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Abstract We present an interactive algorithm to model

physics-based interactions in dense crowds. Our approach

is capable of modeling both physical forces and inter-

actions between agents and obstacles, while also allow-

ing the agents to anticipate and avoid upcoming col-

lisions during local navigation. We combine velocity-

based collision-avoidance algorithms with external phys-

ical forces. The overall formulation produces various ef-

fects of forces acting on agents and crowds, including

balance recovery motion and force propagation through

the crowd. We further extend our method to model

more complex behaviors involving social and cultural

rules. We use finite state machines to specify a series

of behaviors and demonstrate our approach on many

complex scenarios. Our algorithm can simulate a few

thousand agents at interactive rates and can generate
many emergent behaviors.
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Fig. 1: Simulation of Tawaf : We simulate pilgrims

performing the Tawaf ritual. In our scene, about 35,000

agents circle around the Kaaba, performing a short

prayer at the starting line while some of the agents try

to get towards the Black Stone at the eastern corner of

Kaaba. We model the interactions between the agents

in a dense crowd, such as when the agents are pushed

by crowd forces (see video).

1 Introduction

Multi-agent simulations are frequently used to model a

wide variety of natural and simulated behaviors, includ-

ing human crowds, traffic, groups of birds, bees, fish,

ants; etc. In many of these applications, it is important

for the agents to interact in a physical manner with

each other and the environment. Agents often collide,

push, and impart forces on other agents and on the ob-

stacles in the environment, changing their trajectory or

behavior. The challenge is to model these interactions

in large multi-agent systems at interactive rates. Many
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multi-agent simulation techniques focus mainly on lo-

cal navigation based on anticipatory collision avoidance

and does not explicitly take into account physical inter-

actions between agents or between agents and obstacles

in the environment. Moreover, collision avoidance be-

havior towards the obstacles are limited to the static

obstacles.

Methods which focus only on collision avoidance can
work well in scenarios with low to medium density (e.g.

less than 2 agents/m2), where there is enough space for

the agents to navigate freely without collisions. How-

ever, there are many situations such as political rallies,

religious gatherings, or public subway stations, where

agents can get very close to each other, and physical

interactions between the agents frequently occurs. An

agent may be pushed, or bumps into other agents in

dense scenarios. For these kinds of dense crowds, it is

important to model the direct physical interaction be-

tween the agents. Additionally, the indirect effect of the

physical impact transferred to neighboring individuals

in the crowd, such as the domino effect of people lean-
ing against each other, may impact the trajectory of a
high number of agents in a crowd. In extremely dense

crowds, the forces from crowds sometimes become very

large and can completely change the trajectory of an

agent or make them fall. In these cases, crowd disasters

can occur [38]. For all these reasons, understanding and

simulating physical interaction between agents is nec-
essary to simulate and analyze dense crowd scenarios.
As the density of the crowd increases, it is more likely

that even small motions can cause physical interactions

with neighboring agents.

Similarly, the forces from many individual agents

combine to produce a large effect on the environment.

For example, crowds may push stacked boxes while

moving through a narrow corridor and somebody may

be hit by a falling boxes. Dense, aggressive crowds bend
fences or break walls. In order to simulate such scenar-
ios, we need to develop appropriate two-way coupling
techniques between autonomous agents and the obsta-

cles in the environment.

Main Results: In this paper, we present a new

method to model physical interactions between agents

and objects in an interactive velocity-based multi-agent

framework. Our approach incorporates both an agent’s

ability to anticipate and avoid upcoming collisions, while

also modeling physical responses to external forces in a

single unified framework.

We compute the velocity of each agent as a linear

programming problem in the velocity space. The result-

ing approach is efficient and can be used to simulate

dense scenarios with thousands of agents at interactive

rates. We further extend our method to model more

Fig. 2: Wall Breaking. We demonstrate the physical

forces applied by cylindrical agents to breakable wall

obstacles. Our algorithm can model such interactions

between the agents and the obstacles in dense scenarios

at interactive rates.

complex behaviors involving social and cultural rules.

We use finite state machines to define a series of be-

haviors as well as parameters for our physical interac-

tion model. These parameters are used to distinguish

between responsive collision avoidance behaviors and

force-based physical interactions. For example, we use

our approach to simulate various behaviors during the

Tawaf ritual. We show that our velocity-based formula-

tion can reliably simulate tens of thousands of agents in

very dense scenarios (maximum density 8 agents/m),

and model the physical interactions. Furthermore, we

show that our approach is quite robust and we can use

large time steps. We have also integrated our approach

with the Bullet Physics Engine [1], and highlight the

performance in many scenarios.

The rest of the paper is organized as follows. Sec-

tion 2 gives a brief review of related work, Section 3

describe velocity-based physical interaction model com-

bining anticipatory collision avoidance and physical forces,

and Section 4 discuss high-level behavior modeling us-

ing a finite-state machine. We highlight the performance

on different scenarios focusing on physical interactions

in Section 6.

2 Related Work

2.1 Multi-Agent Motion Models

Many approaches have been proposed to simulate the

motion of large number of agents and crowds. Often

these models are based on rules, which are used to guide

the movement of each agent. An early example of such
an approach is the seminal work of Reynolds [30], which
uses simple rules to model flocking behavior.

Force-based methods, such as the social force model

[12], use various forces to model attraction and repul-
sion between agents. These forces are not physically

based; rather, they provide a mechanism to model the

psychological factors that govern how agents approach
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each other. Other approaches model collision-avoidance

behavior with velocity-based techniques [3,29,14] or vision-

based steering approaches [27].

Other techniques have been proposed to model com-

plex social interaction. HiDAC [28] uses various rules

and social forces to model interactions between agents

and obstacles; collision avoidance and physical inter-

actions between agents and objects are handled using

repulsive forces. The composite agent formulation [43]

uses geometric proxies to model social priority, author-

ity, guidance, and aggression. Many other multi-agent

simulation algorithms exist, using techniques inspired

by different fields such as sociology [25], biomechan-

ics [9], and psychology [31,8,10,17] to model differ-

ent aspects of agent behaviors and decision models.

These approaches are able to generate realistically het-

erogeneous behaviors for agents. Our approach to model

physical interactions can also be combined with many

of these approaches.

Other techniques use cognitive and decision-making
models to generate human-like behaviors [33,44,41], or

use data-driven approaches to the problem [20,22].

2.2 Dense Crowd Simulation

Density and crowd behaviors are closely related. The

fundamental diagram is an empirically measured rela-

tionship between the pedestrian density and speed [32].

Some crowd simulation algorithms tend to adhere to

the fundamental diagram. Curtis et al. [6] propose a
method to simulate density-dependent behaviors for velocity-
based collision avoidance technique. Lemercier et al. [21]
focus on generating realistic following behaviors based

on varying densities.

Other approaches for modeling crowds are based on

continuum or macroscopic models [13,40,26]. In partic-

ular, Narain et al. [26] present a hybrid technique using

continuum and discrete method for aggregate behaviors

in large and dense crowds. These continuum methods
are mainly used to simulate the macroscopic flow and
may not model the detailed interactions between the in-
dividuals and the obstacles. In contrast, our approach

simulates agent-agent and agent-obstacles physical in-
teraction.

Some force-based techniques are used to simulate
the interactions between agents in a dense crowd. Hel-
bing et al. [11] model panic behavior with two addi-

tional physical forces (body force and sliding friction) in

addition to the social forces. Yu and Johansson [45] pro-

pose a force-based technique to model the turbulence-

like motion of a dense crowd by increasing the repulsive

force.

2.3 Force-Based Techniques for Character Animation

There has been extensive work on using physics-based
models to improve character animation. Sok et al. [37]
use a force-based approach to ensure that the resulting

motions are physically plausible. Other approaches con-

sider geometric and kinematic constraints [36] or use in-

teractive methods for character editing [15]. These tech-

niques, which are primarily based on enhancing motion-

captured data, can be used to simulate behaviors of

and interactions between the characters and obstacles

in their environment.

Many hybrid techniques have been proposed that

bridge the gap between physics-based simulation of char-

acter motion and pre-recorded animation of characters

to model responsive behavior of character [34,46]. Muico

et al. [24] propose a composite method to improve the

responsiveness of physically simulated characters to ex-

ternal disturbances by blending or transitioning multi-

ple locomotion skills.

Our approach is quite different from these methods.

Unlike character animation techniques that mainly fo-

cus on generating the full-body motion of a relatively

small number of characters, we focus on generating phys-

ically plausible interactions between a large number of
agents in dense scenarios.

2.4 Crowd Simulation in Game Engines

Some commercial game engines or middleware prod-

ucts can simulate character motion or crowd behavior.

This includes Natural Motion’s Euphoria, which simu-

lates realistic character behavior based on biomechanics
and physics simulation. There are also commercial AI
middlewares for game engines that combine crowd and
physics simulation: Kynapse, Havok AI, and Unreal En-

gine are examples of these. These systems primarily fo-

cus on the local and global navigation of each agent us-

ing navigation meshes and local rules. Other crowd sim-

ulation software such as Miarmy, Massive, and Golaem

are integrated with modeling and rendering tools, and

used to create character animation. Our approach to

generating physical interactions can be combined with

these systems to improve local interactions between the
agents and the obstacles in the scene.

3 Velocity-based Modeling of Physical

Interactions

Our approach extends the approach described in [16] to
model the physical interactions between a large num-

ber of agents and obstacles. In this section, we give an
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Fig. 3: System Overview. The motions for objects and agents are computed by a rigid-body dynamics solver

and a constrained optimizer, respectively. Physical interactions between agents and obstacles determine forces.

For obstacles, the forces serve as inputs to the rigid-body system; for agents, they become force constraints. These

force constraints are combined with the original ORCA planning constraints and serve as inputs to optimization
algorithm.

overview and a summary of techniques used to compute

the forces.

3.1 Overview

Local navigation and anticipatory collision avoidance

of agents can be efficiently modeled using reciprocal

velocity obstacles, which imposes linear constraints on

an agent’s velocity to help it navigate its environment.

We extend this framework by representing the effect

of physical forces on agents also as linearized velocity

constraints. This allows us to use linear programming to

compute a new velocity for each agent – one which takes

into account both the navigation and force constraints

imposed upon that agent. Fig. 3 gives an overview of

the full simulation system.

Agents are assumed to have a preferred velocity.

This is the velocity at which the agent would travel if

there were no collisions to avoid or physical forces act-

ing on the agent. At each timestep, an agent computes

a new velocity that satisfies the velocity constraints,

then updates its position based on the preferred veloc-

ity. There are two types of constraints which we impose

on an agent’s velocity:

– ORCA Constraints guide the collision avoidance

by specifying the space of velocities which are guar-

anteed to remain collision-free for a given period of

time [3].

– Force Constraints account for forces which arise

through physical interactions with other agents and

objects.

Given an agent A with neighbors B, the permitted

velocities for A, PVA is the union of ORCA constraints

and force constraints. We can state our agent update

algorithm as an optimization problem. Formally:

PVA = FCA ∩
⋂

B 6=A

ORCAA|B , (1)

vnew = argmin
v∈PVA

‖v − vpref‖, (2)

where vnew, vpref and FCA are the new velocity,

preferred velocity, and force constraints of A, respec-

tively. ORCAA|B is ORCA constraints of A given its
neighbors B.

3.2 Anticipatory Collision Avoidance

There are some significant differences between an agent’s

interaction with a neighboring agent and a dynamic ob-

stacle, in terms of the motion computation. The motion

of obstacles (e.g. rigid bodies) is governed by Newto-

nian physics, since these objects have no will and are

unable to initiate movement on their own. As a result,

the agents cannot assume that the obstacles will an-

ticipate collisions and change trajectory to avoid them.

We take account such difference into agent’s collision

avoidance behavior.

3.2.1 Agent-agent collision avoidance

ORCA constraints are defined by a set of velocities that

are guaranteed to avoid upcoming collisions with other

nearby agents. The constraints are represented as the
boundary of a half plane containing the space of feasi-
ble, collision-free velocities. Given two agents, A and B,
which we represent as 2D discs, we compute the mini-

mum vector u of the change in relative velocity needed
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to avoid collision. ORCA enforces this constraint by re-

quiring each agent to change their current velocity by

at least 1/2u. The ORCA constraint on A’s velocity

induced by B would be:

ORCAA|B = {v|(v − (vA +
1

2
u)) · û ≥ 0}, (3)

where vA is A’s current velocity and û is the normalized

vector u.

If A has multiple neighboring agents, each will im-

pose its own ORCA constraint on A’s velocity. Lo-

cal navigation is computed by finding the new velocity

for A (vnew) which is closest to its preferred velocity

(vpref ) while respecting all the ORCA constraints.

3.2.2 Agent-dynamic obstacle collision avoidance

The dynamic object O is represented, like the agents,

as an open disc that is a 2D projection of the bound-
ing sphere of the object. We use this bounding shape
for collision avoidance since the agent’s navigation is
performed in 2D space, but the underlying rigid body

simulation uses an 3D object shape for handling colli-

sions with other rigid bodies in the scene.

Agents try to avoid collisions with dynamic obsta-

cles whenever the dynamic obstacles are within agent’s

visual range. However, agents do not assume objects

will reciprocate in avoiding collisions. Therefore, as-

suming that a change in velocity of u (Section 3.2.1)
is required to avoid an anticipated collision with an ob-

stacle, the collision avoidance constraint for agent A
induced by object O is:

ORCAτ
A|O = {v|(v − (vA + u)) · û ≥ 0}. (4)

3.3 Constraints from Physical Forces

We give brief description of the forces in this section.

Contact forces include pushing forces and collision forces,

and model collision response force or an attempted push-

ing. inferred forces include deceleration force and resis-

tive force, and model the impact of forces on agent’s

motion. For more detail, please refer to [16].

3.3.1 Force computation

Pushing Forces: Pushing is one of the ways for agents

to physically interact with each other [28]. In our for-

mulation, the pushing force f
p
i|k exerted by an agent i

pushing another agent k can be given as:

f
p
i|k = ρkfp

pk − p+
i

‖pk − p+
i ‖

, (5)

where pi and pk indicate the positions of agent i and k,

respectively, and p+
i = pi+vi∆t is the pushing agent’s

future position at the next time step. fp is a magnitude

of total pushing force of agent i towards all interacting

agents. It can be defined by the designer, but in our

examples, we compute this value to be proportional to

agent i’s current speed. ρk is used to define the weight

of pushing force towards each interacting agent k. For
our examples, we formulate it as an inverse of number

of agents that are pushed.

Collisions: In case of collisions between agents, a

collision resolution force is applied. This force is com-

puted based on the physically-based simulation approach

proposed by [2]. We consider only linear momentum

and simulate agents as radially symmetric disks. For

an agent i colliding with agent k, the collision force f c

is computed as follows:

f c = ( −(1+ǫ)vrel

1/mi+1/mk
· n)/∆t, (6)

where n is the collision normal, pointing towards agent

i from agent j; vrel is relative velocity; and mi and mk

are the mass of agent i and agent k, respectively. ǫ is
the coefficient of restitution. In our examples, we assign

a uniform mass to each agent, but any reasonable mass

value can be used for the simulation.

In case of a collision between an agent and a dy-

namic object, the impulse force is computed in the same
way. A force with the same magnitude but with the

opposite direction is applied to the object, which also
results in change of angular motion generated by the
torque τ c:

τ c = f c × ro, (7)

where ro is the displacement vector for the contact

point of the object.

Deceleration Forces: When an agent reduces speed

while preserving direction to within a certain threshold

( θd), we introduce a force into the system based on
this velocity change. The deceleration force generated

by agent i’s deceleration is defined as:

fdi =

{

kthreshmi∆vi/∆t if (∆v̂i · v̂i) < −cos(θd),

0 otherwise,
(8)

where ∆vi = vi−v−
i is the change in velocity from the

previous time step to the current time step. Agents can

absorb or transform forces, which are approximated by

a parameter kthresh. We assume that the speed reduc-
tion arises from one of two sources: self-will (e.g. sudden

change of preferred velocity) or agent interaction (e.g.
impending collision avoidance). When there is no inter-
acting agent, we assume it is the former case, and the

deceleration force is applied back to the agent itself.

In the latter case, we distribute the deceleration force
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among the neighbors. A neighboring agent k causes

such behavior if it lies within a cone centered on v−
i

and is within an angular space of 2θd degrees.

Resistive Forces: Resistive forces occur when an agent’s

computed velocity does not account for the entire change

in velocity expected from the external force. This dif-

ference is propagated to neighboring agents via the re-

sistive forces. This force is computed by the difference
between the velocity v computed by (2) and the veloc-

ity vf computed only from the net force applied to the

agent. The resistive force of an agent i experiencing the

discrepancy between vf and v is:

fri =

{

kthreshmi(vi − v
f
i )/∆t if vf

i 6= 0

0 otherwise.
(9)

As in the case of deceleration force, the resistive
force is applied to the agent i when there is no interact-

ing agent. Otherwise, the resistive force is distributed
equally among the interacting agents, whose position is

inside a cone centered on v
f
i and with an angular span

of 2θr degrees.
The resistive force and deceleration force can be

viewed as complementary to one another. The resis-
tive force is non-zero only in the presence of external
physical forces on an agent, and the deceleration force
is non-zero only in the absence of such forces.

3.3.2 Force constraints

The net force f is the sum of all the forces applied to

the agent:

f =
∑

f c +
∑

fd +
∑

fr +
∑

fp. (10)

The force constraint FC induced by the net force f

is computed as follows:

vf = v +
f

m
∆t (11)

FC = {v|(v − vf ) · f̂ ≥ 0}. (12)

FC is a half plane whose boundary, a line through vf ,

is perpendicular to the normalized force f̂ . It contains

a set of velocities that is equal to or greater than the
minimum velocity change required by the force f .

3.4 Benefits of Force Constraints

By introducing inferred forces, our method can model

balance recovery motions that cannot be captured by

physics-based rigid body dynamics.

Balance recovery motion: When forces are ap-

plied, rigid body motion changes accordingly to the

Newtonian dynamics. However, humans have the abil-
ity to absorb and resist the external forces even from

unexpected events such as sudden pushes or an impact

from an obstacle. In these situations, humans take ef-
fort to keep their balance creating a behavior known as
balance recovery in Biomechanics [23]. Balance recov-

ery is important to model human locomotion, and has
been studied in other fields like robotics for humanoid
robots [42] and in computer graphics for animated char-

acters [35].
Typical balance recovery motions include taking ad-

ditional steps or reaching and grasping an object for

support. When humans fails to recover the balance,

they take further adjustments to refine their initial re-

sponses. In other words, the balance recovery can af-

fect the motion, including the trajectory, for a period

of time. The balance recovery motion is a result of

both physical and cognitive activity, which also depends

on the environmental constraints and affordances (e.g.,

space to step, objects to grasp for support) [23].

We define two forces, deceleration force and resistive
force that are used to simulate the behavior correspond-

ing to balance recovery. We infer these forces from the

agent’s motion at a given time, based on our assump-

tion that the motion of an agent can be decomposed

into two components: collision avoidance and Newto-

nian dynamics. Loosely speaking, we treat the different

between the velocity implied by the physics forces and

the resultant velocity produced by the simulation as a

recovery force which is applied on the nearby environ-

ment and agents.

Force propagation: Forces applied to an agent can

propagate through a dense crowd, since one agent is

likely to exert forces on others for support in order to re-

cover from the external pushing force. The propagation

forces can be inferred when the motion computed using

constrained optimization does not match the motion
expected from external physical forces. In this case, we
assume that the agent’s action of balance recovery took
place to resist the external physical forces. For exam-

ple, when an agent decelerates at a faster rate than that

implied by the external forces, we infer that the agent

must be pushing against other agents or obstacles in or-

der to be able to slow down so quickly. Likewise, when
an agent accelerates at a rate less than that implied
by external forces, we infer the agent must be pushing
against other agents or obstacles, while resist the effect

of the forces. These inferred propagation forces are ap-

plied to the appropriate neighboring agents during the

subsequent timestep.

4 Higher-Level Behavior Modeling

In many cases, the crowd or individual behaviors change

over a period of time. Cultural, social norms, as well
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as personal goals and intentions can change a person’s

behaviors over time. Likewise, individuals can exhibit

role-specific behaviors, in a variety of situations which

can fundamentally change how they interact with each

other. A clear example of this can be seen in sport-

ing events, where the behavior towards the players of

their own team members are cooperative (and avoid

collisions), whereas the behavior towards members of
the opposite team often includes blocking, tackling and
other forms of physical collisions. Ideally, we would like

to model a full variety of such behaviors using our

physically-based interactions, while accounting for changes

in behavior.
Incorporating such a variety of behaviors changing

over time, and depending on the situation or social, cul-

tural norms requires a way to model higher-level deci-

sion making process and behavior rules. A common ap-

proach to achieve state-dependent behaviors in general

is to use Finite State Machines (FSM). In this section,

we show how our simulation approach can be combined

with FSMs to model such complex physical behaviors in

multi-agent simulations. The resulting framework pro-

vides a natural way to define different behavior patterns

and changes of those behaviors over time and in differ-

ent situations.

4.1 The Behavior Finite State Machine

An FSM is a machine or a model which has finite num-

ber of state and transitions between the states. FSMs

have been widely used as a way to model intention and

decision making process for agents in Crowd Simulation

and Games [39,4]. For example, FSMs can describe a

set of behaviors for an agent with certain social status

(e.g., a leader) along with the transition of these behav-

iors in certain situations (e.g., safe state or dangerous

state) based on the leader agent’s perceived informa-

tion. Recent work has integrated such an FSM-based

behavior specification with velocity-based local collision
avoidance schemes to simulate crowds displaying vari-
ous behaviors [5]. We present an improved algorithm

that extends this framework to produce complex simu-

lations with physically-based agent interactions.

Fig. 4 shows the overall architecture of the FSM
based behavior modeling for our physical interaction

model. We specify a set of actions (behaviors) for each
state, along with interaction parameters that change
the behavior of the individual agents and the crowd.

Transitions between the FSM states are made based

on the result of our physical interaction model com-

bined with local collision avoidance method. This cor-

responds to the decision making process of an agent,

which is based on the perceived information about the

Behavior FSM 

Physics Interactions 

Local Navigation 
Local Collision Avoidance Parameters 

Preferred Velocity Computation 

Physical Interaction Parameters 

Agent FSM States Agent  

Physical State 

Velocity 

Constraints 

Fig. 4: Overview of FSM-based behavior model-

ing FSM states are used to specify a set of available
actions, along with the parameters used for physics-

based interaction and local collision avoidance. Transi-
tions between the FSM states are made based on the
result of our physical interaction model combined with
local collision avoidance method.

agent itself and its neighbors. The perceived informa-

tion and the decision of current action altogether are

used to compute agents’ local navigation planning. In

other words, we model agents behavior using FSM by

specifying the interaction parameters that define per-

ception and local planning.

Importantly, it’s the combined interplay between an
agent’s perceived information and its behavioral simu-

lation parameters that determine its actions in a simu-

lation. For example, if we reduce an agent’s perception

by only allowing it to sense very close neighbors, the

agent will be less able to plan ahead to avoid collisions

and more likely to run into neighbors. However, when

the two agents collide, the magnitude of the interaction

will be controlled by the physical interaction parame-

ters. Therefore, a rude or hurried agent state can be

created by reducing the perception range, and increas-

ing the pushing forces, and a more polite or relaxed

agent state can by made by increasing the perception

range and decreasing pushing. In this way, we use the

same motion model (Eq. 1 and Eq. 2) across all the

states of the FSM, but leverage the agent parameters

to diversify the agent interactions.

Because of this relationship between collision avoid-
ance parameters and physical interaction parameters,

both should be considered together when designing the

FSM. Table 1 shows what both of these components

should be like in terms of intentional behaviors and

responsive behaviors. For intentional interactions, the

agent’s primary goal is to approach the target and ap-
ply intended forces. In this case, higher anticipatory
collision avoidance behavior prevents the agent from

getting closer to the target. Rather, the agent should

be able to approach the target even when they perceive

impending collision with the target. For example, a soc-

cer player would even run towards the ball even when

the ball is approaching the player at a high speed. To
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model such behavior, local collision avoidance behavior

should be minimized to allow the agent to physically

interact with the target, but still be able to prevent

overlap with the target object.

Intentional Responsive
physical interaction behaviors

Preferred towards (local, global)
velocity the target destination
Collision no anticipated
avoidance overlap collision avoidance
Physical applying forces collision
interaction (varying magnitude response or

and direction) balance recovery

Table 1: Different interaction parameters for intentional
behaviors and responsive behaviors

5 Results

In this section, we highlight the performance of our al-

gorithm in different scenarios. We first show some re-

sults of our physical interaction model, and then present

FSM-based behavior modeling with dodge-ball game

scenario and Tawaf ritual scenario. We also analyze the

approach and compare it with other techniques. We di-

rect the readers to the video or the preliminary version
paper [16] for more results on physical interaction mod-
els.

5.1 Agent-Agent Interaction

We demonstrate a few scenarios which highlight the

effect of physical interactions between agents and how
those effects propagate through crowds.

Running Through Scenario: We demonstrate a

scenario where an agent runs at a high speed and push
through a dense crowd of 25 agents that are stand-
ing still. Fig. 5 compares the result of our method to

those achieved using multi-agent simulation without

any physical interactions.

The left side of each image shows a pushing agent

(red) passing through the crowd, and the right side of

each image shows the position of all other agents in the

crowd after the fast-moving agent has passed. As Fig. 5

demonstrates, agents simulated without physics-based

interaction use minimal motion to avoid collisions. In

contrast, agents simulated using our physically-based

formulation resist the pushing motion (in an attempt

to stand still) and propagate the effects of being pushed

to other agents.

While Moving After 

(a) without physical interac-
tions

While Moving After 

(b) with physical interac-
tions

Fig. 5: Rushing through still agents: The red agent

tries to rush through a group of standing agents, simu-
lated (a) with only anticipatory collision avoidance and
(b) with physical interactions. Using our method, the

forces are propagated among the agents, resulting in a

new distribution pattern (b).

Two Bottlenecks Scenario: In this scenario, long

lines of closely spaced walking agents attempt to pass

through two narrow bottlenecks, as illustrated in Fig. 6.

The first bottleneck (denoted in the figure as (2)) is

about the width of two agents; the second is narrower,

about wide enough for one agent (denoted as (1)). A lo-
cal navigation algorithm that performs collision avoid-
ance frequently results in congestion at both the bot-

tlenecks due to stable-arch formation of agents (high-

lighted with a yellow circle) in Fig. 6 (a). However,

agents simulated by our physically-based method are

able to break this congestion at the bottleneck area

by pushing the blocking agents. The ability to break
through bottlenecks also results in a quantitatively higher
rate of flow for agents using our approach. After sec-

onds, twice as many agents make it through both the

bottlenecks, using our algorithm.

5.2 Agent-object Interaction

We also demonstrate the effect of forces between dy-

namic objects and agents. We used the Bullet Physics

engine [1] to compute the motion of dynamic obstacles

(3D rigid body dynamics). The results demonstrate sev-

eral features of our approach:

– Dynamic Obstacle Avoidance: Agents try to avoid

collisions with other agents and with dynamic ob-

stacles.

– Agent-Object Interactions: Our method takes into

account the collisions which occur between the agents

and the objects. The forces generated by these col-

lisions affect both the objects and the agents.

– User Interactions: Our method is fast enough for

real-time interactive simulation. Users can partici-

pate in the simulation by moving rigid bodies inside

the scene; this movement dynamically changes the

environment for the moving agent.
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(a) Multi-agent simulation with no physical interaction

(b) Physical interaction amongst agents and with the walls

Fig. 6: Two bottlenecks scenario We simulate and

compare crowd behavior at two narrow bottlenecks,

which are marked with red dotted lines. Bottleneck (1)
is barely wide enough for one person to pass through;
bottleneck (2) is about twice that width and allows
two agents to pass through it at a time. The result

from collision-avoidance-only simulation results in an

arch-shaped arrangement of agents in the crowd (high-

lighted with a yellow circle), which causes congestion

at the bottleneck. Our method breaks the congestion
by allowing the agents to push one other in congested
conditions.

Wall Breaking Scenario: In this scenario, long

lines of agents come at a constant rate into the simu-

lated region, which is blocked off with a movable wall

made of 200 blocks glued together. This wall can be

broken into separate blocks if a large external force is

applied by the agents. Agents initially stop to avoid

hitting the wall, but as other agents start to push from

behind, the wall breaks apart and gets carried away

with the agents. Fig. 2 shows stills from the simulation.

Changing the various properties of the wall changes
how the crowd interacts. Fig. 7 shows the result of sim-

ulation with two different configurations of the wall.

In the first configuration, when the blocks are tightly

attached, the wall is not broken. Instead, it is moved

and rotated by crowd forces, and makes a gap for the

crowd to escape through. In the second configuration,
when the wall consists of much heavier blocks that are
glued together tightly, it does not break or move eas-

ily even after the crowd (1200 agents) has entered the

isle. In this configuration, the crowd sometimes makes

a wave-like movement where the sparse density crowd

movement is propagated from front to back and vice

versa.

(a) Tightly attached wall blocks

(b) Tightly attached heavier blocks (zoom out view)

Fig. 7: Wall Breaking Simulations with Differ-

ent Wall Properties. (a) When the blocks are tightly
attached, the wall is not broken. Instead, it is moved

and rotated by crowd forces, and made a gap for the

crowd to escape through. (b) When the wall consists

of much heavier blocks, it does not break or move eas-

ily even after all the crowds (1200 agents) entered the

isle. In this example, sometimes crowd makes a wave-

like movement where sparse density crowd movement is
propagated front to back and vice versa.

Cluttered Office Scenario: In this scenario, sev-
eral decomposed 3D models - a table, a chair, and a

shelf, and several rigid bodies (e.g. boxes) stacked on
top of each other – are placed in the way of the agents.
A long stream of agents attempts to navigate past the
obstacles. Users can throw boxes, which push the agents

and knock over objects in the environment. Fig. 8 shows

a still from the simulation.

Fig. 8: Office Scenario. Agents navigate to avoid of-

fice furniture. As users insert flying pink boxes into the

scene, the agents get pushed, collide into each other,

and avoid falling objects (see video).

5.3 Dodge-ball scenario

As an example of state-based, physical interaction, we
show how our FSM based algorithm can be used to
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Attack Defense 

Kicked the ball to the opponent 

or the ball fell in the opponent’s area 

Collision seeking (Preferred velocity towards the ball) + User-defined fast walking speed  

+ kicking (pushing) the ball when close enough 

Collision avoidance (Preferred velocity away from the ball) + User-defined fast walking speed 

The ball fell on the ground in the character’s area 

Fig. 9: FSM for Dodge-ball Scenario We use a sim-

ple two-state FSM to specify the game rule. The states
consists of defense state and an attack state. During

the attack-state, the character chases a ball and kicks
it to its opponent. A character in defense-state tries
to avoid the ball until the ball fell down on the ground.
State transitions occur based on the location of the ball

and the kicking (applying force to the ball) action per-
formed by the character.

time 

(a) Orange character avoids a ball

time 

(b) Orange character approaches and kicks a ball

Fig. 10: Behavior examples modeled by our

method (a) Green character (user-control, left) kicks
the red ball to the orange character (computer con-

trol, right). Orange character is in the defense-state at
that moment, and tries to avoid the ball. (b) When
the ball falls down, the orange character’s state is

changed to the attack-state. Collision avoidance behav-

ior is changed just to meet non-overlapping condition

with the ball and the character’s preferred velocity is

updated towards the ball. The orange character ap-

proaches the ball and kicks the ball to the green char-

acter.

control behavior changes in simulated game of dodge

ball. Here, we created an interactive dodge-ball game,

where a user can control one of the game characters, and

the computer program controls the other character(s).

A two-state FSM is used to specify the behaviors (See

Fig. 9), with the states consisting of a defense state and

an attack state. During the attack state, a character

chases a ball and kicks it to its opponent. A character
in defense-state tries to avoid the ball until the ball rolls
on the ground. State transitions occur based on the
location of the ball and the kicking action performed

by the characters.

Figure 10 shows part of the scenario highlighting the
change in interaction between the agent and the ball.

The first two images, Fig. 10(a), show the agent be-

havior in the defense-state. The user-controlled green

character on the left kicks the red ball at the FSM-

controlled orange character on the right. Initially the

red character tries hard to avoid the ball, with the local

collision avoidance algorithm for this character consid-

ering a large perception radius, with a long time du-

ration, when computing its motion. In cases where the

agent is not able to avoid the collision (e.g. the ball is

moving too fast), there is a physically simulated colli-

sion response between the ball and the agent. Due to

relatively smaller mass (0.4kg) of the ball compared to

the characters (70kg), the effect of collision and result-

ing forces is much larger on the ball. If the FSM-agent is

successful in avoiding the collision, its state will change

to the attack state (Fig. 10). Here, the agent’s collision

avoidance behavior is changed allowing it to approach

the ball as fast as possible (e.g., small sight radius and

large preferred velocity), then to kick the ball towards

the green character. The force applied to the ball is

computed based on the speed of the character, and its
direction is towards the user-controlled agent.

As can be seen in this example, our overall approach

can model collision avoidance, collision response, apply-

ing intentional forces, and decision making for the char-

acter (e.g., goal position and transition of the state). In

the supplementary video, we show an expanded version

of this scenario with increased number of balls. We can
observe a character chasing a ball while avoiding other
dynamic obstacles, and, at times, pushing through them

to attack the other character. Properly simulating these

interacting behaviors requires physical interaction, lo-

cal collision avoidance, and behavioral states to be com-

bined together in the same framework as we have pre-

sented here.
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5.4 Large-Scale Simulation: Tawaf Scenario

Because our method has only a small computational

cost per-agent, and is stable even in dense scenarios, it

can be used to produce complex, large-scale simulations

with agents physically interacting across a variety of dif-

ferent behaviors. To illustrate this, we performed a case-
study in simulating the large, dense crowd performing
the Islamic ritual of pilgrimage called the Tawaf.

During the Tawaf, pilgrims walk in a circle around

the Kaaba, the large central structure, seven times counter-
clockwise for prayers. While circulating, many pilgrims
try as part of the ritual to reach the central black stone
located at the eastern corner of the Kaaba; alterna-

tively, they perform a short prayer while facing the

Kaaba at the beginning of each circuit. The walkable

area surrounding the Kaaba, is known as the Mataf

and can support upwards of 35,000 pilgrims gather to
perform the Tawaf [5].

We have extended the simulation of Curtis et al. [5],

to produce a simulation of the Tawaf ritual with about
35,000 FSM-driven, physically-interacting agents as de-

scribed in Section 4.

The FSM we use, both sets the goals of the agents

in order to follow the steps of the ritual and modi-
fies the agent’s behavioral parameters to help achieve
these goals. For example, some of the agents will prob-

abilistically choose to move closer to the central Kaaba

structure in order to approach a religiously significant

black stone. Agent in the “Move to Black Stone” state

are allowed to exert physical pushing forces on their

nearby neighbors in order to successfully move through

the dense crowd to reach the stone. Figure 11 shows all

the FSM states and transition conditions, along with
the descriptions about a few important variables condi-
tions for the local navigation and physical interactions
for the corresponding state. Most notably, agents exert

pushing forces on the crowd if they are trying to touch

to the black stone on the Kaaba or are trying to exit

the Mataf after completing the ritual.

Flow Analysis: We measured the average speed

and density of the agents from our simulation. First,

we computed the average speed in different regions of

Mataf shown in [5]; there is an overall trend towards

higher speed in region 6 and towards a lower speed in

regions 1 and 7 when compared to the speeds of their
neighboring regions (see Fig. 14). These highest speed
and lowest speed regions also match with the real world

data provided by [18]. Second, we computed the den-

sity in different regions of Mataf based on our Tawaf

simulator. Empirically, the density on the Mataf floor

can be as high as 8 people/m2 [5]; our method gives a

maximum density around 7.4 agents/m2 (see Fig.12).

Circle 

Istilam 

Exit Move 

To Black 

Stone 
Enter the queue 

Reach the start region 

Finish short prayer 

Reach the start region 

and 

Circle done 

Waiting Time Exceeds 

or 

Touch the Black Stone 

Start 

User-defined walking speed + Pushing  when the speed is too low (below the threshold) 

30% walking speed + Preferred velocity towards the Black Stone + Pushing forwards 

User-defined walking speed + Preferred velocity towards one of the exit + Pushing forwards 

Fig. 11: Agent States and Transitions. The Tawaf

states are represented as blue circles and transition con-
dition between these states are marked with arrows. We

associate different properties like walking speed, push-
ing condition, etc., with the agent behavior.

Fig. 12: Density from the Simulated Result. Re-

ported densities on the Mataf floor can be as high as

8 people/m2 [5]; our method gives a maximum density

around 7.4 agents/m2

5.4.1 Effect of physical interactions

We perform two experiments to show the benefit of

physical interactions in large, dense crowd settings. The

first experiment shows crowd forces acting on agents.

The second experiment compares the overall crowd flow

simulated during the Tawaf ritual under increased push-

ing behaviors between agents.

Pushing in the Queue to the Black Stone : As

part of the Tawaf, we simulate the movement of pilgrims

waiting in lines to touch or kiss the Black Stone (the

eastern cornerstone of Kaaba). Pilgrims in this region

makes distinctively slow motion patterns compared to

the other pilgrims circling around the Kaaba. After they
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(a) Without Physical Interaction

(b) With Physical Interaction

Fig. 13: Pushed by crowd. Green circles represent the
agents in the queue waiting to touch the black stone.

The green agents slow down and the result in heavy con-

gestion at the beginning of the queue. Without physical

interactions, agents are stuck in the beginning of the

queue although there is a space in front of the queue to

proceed. By adding physical interactions, the agents in

the queue are pushed by the crowds, and move towards

the black stone without breaking the queue.

touch the Black Stone, these pilgrims join the rest of

circling flow and adjust to the speed of other neighbors.

In the real-world video (see the supplementary video),

we can observe that some of the pilgrims in the queue

are often pushed by neighboring pilgrims. We attempted

to simulate such crowd force that are applied to the

agents in a dense crowd. To see the effect of crowd force,

we assign lower preferred speeds to the agents who have

entered the beginning of the queue. Figure 13 shows the

2D comparison between the simulated queuing behavior

for the Black Stone, (a) when no physical interactions

added and (b) with physical interactions. Green circles

represent the agents in the queue, red circles represent

the agents circling around the Kaaba, blue circles rep-

resent the agents leaving the queue and start circling

after given waiting time.

Due to the sudden slowdown caused by the green

agents, heavy congestion is made at the beginning of the

queue. Without adding physical interactions, we cannot

capture the effect of crowd force applied to these agents

even in such high density. Agents are stuck in the be-

ginning of the queue although there is a space in front
of the queue to proceed. By adding physical interac-
tions, the agents in the queue are pushed by the crowds,

and move towards the black stone without breaking the

queue.

Pushing Towards Exits : We also evaluate the

effect of physical interactions in large crowds. First,

we compare the average speed of the agents with and

1 

2 

3 

4 
5 

6 

7 

Region 
Speed 

(m/s) 

1 0.64 

2 0.76 

3 0.76 

4 0.73 

5 0.76 

6 0.78 

7 0.72 

Fig. 14: Region Speed from the Simulation Re-

sult Average speed of each region of the Mataf area. It

matches the overall trend corresponding to higher av-

erage speed (region 6) and lower speeds (regions 1 and

6) observed by [18].

without physical interactions. Fig. 14 shows the average

speed of the agents measured in the several different re-

gions as proposed in [18]. The overall trend of relative

speeds between regions is the same with and without

pushing, but the average speed increase as agents push

more. In both cases, the trends match well with those

reported in the Tawaf literature [18].

Additionally, we run the same scenario with increased
number of aggressive pushing agents. When an agent

finishes the ritual, the agent is assigned a randomly

selected exit (from the five exits in the Mataf area) as

their goal position, and tries to push through the crowd.

Since the exiting agents have to escape through a very

dense crowd while also moving in the circular flow, their

pushing forces affects the average speed of entire region.

At any given point in the simulation, about 2% of the

total number of agents are trying to exit. By adding
more pushing agents, the average speed increased about
0.2m/s. Figure 15 summarizes the speed of the agents

in each of the Tawaf regions.

6 Analysis

Our approach is mainly designed for interactive appli-
cations that require plausible physical behavior (e.g.

games or virtual worlds) as well as real-world scenar-

ios with high crowd densities. By using a combination

of force and navigation constraints that affect agents’

behavior, our approach can simulate many useful ef-

fects and emergent behaviors. For example, our for-
mulation allows for intentionally uncooperative agents
to physically push their way through a crowd by im-

parting physical forces to nearby agents. Additionally,

agents can use navigation constraints to avoid collisions

with dynamic obstacles as well as other agents. By ex-

pressing all interactions as linear velocity constraints,

we can naturally combine the two different simulation
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Fig. 15: Comparison of average region speeds.

Blue bars correspond the average speeds of the agents in

each region when we introduce excessive pushing behav-

ior to the exiting agent and queuing agents. Red bars

correspond the average speeds when only the queuing

agents pushes forwards while moving towards the Black

Stone. Increasing number of pushing behaviors brought

a 20% to 40% increase in average speed.

paradigms of forces and navigation into a unified frame-
work and compute the new velocity for each agent using
linear programming.

Performance: We measured the simulation tim-

ings for the demos we presented in earlier sections (see
Table 2). The timings were computed on a 3.4 GHz In-
tel i7 processor with 8GB RAM. Our method efficiently

simulates large numbers of agents, and also exhibits in-

teractive performance when integrated with the Bullet

Physics library.

Num. Dynam. Static
Scenario Agents Obsts. Obsts. fps
Two Bottlenecks 1000 0 20 829.7
Wall Breaking 1200 200 2 50.1
Office 1200 65 0 69.0
Dodge Ball 2 500 4 90.9
Tawaf Sim. 35000 0 23 5.7

Table 2: Performance on a single core for different sce-

narios. Our algorithm can handle all of them at inter-

active rates.

Stability Analysis: It is well known that many

forced based simulation models, such as social force

models commonly used to simulate crowd (e.g. [12])

are prone to stability problems that can even occur at

small step sizes [19]. These problems include oscillation

and loss of accuracy in terms of trajectory computa-

tion. Using bigger time steps can make the problem

worse. In contrast, velocity based collision avoidance

techniques have been shown to produce stable simula-

tions in large, dense crowds [7]. Our approach preserves

this stability across timesteps while still accounting for

physical forces.

One way to analyze the stability of our approach

is by analyzing the number of times we are unable to

find a feasible velocity that satisfies all the constraints,
e.g. both anticipated collision avoidance constraints and
force constraints. When this occurs, it means an agent
can choose a potentially colliding velocity or is not re-

specting the physical constraints.

We perform a test using a scenario similar to Fig. 5.

An aggressive agent pushes through 50 standing agents,

and the pushed agents sequentially exert forces on adja-

cent neighbors by generating physical interactions. Dur-

ing the simulation, we measure the number of times

when linear optimization fails to find the feasible veloc-

ity satisfying all the constraints. In this case, we per-
form higher-order optimization to find a solution.

As can be seen in Fig. 16, at the peak of conges-
tion in the simulation 95% of the agents are able to

find velocities that satisfy all their constraints. Impor-
tantly, this stability holds across a variety of timesteps.
As the timestep size varies from 0.01 up to 0.2, most

of the agents are still able to find constraint-satisfying

velocities. In general, the behavior does not change sig-

nificantly across this wide range of time steps.
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Fig. 16: Number of constraint optimization fail-

ures. We analyze the stability of our method by mea-

suring the number of constraint optimization failures.

At the peak of congestion in the simulation, 95% of the

agents are able to find velocities that satisfy all their

constraints. Importantly, this stability holds across a

variety of timesteps. As the timestep size varies from

0.01 up to 0.2, most of the agents are still able to find

constraint-satisfying velocities.

Benefits of Our Method:

Many techniques have been proposed in the liter-

ature for simulating large numbers of agents that dis-

play a wide variety of emergent behaviors. However,

the primary emphasis of these methods is on collision

avoidance – avoiding any physical contact between the
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agents. In other words, they model how agents move

around each other, but do not usually model explicit

physical contacts, interactions, and external forces.

Force-based methods such as [12] use forces to model

social factors (e.g. attraction and repulsion) between

the agents, not physical interactions. Most closely re-

lated to our work are methods such as [11,45,28]. These

methods model crowd turbulence or physical interac-

tions among panicking agents by adding explicit physi-

cal force or by increasing repulsive forces. These meth-

ods are capable of reproducing some important emer-

gent crowd phenomena, but do not account for the

anticipation needed to efficiently avoid upcoming col-

lisions with other agents and obstacles.

Force-based methods can also suffer from stability

issues in dense scenarios, which require careful tuning

and small time steps in order to remain stable [5,19].

Our method provides stable anticipatory motion for

agents while incorporating agent responses to forces.

It can be easily combined with other velocity-based ap-

proaches.

In terms of large, dense crowd simulation, continuum-
based methods such as [13,40] or hybrid method cou-

pling continuum-based method and velocity-based method
[26] can be effective solutions. However, these methods
do not model physical interactions between the agents
or obstacles. Moreover, it is hard to extend these meth-

ods to model individually varying behaviors or high-

level social behaviors.

Limitations:We use a physically-inspired approach
to simulate the interactions between a high number of

agents and the obstacles. However, it is only an approx-

imation and may not be physically accurate. Secondly,

we assume that agents are constrained to move along a

2D plane, and we use the projected positions of 3D dy-

namic objects to compute the interactions. Third, like

other agent-based simulation methods, we use a rather
simple approximation for each agent (a 2D disc). This
means that we cannot accurately simulate physical in-

teractions with human-like articulated models and 3D

objects.

7 Conclusions and Future Work

We have proposed a novel method to combine physics-
based interactions with anticipatory collision-avoidance
techniques that use velocity-based formulation. Our method

can generate many emergent behaviors, physically-based

collision responses, and propagation of forces to the

agent’s nearby neighbors. In combination with the Bul-

let Physics library, we were able to simulate complex in-

teractions between agents and dynamic obstacles in the

environment. We also showed that our approach can be

extended to model more complex behaviors involving a
decision making process. In addition, we simulated real
world examples of massive crowds such as in the Tawaf

ritual. Our method was able to generate many emergent

behaviors compared with real-world behaviors.
As future work, we would like to further explore our

method by comparing the results with real-world crowd

behaviors and performing more validation. Moreover,

in many scenarios, the external forces could change

an agents behavior. For example, applying intentional

forces such as pushing, kicking can slow down an agent.

Such a phenomena could be well incorporated in our ap-

proach given studies about how such forces can limit hu-

man behavior (e.g., from biomechanics). Furthermore,

we need better techniques to collect data about real-

world crowds in dense settings and use them to validate

the simulation algorithms. We would also like to ex-

tend our model to agents moving in 3D space or multi-
layer frameworks, and to consider using more complex
shapes, or even articulated body models, to represent

agents, as this would allow for more accurate force com-

putation. Finally, we would like to use more accurate

physically-based modeling algorithms to generate ap-

propriate behaviors.
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19. Köster, G., Treml, F., Gödel, M.: Avoiding numerical pit-
falls in social force models. Phys. Rev. E 87, 063,305
(2013). DOI 10.1103/PhysRevE.87.063305. URL http:

//link.aps.org/doi/10.1103/PhysRevE.87.063305

20. Lee, K.H., Choi, M.G., Hong, Q., Lee, J.: Group behav-
ior from video: a data-driven approach to crowd simula-
tion. In: Symposium on Computer Animation, pp. 109–
118 (2007)

21. Lemercier, S., Jelic, A., Kulpa, R., Hua, J., Fehrenbach,
J., Degond, P., Appert-Rolland, C., Donikian, S., Pettré,
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