with Newtonian interactions, i.e.,

∂tρ+∇x · (ρu) = 0,

u = −∇xϕ,

where the potential ϕ = ϕ(t, x) can be recovered from the density ρ through the

Poisson equation

∆ϕ = θρ

and θ = 1 or θ = −1 depending on the attractive of repulsive character of the New-

tonian interactions. In the parabolic case, the limiting system changes the velocity

field from u = −∇xϕ to u = −∇xϕ+
∇xρ
ρ , that includes viscosity on the continuity

equation for ρ.
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5.5.2. Hydrodynamic singular limits of vanishing inertia type

Mimicking the preceding ideas we can consider let us consider the kinetic singular

Cucker–Smale model, with linear damping, velocity noise (Fokker-Planck term) and

the effect of an external force −∇xV . A dimensionless analysis was proposed in 188,

leading to the following scaled system

∂tfε + v · ∇xfε +
1

ε
∇v · (Fε(fε)fε)−

1

ε
∇xVε · ∇vfε

= 1
ε∇v · (v fε +∇vfε),

Fε(fε)(t,x,v) :=

∫

R2d

ψε(‖x− x∗‖)(v∗ − v)fε(t,x
∗,v∗) dx∗ dv∗.

(5.41)

Here, the singular influence function (5.35) in (5.36) has been regularized as follows

ψε(r) =
1

(ε2 + cβr2)β/2
, r > 0, (5.42)

for some β ∈ (0, 1] and a β-dependent coefficient cβ . Notice that the scaled ker-

nel (5.42) converges towards the singular one (5.35) as ε → 0. Given a suffi-

ciently regular initial data fε(0) = fε(0,x,v) and the corresponding smooth so-

lution fε(t) = fε(t,x,v) to the regularized system (5.41), one can associate the

macroscopic quantities:

Density: ρε(t,x) :=

∫

Rd

fε(t,x,v) dv,

Current: jε(t,x) :=

∫

Rd

v fε(t,x,v) dv,

Velocity field: uε(t,x) :=
jε(t,x)

ρε(t,x)
,

Stress tensor: Sε(t, x) :=

∫

Rd

v ⊗ v fε(t,x,v) dv,

Stress flux tensor: T ε(t,x) :=

∫

Rd

(v ⊗ v)⊗ vfε(t,x,v) dv,

which verifies the following conservation laws

∂tρε +∇x · jε = 0, (5.43)

ε ∂tjε + ε∇x · Sε + ρε∇xVε + jε + (ψε ∗ ρε) jε − (ψε ∗ jε) ρε = 0, (5.44)

ε ∂tSε + ε∇x · T ε + 2Sym(jε ⊗∇xVε)

+2 ((1 + ψε ∗ ρε)Sε − ρεI)− 2 Sym((ψε ∗ jε)⊗ jε) = 0. (5.45)
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being Sym(M) the symmetric part of a square matrix M, i.e., Sym(M) := 1
2 (M+

MT). The analysis of these equations allows obtaining the following estimates

‖ρε‖L∞(0,T ;L1(Rd)) = ‖ρε(0)‖L1(Rd) ,∥∥‖v‖2fε
∥∥
L1(0,T ;L1(R2d))

≤ ε‖‖v‖2fε(0)‖L1(R2d)

+
(
2dT + ‖∇xVε‖2L2(0,T ;L∞(Rd))

)
‖fε(0)‖L1(R2d),

‖jε‖L2(0,T ;L1(R2N )) ≤
(
‖fε(0)‖L1(R2d)

)1/2 (∥∥‖v‖2fε
∥∥
L1(0,T ;L1(R2d))

)1/2
,

together with the dissipation of kinetic energy due to interactions

∫ T

0

∫

R4d

ψε(‖x− x∗‖)‖v − v∗|2fε(t,x,v)fε(t,x∗,v∗) dx dx∗ dv dv∗ dt

≤ ε‖‖v‖2fε(0)‖L1(R2d) +
(
2dT + ‖∇xVε‖2L2(0,T ;L∞(Rd))

)
‖fε(0)‖L1(R2d). (5.46)

This gives us the compactness for current and density sequences when εց 0

ρε
∗
⇀ ρ, in L∞(0, T ;M(Rd)),

jε
∗
⇀ j, in L2(0, T ;M(Rd))d.

Passing to the limit in all the linear terms (5.43)-(5.44) is clear. However, the main

problem is the non-linear term in (5.44). To achieve this goal it is necessary to

take into account the kindness of the commutator that defines the nonlinear term,

the symmetry of the influence function, the range of values β ∈ (0, 1), as well as

additional properties of convergence in time for ρ, see 188 for the details. The above

properties allow us to identify the limit

ρε ⊗ jε
∗
⇀ ρ⊗ j in L2(0, T ;M(R2d))d,

and prove that the limiting current vector j = j(t,x) satisfies

j = (ψ ∗ j)ρ− (ψ ∗ ρ)j− ρ∇xV,

in the sense of distributions for 0 < β ≤ 1.

Theorem 5.21. 188 . Assume that the initial data f0ε verify the set of hypothesis




f0ε = f0ε (x,v) ≥ 0 and f0ε ∈ C∞
c (Rd × R

d),

‖f0ε ‖L1(R2d) ≤M0 and ρ0ε
∗
⇀ ρ0 in M(Rd),

‖‖v‖2f0ε ‖L1(R2d) ≤ E0,

for every ε > 0 ad some ε-independent constants M0, E0 > 0. Also, assume that the

external forces −∇xVε satisfy appropriate mild assumptions. Let fε = fε(t,x,v)

be the smooth solutions to (5.41) with β ∈ (0, 1]. Then, ρε and jε converge in a

weak sense to some finite Radon measure ρ and j that solve the Cauchy problem

associated with the following Euler-type system in the distributional sense

∂tρ+∇x · j = 0, x ∈ R
d, t ∈ [0, T ),

ρ∇xV + j = (φ ∗ j)ρ− (φ ∗ ρ)j, x ∈ R
d, t ∈ [0, T )

ρ(0, ·) = ρ0, x ∈ R
d.

(5.47)
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The problem of taking limits in the commutator ρε ⊗ jε − jε ⊗ ρε was solved for

β ∈ (0, 1) by cancelling the full singularity through the use of appropriate (Lipschitz-

continuous) test functions and the properties of the commutator. The endpoint case

β = 1 can be compared with the 2D Euler equations in vorticity formulation

∂tω + u · ∇xω = 0, x ∈ R
2, t > 0,

u = K ∗ ω, x ∈ R
2, t > 0,

(5.48)

where K is the so called Biot–Savart kernel, that reads

K(x) =
x⊥

2π‖x‖2 , x ∈ R
2.

This is the mean field equation associated with the N vortex problem (5.4). In

this context, a well known bound of the vorticity in some logarithmic Morrey space

is all we need to guarantee the absence of concentrations on the diagonal and to

pass to the limit. Notice that in 2D Euler (5.48) the Biot–Savart kernel K is odd.

However, the Riesz-type ψ in (5.35) for the weakly singular Cucker–Smale model is

even and does not admit similar cancelations. Fortunately, the extra estimate for

the dissipation of kinetic energy due to alignment interactions (5.46) gives rise to

the required the non-concentration estimate that allows the kinetic nonlinear term

to be bounded for β = 1. Clearly, it allows obtaining a measure-valued solution to

the asymptotic system also in the limiting case β = 1.

5.5.3. Hydrodynamic limits in the singular Kuramoto model

As mentioned before, similar hydrodynamic limits of vanishing inertia type have

been considered in recent literature for other related systems like the Vlasov–

Poisson–Fokker–Planck, the aggregation equation, the alignment-aggregation sys-

tem and some other anisotropic versions of the aggregation equation, see
95,96,102,103,110,185 and last Subsection 5.6. Before ending this part, we will sketch

the idea for a different suitable system where one can apply such method. It was

proposed in 187 as a completely different approach that yield solutions to the ki-

netic singular Kuramoto model (5.30) in the remaining regime α ∈ ( 12 , 1). The

cornerstone is again the cancelation property of the nonlinear term. We will show

that indeed such cancellation works in the case of identical oscillators, i.e., g = δ0.

Specifically, one can consider the next scaled kinetic equation for the distribution

function Fε = Fε(t, θ, ω) at time t with phase θ ∈ T and frequency ω ∈ R:

∂tFε + ω∂θFε +
1

ε
∂ω

[
κ

(∫

T×R×R

hε(θ
∗ − θ)Fε(t, dθ∗, dω∗)

)
Fε

]

=
1

ε
∂ω

(
ωFε +

∂Fε
∂ω

)
. (5.49)
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This is nothing but the Vlasov–McKean equation associated with the stochastic

agent-based model

dθi = ωi dt,

εdωi =
κ

N

N∑

j=1

hε(θj − θi) dt− ωi dt+
√
2ε dW i

t ,

θi(0) = θi,0, ωi(0) = ωi,0.

(5.50)

Such second order system is a Kuramoto–Daido model with identical oscillators,

regularized kernel hε, endowed with inertia inertia, white noise W i
t and frequency

damping. The inertia term and noise has been scaled and disappear as εց 0 while

the scaled regularized kernel reads

hε(θ) :=
sin θ

(ε2 + |θ|2o)α
,

and converges towards the singular kernel h in (5.27). Notice that the formal limit

εց 0 in (5.50) recovers the singular first order system (5.26). Then, we expect that

the hydrodynamic limit in (5.49) can be closed and yields rigorous weak solutions

to (5.30). Starting with smooth initial data F 0
ε , the above system (5.50) produces

smooth solutions due to the regularizing effect of the diffusion and the regularized

kernels hε. Again, in 187 the following ω moments were considered as the analogues

of those in the above subsection:

Phase density: ρε(t, θ) :=

∫

R

Fε(t, θ, ω) dω,

Phase current: jε(t, θ) :=

∫

R

ωFε(t, θ, ω) dω,

Frequency field: ωε(t, θ) :=
jε(t, θ)

ρε(t, θ)
,

Phase stress: Sε(t, θ) :=
∫

R

ω2Fε(t, θ, ω) dω,

Stress flux tensor: Tε(t, θ) :=
∫

R

ω3Fε(t, θ, ω) dω.

The corresponding conservation laws read

∂tρε + ∂θjε = 0, (5.51)

ε ∂tjε + ε ∂θSε + jε + κ(hε ∗ ρε)ρε = 0, (5.52)

ε ∂tSε + ε ∂θTε + 2Sε − 2ρε + 2κ(hε ∗ ρε)jε = 0. (5.53)

Now, the key fact is the following equation

d

dt

(
ε

∫

T

Sε dθ + κ

∫

T

(Wε ∗ ρε)ρε dθ
)
+ 2

∫

T

Sε dθ = 2,

coming from integration in (5.53), where

Wε(θ) =

∫ θ

0

hε(θ
∗) dθ∗ =

∫ θ̄

0

hε(θ
∗) dθ∗.
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Then, integration in time show that under mild assumptions on the initial data one

achieves a priori estimates for ρε, jε and Sε. In particular, up to a subsequence we

achieve

ρε
∗
⇀ ρ in L∞(0, T ;M(T)),

jε
∗
⇀ j in L2(0, T ;M(T)).

This allows passing to the limit in all the linear terms in (5.51)-(5.52). Then, the

main issue is again passing to the limit in the nonlinear term in (5.52). On the one

hand, stronger time properties of ρ can be derived (check 187 for the details), thus

showing

ρε ⊗ ρε ∗
⇀ ρ⊗ ρ in L∞(0, T ;M(T2 × R

2)).

On the other hand, the nonlinear terms reads, in weak form, as follows

κ

2

∫

T2

(ϕ(θ)− ϕ(θ∗))hε(θ − θ∗)ρε(t, θ)ρε(t, θ∗),

for any test function ϕ ∈ C∞
c (T). Here we have used the standard symmetrization

trick that allows cancelling the singularity of the kernel in the whole range α ∈ (0, 1)

and allows concluding the following result.

Theorem 5.22. 187 For any α ∈ (0, 1), consider the strong solution Fε = Fε(t, θ, ω)

to (5.49) with smooth initial data F 0
ε verifying ρ0ε → ρ0 in P(T)-narrow and

sup
ε>0
‖ω2F 0

ε ‖L1(T) <∞.

Then, for every T > 0 there exists ρ ∈ AC([0, T ], C∞(T)∗ − weak ∗) uniformly-

in-time tight and a subsequence, that we denote in the same way, such that ρε →
ρ in C([0, T ],P(T) − narrow) and ρ verifies the kinetic singular Kuramoto model

for identical oscillators in the sense of distributions

∂tρ− κ∂θ((h ∗ ρ)ρ) = 0,

ρ(0) = ρ0.

The above result provides global existence in the supercritical regime, but as

for the microscopic scale, uniqueness is only guaranteed for α ∈ (0, 12 ], the case

α ∈ ( 12 , 1) being an open problem. Similarly, emergence of phase synchronization is

not guaranteed for these sort of (very) weak measure-valued solutions because the

existence technique is not supported by the mean field limit approach this time.

5.6. Other models

Apart from the preceding models that have been exhibited as prototype of first and

second order agent-based models, where one can study its kinetic and macroscopic

counterparts, there are a few more that have been proposed and analyzed in the

literature. Although we will not enter into details, we will mention some of them

and its main features.
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Related to the last technique in Subsection 5.3, the classical Kuramoto model

with inertia has been analyzed at the microscopic and kinetic scales in 70,71,72,73:

∂tf + ω∂θf + ∂ω

[
κ

(
−ωf +

∫

T×R×R

sin(θ∗ − θ)f(t, dθ∗, dω∗)

)
f

]
= 0, (5.54)

where f = f(t, θ, ω) is the distribution of identical oscillators at time t, phase

θ ∈ T and frequency ω ∈ R. The dynamics introduces a transient regime due to the

inertial, that can be used to model certain physical situations. Nevertheless, the final

dynamics essentially agrees with the starting model without inertia, as depicted in

the above references. Although a hydrodynamic has not been proposed yet, the

same vanishing inertia limit in Theorem 5.22 can be achieved mutatis mutandis,

thus recovering the Kuramoto–Sakaguchi equation (5.16) with identical oscillators.

Another interesting swarming model in R
3 arises when one consider constant

speed. Then, only positions and orientations play a role. This is known as the

Couzin–Vicsec model that in its kinetic version reads

∂tf + cω · ∇xf +∇ω · [ν(Id− ω ⊗ ω)Ω(t,x,ω)−D∇ωf ] = 0, (5.55)

where f = f(t,x,ω) is the distribution of particles at time t, position x ∈ R
3 and

orientation ω ∈ S
2. Here c > 0 is the constant speed of particles, D > 0 is the

strength of the orientation noise and Ω = Ω(t,x,ω) is a normalized momentum

vector Ω = J

‖J‖ and

J(t,x,ω) :=

∫

R3×S2

KR(|x− x∗|)ω∗f(t, dx∗, dω∗).

KR is the “observation kernel” and typically stands for the characteristic function

of the ball centered at the origin with radius R but one can consider general kernels

modeling the fact that the influence of the particles falls off with distance. The

global case R → ∞ is classically considered, that is, J is the global momentum

when all particles are taken into account. The model was rigorously derived via

the mean-field limit approach in the discrete Couzin–Vicsec model 87 and some

numerical simulations were obtained in ?. The strong non-linearity, that gives rise

to degenerate terms when the momentum vanishes, has proved a strong obstruction

and makes well posedness a hard issue. Under the a priory assumption of positivity

of momentum 109 shows well posedness of solutions in the full space-inhomogeneous

case. The only unconditional results have been obtained for the space-homogeneous

case, see 105,146. Hydrodynamic limits towards macroscopic limits have been derived

in 87,108. Other corrections of (5.55) that smooth the momentum term have been

studied in 36,86

Regarding the aggregation equation (5.3), there is a huge literature, see
35,44,54,167,166,205,206 and related references. Indeed, similar estimates to those in

Theorem 5.15 have been proved for such family of gradient-flow systems. When W

is λ-convex for some λ ≥ 0, the same estimate was derived in the Euclidean space

R
d for the associated kinetic equation 60,63

∂tρ+∇x · [−(∇xW ∗ ρ)ρ] = 0, (5.56)
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where ρ = ρ(t,x) is the probability density of particles. The main differences be-

tween (5.30) and (5.56) are: the absence of heterogeneities νi in (5.56), the gradient-

flow structure of (5.56) with potential

W[ρ(t)] :=

∫

Rd×Rd

W (x− x∗)ρ(t, dx)ρ(t, dx∗),

and the underlying manifold R
d compared to T× R in (5.30).

The same ideas as in Subsection 5.5.2 were analyzed in 54 in order to derive a

hydrodynamic limit of vanishing-inertia-type (or large friction) of the second-order

kinetic aggregation equation towards the first-order aggregation equation (5.56).

Also, explicit convergence rates were measured in Wasserstein distances, adding the

above-mentioned strong local alignment, but not noise (to avoid pressure terms).

To such end, the same scaling as in 188 was considered to make inertia small.

Related to the aggregation equations, several more realistic variants have been

proposed in order to include anisotropies in the interactions. For instance, in 95,96

the force F(x,x∗) = ∇xW (x−x∗) in (5.3) is replaced by a velocity-dependent force

F(x,v,x∗,v∗) := ∇xW (x− x∗)η

(
x− x∗

|x− x∗| ·
v

‖v‖

)
.

The function η is considered a cut-off function at the origin so that if fades the effect

of the aggregation force when the velocity of the particle and the director vector of

such particle with respect to any other test particle are not sufficiently aligned. That

anisotropic term arises as a sort of “cone of vision” that has been included in many

other settings. In such paper, the anysotropies are velocity induced. However, there

are some other related models where no velocity dependence appears. Specifically,

in 46 the authors proposed a 2D model where the force reads

F(x,x∗) : = FA(x− x∗,T(x)) + FR(x− x∗)

= fA(‖x− x∗‖)T(x)(x− x∗) + fR(‖x− x∗‖)(x− x∗).

Then, there is an isotropic repulsive part and an anisotropic part dependent on the

tensor

T(x) = χs(x)⊗ s(x) + (1− χ)l(x)⊗ l(x),

for χ ∈ [0, 1], being {s(x), l(x)} an orthonormal frame of R2. The constant χ is re-

garded as the anisotropy parameter, being χ = 1
2 the isotropic case. Such model was

proved useful to describe the formation of fingerprints and becomes a generalization

of the Kücken–Champod model 154.

6. Computational methods and control problems

In this section we review some numerical methods for the solution of kinetic equa-

tions for interacting particle systems. In particular, we will discuss stochastic algo-

rithms based on the techniques developed in 8,179. Subsequently, we will consider

these algorithms in the context of optimal control problems with applications to

swarming, herding behavior and crowd dynamics.
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6.1. Stochastic numerical techniques

Realistic numerical simulations of swarms account the numerical solution of a large

number of ODEs, which can constitute a serious difficulty leading to a prohibitive

computational cost proportional to the square of the number of interacting individ-

uals. As discussed in Section 4 a first step towards a possibile numerical treatment

is to consider a nonnegative distribution function f(t, x, v) describing the number

density of individuals at time t ≥ 0 in position x ∈ R
d with velocity v ∈ R

d.

To illustrate the numerical approaches we consider as a prototype kinetic

equations describing the evolution of f(t, x, v) the following non-linear integro-

differential PDEs

∂tf + v · ∇xf = −λ∇v · (F [f ]f) + σ∆v (D[f ]f) , (6.1)

where the force term −λ∇v · (F [f ]f) describes the forces acting on the agents

dynamics, whereas the random effects are included in the diffusion, which may de-

pend non-linearly on the density f itself through the function D[f ] ≡ D[f ](t, x, v).

In what follows, we will concentrate in particular on the construction of stochastic

numerical algorithms which permits to approximate the microscopic dynamic at a

cost directly proportional to the number of sample particles involved in the compu-

tation, thus avoiding the quadratic computational cost of the force term (see Figure

6 for a sketch of the approximation technique).

6.1.1. Binary interaction methods

In order to develop a stochastic algorithms capable to avoid the quadratic cost

we approximate the interaction dynamics by considering a binary interaction

among two individuals, and resorting on their statistical description by means of

Boltzmann-type equations. To exemplify these method we concentrate on Cucker-

Smale type dynamics as introduced in (4.1), and we consider a binary interaction

between two agents with positions and velocities (x, v) ∈ R
2d and (y, w) ∈ R

2d

according to





v∗ = v + ηψ(x, y)(w − v) +
√

2ςD(x, v)ξ,

w∗ = w + ηψ(y, x)(v − w) +
√
2ςD(y, w)ζ,

(6.2)

where v∗, w∗ are the post-interaction velocities and η a parameter that measures

the strength of the interaction. Differently from the deterministic dynamics of (4.1)

we also introduce the contribution of d-dimensional random variables ξ, ζ indepen-

dent and identically distributed (i.i.d.) according to Z with zero mean and unitary

variance. These noise terms are weighted by a non linear function D(·) which de-

pends on the position and velocity state of each agent. Analogous binary interaction

models can be introduced for other particle system in swarming, traffic or crowd

dynamics 62,179,4,153,211,101.
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ODEs system, O(N2) Binary Interaction, O(N)

Mean Field equation Boltzmann-Povzner equation

N →∞

ε→ 0

Figure 6. Diagram of the approximation method: For a fixed time t ≥ 0 a direct computation
of the particle system requires O(N2) evaluations to compute the agents’ interactions. The ap-
proximation through binary interactions reduces the computational cost to O(N). Consistency
of the Boltzmann-Povzner model for binary interactions with the mean-field kinetic equations is
retrieved using the grazing collision scaling.

The evolution of the system is described by the following integro-differential

equation of Boltzmann type

(∂tf + v · ∇xf)(t, x, v) =
1

ε
Q(f, f)(t, x, v),

Q(f, f) = E

[∫

R2d

(
1

J
f(x, v∗, t)f(y, w∗, t)− f(x, v, t)f(y, w, t)

)
dwdy

]
,

(6.3)

where (v∗, w∗) are the pre-interacting velocity that generate the couple (v, w) ac-

cording to (6.2), J is the Jacobian of the transformation of (v, w) to (v∗, w∗). For the

standard Cucker-Smale model the Jacobian reads J = (1− 2ηψ(‖x− y‖))d. More-

over, to average the interactions we consider the expectation value E of ξ defined

as follows

E(ξ) =

∫

Rd

xZ(x)dx.

Note that, at variance with classical Boltzmann equation the interaction is non local

as in the Boltzmann-Povzner kinetic model186.

Remark 6.1. The averaged dynamics (6.2) preserves the momentum for symmetric

communication function, i.e. ψ(x, y) = ψ(y, x),

v∗ + w∗ = v + w − η(ψ(x, y)− ψ(y, x))(w − v) = v + w, (6.4)

in general this is not the case for non-symmetric ψ(·), e.g. in presence of visual

limitation62,172. Moreover under the assumptions |ψ(r)| ≤ 1 and η ≤ 1/2 , it is easy

to see that the support of the post interaction velocity is limited by the interacting

velocities

v∗ = (1− ηψ(x, y))v + ηψ(x, y)w ≤ max{|v|, |w|}. (6.5)
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Consistency with mean-field kinetic model. Let us introduce the following

scaling

t→ t/ε, η = λε, ς = εσ (6.6)

where λ is a constant and ε a small parameter. The scaling corresponds to assume

that the parameter η characterizing the strength of the microscopic interactions

is small, thus the frequency of interactions has to increase otherwise the collisional

integral will vanish. This corresponds to large scale interaction frequencies and small

interaction strengths, in agreement with a classical mean-field limit and similarly to

the so-called grazing collision limit of the Boltzmann equation for granular gases 159.

Definition 6.1 (Test functions). We denote with Tδ the set of compactly sup-

ported functions φ from R
2d to R such that for any multi-index β ∈ N

d we have:

(1) if |β| < 2, then ∂βv φ(x, ·) is continuous for every x ∈ R
d;

(2) if |β| = 2, then there exists M > 0 such that:

(a) ∂βv φ(x, ·) is uniformly Hölder continuous of order δ for every x ∈ R
d

with Hölder bound M , that is for every x ∈ R
d and for every v, w ∈ R

d

it holds
∥∥∂βv φ(x, v)− ∂βv φ(x,w)

∥∥ ≤M ‖v − w‖δ ;

(b) ‖∂βv φ(x, v)‖ ≤M for every (x, v) ∈ R
2d.

Notice that C∞c (Rd × R
d;R) ⊆ Tδ for every 0 < δ ≤ 1.

Definition 6.2. For a fixed T > 0, δ > 0, then by a δ-weak solution of the initial

value problem for the equation (6.3) we consider f ∈ L2([0, T ],M0(R
2d)) such that

there exists RT > 0 with supp(f(t)) ⊂ BRT
(0) for every t ∈ [0, T ] and that satisfies

the weak form of (6.3)

d

dt

∫

R2d

φ(x, v)f(x, v, t)dvdx+

∫

R2d

(v · ∇xφ(x, v))f(x, v, t)dvdx =

(6.7)
1

ε
E

[∫

R4d

(φ(x, v∗)− φ(x, v))f(x, v, t)f(y, w, t)dvdxdwdy
]
,

for t > 0 and for all t ∈ (0, T ] and all φ ∈ Tδ, with

lim
t→0

∫

R2d

φ(x, v)f(x, v, t)dvdx =

∫

R2d

φ(x, v)f0(x, v)dvdx, (6.8)

where f0(x, v) = f(0, x, v) is the initial datum.

Based on these definitions we state the following theorem

Theorem 6.1. For a fixed T > 0, δ > 0, for every ε > 0, let fε be a δ-weak

solution of (6.3) corresponding to the initial condition f0 = f(0, x, v), and where

the quantities η and ς are rescaled w.r.t. ε according to (6.6). Assuming that
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(1) the 2 + δ moment of ξ is finite, i.e. E
(
‖ξ‖2+δ

)
<∞,

(2) and the functions ψ(·), D(·) are in Lploc for p = 2, 2 + δ,

then, as ε → 0, the solutions fε converge pointwise, up to a subsequence, to f ,

where f satisfies the non-linear Fokker-Planck-type equation

∂tf + v · ∇xf = −λ∇v · (F [f ]f) + σ∆v (D(x, v)f) , (6.9)

with initial datum f0 = f(0, x, v) and

F [f ](x, v) =

∫

R2d

ψ(x, y)(w − v)f(y, w)dydw.

We sketch briefly the passages of the proof, we refer to 179 for full details.

The proof is based on two fundamental steps. The first step is based on a Taylor

expansion of φ(x, v∗), since for small values of ε we have v∗ ≈ v. Hence expanding

around v up to the second order we obtain the following weak formulation for the

collisional integral in (6.7),

1

ε
E

[∫

R4d

(φ(x, v∗)− φ(x, v))f(x, v, t)f(y, w, t)dvdxdwdy
]

=
1

ε
E

[∫

R4d

(∇vφ(x, v) · (v∗ − v))f(x, v, t)f(y, w, t)dvdxdwdy
]

︸ ︷︷ ︸
:=Iε1 (f,f)

+
1

2ε
E





∫

R4d





d∑

i,j=1

∂
(i,j)
v φ(x, v) (v∗ − v)i (v

∗ − v)j



 f(x, v, t)f(y, w, t)dvdxdwdy





︸ ︷︷ ︸

:=Iε2 (f,f)

+
1

2ε
E





∫

R4d





d∑

i,j=1

(

∂
(i,j)
v φ(x, v)− ∂

(i,j)
v φ(x, ṽ)

)

(v∗ − v)i (v
∗ − v)j



 f(x, v, t)f(y, w, t)dvdxdwdy





︸ ︷︷ ︸

:=Rε
φ
(f,f)

for some ṽ = τv+(1− τ)v∗, 0 ≤ τ ≤ 1 and where the last term Rφ(f, f) represents

the reminder of the Taylor expansion. In the limit ε→ 0 we estimate the contribu-

tion of the three terms by using the binary relation (6.2) under the grazing collision

scaling (6.6) as follows

v∗ − v = λεψ(x, y)(w − v) +
√

2εσD(x, v)ξ. (6.10)

Thus we have for the first order term

Iε1(f, f) = λ

∫

R4d

φ(x, v) · (w − v)ψ(x, y)f(y, w, t)f(x, v, t)dvdxdwdy,
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and for the second order term

Iε2(f, f) = σ

∫

R4d

∆φ(x, v)D(x, v)f(x, v)f(y, w) dvdxdwdy

+
ε

2

∫

R4d




d∑

i,j=1

∂(i,j)v φ(x, v) (w − v)i (w − v)j


ψ(x, y)2f(x, v)f(y, w) dvdxdwdy,

where we used the fact that there is no cross-correlation among the components of

ξ and it has zero mean. Note that the second integral term is bounded thanks to

Remark 6.1, and the assumptions of Theorem 6.1. Hence, considering the contribu-

tion of Iε1(f, f), I
ε
2(f, f) and neglecting the contribution of the reminder Rεφ(f, f),

in the limit ε→ 0 the scaled weak equation (6.7) reads

d

dt

∫

R2d

φ(x, v)f(x, v, t)dvdx+

∫

R2d

(v · ∇xφ(x, v))f(x, v, t)dvdx =

∫

R4d

(λφ(x, v) · (w − v)ψ(x, y) + σ∆φ(x, v)D(x, v)) f(x, v, t)f(y, w, t)dvdxdwdy.

(6.11)

Thus, reverting to the strong form we recover model (6.9). To conclude the proof

we need to estimate the reminder term Rεφ(f, f) and in particular to show that

Rεφ(f, f)/ε→ 0. We refer to 179,8 for a detailed proof.

6.1.2. Asymptotic binary interaction algorithms.

Following 8 we introduce different stochastic algorithms for the above kinetic equa-

tions based on Monte Carlo methods. The main idea, similarly to 34 is to approx-

imate the dynamic by solving the Boltzmann-like models for small value of ε. For

the sake of simplicity we describe the algorithms in the case of the collision oper-

ator (6.3). As we will see, thanks to the structure of the equations, the resulting

algorithms are fully meshless.

As in most Monte Carlo methods for kinetic equations, see 177, the starting

point is a splitting method based on evaluating in two different steps the transport

and collisional part of the scaled Boltzmann-Povzner equation

(T) :
∂f

∂t
= −v · ∇xf, (C) :

∂f

∂t
=

1

ε
Qε(f, f)

where we used the notation Qε(f, f) to denote the scaled Boltzmann operator (6.3).

By decomposing the collisional operator in its gain and loss parts we can rewrite

the collision step (C) as

∂f

∂t
=

1

ε

[
Q+
ε (f, f)− ρf

]
, (6.12)

where ρ =
∫
R2d f(x, v, t)dxdv > 0 represent the total mass and Q+

ε the gain part of

the collisional operator. Without loss of generality in the sequel we assume ρ = 1.
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In order to solve the transport step we use the exact free flow of the sample

particles (xi(t), vi(t)) in a time interval ∆t

xi(t+∆t) = xi(t) + vi(t)∆t, (6.13)

and describe the different schemes used for the solution of (6.12).

Remark 6.2. We emphasize that the solution to the collision step for small values

of ε has very little in common with the classical fluid-limit of the Boltzmann equa-

tion. Here in fact the whole collision process depends on space and on the small

scaling parameter ε. In particular, in the small ε limit the solution is expected to

converge towards the solution of the mean-field model (6.9).

Nanbu-like asymptotic methods. Let us now consider a time interval [0, T ]

discretized in ntot intervals of size ∆t. We denote by fn the approximation of

f(x, v, n∆t).

The forward Euler scheme writes

fn+1 =

(
1− ∆t

ε

)
fn +

∆t

ε
Q+
ε (f

n, fn), (6.14)

where since fn is a probability density, thanks to mass conservation, alsoQ+
ε (f

n, fn)

is a probability density. Under the restriction ∆t ≤ ε then also fn+1 is a probability

density, since it is a convex combination of probability densities.

Since we aim at small values of ε the natural choice as in 34 is to take ∆t = ε. The

major difference compared to standard Nanbu algorithm here is the way particles are

sampled from Q+
ε (f

n, fn) which does not require the introduction of a space grid.

A simple algorithm for the solution of (6.14) in a time interval [0, T ], T = ntot∆t,

∆t = ε is sketched in the sequel.

Algorithm 6.2 (Asymptotic Nanbu).

(1) Given Ns samples (x0k, v
0
k), with k = 1, . . . , N from the initial distribution

f0(x, v);

(2) for n = 0 to ntot − 1

for i = 1 to Ns;

(a) select an index j uniformly among all possible individuals (xnk , v
n
k )

except i;

(b) evaluate ψ(xmi , x
n
j ) and ψ(xmj , x

n
i );

(c) compute the velocity change v∗i using the first relation in (6.2)

with η = ε;

(d) set (xn+1
i , vn+1

i ) = (xni , v
∗
i ).

end for

end for
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A symmetric version of the previous algorithms which preserves at a microscopic

level other interaction invariants, like momentum in standard Cucker-Smale model,

is obtained by selecting particles by pairs. We refer to 8 and to the next paragraph

for more details.

Bird-like asymptotic method The most popular Monte Carlo approach to solve

the collision step in Boltzmann-like equations is due to Bird ?. The major differences

are that the method simulate the time continuous equation and that individuals are

allowed to interact more than once in a single time step. As a result the method

achieves a higher time accuracy 177.

In its simplest from the method is based on a constant time counter ∆tc corre-

sponding to the average time between interactions.

Using the symmetric formulation and the time counter ∆tc = 2ε/N , we obtain

the following method in a time interval [0, T ], T = ntot∆tc

Algorithm 6.3 (Asymptotic Bird I).

(1) Given N samples (xk, vk), with k = 1, . . . , N from the initial distribution

f0(x, v)

(2) for n = 0 to ntot − 1

(a) select a random pair (i, j) uniformly among all possible pairs;

(b) evaluate ψ(xmi , x
n
j ) and ψ(xmj , x

n
i );

(c) compute the velocity changes v∗i , v
∗
j using relations (6.2) with η = ε;

(d) set vi = v∗i and vj = v∗j ;

end for

As a result in the limit of large numbers of individuals the method converges

towards the time continuous Boltzmann equation (6.3) and not to its time discrete

counterpart (6.14), as it happens for Nanbu formulation.

Mean-field interaction algorithms Let us finally tackle directly the limiting

mean field equation. The interaction step now corresponds to solve

∂tf = −∇v ·
(
f

∫

R2d

ψ(x, y)(v − w)f(y, w, t)dwdy
)
.

As already observed, in a particle setting this corresponds to compute the original

O(N2) dynamic. We can reduce the computational cost using a Monte Carlo eval-

uation of the summation term as described in the following simple algorithm.

Algorithm 6.4 (Mean Field Monte Carlo).
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(1) Given N samples v0k, with k = 1, . . . , N computed from the initial distri-

bution f0(x, v) and M ≤ N ;

(2) for n = 0 to ntot − 1

(a) for i = 1 to N

(b) sample M particles j1, . . . , jM uniformly without repetition among all

particles;

(c) compute the velocity change

vn+1
i =

1

M

M∑

k=1

[(
1−∆tψ(xni , x

n
jk
)
)
vni +∆tψ(xni , x

n
jk
)vnjk

]
.

end for

end for

The overall cost of the above simple algorithm is O(MN), clearly for M = N

we obtain the explicit Euler scheme for the original N particle system. As shown

in 64,143 the convergence rate with respect to the original particle system is in fact

O(
√
N−1 −M−1).

In this formulation the method is closely related to asymptotic Nanbu’s Algo-

rithm 6.2. It is easy to verify that taking M = 1 leads exactly to the same numerical

method. On the other hand for M > 1 the above algorithm can be interpreted as

an averaged asymptotic Nanbu method over M runs. The only difference is that

averaging the result of Algorithm 6.2 does not guarantee the absence of repetitions

in the choice of the indexes j1, . . . , jM . Thus the choice ∆t = ε in Algorithm 6.2

originates a numerical method consistent with the limiting mean-field kinetic equa-

tion. Following this description we can construct other Monte Carlo methods for the

mean field limit taking suitable averaged versions of the corresponding algorithms

for the Boltzmann models. Here we omit for brevity the details.

Finally in Figure 7 we report the L2-norm of the error for ANMC, ABMC and

MFMCM for various M as a function of ∆t = ε.

Note that the convergence rate of the schemes is rather close and for ε = ∆t <

t∗, t∗ ≈ 0.01, the statistical error dominates the time error so that we observe a

saturation effect.

6.2. Control problems

As shown in the first part of this survey, simple rules within groups of interacting

agents can lead to the spontaneous formation of global behavior and this is a typical

characteristic of real-life social systems. However, it is also common experience to

observe that such formations are either unstable or imperfect. For instance, when

we think to a herd of sheep, we know that these animals tend to move altogether,

but it is also known that one needs a shepherd dog to keep the group well-ordered
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Figure 7. Left: Relative errors in the L2 norm at T = 1 for the different Monte-Carlo type
methods as a function of ∆t = ε. Simulations are performed with Ns = 50000 particles. Right:
Computational time with respect to the number of particles Ns used to perform the simulation.

and cohesive. In the context of swarming, traffic and human behaviors this can be

mathematically expressed, by the action of an additional external control which

drives the ensemble of agents towards a desired goal 6,52,40,207 or by introducing

the interaction with additionally independent agents, in terms of a coupling of the

PDEs of the followers with the ODEs of the independent agents 4,106,80,76.

6.2.1. Mean-field optimal control problems

We concentrate on Cucker-Smale type models where we want to enforce a flocking

condition. To this end, we aim to design a control strategy u = (u1, . . . , uN ) ∈ R
d×N

in the space of the admissible controls U , as solution of the minimization problem,

min
u(·)∈U

JNT (u(·)) = 1

2

∫ T

0

1

N

N∑

j=1

(
‖vj − v̄‖2 + ‖uj‖2

)
dt, (6.15)

where v̄ is a desired velocity, and subject to the dynamics

ẋi = vi,

v̇i =
1

N

N∑

j=1

ψ(xi, xj)(vj − vi) + uiS(t, xi, vi), i = 1, . . . , N.
(6.16)

From the modelling view point the control problem (6.15)-(6.16) is equivalent to

assume the presence of a policy maker able to exert an action on every agent. This

assumption is rather unrealistic, in particular when the size of the system is large

N ≫ 1. For this reason, we introduce a function S(·) to account the limited amount

of resources, or localized control action 52,4,53,9. From the numerical view point the

direct solution of the non-linear control problem (6.15)-(6.16) may be prohibitive

even for moderate dimensions and a relatively small number of agents N , see 37. As

soon as these parameters increase we run into the curse of dimensionality 14.
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A first step towards a dimensional reduction is to derive an equivalent mean-field

optimal control problem which is consistent with (6.15)-(6.16) when N ≫ 1. The

resulting control problem reads

min
u(·)∈U

JT (u(·)) =
1

2

∫ T

0

∫

R2d

(
‖v − v̄‖2 + ‖u‖2

)
f(t, x, v) dx dv dt,

(6.17)

where u = u(t, x, v), subject to the mean-field kinetic dynamics

∂tf + v · ∇xf = −λ∇v · ((F [f ](t, x, v) + uS(t, x, v))f) . (6.18)

In 107 the authors show that the optimal control problems are consistent with the

original microscopic problem. In particular convergence of minimizers among (6.15)-

(6.16) and (6.17)-(6.18) when N →∞, is based on a Γ-convergence argument.

These results have been extended in several directions, for example when the

control is applied in a parsimonious way in a localized set, or for PDEs-ODEs system

where the control is concentrated only on few agents9,5,39,184,106,10.

Model Predictive Control. In what follow we concentrate on the numerical

solution of these optimal control problems, introducing a Model Predictive Control

(MPC) technique, and some modeling examples showing how we can control agent

systems with a moderate computational cost.

We introduce a numerical technique based on model predictive control,

also called receding horizon strategy in the engineering and mathematical

literature51,163,?,136. Our goal is to reduce the computational cost of optimal control

problems of the type

min
u(·)∈U

JNT (u(·)) = 1

2

∫ T

0

ℓN (x(t), v(t), u(t))dt. (6.19)

To this purpose we consider a time sequence 0 = t0 < t1 < . . . < tNT
= T , as a

discretization of the time interval [0, T ] with ∆t = tn − tn−1, for all n = 1, . . . , NT
and tNT

= NT∆t. We then consider the reduced minimization problem over Nmpc

time steps, starting from a fixed time step tn̄,

min
u(·)∈U

n̄+Nmpc−1∑

n=n̄

ℓN (x(n∆t), v(n∆t), u(n∆t)), (6.20)

generating an optimal sequence of controls {u(n̄∆t), . . . , u((n̄+Nmpc−1)∆t)}. Only

the first Np < Nmpc terms are taken to evolve the dynamics for a time Np∆t, to

recast the minimization problem over an updated time frame n̄← n̄+Np.

Note that for Np = 2, the MPC approach recovers an instantaneous controller,

whereas for Nmpc = T/∆t it solves the full time frame problem. Such flexibility is

complemented with a robust behavior, as the optimization is re-initialized every

time step, allowing to address perturbations along the optimal trajectory.
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Instantaneous control. We provide explicit derivation of instantaneous feedback

control strategies for the optimal control of Cucker-Smale-type models (6.15)–(6.16).

We then consider the following one-step first order approximation

min
un

J∆t =
1

2N

N∑

j=1

(
‖vn+1
j − v̄‖2 + ν

2
‖unj ‖2

)
,

s.t.

xn+1
i = xni +∆tvni ,

vn+1
i = vni +

∆t

N

N∑

j=1

ψ(xni , x
n
j )(v

n
j − vni ) + ∆tuni S(x

n
i , v

n
i , t

n),

(6.21)

for all i = 1, . . . , N , and un ∈ R
d. The MPC aims at determining the value of

the control un by solving for the known state (xni , v
n
i ) a (reduced) optimization

problem on [tn, tn+1] in order to obtain the new state (xn+1
i , vn+1

i ). This procedure

is reiterated until n∆t = T is reached. In this way it is possible to reduce the

complexity of the initial problem (6.16)-(6.15), to an optimization problem in a

single variable un. Therefore, we introduce the compact notation ψnij = ψ(xni , x
n
j ),

and Sni = S(tn, xni , v
n
i ), where for every i, pi is the associated lagrangian multiplier

of vi, and we define the discrete Lagrangian L∆t = L∆t(v
n+1, un, pn+1), such that

L∆t = J∆t(v
n+1, un) +

1

N

N∑

j=1

pn+1
j ·

(
vn+1
j − vnj −

∆t

N

N∑

ℓ=1

ψnjℓ(v
n
ℓ − vnj )−∆tunj S

n
j

)
.

(6.22)

Computing the gradient of (6.22) with respect to each component of vn+1
i and un

for every i = 1, . . . , N , we obtain the following first order optimality conditions

vn+1
i − v̄ + pn+1

i = 0, νuni −∆tpn+1
i Sni = 0. (6.23)

This approach allows to express explicitly the control as feedback term of the

state variable. We have that for every n = 0, . . . , NT − 1

uni =
∆t

ν
(v̄ − vn+1

i )Sni . (6.24)

Substituting in the discretized system (6.21) expression (6.24), the feedback con-

trolled system results

vn+1
i = vni +

∆t

N

N∑

j=1

ψnij(v
n
j − vni ) +

∆t2

ν
(v̄ − vn+1

i )(Sni )
2, i = 1, . . . , N,

(6.25)

where the action of the control is substituted by an implicit term representing the

relaxation towards the desired velocity v̄.

Note that in this implicit formulation the action of the control is lost for ∆t→ 0,

since it is expressed in terms of O(∆t2). Thus, in order to rewrite the system as a

consistent time discretization of the original control problem is necessary to assume
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the following scaling on the regularization parameter, ν = ∆tκ. In addition, we can

write the system in explicit form as

vn+1
i = vni +

∆t

N

N∑

j=1

ψnij(v
n
j − vni ) +

∆t

κ+∆t(Sni )
2
(v̄ − vni ) (Sni )2 +O(∆t2).

(6.26)

System (6.26) represents a consistent discretization of the following dynamical sys-

tem

ẋi = vi,

v̇i =
1

N

N∑

j=1

ψ(xi, xj)(vj − vi) +
1

κ
(v̄ − vi)S(xi, vi, t)2,

(6.27)

where the control term is expressed by a steering factor towards the average weighted

by the selective fuction S(·, ·).
Finally for N →∞ we can derive the mean-field model for the controlled swarm-

ing dynamic (6.27) which reads

∂tf + v · ∇xf = −∇v · (F [f ]f)−
1

κ
∇v ·

(
(v̄ − v)S(t, x, v)2f

)
. (6.28)

We refer to 9 for the analytical details and to 134 for the general MPC approach for

kinetic models with longer horizon.

Remark 6.3. Equivalent computation can be carried out for isotropic control,

which assume the same value for each ui = u for every i = 1, . . . , N . In this case

the resulting instantaneous control reads

uni = − ∆t

νN

N∑

j=1

(vn+1
j − v̄)Snj , i = 1, . . . , N. (6.29)

Hence, the microscopic model for the N agent system can be derived as follows

ẋi = vi,

v̇i =
1

N

N∑

j=1

ψ(xi, xj)(vj − vi) +
1

κ
(v̄ − vj)S(xj , vj , t)S(xi, vi, t),

(6.30)

which lead to the mean-field controlled equation

∂tf + v · ∇xf = −∇v · (F [f ]f)−∇v · ((K[f ]f) , (6.31)

where the instantaneous control term writes

K[f ](t, x, v) =
1

κ

∫

R2d

(v̄ − w)S(t, y, w)S(t, x, v)f(t, y, w) dy dw. (6.32)
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Example 1. Radial spreading. We consider the computational domain (x, v) ∈
R

2×R
2, defining an initial data f(0, x, v) = f0(x, v) normally distributed in space,

with center in zero and unitary variance, and in velocity, uniformly distributed

on a circumference of radius 5. Our goal is to enforce alignment with respect to

the desired velocity v̄ = (1, 1)T . System (6.31) is solved numerically by means of

the asymptotic binary algorithm, with final time T = 4, time step ∆t = 0.01,

considering Ns = 5× 105 sampled particles and scaling parameter ε = ∆t.

We consider the mean-field model (6.31), with the standard communication

function,

ψ(x, y) = (1 + |x− y|2)−γ ,

with γ = 10 and consequently the unconditional flocking is not guaranteed a-priori.

We report in Figure 8 the initial data and the final state reached at time T = 4,

depicting the spatial density ρ(x, t) =
∫
Rd f(x, v, t) dv and showing at each point

x ∈ R
2 the value of the flux ρu(x, t) =

∫
Rd f(x, v, t) dv. Note that, in the right-hand

side figure the flocking state is not reached, and the density is spreading around the

domain following the initial radial symmetric distribution of the velocity field.

Figure 8. On the left-hand side initial data, on the right-hand side configuration of the solution
of (6.31) at time T = 4. In absence of control the density spreads radially in the domain without

reaching a flocking state.

Next, we study the evolution of the system in presence of a selective control,

where the selective function is S(x, v) = χBR
(x), and the instantaneous control

(6.32) defined by

K[f ](t, x, v) =
χBR

(x)

κ

∫

BR

(v̄ − w)f(t, y, w) dydw. (6.33)

Moreover, in order to compare the behavior of the action of the selective control we

define total cost CT as

JT :=

∫ T

0

∫

R4

‖v − v̄‖2f(t, x, v) dxdv + κ‖u(t)‖2. (6.34)
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In Figure 9, as expected we observe that a flocking state is reached more easily for a

stronger action of the control (i.e. decreasing values of the parameter κ). Moreover,

comparing the first row (R = 5), with the second row (R = 10), we observe that

the control is able to steer the velocity field more coherently towards the desired

direction, when it acts for lager times, namely for larger radius.

κ = 4 κ = 1 κ = 0.25

R
=

5

JT = 2.7908 JT = 1.3954 JT = 0.8095

R
=

10

JT = 2.7472 JT = 1.4141 JT = 0.7992

Figure 9. Final solution at time T = 4 with control acting through a selective function S(x, v) =
BR(x). The top and bottom pictures represent the action of the control, respectively for R = 5,
and R = 10, and for different values of the penalization parameter κ. Value of the cost functional
(6.34) are reported below each simulation.

Example 2. Following a desired trajectory. We can extend the previous

methodology to the control problem expressed by the constraint of following a de-

sired trajectory γ̄(t) considering a desired speed as a function of time v̄(t) = γ̄′(t).
In this way the control action at time t forces the system to converge to the corre-

sponding desired velocity at time t. Note that, in this case the choice of κ and ∆t

are of paramount importance to reconstruct exactly the trajectory.

We simulate the evolution of an aligned density solution forced to follow a de-

sired trajectory Γ̄(t) = (R cos(t), R sin(2t)) with R = 1, which corresponds to a

lemniscate. In Figure 10 we show the numerical solution for ∆t = 0.01 with control

action, κ = 0.1. In this case the selective function S(t, x, v) ≡ 1.
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Figure 10. The flock density is forced to follow a desired trajectory Γ̄(t) = (cos(t), sin(2t)), de-

scribed by a lemniscate. The regularization parameter is κ = 0.1 and the scaling parameter
ε = 0.01.

6.2.2. Control by independent agents

A different approach to the control of multi-agent systems is to influence the system

through a few independent agents, which are coordinated according to a central-

ized action, in order to promote a certain behavior for the larger group of agents
4,106,80,76.

A general model is described by the following systems of ODEs

ẋi = vi, i = 1, . . . , N

v̇i =
1

N

N∑

j=1

Ψ1(xi, xj , vi, vj) +
1

M

M∑

ℓ=1

Φ1(xi, yℓ, vi, wℓ),

ẏk = wk, k = 1, . . . ,M

ẇk =
1

N

N∑

j=1

Ψ2(yk, xj , wk, vj) +
1

M

M∑

ℓ=1

Φ2(yk, yℓ, wk, wℓ) + uk.

(6.35)

where N ≫ M , Ψ1,Ψ2,Φ1 and Φ2 are the communication functions, the control

u = (u1, . . . , uM ) ∈ R
d×M is solution to the minimization problem

min
u(·)∈U

JNT (u(·)) = 1

2

∫ T

0

ℓN (x(t), v(t), y(t), w(t), u(t))dt, (6.36)

and the running cost ℓN (·) has to be designed according to the specific application.

The mean-field approximation N → ∞ of the microscopic model (6.35) reads as a
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coupled system of PDEs and ODEs as follows

∂tf + v · ∇xf = −∇v · (F1[f ]f)−∇v ·
(

1

M

M∑

ℓ=1

Φ1(x, yℓ, v, wℓ)f

)
,

ẏk = wk

ẇk = F2[f ](yk, wk) +
1

M

M∑

ℓ=1

Φ2(yk, yℓ, wk, wℓ) + uk,

(6.37)

where the operators F1[f ], F2[f ] are defined by

F1[f ](t, x, v) =

∫

R2d

Ψ1(x, z, v, s)f(t, z, s) dzds,

F2[f ](t, yk, wk) =

∫

R2d

Ψ2(yk, z, wk, s)f(t, z, s) dzds. (6.38)

Example 1. Swarm attacked by a predator. First, we consider an external

agent approaching a swarm as a predator. In this case, the independent agent adopts

a control strategy which drives its motion towards the center of mass of the preys,

in other word its action can be model by the following running cost

ℓN (x(t), v(t), y(t), w(t), u(t)) = ‖x̄− y1‖2 + ν‖u1‖2, (6.39)

where x̄(t) = 1
N

∑N
j=1 xj(t) is the center of mass of the swarm. The dynamics of

the swarm is characterized by

Ψ1(x, v, y, w) = ψ1(‖x− y‖)(w − v) +∇xW1(‖x− y‖), (6.40)

where ψ(r) = (1 + r2)−γ is the Cucker-Smale alignment kernel, whereas W (·) is an

attraction-repulsion kernel with power law structure, W (r) = ra/a− rb/b. Interac-

tion with the predator is driven by pure repulsion as follows

Ψ2(x, v, y, w) = ∇xW2(‖x− y‖), (6.41)

with W2(r) = −rc/c with c > 0. Finally, we assume that the predator’s dynamics

is ruled only by the control u1 computed as an instantaneous control with respect

to (6.39) and Ψ2 ≡ Φ2 ≡ 0.

In Figure 11 we report the evolution of the swarm which undergoes the action

of the predator (y1, w1) ∈ R
2d, d = 2. It is evident how the predator attack splits

the flock in two groups which subsequently merge again together.

Example 2. Confinement via shepherd dogs strategies. Next, we consider

two external agents acting with the aim to confine the spatial spread of a swarm

with the same interaction rules defined in (6.40) and (6.41) (see 8,76). Unlike the

previous case we use a first order differential model for the external agents, namely
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Figure 11. Swarm attacked by a predator with parameters a = 4, b = 2, γ = 0.45.

wk = uk. Thus we adopt a designed strategies which enforce a rotation around the

local center of mass of the swarm as follows

uk = Vk
s⊥k√

1 + |sk|2
; Vk = 300, rk = 5, k = 1, 2.

η(x) =
3

πr6k
(max{0, r2k − |x|2})2, sk :=

∫

R2d

∇η(yk − z)f(z, s)dzds.

As we can see in Figure 12 the action of the leaders is able to force the confinement

of the swarm. More refined strategies can be designed to solve the confinement

problem, see for example ? .

Application. Crowd control in an unknown environment. Finally we con-

sider the realistic application of improving the evacuation of a crowd 2,4,213. We

identify a large ensemble of agents (followers) in an unknown environment, Ω ⊂ R
2,

influenced by the intervention of few ‘informed’ agents (leaders). We consider a soft

application of the control by assuming that the external agents are not recognized,

namely we have in (6.35), that Ψ1 ≡ Φ1. The dynamics of the pedestrian changes

according to the relative position with respect to the exit xτ : agents inside the visi-

bility region of the exit, Σ, are driven towards xτ ; agents outside the visibility area,

in Ω\Σ align their velocity with respect to the velocity of the closest N∗ neighbors

(topological alignment), and a random direction ξ sampled from a normal distribu-

tion N (0, σ2). Additionally every agent relaxes its speed towards the characteristic

value of 1 m/s, and has a repulsive force against too close agents regulated by the

potential −∇R. These social forces can be expressed in terms of the communication

function Ψ1, introducing the characteristic function of the unknown environment
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Figure 12. Confinement via shepherd dogs. With parameters a = 2.5, b = 0.1, γ = 0.45.

Θ(x) = χΩ\Σ(x) and setting

Ψ1(x, y, v, w) = S(x, y, v, w) + Θ(x)H(x, v, y, w) + (1−Θ(x))

(
xτ − x
‖xτ − x‖ − v

)
,

(6.42)

where

S(x, y, v, w) = Ca(1− ‖v‖)v − Cr∇R(‖x− y‖),

H(x, v, y, w) = Cξ(ξ − v)− Ch
N

N∗ (w − v)χB∗(x,t)(y),

with Ca, Cr, Cξ, Ch nonnegative constant, and B∗(x, t) the topological set contain-

ing the N∗ closest neighbors to the agent with position x. The dynamics of the

leaders agents is driven by a first order differential equation as follows

ẏk = wk = − 1

N

N∑

j=1

∇R(‖yk − xj‖)−
1

M

M∑

ℓ=1

∇R(‖yk − yℓ‖) + uk, (6.43)

where the control action uk is computed by minimizing a cost functional of the form

ℓN (x(t), y(t), u(t)) = λ
N∑

i=1

‖xi − xτ‖2 + µ
N∑

i=1

M∑

k=1

‖xi − yk‖2 + ν
M∑

k=1

‖uk‖2, (6.44)

for some positive constants µ, λ, and ν. The first term promotes the fact that follow-

ers have to reach the exit while the second forces leaders to keep contact with the

crowd. The last term penalizes excessive velocities. This minimization is performed

via MPC strategy at every instant (instantaneous control), or along a fixed time

frame [tn, tn+Nmpc
]. For the full details of the modelling choice we refer to 4.
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At the mean-field level the following system of equations can be derived

∂tf + v · ∇xf = −∇v ·
(
F [f, gM ]f

)
+

1

2
(Cξσ)

2Θ(x)∆vf,

ẏk = G[f, gM ](yk, wk) + uk.
(6.45)

where gM is the empirical measure of leaders’ state, and the operators

F [f, gM ], G[f, gM ] include the deterministic interaction forces of the microscopic

dynamics (6.42) and (6.43). Note that this system is slightly different from model

(6.45) due to the presence of the diffusion term.

We consider the exit as a point located at xτ = (30, 10) which can be reached

from any direction. We set Σ = {x ∈ R
2 : ‖x − xτ‖ < 4}. Followers are initially

randomly distributed in the domain [17, 29]×[6.5, 13.5] with velocity (0, 0). Leaders,

if present, are located to the left of the crowd. We report this setting in Figure 13

for the microscopic and mesoscopic setting.

Figure 13. Left: initial positions of followers (circles) and leaders (squares). Right: uniform density

of followers and the microscopic leaders (squares).
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Figure 14. Microscopic dynamics vs Mean-field dynamics. Evolution with no controlling leaders.

Figure 14 shows the evolution of the agents computed, without leaders. Followers

having a direct view of the exit immediately point towards it, and some group mates
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close to them follow thanks to the alignment force. On the contrary, farthest people

split in several but cohesive groups with random direction and never reach the

exit. Second row shows the mean-field equivalent dynamics where the spread of the

solution is generated by the diffusion operator acting on Ω\Σ.
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Figure 15. Microscopic dynamics vs Mean-field dynamics. Evolution with controlling leaders with

strategy computed via MPC with instantaneous control.

Figure 15 shows the evolution of the agents with three leaders. The leaders’

strategy is defined manually as an instantaneous strategy. More precisely, at any

time the control is equal to the unit vector pointing towards the exit from the current

position. Note that the final leaders’ trajectories are not straight lines because

of the additional repulsion force. As it can be seen, the crowd behavior changes

completely since, this time, the whole crowd reaches the exit. However followers

form a heavy congestion around the exit. Note that the congestion notably delays

the evacuation. Second row shows the equivalent mean-field dynamics. We finally
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Figure 16. Optimization of the microscopic dynamics by MPC. Occupancy of the exit’s visibility

zone Σ as a function of time, CPU time of the optimization call embedded in the MPC solver, and
the evolution of the corresponding value (2-step and 6-step MPC).

compute MPC optimization, including a box constraint uk(t) ∈ [−1, 1]. We choose
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λ = 1, µ = 10−5, and ν = 10−5. MPC results are consistent in the sense that for

Nmpc = 2, the algorithm recovers a controlled behavior similar to the application

of the instantaneous controller. Increasing the time frame up to Nmpc = 6 improves

both congestion and evacuation times. In Fig.16 we compare the occupancy of the

exit’s visibility zone as a function of time for “go-to-target" strategy and optimal

strategies computed with 2-step, and 6-step MPC. We also show the decrease of the

value function as a function of time.

It is worth to mention that better results can be obtain introducing a different

functional, with respect to (6.44), and using an heuristic optimization method where

non-trivial strategies are recovered. We refer to 4 for further details.

7. Looking forward to research perspectives

A review, with critical analysis, of the kinetic theory approach to the modeling of

vehicular traffic, human crowds, and swarms has been presented in our paper with

main focus on modeling, applications and computing by the kinetic theory approach,

namely by differential systems which describe the dynamicsin time and space, of

the probability distribution function over the microscopic state of the interacting

entities.

The presentation has included, for each one of the aforementioned systems, the

following topics: Modeling kinetic equations from the underlying description de-

livered by individual based models, derivation of macroscopic equations from the

underlying description by kinetic type models, analytic problems related to the

qualitative analysis of the solutions of problems generated by the application of

models, and computational methods for kinetic type equations. A specific feature

of our paper, which enriches the overall contents, is a detailed presentation of com-

putational tools to obtain simulations for equations which need stochastic, rather

than deterministic, methods.

Hence our paper aims at covering the whole path from modeling to computing

passing through multiscale and analytical problems. If we look ahead to research

perspectives, we remark that some specific hints have been given in the preceding

section. However, these hints do not claim to cover the overall variety of possible

research perspectives. Therefore we have selected, according to the authors’ bias,

the following problems which are brought to the attention of the interested reader:

• Modeling emotional state and their propagation up to pattern formation.

• A multiscale vision in the derivation of mathematical models.

• A multiscale vision in the development of computational tools.
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