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Velocity Analysis for Transversely Isotropic

Media

Tariq Alkhalifah and Ilya Tsvankin

ABSTRACT

The main difficulty in extending seismic processing to anisotropic media is the
recovery of anisotropic velocity fields from surface reflection data. We suggest carrying
out velocity analysis for transversely isotropic (TT) media by inverting the dependence
of P-wave moveout velocities on the ray parameter. The inversion technique is based
on the exact analytic equation for the normal-moveout (NMO) velocity for dipping

reflectors in anisotropic media, derived by Tsvankin (1994).

We show that P-wave NMO velocity in homogeneous TI media with a vertical
symmetry axis depends just on the zero-dip value ¥amo(0) and a new effective param-
eter 7 that reduces to the difference between Thomsen parameters € and ¢ in the limit
of weak anisotropy. Our inversion procedure makes it possible to obtain 7 and recon-
struct the NMO velocity as a function of ray parameter using moveout velocities for
two different dips. Moreover, V,mo(0) and 7 determine not only the NMO velocity,
but also long-spread (nonhyperbolic) P-wave moveout for horizontal reflectors and
time-migration impulse response. This means that inversion of dip-moveout informa-
tion allows one to perform all time-processing steps in TI media using only surface
P-wave data. Isotropic time-processing methods remain entirely valid for elliptical

anisotropy (¢ = 6). We show the performance of our velocity-analysis method not
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only on synthetic. but also on field data from offshore Africa.

Accurate time-to-depth conversion. however. requires that the vertical velocity
Vpo be resolved independently. In some cases Vpq is known (e.g., from check shots or
well logs); then the anisotropies € and § can be found by inverting two P-wave NMO
velocities corresponding to a horizontal and a dipping reflector. If no well information
is available, all three parameters (Vpo, €. and 6) can be obtained by combining our
inversion results with shear-wave information. such as the P-SVor SV-SV wave NMO

velocities for a horizontal reflector.

Generalization of Tsvankin's (1994) single-layer N\ O equation for layered aniso-
tropic media with a dipping reflector provides a basis for extending anisotropic veloc-
ity analysis to vertically inhomogeneous media. We demonstrate how the influence

of a stratified overburden on moveout velocity can be stripped through a Dix-type

differentiation procedure.

(8]
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INTRODUCTION

The importance of anisotropic phenomena in wave propagation is now widely rec-
ognized by the exploration community. Errors caused by ignoring the presence of
anisotropy in seismic processing include mis-ties in time-to-depth conversion (Banik.
1984, Winterstein. 1986), enhancement of nonhyperbolic moveout (Tsvankin and
Thomsen, 1994), mispositioning of reflectors in migration (Larner and Cohen. 1993;
Alkhalifah and Larner, 1994), distortions of dip-moveout signature (Larner, 1993;

Tsvankin, 1994), and AVO response (e.g., Wright, 1987).

Progress in accounting for anisotropy in seismic processing, however. has been
slow. mostly due to the difficulty in obtaining anisotropic velocity fields from sur-
face seismic data. For instance. there exist a number of migration algorithms for
transversely isotropic media (e.g., VerWest. 1989; Sena and Toksoz. 1993; Alkhali-
fah, 1994), but their application requires knowledge of the anisotropic velocity model.
Clearly, the recovery of several independent elastic coefficients needed to reconstruct
the anisotropic velocity function is much more complicated than is conventional veloc-
ity analysis for isotropic media. especially due to a limited angle coverage of reflection

surveys.

Existing work on anisotropic traveltime inversion of reflection data has been done
for horizontally homogeneous subsurface models (Byun and Corrigan. 1990: Sena.
1991: Tsvankin and Thomsen. 1995). As shown by Tsvankin and Thomsen (1995),
P-wave moveout from horizontal reflectors is insufficient to recover the parameters
of transversely isotropic media with a vertical symmetry axis (VTI). even if long
spreads (twice the reflector depth) are used. The reason for this ambiguity is the
trade-off between the vertical velocity and anisotropic coefficients. which cannot be
overcome even by using the nonhyperbolic portion of the moveout curve. Tsvankin

and Thomsen conclude that the only way to carry out stable inversion of surface
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reflection data is to combine long-spread P and SV moveouts: however. this method
encounters many practical difficulties. Therefore. to make the anisotropic inversion
feasible. P-wave reflection moveout in horizontally homogeneous media should be

supplemented by additiona)] information (e.g.. the vertical velocity from check shots

or well logs).

The presence of dipping reflectors provides us with the opportunity of extending
the angle coverage of the input data without using nonhyperbolic moveout. Here, we
develop an inversion technique for transversely isotropic media based on the analytic
equation for NMO velocity for dipping reflectors derived by Tsvankin (1994). We re-
cast this equation as a function of ray parameter and use it in inverting dip-dependent
P-wave NMO velocities for the anisotropic coefficients. Analysis of the stability of the
inverse problem by means of the Jacobian matrix is followed by the actual numerical
inversion procedure via the Newton-Raphson method. We show that this approach
makes it possible to obtain a family of solutions that all have the same NMO veloc-
ity for all possible dips, as well as the same nonhyperbolic moveout for horizontal
reflectors. and the same time-migration impulse response. This family of solutions is
fully described just by two parameters: the NMO velocity for a horizontal reflector
and a new anisotropic coefficient that we denote as 7. Then. we extend our results
to vertically inhomogeneous anisotropic media by developing a Dix-type procedure
(Dix, 1955) intended to give estimates of the NMO velocity in anyv individual layer
from surface reflection data. We conclude by showing an application of our method

to a marine data set from offshore Africa.

NMO VELOCITY FOR DIPPING REFLECTORS IN TI MEDIA

Our analysis is based on the equation for the normal-moveous (short-spread) veloc-

ity for dipping reflectors in a homogeneous anisotropic medium. derived by Tsvankin

(1994):
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N 1 &2V
Vio) 1+ vigmr

. tano dV
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. (1)

Vimo(0) =

where V(¢) is the phase velocity as a function of the reflector dip . 8 is the phase

angle measured from vertical, and the derivatives are evaluated at the dip o.

Formula (1) is valid in symmetry planes of any anisotropic medium and is not
restricted to any particular wave type: it assumes. however, that the incidence (sagit-
tal) plane is the dip plane of the reflector. Here we will use this equation only for

P-waves in VTI media.

The NMO velocity (1) is a function of phase velocity 17(8) and its first two deriva-
tives taken at the dip o. Unfortunately. reflection data do not carry any explicit
information about the dip; rather. we can count on recovering the ray parameter p(¢)

corresponding to the zero-offset reflection.

, 1 dtg sin @
1 = - = — 2

where to(z¢) is the two-way traveltime on the zero-offset (or stacked) section, and z;

is the midpoint position.

In the numerical analysis of the N\O velocity, the replacement of the angle o
by the ray parameter p (horizontal slowness) does not pose any serious problem.
Phase velocity and phase angle can be found from the Christoffel equations in a
straightforward fashion if horizontal slowness is known, as shown in Appendix A. At
the same time, the substitution of p may change the influence of the elastic coefficients

on the NMO velocity since the ray parameter itself is dependent on anisotropy.

In conventional notation. P-wave propagation in transversely isotropic models is
described by four stiffness coefficients: €11, €33, C13, and c¢y4. The number of inde-
pendent parameters. however. can be reduced by using the notation suggested by

Thomsen (1986). Formally P-wave phase and group velocity depend on four Thom-
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sen parameters: P- and S-wave vertical velocities 1py and V50 and dimensionless

anisotropies € and é.

C11 — C33
6 ————

3
2()33 ) ( )

5 (c13 + caa)? — (c33 — C44)?
2c33(c33 — €44)

(4)
However, the influence of the shear-wave vertical velocity on P-wave velocities and
traveltimes is practically negligible, even for strong anisotropy (Tsvankin and Thom-
sen, 1994). In an overview paper. Tsvankin (1995) shows that for most practical
purposes the influence of Vg on all P-wave kinematic signatures. including moveout

velocity Vyme, can be ignored. Therefore. in our inversion procedure we will attempt

to recover only the parameters 15pq, € and 6.

For a horizontal reflector. equation (1) reduces to the well-known formula for NMO

velocity (Thomsen. 1986):

‘;IITIO(O) = ";PO v1+26. (5)

The trade-off between the vertical velocity Vpg and parameter § cannot be resolved
even if the NMO velocities for all three (P. SV. and SH) waves from a horizontal
reflector are known (Tsvankin and Thomsen. 1995). On the other hand. if Vpy is

known (e.g.. from check shots or well logs). the zero-dip moveout velocity (5) can be

used to obtain 6.

Analytic and numerical analysis performed by Tsvankin (1994) shows that the dip-
dependence of P-wave NMO velocities is mostly controlled by the difference between
the anisotropies € and 8. Therefore. if § has been determined from V;,o(0). we
should be able to find ¢ from a single NMO velocit)_r for a dipping reflector. It is also
interesting to examine the possibility of recovering all three parameters (Vpo, € and
6) from NMO velocities at three (or more) distinct dips. This analysis is performed

numerically in the next sections.
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NMO VELOCITY FOR ELLIPTICAL AND WEAK ANISOTROPY

Before proceeding with the numerical inversion procedure. we will elucidate the
peculiarities of equation (1) by considering the special cases of elliptical and weak
anisotropy. Unfortunately, NMOQO equation (1) is too complex to allow for analytic

insight into the contributions of the anisotropic coefficients for general transverse

isotropy.

For elliptical anisotropy (e = §). the NMO velocity as a function of ray parameter

is given by (Appendix A)

‘;lmo
Vimo(p) = ol0) (6)
1—p2V2 (0)

nmo

Equation (6) is a good illustration of the difference between the NMO equations
expressed through the dip angle and ray parameter. Tsvankin (1994) showed that
if the dip o is used as the argument. the distortion in the NMO velocity due to
elliptical anisotropy is proportional to the ratio of the phase velocities V()/V(0) =
/1 + 26sin® 0. Therefore. Vamo(®) contains a separate contribution of the parameter
6. However. 19, expressed through ray parameter (6) is a function just of the
zero-dip NMO velocity with no separate dependence on the vertical velocity or on
6. In fact. equation (6) coincides with the N MO formula for isotropic media: the
influence of the anisotropy in formula (6) is absorbed by the value of ¥;,,6(0). given
by equation (3). This was discussed by Tsvankin (1994) in the section devoted to the

so-called “apparent” dip angle ¢ (sino = PVamo(0)).

In terms of the inversion procedure. this result means that for elliptical mod-
els, the trade-off between Vpy and 6 in equation (5) cannot be resolved from the
dip-dependence of P-wave NMO velocity (6). Moreover, the reflection moveout for
elliptical anisotropy is purely hyperbolic and does not provide any information other

than the short-spread velocity (6). On the other hand, the NMO velocity as a func-

~1
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tion of p can be easily reconstructed from the N\O velocity for a Lorizontal reflector:

this conclusion has important implications in dip-moveout processing.

In order to understand the behavior of Vamo(p) for non-elliptical models. we use
the weak-anisotropy approximation (e € 1. 6 <« 1). Equation (1) as a function of

ray parameter for weak transverse isotropy is derived in Appendix A.

Vamo (0)

2 [+ (e - 9/ (), (7
)

Vamo (]) ) =

where

y = PPV2,(0).

Note that for elliptical anisotropy the weak-anisotropy approximation (7) reduces

to the exact NMO equation (6).

Again, it is interesting to compare equation (7) with the corresponding wealk-
anisotropy NMO equation as a function of the dip angle. given by Tsvankin (1994).
Although Tsvankin (1994) emphasized the difference € — & as the most influential
parameter in his NMO equation, Vamo(®) does contain a separate contribution of 6.
However, when the dip angle is replaced by the ray parameter. the NMO velocity
explicitly contains the anisotropies only in the form of the combination € — 6. Of

course, again. 4 is also hidden in the value of Vamo(0).

This result has important implications in the inversion procedure. Instead of the
three original unknown parameters (Vpo, € and 6), in the limit of weak anisotropy,
the NMO velocity contains just two combinations of them — Vomo(0) and e — 6.
Therefore, moveout (stacking) velocities from just two distinct dips should provide
enough information to recover the two effective parameters and reconstruct the NNMO
velocity as a function of ray parameter. In the most common case. when the Zero-
dip NMO velocity has been found by conventional NMO analysis. a single additional

dipping reflector makes it possible to recover the difference e — 4. However, the trade-

8
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off between Vpg, € and 6 cannot be resolved from P-wave NMO velocities. no matter
how many reflectors are used. Normal moveout velocities from more than two dipping

reflectors just provide redundancy in the estimation of Vamo(0) and € — 6.

Although these conclusions have heen drawn for weak transverse isotropy, the
numerical analysis in the following sections leads to similar results for VTI media

with arbitrary strength of the anisotropy.

CONDITIONING OF THE PROBLEM

In order to estimate the sensitivity of the NMO velocity to the anisotropic pa-
rameters, we evaluate the Jacobian of equation (1) expressed as a.function of ray
parameter. The Jacobian is obtained hy calculating the derivatives of the NMO ve-
locity equation with respect to the model parameters Vpg, € and §. First. we consider

the case of inverting for two parameters (namely, € and §) using two different dips;

next, we examine the inversion for all three parameters.

Although the NMO velocity equation is nonlinear. its dependence on the anisotropy
parameters is smooth enough to use the Jacobian approximation. Figure ?? isa 3-D
plot of the values of V},,, as a function of € and ¢é for a reflector dip of nearly 40
degrees and a vertical velocity Vg of 3.0 km/s. The smoothness of equation (1) over

a practical range of € and § is evident.

The derivatives used to form the Jacobian are as follows:

VPO OV;] mo (p )

dl (p) - "';nno (1)) a"’PO
1 OVemelp)
B0 = 2
1 Voo
ds(p) = 2)

Vamo (D) Oe

This normalization of the derivatives makes them easier to use. For example,
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dz = 1 implies that. when solving only for €. a 5 percent error in the measured NMO

velocity would cause an error of 0.05 in the calculated value of e.

If two distinct reflector dips are available. it may be possible to solve for two of
the three parameters. The sensitivity of this inversion to errors in the input data

(NMO velocities) can be measured from the Jacobian matrix.

da(p1)  ds(pr)

(lg ( P2 ) d3 (p‘Z )

J =

"This Jacobian corresponds to the inversion for € and § when Vpg is known.

The condition number « for Jacobian matrix J can be computed as follows:

where A4, and A, are the maximum and minimum eigenvalues of the matrix
A=7JT.

JT is the transpose of the matrix J. A large condition number implies an ill-
conditioned (i.e.. nearly singular) problem. while a low condition number (for ex-
ample. smaller than 10) usually implies a well-conditioned problem. The absolute
errors in the computed anisotropy parameters and the relative error in the computed
Vpo are close to « times the relative error in the measured NMO velocity. In most

cases, this estimate provides the maximum possible error.

Figure 2 shows the condition number as a function of ray parameter for the inver-
sion of the NMO velocities measured at two dips. corresponding to p; and ps. The
dips are ranging from 0 to 60 degrees. The flat (clipped) parts of the 3-D plot corre-
spond to high condition numbers (> 6.0). When the dips are close to each other. the
problem becomes highly ill-conditioned (i.e.. the diagonal line where p; = py). If the

difference between the dips is 10-15 degrees or more. the problem becomes reasonably

10
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conditioned. unless both dip angles are large (> 25 degrees): the latter case. however.
is hardly typical. In a typical case of horizontal and dipping reflectors. an acceptable
resolution in resolving the anisotropies € and 4 is achieved (for the model from F 1g-
ure 2) for a wide range of ray parameters that excludes only those corresponding to

mild dips.

The inversion for this most practically important case of a horizontal and a dipping
reflector needs to be considered in more detail. Figure 3 shows the condition number
for the inversion for € and § (Vo is considered to be known), with reflector dips given
by p1 = 0.0 (horizontal reflector) and p» = 0.16 (near 30-degree dip). The low values
of the condition number mean that overall we obtain a reasonably good resolution

over a wide range of values of ¢ and §.

Next, we examine the feasibility of inverting for all three parameters (1'pq, € and §)
using NMO velocities for three different dips. The Jacobian matrix for this problem

is

di(p1) da(p1) dz(p1)
J= [ di(p2) da(pa) ds(ps) | . (8)
di(ps) da(ps) ds(ps)

Figure 4 shows the condition number for the Jacobian (8) calculated for reflector
dips p; = 0.0 (horizontal reflector), p» = 0.16 s/km (near 30-degree dip). and p3 =
0.23 s/km (near 50-degree dip). The huge values of the condition number over the
entire range of ¢ indicate that the problem is thoroughly ill-posed. In other words.
we could find models with a wide range of 17pg, €, and 6 that have almost the same
NMO velocities for the dips considered here. This ill-conditioned nature holds for all

choices of ray parameters that we have studied.

Note that for models close to elliptical (¢ = §) the condition number goes to

infinity, and the inversion cannot he carried out at all. Above. we obtained this result

11
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analytically by showing that the NMO equation for elliptical anisotropy (8) depends

only on the ray parameter and the zero-dip NNO velocity.

Given the uncertainties usually associated with seismic data. we cannot count on
resolving all three parameters using this method. even if we had more than three
different reflector dips. The ambiguity of the inversion procedure is caused by the
trade-off between the anisotropies € and 6 in the NMO equation. In the limit of weak
anisotropy, this trade-off is demonstrated by the NMO formula (7), which contains
only the difference ¢ — 6 and the zero-dip NMO velocity rather than either of the
coefficients individually. However. as we have seen, if one of the parameters (Vpy, ¢,

6) is known. the other two can be recovered from NMO velocities for two different

dips.

NUMERICAL INVERSION

'The above analysis based on the Jacobian matrix is still approximate since the
NMO velocity equation is nonlinear. In this section, we perform the actual inversion
by means of the Newton-Raphson method and study the range of solutions as well as
the sensitivity of the results to errors in the input information. Ve will concentrate on
models with e—~& > 0. which are believed to be most typical for subsurface formations

(Tsvankin and Thomsen. 1994).

Inversion using two reflector dips

The input data for the inversion procedure are the P-wave NMO velocities and ray
parameters for two different reflector dips: one of the reflectors can be (but is not nec-
essarily) horizontal. For conventional spreadlengths, limited by the distance between
the CMP and the reflector, NMO velocity is \\'ell-dppl’oxilllatecl by the stacking ve-
locity routinely used in seismic processing (Tsvankin and Thomsen. 1994; Tsvankin,

1994). The analysis in the previous section indicates that the inversion for all three

12
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parameters using three reflector dips is unstable: besides. for our method to be prac-
tical we can seldom count on having reliable NMO velocities from more than two

distinctly different dips.

In our first example (Figure 3). we consider a horizontal reflector and a reflector
dipping at 50 degrees (p = 0.23 s/km) for the same model as in F igure 2 (Vpy = 3.0
km/s, € = 0.2, and 6 = 0.1).

If we know the vertical velocity Vp, the inversion of two NMO velocities should
make it possible to recover the anisotropies € and §. Indeed, as shown in F igure 5, if the
actual velocity Vpy = 3.0 km/s is used in the Newton-Raphson inversion algorithm,

we obtain the correct values for hoth anisotropic parameters.

If only surface data are available, however, the exact vertical velocity may not be
known. Therefore. it is interesting to examine the family of solutions corresponding
to a range of vertical velocities around the actual value (from 2.6 km/s to 3.5 km/s in
Figure 5). For all these solutions. the difference between € and § is close to the exact
value (¢ — 6 = 0.1). Therefore. in remarkable agreement with the weak-anisotropy
approximation (7), the inversion of the P-wave NMO velocities provides us with a
good estimate of the difference ¢ — 6. The only way to resolve the coefficients indi-
vidually is to obtain the vertical velocity 1 using some other source of information

(e.g., check shots or well logs).

The most important property of the family of solutions shown in F igure 5 is that
all of them have practically the same NMO velocity as a function of ray parameter for
all possible dipping reflectors. not Just for the two dips used in the inversion scheme.
This is illustrated by Figure 6. which shows that the NMO velocity for any given
reflector dip (i.e., any fixed value of p) is practically the same within the range of

solutions in Figure 5. independent of the guess for 1/pg.

Therefore, if we perform the inversion procedure using the NMO velocities for an
I I

13
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two dipping reflectors (of course. the dips should not be close to each other), we end
up with the same family of equivalent models as in F igure 5. We conclude that the
normal moveout velocities measured at two different dips are sufficient to obtain the

NMO velocity for any rav-parameter value.

In essence. we have shown that the exact NMO velocity expressed through ray
parameter depends just on the zero-dip NMO velocity and some combination of the
anisotropies close to the difference ¢ — 6. This conclusion is in agreement not only
with the weak-anisotropy equation (7), but also with the analysis of the Jacobian
matrix in the previous section. In the following, we refer to models obtained by the

inversion of P-wave NMO velocity as the "equivalent solutions.” or ES.

Another example. for a medium with stronger anisotropy, is shown in Figure 7.
Here, we have considered a typical case of horizontal and dipping reflectors (the dip
angle is 40 degrees); however. any pair of dips sufficiently different from each other
vields the same family of ES. Here. in contrast with the previous example. the velocity
anisotropy is too pronounced for the weak-anisotropy equation (7) to hold, and the

inversion does not provide an accurate value of € — &, unless we have a good estimate

of the vertical velocity.

The accuracy of the estimation of € — & is further illustrated by Figure 8. which
shows the inversion results for the models with ¢ — § = 0.1,0.2. and 0.3. While the
recovery of € — ¢ is unique for elliptical anisotropy (¢ = é. not shown on the plot). it

becomes less accurate with Increasing € — 6.

Description of the equivalent solutions

Clearly. the combination of € and & that describes the family of ES deviates from
the difference € — é with increasing anisotropy. An analytic description of this com-

bination for arbitrary strength of the anisotropy is given below.

We have shown that all ES obtained by our inversion technique have the same

14
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NMO velocity for all dips. including a horizontal reflector. Therefore.

Vamo(0) = Vipg V1 + 26 = const (9)

within the family of ES. This equation provides a relation between Vpo and & that

accurately describes the curves 6 (Vpo) in Figures 5 and 7.

However. a single equation is not sufficient to characterize the ES analytically.
To obtain another relation between the parameters that would involve €. we examine
the behavior of group-velocity curves for the family of ES. F igure 9 shows the group
velocity as a function of the group angle for three solutions corresponding to Vpy=2.8,
3.0 and 3.2 km/s. The computations were performed for the two models shown in
Figure 5 and 7. For both media. all three ES yield the same velocity at an angle of

90 degrees, which coincides with the actual horizontal velocity. This implies that for

all ES

Vi = Vpo V1 + 2¢ = const (10)

However. it is more convenient to replace the horizontal velocity by a dimensionless
parameter. common for all ES. that goes to zero for isotropic media. Combining

equations (9) and (10). we choose to define a new anisotropic parameter (denoted by

1) as follows:

V2 e—6
n=05(=—1)= . 11
7 00(‘/;_,mo 1) Tr23 (11)

Then

"’;1 = "':uno(o) V 1+ 277 (12)

[compare the form with equations (9) and (10)]. Therefore. our family of ES can be
described by two effective parameters: Vimo(0) (or V4) and n. Only these parameters
can be resolved by inverting dip-dependent P-wave NMO velocities. In principle. two

distinct dips are sufficient to recover the values of V},m0(0) and n; additional dipping
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reflectors just provide redundancy in the inversion procedure. so that. for example. a

least-square approach can be used to solve the overdetermined problem.

Essentially. by performing numerical inversion we have generalized the weak-
anisotropy equation (7) to transversely isotropic media with arbitrary strength of
anisotropy. While the weak-anisotropy P-wave NMO equation (expressed through
ray parameter) is a function of V,,o(0) and € — §, the P-wave NMO velocity for

general transverse isotropy is fully characterized by Vymo(0) and 1.

This conclusion is illustrated by Figure 10(a). which shows that the P-wave dip-
moveout signature does not depend on the individual values of the anisotropies € and
6. if n is fixed. Both plots in F igure 10 demonstrate that for the most typical case,
n > 0 (¢ > 6), the conventional DMO expression for isotropic media (6) severely

understates NMO velocities for dipping reflectors.

Clearly, in the limit of weal anisotropy 7 reduces to the difference ¢ — §. Also.
note that 7 is zero not only for isotropy. but also for elliptical anisotropy. In this
sense, 1t is similar to the parameter ¢ = 130/V 3o (e — 6) introduced by Tsvankin and

Thomsen (1994) to describe SV-wave moveout.

While 7 is determined by the values of the zero-dip moveout velocity and the hor-
1zontal velocity, the choice of 1 is not unique: we could have combined 17,,,0(0) and
Vi in a different fashion to obtain. for instance. 1 + 2¢ instead of 1 + 26 in the denom-
nator of . However. any such anisotropic parameter describing the dip-dependence
of NMO velocity would represent a measure of “nonellipticity,” i.e.. deviation from

the elliptically anisotropic model.

Equation (11) leads us to another observation. If it is possible to obtain an ac-
curate value for the horizontal velocity 1} (e.g., from head waves traveling along a
horizontal reflector or from cross-hole tomography), then the zero-dip velocity 13,,0(0)

is sufficient to find 5 and build the P-wave NMO velocity as a function of ray param-
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eter. Dipping reflectors in this case are not needed at all.

The family of ES from our first example in Figure 5 can be represented by Vime =
3.29 km/s and n = 0.0833. The example from Figure 7 is characterized by Vime = 2.68

km/s and a much larger n = 0.5.

As demonstrated in the following sections. the importance of the family of ES

goes well beyond the dip-dependence of P-wave NMO velocities.

Accuracy of the inversion

Next. we study the sensitivity of the inversion procedure to errors in the measured
moveout velocities. In the typical case of a horizontal and dipping reflector. we
measure two velocities: V,.o(p) and Famo(0). Since Vimo(0) is obtained directly. n
remains the only unknown to be solved for. As illustrated by Figure 10 (b), the
NMO-velocity curves corresponding to 7=0.1. 0.2, and 0.3 are well resolved within a

wide range of dips; this indicates that the inversion procedure is reasonably stable.

To quantify errors in 1, We use the following sensitivity equation:

- ov nmo (l)) - aI@lmo (1))
AT/ = ——A\V —_—t . 1
AWimo(p) 01/},.,,0(0)A‘ amo(0) + o An (13)

Normalizing the velocities, we can represent equation (13) as

AVimo(P) _ Vamo(0) Vo () AVymo(0) I OVimo(p)
‘/;lmo(p) B V;lmo(p) a‘/nmo(o) ":\mo(o) ‘/nmo(p) 077

An. (14)

Using equation (14), the error in 1 can be expressed through the errors in the

NMO velocities.

P ";mo(l)) A"fnmo(p) _ V;ImO(O):l AVimo(0)
A”‘[ f J Vamo(0) [f‘ B | Vemo(0)
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where
f _ a‘/‘-nmo(l))
T OV imo(0)
and
_ OWVimo(D)
fr= =

If the NMO velocity for a horizontal reflector is measured exactly or contains only
a small error, the error in 7 would be controlled just by the first term in formula (13).
However, assuming that the errors in Vimo(p) and 131o(0) have comparable magni-

tude, we can characterize the sensitivity of 7 by

E=¢%MM7MHmmR

Figure 11 shows E as a function of the ray parameter for the models from F igures 5

(16)

and 7. In both examples. as expected, errors decrease with dip and reach a minimum
at a dip of about 46 degrees (a). and 51 degrees (b). The minimum in E is caused by
higher sensitivity to errors in Vamo(0) at steep dips; if the error in 13,,0(0) is negligibly
small, the minimum does not exist. and the inversion for 7 1s most stable at steep

dips up to 90 degrees.

However. in the discussion above we have not considered two factors that malke
steep dips (beyond 50-60 degress) less desirable in the inversion algorithm. First. at
steep dips the inversion for 1 becomes more sensitive to errors in the ray parameter
(see Figure 10 (b)). Second, the recovery of the NMO velocity itself from reflection
moveouts becomes less stable because the magnitude of the quadratic moveout term

decreases with dip (due to higher NMO velocity).

It may be also instructive to examine numerically the sensitivity of the effective
parameter 77 and the horizontal velocity 1}, (12) to errors in the measured values
of Vamo(p). In Figure 12, we have introduced errors into the input values of NMO

velocities for reflector dips of 0 and 40 degrees. The percentage error in 1}, and the
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absolute error in # are quite small. which indicates that our inversion is reasonably
stable. In fact. a 5-percent error in Vamo(p) causes less than a 2.3-percent error in V5.
The percentage error in 7 is larger. but this can be expected in the inversion for so

small an anisotropic coefficient.

PROPERTIES OF THE FAMILY OF SOLUTIONS

Nonhyperbolic reflection moveout

The inversion of the dip-dependence of P-wave normal moveout velocities enables
one to obtain a family of equivalent solutions (ES) described by the zero-dip NMO
velocity Vjmo(0) and the effective anisotropic parameter 1. In this section. we show a
remarkable property of ES: any model with the same Vamo(0) and 7 yields the same

long-spread (nonhyperbolic) P-wave moveout from a horizontal reflector.

P-wave long-spread moveout in horizontally-layered transversely isotropic media

can be well-approximated by the equation (Tsvankin and Thomsen, 1994)

A X

2(X) =2 4,172 —_—,
(X) = tho + 45 T

(17)

where tpg is the two-way. zero-offset time.

For a single layer. the coefficients in formula (17) are

Lot
T VR (w20 T VZ(0)°

nmo

e — §) L + pi

]
SO/ VPO

oV, (L4260

Il

Aq

Ay

o — Ao
Vi -

A=

L}

where V, is the horizontal velocity.
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Equation (17) remains numerically accurate for long spreads (2 to 3 times. and
more. the reflector depth) and pronounced anisotropy. The hyperbolic moveout term,
which makes the main contribution to short-spread moveout. depends just on the
NMO velocity V;,,0(0). The last term in equation (17) describes nonhyperbolic move-

out on long spreads.

Substituting the parameters Vimo(0) and » into formula (17) and ignoring the
contribution of Vo to the quartic term A, (1750 has a negligible influence on P-wave
moveout in TI media), we obtain

X2 2nX4

2;2 _r— — .(.-.)- —_— = pve -1
(X) Po ‘;{Zmo(o) ‘-nzmo(o) [f-IZ’O" n-)mo(o) + (1 + 2,])'X -]

(18)

Thus, P-wave long-spread moveout can be adequately described by the vertical trav-
eltime and just the two effective parameters — 1 amo(0) and 7, with no separate depen-
dence on Vpg, €, or 6. For given Vamo(0) and tpg, 17 describes the amount of deviation

from hyperbolic moveout; if = 0. the medium is elliptical and the moveout is purely

hyperbolic.

Although equation (17) is approximate. and we have made one more small approx-
imation by assuming that V5o = 0. the results in the next section prove that P-wave
long-spread moveout is indeed controlled by Vimo(0) and n. Since the inversion algo-
rithm makes it possible to recover Vimo(0) and n. it provides enough information to
build P-wave long-spread moveout curves. Stated differently, although the inversion

is unable to resolve 1pg, €. and 6, two parameters it gives are sufficient to describe

P-wave long-spread moveout.

Migration impulse response

Although equation (18) describes moveout for a horizontal reflector. it also can
be regarded as the diffraction curve. accurate to a certain dip, on the zero-offset sec-

tion (poststack domain). Since time migration is based on collapsing such diffraction
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curves to their apexes. the values of Vimo(0) and n should be sufficient to generate a
time-migration impulse response that is accurate up to that certain dip. With accu-
rate values of V;m0(0) and 7. all lateral position errors in migration for homogeneous
models (Larner and Cohen, 1993: Alkhalifah and Larner, 1994). will be eliminated.
Poststack depth migration. however. may produce depth errors if the value Vp, is

inaccurate, but this is a different issue.

Figure 13 shows the exact time-migration impulse responses (right half only) for
different ES from (a) Figure 5 and (b) Figure 7. The curves for all three ES practically
coincide with each other. implying that there is no difference between the impulses of
the three input models. This confirms that 17,,,(0) and 7 are sufficient to generate

an accurate time-migration impulse response for all dips.

This point is illustrated further by Figure 15, which shows anisotropic poststack
time migrations (Gazdag's phase-shift migration modified for anisotropic media) of
the synthetic data generated for the model in Figure 14. The reflectors are embedded
in a homogeneous transversely isotropic medium with Vpo=3.0 km/s. €=0.2, and
6=0.1 (the same model as in Figure 5). The migrations were performed (a) using
the actual model parameters. and (b) using an equivalent solution from Figure 5 with
Vpo=2.5 km/s. €=0.43. and §=0.3. Although model (b) is substantially different from
the actual one. it has the correct values of 1,,,,(0) and 5 and. consequently. produces

an accurate image.

Depth migration. however. will produce depth errors if the wrong value of Vpq

were used. Such depth errors .\D can be described by

>

Lactual

V)
AD = (22 _1)p,
where 1.2 is the true vertical velocity, and D is the true depth.

Therefore, all ES have the same poststack depth migration impulse response with

a simple depth shift. As we show in the next section, errors in the effective parameters
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Vamo(0) and 7 lead to distortions in migrated images.

Since all ES. characterized by ¥amo(0) and 7, have the same NNIO velocity Timo(p)
in the prestack domain and the same time-migration impulse response in the post-
stack domain, they should also have the same time-migration impulse in the prestack
domain. Thus. media with the same Vamo(0) and 5 yield the same prestack and

poststack diffraction curves for surface seismic data.

We conclude that the inversion of P-wave N MO velocities provides enough infor-
mation to perform all major time-processing steps including dip moveout (DMO),
and prestack and poststack time migration. However. time-to-depth conversion re-

quires an accurate value of the vertical velocity, which cannot be obtained from NMO

velocities alone.

REFINING INVERSION RESULTS USING POSTSTACK
MIGRATION

In many cases one can determine the accuracy of the migration algorithm or of the
velocity field used in the migration by observing the quality of the migrated image.
For example. parabolic shapes. resulting from diffracting edges. imply overmigration.

whereas hyperbolic shapes indicate undermigration.

This approach can be used to refine the results of our inversion procedure. Errors
in the measured NMOQO velocity may lead to an inaccurate value of 7. which. in turn.
may distort the migrated image. Figure 16 shows anisotropic poststack time migration
of a synthetic data set generated for the model in Figure 14 using inaccurate values of
n (the correct value. Vamo=3.29 km/s, is used in both cases). The errors. apparent in
both cases. show the sensitivity of the migration results to the value of 5. Predictably,
the distortions are more pronounced for the model with a larger error in 7: not only
do the reflectors cross. but also the reflector edges are not imaged well. The dipping

events can be imaged better by increasing the value of ¥},,0(0). but in this case the
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horizontal reflectors go out of focus.

Usually we can expect to obtain the zero-dip NMO velocity with a higher accuracy
than that for the parameter 5. The inverted value of 7, however. can be refined by
inspecting migrated images. In isotropic media. undermigration is usually corrected
by increasing the migration velocity. According to equation (12). an increase in 7 leads
to a higher horizontal velocity. Therefore. a corresponding correction in transversely

isotropic media. can be achieved by increasing 7 (the case in Figure 16).

However, if we have more confidence in the measured value of the NMO velocity
for the dipping reflector. a proper choice would be to change both 17,,,(0) and 7.
In fact, then, given error that likely exists in both. the data processor now has two

parameters that can be adjusted.

VELOCITY ANALYSIS IN A LAYERED MEDIUM

The inversion technique discussed above is designed for a homogeneous medium
above the reflector, while realistic subsurface models are, at a minimum. vertically
inhomogeneous. In Appendix B we extend the NMO equation of Tsvankin (1994)
to layered anisotropic media: here we show that this new equation can be used to
recover the NMO velocity in the medium immediately above the reflector via a Dix-

type formula.

We assume that the model consists of a stack of plane homogeneous layers above a
dipping reflector. The incidence plane should coincide with the dip plane of the reflec-
tor and a plane of symmetry in all layers (although the symmetries themselves may
be different). If a layer is transversely isotropic. the incidence plane should contain
the symmetry axis (or it may be the isotropy plane): in an orthorhombic medium. the
incidence plane should coincide with one of the three mutually orthogonal symmetry

planes.
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As shown in Appendix B. the normal-moveout velocity for such a model is given

bv

/2 o(Po) =—0 1) [V (po))? . (19)
=1

That is. the N)\IO velocity is the root-mean-square of the NMO velocities in each
layer taken at the ray-parameter value py determined by the dipping reflector: py =
sing/V™(4), where & is the dip angle. and V™ is the phase velocity immediately
above the dipping reflector. The traveltimes t(()i) should be calculated along the zero-
offset ray. Equation (19) is quite general in the sense that it does not assume any
specific type of anisotropy, although it does require the incidence plane to be a plane
of symmetry. For isotropic media. formula, (19) becomes equivalent to the NMO

expression by Shah (1973).

If the reflector is horizontal. equation (19) reduces to the root-mean-square (RMS)
of the zero-dip NMO velocities: however. unless the medium is transversely 1sotropic
with a vertical symmetry axis (VTI), the zero-offset ray may deviate from the vertical
direction. and ¢, may be different from the vertical time. For the special case of a
stack of horizontal \"TT lavers. formula | 19) coincides with the well-known expression

discussed by Hake et al. (1984) and Tsvankin and Thomsen (1994).

In order to obtain the NMO velocity in any layer / (including the one immediately
above the reflector). we need to apply the Dix formula (Dix, 1955) to the NMO

velocities from the top [Vjmof — 1)] and bottom [1me(i)] of the layer:

(1) = to(i = )V2 (i — 1)
to(t) —to(i — 1) ’

where 9(i — 1) and ty(i) are the two-way traveltimes to the top and bottom of the

[V(i) ]2 — tO(i)"':n%no

nmo

(20)

layer calculated along the ray with p = pg; all NMO velocities here correspond to the

ray-parameter value py.
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The main difference between the N\IO equation (20) and the conventional Dix
formula is that all NMO velocities and traveltimes in formula (20) should be eval-
uated at the ray-parameter value corresponding to the dip angle of the reflector
[P0 = sino/V )(5)]. We are mostly interested in using equation (20) to obtain the
normal moveout velocity in the medium immediately above the reflector (Vi) (o)
that can serve as an input value in the inversion algorithm discussed in the previ-
ous sections. Clearly, the recovery of V() (po) is impossible without obtaining the
moveout velocities in the overlying medium for the same value of the ray parame-
ter (po). This task is not trivial because conventional NMO velocity analysis for the

horizontally-layered overburden provides us only with NMO velocities and traveltimes

corresponding to the ray-parameter value p=0.

However, for the special case of isotropic or elliptically anisotropic horizontal layers
the normal moveout velocity at any ray-parameter value can be obtained from the

zero-dip NMO velocity in a straightforward fashion [equation (6)]:

Vimo(0)
J1-p2V2 (0)

In order to apply equations (19) and (20), it is also necessarv to express the

Vamo(p) = (21)

traveltime to(p) through the zero-offset time t0(0) and NMO velocity for a horizontal

reflector. In Appendix B we derive an equation for #y(p) valid for isotropy or elliptical

anisotropy:

to(p) = t0(0) /1 4+ p2 V2, (p). (22)

Therefore, if the overburden layers are isotropic or elliptically anisotropic, the
two-way traveltime along the ray with any ray-parameter value p can be found just
from the vertical traveltime t0(0) and the NMO velocity Tamo(p) already determined

from equation (21).

[N\)
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If the horizontal layvers are vertically transversely isotropic (but not elliptically
anisotropic). we have seen that it is necessary to know the value of 7 in addition to
the zero-dip NMO velocity in order to find Vumo(p). As illustrated by Figure 17. the

r

parameters V,,,(0) and 1 are also sufficient to calculate to(p) given the zero-dip time

to(0).

to(p) = t0(0) f[n. Vamo(0)], (23)

where f is independent of the vertical velocity and the individual values of the

anisotropies ¢ and §6.

Thus. we propose the following processing sequence designed to strip the influ-
ence of the overburden on the NMO velocity: obtain the zero-dip NMO velocities and
zero-offset traveltimes for the horizontal layers, use these values to calculate the NMO
velocity and traveltime at the ray-parameter value po for the entire horizontally strat-
ified overburden and. finally. calculate the NMO velocity for the medium immediately
above the dipping reflector via the Dix-type formula (20). If the overburden is not
elliptically anisotropic. this stripping algorithm requires 7 in the horizontal layers to
be estimated independentlv. The obtained normal moveout velocity. corresponding
to the ray-parameter value Po, should be combined with the N\IO velocity measured
for some other dip p # p, (e.g., the zero-dip NMO velocity) for the same layer im-
mediately above the dipping reflector to perform the single-layer inversion procedure

discussed in the previous sections.

The nonhyperbolic moveout equation for a horizontally layered, transversely isotropic
medium (17) is a function of the quadratic (A4») and quartic (44) moveout coeffi-
cients and horizontal velocities (12) in each layer, averaged in a complicated fashion
(Tsvankin and Thomsen. 1994). Since As, 44, and V, in individual layers depend
Just on Vino(0) and 7, the total moveout curve is entirely determined by the values

of these two effective parameters averaged over the stack of layers. Likewise. this
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conclusion holds for time migration in 17(2) media.

FIELD-DATA EXAMPLE

Figure 18 shows a seismic line from offshore Africa provided to us by Chevron
Overseas Petroleum, Inc. The line was processed using a sequence of conventional
NMO, DMO, and time-migration algorithms without taking anisotropy into account.
While horizontal and mildly dipping reflectors are imaged well, steeply dipping fault

planes (like the one at a time of 1.5-2 s to the left of CMP 1000) are almost invisible.

To demonstrate that this problem is caused by anisotropy. it is useful to exam-
ine constant-velocity CMP stacks (stacks generated at certain constant values of the
stacking velocity) after application of normal-moveout correction followed by conven-
tional constant-velocity DMOQ (Figure 19). The goal of DMO processing is to focus
both horizontal and dipping events on the same velocity panel. However, while quasi-
horizontal reflectors are imaged best at a stacking velocity of 2200 m /s. the dipping
reflector goes into focus at a much higher velocity (2400-2450 m/s). As a result. the

conventional processing sequence produces a weak, blurry image of the dipping fault

plane.

The failure of conventional DMO means that the stacking (moveout) velocity
increases with dip much faster than implied by the isotropic equation (6). If the
DMO problem had been caused by velocity gradient. than the dipping event would
have been imaged at a lower stacking velocity than that of the horizontal event (Hale
and Artley, 1993). Therefore. the DMO algorithm breaks down due to the increase

in the stacking velocity for dipping reflectors caused by anisotropy.

We have picked the best-fit stacking velocities and the corresponding ray param-
eters for the quasi-horizontal and dipping events from constant-velocity stacks and
applied our inversion algorithm for a homogeneous VTI medium. The inversion pro-

cedure yielded the value of 7 = 0.07. which was used to reprocess the data by means
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of a TZO (transformation to zero offset) ray-tracing algorithm designed for homoge-
neous VTT models (Alkhalifah. 1994). The anisotropic TZO succeeded in focusing
both the quasi-horizontal and dipping events on the same velocity panel — the one

corresponding to the best-fit stacking velocity for the quasi-horizontal reflector (Fig-

ure 20).

The anisotropic processing sequence described above was based on the assump-
tion that the medium above the dipping reflector is homogeneous. However. anal-
ysis of time dependence of the zero-dip stacking (moveout) velocity (which can be
approximated by 17,,0(0)) shows a pronounced velocity gradient of about 0.7 s—!.
Therefore. the value of 7 produced by the inversion algorithm can be regarded as an
effective parameter that reflects the influence of both anisotropy and inhomogeneity
(Tsvankin, 1994). While this effective 1 enabled us to correct for the influence of
anisotropy in DMO processing (because we had just a single dipping event). it can-
not be used in anisotropic poststack migration or inversion for the individual values

of the anisotropies ¢ and §.

This example represents no more than a, preliminary result that illustrates the im-
portance of anisotropic data, processing and some practical aspects of the application
of our algorithm. More robust processing results in the presence of velocity gradient
may be achieved by using the NMO equation for a vertically inhomogeneous medium

[formula (19)]; this will be discussed in detail in a sequel paper.

DISCUSSION AND CONCLUSIONS

We have suggested and tested on synthetic and real data a method of velocity anal-
ysis for transversely isotropic media based on the inversion of the dip-dependence of
P-wave normal moveout velocities. The algorithm, operating with surface P-wave
data only, requires NMO velocities and ray parameters to be measured for two dif-

ferent dips; more than two dips provide redundancy that can be used to increase the
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accuracy of the inversion.

Although this inversion cannot resolve the vertical velocity and anisotropic co-
efficients individually. it makes it possible to obtain a family of models that have
the same moveout velocity for a horizontal reflector Vamo(0) and the same effective
anisotropic parameter = (¢ — 6)/(1 4 26). Ve have shown that these two param-
eters are sufficient to obtain NMO velocity as a function of ray parameter. describe
long-spread (nonhyperbolic) reflection moveout for a horizontal reflector. and calcu-
late poststack and prestack time-migration impulse responses. This means that the
inversion of P-wave NMO velocities provides enough information to perform all major

time-processing steps including dip moveout. prestack and poststack time migration.

The results of the inversion for 1) can be refined by inspecting the quality of images
generated by poststack migration algorithms. If the image indicates undermigration,

we should increase the value of 17; to correct for overmigration. 7 needs to be reduced.

A natural way to include this inversion technique in the processing flow is to apply
a Fowler-type dip-moveout method (Fowler, 1984), which transforms CMP data into
constant-velocity stacks calculated for a range of stacking velocities. These constant-
velocity panels can be conveniently used to pick the values of NMO velocities as well as
the corresponding ray parameters required for the inversion procedure. The values of
Vamo(0) and n can then be refined by inspecting the output stacked panels. generated
by resampling in the frequency-wavenumber (w — k) domain using anisotropic NMO

equation (1). These ideas are discussed in more detail by Anderson et al. (1994).

Our analysis suggests an alternative approach to the inverse problem. If it is
possible to obtain an accurate value for the horizontal velocity 1}, (e.g., from head
waves traveling along a horizontal reflector or from cross-hole tomography), then the
zero-dip velocity V}mo(0) is sufficient to find n and. therefore. perform the processing

steps mentioned above. Dipping reflectors in this case are not needed at all.
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Time-to-depth conversion. however. requires an accurate value of the vertical ve-
locity that cannot be found from P-wave NMO velocities alone. Additional informa-
tion can be obtained from the short-spread moveout velocities of SV or P-SV waves.
which provide one more relation between the vertical velocities and the anisotropies
€ and ¢ (Tsvankin and Thomsen. 1994). Also, clearly, the vertical velocity can be

determined directly if check shots or well logs are available.

The inversion algorithm described here is developed for a homogeneous. trans-
versely isotropic medium above the reflector. To extend the method to vertically
inhomogeneous media. we generalized the NNO equation given by Tsvankin (1994)
for layered anisotropic media with a dipping reflector. We show that the influence of
a stratified isotropic or anisotropic overburden on moveout velocity can be stripped
through a Dix-tvpe differentiation procedure. This new NMO formula is valid in sym-
metry planes of any vertically inhomogeneous anisotropic medium and. therefore. can
be used in developing inversion algorithms for more complicated anisotropic models

than those considered in this paper.
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APPENDIX A: DEPENDENCE OF NMO VELOCITY ON THE RAY
PARAMETER

For the purposes of the inversion procedure. we need to recast the NMO velocity
as a function of the ray parameter p(@) (horizontal slowness) corresponding to the
zero-offset reflection. The vertical (m) and horizontal (p) slownesses for P-waves in

transversely isotropic media satisfy the following equation (e.g., Larner. 1993)

1= 0.5{(011+C44)p2+(C33+C44)‘1n“)+{[(C11—C44)])2—(633—C44)7712]2+4(C13+C44)')pz'lnz} 7}
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This equation can be solved for m for a known value of the ray parameter p. If

both slowness components are obtained. the phase velocity is simply

Vip) = !

and the phase (dip) angle ¢ is given by

¢ =sin~'[V(p)p).

After the angle o has been found, we can compute the derivatives of phase velocity
needed in equation (1) and then obtain the P-wave N MO velocity as a function of ray
parameter. The dependence Vamo(P) can also be built parametrically by calculating

Vamo and p as functions of the dip o.

Since phase velocity is a complicated function of the phase angle (or ray parameter)
and anisotropic coefficients. it is hardly feasible to find a simple form for Vamo(p)
in general transversely isotropic media. Therefore, we consider the special cases of

elliptical and wealk anisotropy.

The normal-moveout velocity in elliptically anisotropic media (e = 8) can be

represented as (Tsvankin. 1994)

‘/n o 0) V(o ‘/:1mo 0 ,
mo(9) = 2ol Vo(6) _ Vimo(O) o (A1)
coso 1pg »Vpg

Now we have to obtain the angle o as a function of the ray parameter. The P-wave

phase velocity for elliptical anisotropy is given by

Vp(8) = Vo1 + 26sin29 | (A-2)

where § is the phase angle measured from the symmetry axis. Then
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sino

plo) = —. (A-3)
Vpoy/1 + 26sin® o
Solving equation (A-3) for the dip angle o yields
PVro (A-d)

sine = = .

Calculating tan ¢ from equation (A-4) and taking into account that Vimo(0) =

Vpo V1 + 26, we get from equation (A-1)

. Vamo(0) .
Vime = . ("\'5)
») 1—p2V2 (0)

nmo

Therefore, for elliptical anisotropy, P-wave NMO velocity is a function of the

ray parameter and zero-dip moveout velocity. with no separate dependence on the

coefficient §.

Now we carry out a similar derivation for general transverse isotropy (e # 6) using
the weak-anisotropy approximation (¢ < 1, § <« 1). The weak-anisotropy expression

for NMO velocity as a function of the dip angle o was derived by Tsvankin (1994).

. Ve(o
"’nmo(@) = Cgi (D)

[L + 6+ 2(e — §) sin® o(1 + 2cos? 0)] . (A-6)

In order to find the dependence of normal moveout velocity on p. we have to
obtain the angle o as a function of the ray parameter. The P-wave phase velocity,

linearized in the parameters ¢ and §. is given by Thomsen (1986).

Vp(0) = Vpo (1 + 6sin® 0 cos® 6 + esin? ). (A-7)

The ray parameter (2) then becomes
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sin @
Vpo (1 + ésin” ocos? o +esin? 6)

b (A-8)

After some algebra. formula (A-8) can be transformed into a quadratic equation

for sin® ¢ with the solution

P>V

m[l + 2(6 - (5) p4"’1§0 . (:\-9)

2 .
sin“ @ =

Substitution of the angle @ from equation (A-9) into (A-6) and further linearization

in € and § leads to the following expression for the NMO velocity:

I () 5 (e \
Vimo(P) = T=pv2_0) [1+2(e—6) fF(PVamo(0))] . (A-10)
f U WSy )

11—y

In principle. the wealk-anisotropy approximation allows us to replace V| ,0(0) in the
term containing e—48 by Vpy (it would change only terms quadratic in the anisotropies).
However. this means that we can rely only on the terms quadratic in ¢ and é to

distinguish between the vertical velocity and anisotropies.

APPENDIX B: NMO EQUATION FOR A LAYERED MEDIUM
WITH A DIPPING REFLECTOR

Here we generalize the NMO equation of Tsvankin (1994) for layered anisotropic
media with a dipping reflector. We consider a layered anisotropic model consisting of
a stack of horizontal homogeneous layers above a dipping reflector (Figure B-1). It
is assumed that the CMP line is perpendicular to the strike of the reflector. and the

incidence (sagittal) plane coincides with a plane of symmetry in all layers.
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Therefore. kinematics of wave propagataion is two-dimensional. i.c.. phase and
group velocity vectors do not deviate from the incidence plane. The same assumption

was made by Tsvankin (1994) in his derivation of the one-layer NMO equation.

Since the medium above the reflector is laterally homogeneous. the ray parameter
p (horizontal slowness) remains constant between the reflector and the surface. In
this case. the short-spread moveout velocity Vimo in CMP geometry is convenient to

express as follows (Larner, 1993: Tsvankin. 1994):

N Codx? 1 . dx
;= = S = — BTN B-l
| nmo(p0) }1_13(1) di? to pllg}o d D ( )

where x is the source-receiver offset. Po is the ray parameter of the zero-offset ray
(x =0). and ¢, is the two-way zero-offset traveltime. Note that the zero-offset ray is
not necessarily perpendicular to the reflector in the presence of anisotropy; it is the

phase-velocity vector corresponding to the zero-offset ray that should be normal to

the reflector.

Neglecting the displacement of the reflection point on short spreads used in equa-

tion (B-1) (Tsvankin. 1994), we can represent the offset r as

n
=2 (Z - .l‘0> .

i=1
where 2, is the horizontal displacement of the ray in laver i, and .y is the total
horizontal displacement of the zero-offset ray, between the CMP location and the

reflection point (Figure B-1). Equation (B-1) now becomes

- 1 1 d(2z9)
Vimo(Po) = — lim ZT

—
f() P~po i=1

(B-2)

From equation (B-1) it is clear that the summation in equation (B-2) is performed

over the squared NMO velocities of the individual layers multiplied with the zero-offset

times. That is,
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. d(220 )
Im
p—vo dp

t [V (po)]?. (B-3)

where té’) is the two-way traveltime along the zero-offset ray in layer ;.

‘Tsvankin (1994) expressed V18 analytically through the phase angle
ot = sin~![pq V@ (po)] corresponding to the zero-offset ray, where V() is the phase
velocity in layer 7. In Appendix A and the main text we show how this NMO equation

can be rewritten as a function of the ray parameter po.

Substituting formula (B-3) into the equation for the NMO velocity (B-2) yields

‘rn)mo 1)0 Z t(l) ‘ n(rltzo (B'4)

Equation (20) includes the traveltime to(p) along the ray with the ray-parameter
value p. Below, we derive an equation for £(p) valid for isotropy or elliptical anisotropy.

For both models, the moveout is purely hyperbolic, and

2

5 : T~

Substituting x = ¢yl tanw (V5 is the vertical velocity. @ is the group angle cor-

(B-5)

responding to the ray-parameter value p) and expressing ¢ through the phase angle

7
V7=
tan v = tand M ,

yields

to(p) = t2(0) (1+ta1129 ""j°(0)> : (B-6)

Using the relation between the phase angle and ray parameter for elliptical anisotropy

[equation (A-4)], we find
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to(p) = 19(0) /1 + p2 172, (p). (B-T)
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FIGURE CAPTIONS

1. 3-D plot of the NMO velocity as a function of € and & for the reflector dip

corresponding to p = 0.2 s/km: Vpg = 3.0 km/s.

2. 3-D plot of the condition number as a function p1 and py (ray parameters
of the two reflectors). The model parameters are Vpg = 3.0 kim/s. € = 0.2. and

6=0.1.

3. 3-D plot of the condition number as a function of € and §. Two reflector dips
used in the inversion correspond to ray parameters of p; = 0.0 s/km (horizontal

reflector) and p, = 0.16 s/km. The vertical velocity Vpg = 3.0 km/s.

4. Condition number as a function of € for the inversion using three reflector
dips corresponding to p; = 0.0 s/km. p» = 0.16 s/km, and p3 = 0.23 s/km. The

vertical velocity 1pg = 3.0 km/s: 6=0.1.

5. Parameters ¢ and é obtained from NMO velocities corresponding to a hor-
izontal reflector and p = 0.23 s/km (50 degrees dip). The values of 15y used
in the inversion are shown on the horizontal axis. The model parameters are

Vpo =3.0 km/s. e = 0.2. and 6 = 0.1.

6. NMO velocity for a family of solutions in F igure 5 and four different values

of the ray parameter.

7. Inverted values of ¢ and 6 as functions of Vpo for the model with

Veo=3.0km/s. e =0.3. and § = —0.1.

8. Inverted value of € — § as a function of Vo for three models with different e:

Vpo=3.0 km/s. §=0.1.

9. Group velocity ty as a function of the group (ray) angle for solutions from

(a) Figure 5 (17p9=3.0 km/s. € = 0.2. 6 = 0.1). and (b) Figure 7 (1 pp=3.0 km/s.
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€ = 0.3. 6 = —0.1). The curves correspond to solutions with 1py=2.8 ki /s
and the corresponding values of é and € (black): 1p=3.0 km /s (actual values.

gray); and 1’pp=3.2 km/s (dashed).

10. P-wave moveout velocity calculated from formula (1) and normalized by
the expression for isotropic media (6). The dip angles range between 0 and 70
degrees. (a) different models with the same = 0.2: ¢ = 0.1. § = —0.071 (solid);
€ =0.2.6 = 0. (grav): ¢ = 0.3. § = 0.071 (dashed) — the curves practically

coincide with each other. (b) models with different n: 7 = 0.1 (solid); n = 0.2

(gray); n = 0.3 (dashed).

11. E as a function of the ray parameter corresponding to the dipping reflector
for (a) the model used to generate Figure 5 (1pg=3.0 km/s. € = 0.2. § = 0.1),

and (b) the model used to generate Figure 7 (1p9=3.0 km/s. e =0.3. 6 = —0.1).

12. Dependence of the inverted values of 5 (a) and V, (b) on the error in
the measured NMO velocities. The model parameters are Vpg = 3.0 km/s,
€ =0.2. and ¢ = 0.1: reflector dips of 0 and 40 degrees were used. Black lines
correspond to errors in the NMO velocity for only the dipping reflector. Gray

lines correspond to identical errors in both Vimo values.

13. Anisotropic time-migration impulse response for solutions from (a) Fig-
ure 5. and (b) Figure 7. The three curves on each plot correspond to the
solutions with 1 = 2.8 km/s (solid black line). 3 km/s (solid gray line), and

3.2 km/s (dashed black line).
14. Model with reflectors dipping at 0.20,40. and 60 degrees.

15. Anisotropic time migrations of synthetic data generated for the model in
Figure 14 using (a) the actual model values of Vpy = 3.0 km/s. € = 0.2, and

6 =0.1; and (b) an equivalent solution Vpy = 2.6 km/s, € = 0.43. and 6 = 0.3.
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16. Anisotropic poststack time migrations of a synthetic data set generated for
the model in Figure 14 using distorted values of n: (a) n=0.01. (b) n=0.06: the

actual value 5 = 0.0833. In both cases Vamo(0)=3.29 km/s. the correct value.

17. Curves of the value of f = x)’f—g; in equation (23). for a range of equivalent
solutions and four different values of the ray parameter p. Here. 13,,0=3.29

km/s and 5 = 0.0833.

18. Time-migrated seismic line (offshore Africa). The grayv bar to the left of

CMP 1000 shows the CMP gathers that we will examine in Figures 19 and 20.

19. Constant-velocity stacks for the area below the gray bar in Figure 18 af-
ter the conventional sequence of NMO and constant-velocity DMO (without
accounting for anisotropy). The velocity values at the top correspond to the

stacking velocity for horizontal reflectors.

20. Constant-velocity stacks after the N MO-DMO sequence adapted for homo-
geneous \'TT media. The velocity values at the top correspond to the stacking

velocity for horizontal reflectors. n = 0.07.

B-1. A stratified anisotropic model that includes a dipping reflector beneath
a stack of horizontal homogeneous layers. It is assumed that the incidence
(sagittal) plane represents the dip plane of the reflector and a symmetryv plane
of the medium. V' is the phase velocity in the laver mmmediately above the

reflector.
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