
Velocity-Based Shock Propagation for Multibody
Dynamics Animation

KENNY ERLEBEN

University of Copenhagen

Multibody dynamics are used in interactive and real-time applications, ranging from computer games to virtual prototyping, and engineering. All these areas

strive towards faster and larger scale simulations. Particularly challenging are large-scale simulations with highly organized and structured stacking. We present

a stable, robust, and versatile method for multibody dynamics simulation. Novel contributions include a new, explicit, fixed time-stepping scheme for velocity-

based complementarity formulations using shock propagation with a simple reliable implementation strategy for an iterative complementarity problem solver

specifically optimized for multibody dynamics.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically based modeling; I.3.7 [Computer

Graphics]: Three-Dimensional Graphics and Realism—Animation

General Terms: Algorithms

Additional Key Words and Phrases: Multibody dynamics, constraint-based simulation, complementarity formulations, shock-propagation, stacking

ACM Reference Format:

Erleben, K. 2007. Velocity-based shock propagation for multibody dynamics animation. ACM Trans. Graph. 26, 2, Article 12 (June 2007), 20 pages. DOI =
10.1145/1243980.1243986 http://doi.acm.org/10.1145/1243980.1243986

1. MULTIBODY DYNAMICS IN

COMPUTER GRAPHICS

A long-term goal in computer graphics is to increase realism and
believability in computer generated animations and pictures. The
general belief is that, as we get better and better at rendering im-
ages, the lack of physical realism and believability will be increas-
ingly obvious and therefore increasingly annoying to the common
observer. The main argument for achieving the goal of more real-
ism has been to use physics to model the behavior and movement
of computer models. Today these efforts have culminated in what is
usually referred to as physics-based animation. Over the past decade
physics-based animation has matured, and today there is a wealth
of simulation methods solving many simulation problems. There
are a vast amount of examples where physics-based animation is
used, for example, rigid bodies stumbling around (The Hulk, Grand
Turismo, Medal of Honor, Half-Life); skin and muscle deforma-
tions (Shrek, the Nutty Professor, Jurassic Park, the Mummy); wa-
ter splashing (Shrek, Titanic, Finding Nemo); jelly blobs dancing
around (Flopper); death-like animations (Hitman); hair blowing in
the wind or bending due to motion of a character (Monsters Inc);
cloth moving (Monsters Inc); and melting robots and cyborg parts
of characters (Terminator 3, Treasure Island), just to mention a few.

While it was a computationally heavy burden 10–20 years ago
to kinetically animate a linked character consisting of no more than
a handful of limbs, today this is considered a trivial task due to
the large increase in computer power. The increase in computer

Author’s address: Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100, Denmark; email: kenny@diku.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or

distributed for profit or direct commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation.

Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to

post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be

requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.

c© 2007 ACM 0730-0301/2007/06-ART12 $5.00 DOI 10.1145/1243980.1243986 http://doi.acm.org/10.1145/1243980.1243986

power allows us to simulate increasingly complex scenarios in an
apparently never-ending spiral, and it appears that there will always
be a demand for faster methods with more details, larger scenes, and
so on.

Current state-of-the-art middleware used in computer games run
at real-time interactive rates but do not deliver the same motion qual-
ity as our method. The methods published in the computer graphics
literature is not interactive but delivers better motion quality than
computer game middleware. In this article, we present a method for
computing high quality plausible motion of several hundreds rigid
bodies at interactive rates.

Multibody dynamics was introduced to the graphics community
in the late 80’s [Hahn 1988; Moore and Wilhelms 1988] using
penalty-based and impulse-based approaches to describe the physi-
cal interactions. Penalty-based simulation lacks the ability to be eas-
ily adopted to different simulations without parameter-tuning. They
are, therefore, not a good choice for versatile multibody dynamics
animation. The impulse-based approach was extended and improved
[Mirtich 1996] but suffered from creeping and stacking problems
until recently when these problems were rectified [Guendelman et al.
2003]. Constraint-based simulation has received much attention as
an alternative to the impulse-based approach [Baraff 1989, 1994].
With the new time-integration method and shock propagation pre-
sented in Guendelman et al. [2003] impulse-based simulation has
become a serious competitor to constraint-based simulation.

Constraint-based simulation of multibody dynamics can be clas-
sified into two groups of algorithms: minimal coordinate methods,

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



2 • K. Erleben

( (b) frame 60

(c) frame 72 (d) frame 84

a) frame 48

Fig. 1. Soli. A 3000-object simulation with a frame time of 1 second using our method. See supplementary movie.

which tend to be recursive in nature [Armstrong and Green 1985;
Featherstone 1998], and maximal coordinate methods, which in
computer animation are dominated by complementarity formula-
tions [Baraff 1994]. The focus of this article is on complementarity
formulations. There exist alternatives to complementarity formu-
lations based on kinetic energy [Milenkovic and Schmidl 2001;
Schmidl and Milenkovic 2004] and motion space [Redon et al.
2003]. However, the former solves a more general problem but is not
attractive for performance reasons, and the latter is of limited use
for realistic animation since it does not include friction. Recently
Kaufman et al. [2005] presented a velocity-based method using pro-
jections onto convex subspaces of feasible velocities. The authors
used a contact model, which is based on limit surfaces and maxi-
mum dissipation [Goyal et al. 1989], together with an ad-hoc model
for bounciness and an approximation of momentum conservation.

Complementarity formulations come in two flavors: acceleration-
based formulations [Baraff 1994, 1995; Trinkle et al. 2001]
and velocity-based formulations [Stewart and Trinkle 1996].
Acceleration-based formulations cannot handle collisions, and one
must stop at the point of collision and switch to a impulse-
momentum law [Baraff 1989; Anitescu and Potra 1996; Pfeiffer
and Wösle 1996; Chatterjee and Ruina 1998]. Further, acceleration-
based formulations suffer from indeterminacy and inconsistency
[Stewart 2000]. Although mostly overlooked in the computer graph-
ics literature, the velocity-based formulation suffers from none of
these drawbacks.

The focus in this article is on computing the dynamics for large-
scale dense structured stacking at interactive frame rates. Other com-
mon configuration types are sparse structured stacking and random
piles. The three types are shown in Figure 2.

In the past, sparse structured stacking has been attractive since
it breaks down the all-pair dependence of the contact constraints

at the design time of the configuration. This is an advantage in,
for instance, computer games where game-level designers can build
worlds with more predictable performance.

Recently random piles have received a lot of attention in com-
puter graphics [Guendelman et al. 2003; Kaufman et al. 2005]. They
appear very complex and difficult to simulate since the all-pair de-
pendence makes them computationally more intractable. Neverthe-
less, the randomness helps hide penetration errors. In fact, as long
as the topmost objects move in a plausible manner, an observer will
not notice any errors deep inside the pile. Penetration errors result
in plausible motion even in the case where objects inside the ran-
dom pile may be observed. In fact the random pile in Figure 2 has
penetration errors. We encourage the reader to find these by visual
inspection.

Dense structured stacking has the same all-pair dependence as
random piles. However, this type of configuration is more challeng-
ing since the nice alignment of structure is immediately destroyed
if penetration errors are not kept under control. For instance, an ob-
server would immediately notice any misalignment of any box in
Figure 2(a). Further, most error correction methods tend to blow up
a structured stack during the process of fixing errors in the bottom-
most layers. When studying dense structured stacking, the natural
object of interest is box geometry because it allows us to immedi-
ately observe misalignment and penetration errors by visual inspec-
tion, and therefore it is our choice of geometry for most test cases.
The method presented in this article deals with all the problems
of large-scale structured stacking with hundreds of objects as our
examples demonstrate.

This article does not deal with the problem of collision detection.
In fact, we use the built-in collision detection engine from Open-
Tissue , which only supports interference queries of primitives and
signed distance maps. The focus of this article lies on solving the

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



Velocity-Based Shock Propagation for Multibody Dynamics Animation • 3

(a) Dense Structured Stacking (b) Random Pile

(c) Sparse Structured Stacking

Fig. 2. The three types of stacking often encountered in computer graphics.

dynamics. Our results generalize to arbitrary polygonal shapes be-
cause the derived model holds for planar contacts. Thus using more
complex geometries really only influences the narrow-phase colli-
sion detection algorithms used. Besides, for performance reasons,
interactive applications rarely use polygonal objects for collision
detection. These are frequently replaced with compounds of boxes,
spheres etc., and polygonal models are used as in-place geometry.

Our article is organized as follows: we will derive the velocity-
based complementarity formulation in Section 2. Hereafter, we
present a simple iterative solver in Section 3. Section 4 extends
the complementarity formulation with shock propagation, and Sec-
tion 5 shows results of our velocity-based shock propagation method
and compares our method to existing methods. Section 6 discusses
various aspects of simulation relevant to our method.

2. VELOCITY-BASED COMPLEMENTARITY

FORMULATION

The contact constraints are formulated using a Jacobian matrix de-
fined as

J =
[

JT
row1

JT
row2

JT
row3

]T
. (1)

Looking at a point of contact between two rigid bodies i and j ,
with contact normal �n and with vectors �ri and �r j from respective
body centers to the point of contact, we can write the nonpenetration
constraint as

[−�n T −(ri
×�n)T �n T (rj

×�n)T ]
︸ ︷︷ ︸

Jrow1

⎡

⎢
⎣

�vi

�ωi

�v j

�ω j

⎤

⎥
⎦

︸ ︷︷ ︸

�u

= Jrow1
�u ≥ 0. (2)

Here �vi and �v j are the linear velocities of the bodies, and �ωi and
�ω j are the angular velocities. The vector �u is referred to as the
generalized velocity vector, and r× ∈ R

3×3 is the skew-symmetric

matrix given by

r× =

⎡

⎣

0 −r3 r2

r3 0 −r1

−r2 r1 0

⎤

⎦ , (3)

such that r×�n = �r × �n. The principle of virtual work requires the
constraint force to be orthogonal to the constraint, which means that

�f1 = JT
row1

λ1, (4)

where λ1 is a Lagrange multiplier which we need to solve for, and

where �f1 is the normal force. Note that �n is assumed to be a unit
vector, meaning that λ1 is the magnitude of the normal force. Physics
requires the normal force to be repulsive and zero at separation,
which yields the complementarity constraint

Jrow1
�u ≥ 0 compl. λ1 ≥ 0. (5)

Applying a friction pyramid as in Baraff [1994] and given the unit
contact tangent plane vectors �t1 and �t2, the tangential velocities can
be written as

[

Jrow2

Jrow3

]

�u =

⎡

⎣

[

− �t T
1 −

(

ri
×�t1

)T �t T
1

(

rj
×�t1

)T ]

[

−�t T
2 −

(

ri
×�t2

)T �t T
2

(

rj
×�t2

)T ]

⎤

⎦ �u. (6)

The constraint forces, that is, the friction forces �f2 and �f3, can thus
be written as

�f2 = JT
row2

λ2, and �f3 = JT
row3

λ3, (7)

where λ2 and λ3 are unknown Lagrange multipliers we need to solve
for. According to Coulomb’s friction model, dynamic friction occurs
when the tangential velocity is nonzero. At that point, the friction
force attains its maximum value and a direction opposite the motion.

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



4 • K. Erleben

This means,

Jrow2
�u > 0 ⇒ λ2 = −μλ1, (8a)

Jrow2
�u < 0 ⇒ λ2 = μλ1, (8b)

Jrow2
�u = 0 ⇒ λ2 <| μλ1 |, (8c)

where μ is the coefficient of friction. The last constraint is the case
of static friction. Similar constraints hold for Jrow3

�u and λ3. Equa-
tions (8) are in fact a general complementarity condition called a
box-constraint, whereas (5) is a corner constraint.

If we define λlo = [0, (−μλ1), (−μλ1)]T and λhi = [∞, (μλ1),
(μλ1)]T , then all constraints, i = 1, 2, and 3, can be rewritten in the
same unified notation as

λi = �λloi
⇒ (J�u)i ≥ 0, (9a)

λi = �λhii ⇒ (J�u)i ≤ 0, (9b)

�λloi
< λi < �λhii ⇒ (J�u)i = 0. (9c)

For N bodies and a set of K contact points, the method is easily
extended as follows. Let the generalized velocity vector �u ∈ R

6N

be

�u =
[

�v1, �ω1, �v2, �ω2, . . . , �vN , �ωN

]T
. (10)

Define the Jacobian of the k’th contact to be

Jk =
[

Ji
link

Ji
angk

J
j
link

J j
angk

]

, (11)

where

Ji
link

=

⎡

⎢
⎣

−�n T
k

−�t T
k1

−�t T
k2

⎤

⎥
⎦ , J

j
lin =

⎡

⎢
⎣

�n T
k

�t T
k1

�t T
k2

⎤

⎥
⎦ , (12a)

Ji
angk

=

⎡

⎢
⎢
⎣

−
(

rki

×�nk

)T

−
(

rki

×�tk1

)T

−
(

rki

×�tk2

)T

⎤

⎥
⎥
⎦

, J j
ang =

⎡

⎢
⎢
⎣

(

rkj

×�nk

)T

(

rkj

×�tk1

)T

(

rkj

×�tk2

)T

⎤

⎥
⎥
⎦

. (12b)

Then a system Jacobian J ∈ R
3K×6N is assembled by filling out a

3 × 3 block structure. That is, for the k’th contact point between
bodies i and j , all blocks of the k’th row of J is set to zero except
for the subblocks:

Jk,2i = Ji
link

, Jk,2i+1 = Ji
angk

, (13a)

Jk,2 j = J
j
link

, Jk,2 j+1 = J j
angk

. (13b)

A similar setup is used for all other contact points. Notice that
a sparse or compressed matrix data structure should be used for
efficiency. Now define

�w = J�u, (14)

then the i’th constraint i ∈ [1..3K ] is given by

λi = �λloi
⇒ �w i ≥ 0, (15a)

λi = �λhii ⇒ �w i ≤ 0, (15b)

�λloi
< λi < �λhii ⇒ �w i = 0. (15c)

The equations of motion can be written as,

M�̇u = JT �λ + �f ext, (16)

where M ∈ R
6N×6N is the generalized mass matrix given by

M =

⎡

⎢
⎢
⎢
⎢
⎣

m11 0
I1

...
m N 1

0 IN

⎤

⎥
⎥
⎥
⎥
⎦

, (17)

with mi as the mass of the i’th body, 1 as the identity matrix, Ii as the
corresponding inertia tensor, and where the external and velocity-

dependent forces are given by �f ext ∈ R
6N ,

�fext =
[

�f ext
1 , �τ ext

1 − �ω1 × I1 �ω1, · · · , �f ext
n , �τ ext

n − �ωn × In �ωn

]T

,

(18)

with �f ext
i as the total linear force acting on the center of mass of

body i , and �τ ext
i the total external torque with respect to the center

of mass of body i . Performing an explicit Euler step on (16) and
isolating the next generalized velocity vector yields,

�u t+1 = �u t + M−1JT �t �λ + �tM−1 �f ext. (19)

This equation is known as the velocity update. Inserting it into (14)
yields

�w = JM−1JT

︸ ︷︷ ︸

A

�t �λ + J(�u t + �tM−1 �f ext)
︸ ︷︷ ︸

�b

= A�λ + �b. (20)

In the last step we have simply moved the timestep �t into the
Lagrange multiplier vector, which means that we solve for magni-
tudes of the impulses rather than magnitudes of the forces. Bouncing
can be added to the formulation by using Newton’s Impact Law, that
is, given a coefficient of restitution, 0 ≤ εk ≤ 1, for the k’th contact
point equation in (2), implies that

Jk,row1
�u t+1

k ≥ − εkJk,row1
�u t

︸ ︷︷ ︸

bk

, (21)

which is equivalent to adding the vector �bbounce ∈ R
3K ,

�bbounce = [b1 0 0 · · · bK 0 0]T , (22)

to the �b-vector in (20). Equation (20) and the constraints in (15) form

a complementarity problem. Solving for �λ yields the constraint im-
pulses needed to perform a velocity update. Defining a generalized
position vector �s ∈ R

7N as,

�s = [�r1, q1, �r2, q2, . . . , �rN , qN ]T , (23)

where �ri is the center of mass position of body i , and qi =
[si , xi , yi , zi ]

T ∈ R
4 is the orientation of body i represented as a

quaternion, and defining

Qi =
1

2

⎡

⎢
⎣

−xi −yi −zi

si zi −yi

−zi si xi

yi −xi si

⎤

⎥
⎦ , (24)

and S ∈ R
7N×6N as

S =

⎡

⎢
⎢
⎢
⎢
⎣

1 0
Q1

. . .

1
0 QN

⎤

⎥
⎥
⎥
⎥
⎦

, (25)

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



Velocity-Based Shock Propagation for Multibody Dynamics Animation • 5

then the position update can be written as,

�s t+�t = �s t + �tS�u t+�t , (26)

which follows from taking an explicit Euler step of �̇s = S�u. Notice
that we are using the constrained velocities �u t+�t in the position
update as obtained from the velocity update. This adds a degree of
implicitness to the explicit-time-stepping scheme, which is given by

first solving for �λ, and then doing a velocity update followed by a
position update.

3. ITERATIVE COMPLEMENTARITY PROBLEM

SOLVER

Equations (15) and (20) result in the complementarity formulation,

A�λ + �b ≥ �0, and �λlo ≤ �λ ≤ �λhi. (27)

In Cottle et al. [1992] splitting methods are described for solving (27)
which are similar to well-known matrix solvers: Jacobi, Gauss-
Seidel, and successive overrelaxation (SOR) methods, followed by
a projection step to enforce the complementarity constraints. It is
possible to use methods like Conjugate Gradient in a similar manner
[Renouf et al. 2005] or to use an active set method [Murty 1988]. The
conjugate projected gradient method has an erratic convergence rate
when friction is included, but a quadratic convergence rate for the
frictionless case [Renouf and Alart 2004]. Our initial test indicated
that the Jacobi method had terrible convergence and that SOR suf-
fered from energy gain. The Conjugate Gradient method has been
reported to be computationally intractable due to frequent changes
of the active set [Moravanszky 2004]. Thus, we were left with Gauss-
Seidel as our practical choice. Gauss-Seidel solvers have previously
been applied for multibody dynamics [Moreau 1999; Jean 1999] al-
though in a blocked version.

Two other types of iterative methods are Newton methods and In-
terior Point methods. The theoretical convergence rate of Newton’s
method is quadratic, which is a clear improvement over Gauss-
Seidel, although Lacoursiere [2003] reported linear convergence in
experiments. The amount of work done per-iteration in a Newton
method is O(n3) because a linear subsystem is solved. Thus, even
if a low number of Newton steps is used, the total complexity will
be O(n3). Interior Point Methods also have quadratic convergence
but, like Newton methods, they, too, must solve a linear subsys-
tem, yielding the same kind of complexity. Often 8–14 outer steps
are needed to produce acceptable results for game animation with
Newton Methods and Interior Point Methods. The subsystems can
be solved with incomplete Cholesky preconditioned Conjugate Gra-
dient methods, reducing the complexity per-iteration to O(n) and
experience indicates that on the order of 12–14 iterations is needed
for acceptable results. The computational work of such approaches
compare to 14 · 14 ≈ 200 brute force Gauss-Seidel iterations. In
this article, we present a simulation method that only requires about
30 Gauss-Seidel iterations.

For direct methods, the amount of work per-iteration is roughly
on the order of O(n2) using incremental matrix factorization. In
Lacoursiere [2003], it is reported that Lemke and Keller methods
need n iterations, which indicates a total complexity of O(n3).

To describe the iterative Gauss-Seidel solver, we introduce the
splitting A = L + D + U, where D, L, and U are the diagonal, the
strictly lower, and strictly upper parts of A. A single iteration of
the iterative Gauss-Seidel method, equivalent to solving the matrix

equation A�λ + �b = �0, consists of looping over all variables i ∈

[1..3K ], and updating their values

�λ k+1
i =

(

−
∑i−1

j=0 Li, j
�λ k+1

j −
∑n−1

j=i+1 Ui, j
�λ k

j − �bi

)

Di,i

, (28)

where superscript is the iteration number. If the i’th variable is a
friction constraint, then the upper and lower limits are updated,

(r = i mod 3) 	= 0 ⇒ �λhii = μ�λi−r , �λloi
= −�λhii . (29)

Next a projection step is performed,

�λ k+1
i = min

(

max
(

�λloi
, �λ k+1

i

)

, �λhii

)

. (30)

Note that this coupling between normal and tangential directions
yield a nonlinear complementarity formulation (NCP). It is possible
to extend the projection to limit surfaces as done in Goyal et al.
[1989]; our choice corresponds to a square limit surface.

Computing A and �b takes linear time with respects to the number
of constraints when using a sparse matrix representation for M, J,
and A because each row of the Jacobian has exactly 12 nonzero ele-
ments, and M is a 3-by-3 block diagonal matrix. Some optimizations
can be done by rewriting equation (28) as

�λi =
−bi − Arowi

�λ + Ai,i
�λi

Di,i

= �λi −
bi + Arowi

�λ

Di,i

. (31)

Observing that we need M−1JT �λ in the velocity update in Equa-

tion (19), we set � �V = M−1JT �λ, such that

�λi = �λi − b ′
i + J ′

rowi
� �V , (32)

where the divisions are avoided by precomputing �b ′
i = �bi/Di,i and

J ′
rowi

= Jrowi
/Di,i . After the projection step, we let ��λi = �λk+1

i −�λk
i ,

and, by precomputing T = M−1JT , the update of � �V is

� �V = � �V + Tcoli �
�λi , (33)

which can be implemented extremely efficiently, since Tcoli �
�λi only

has 12 nonzero entries. After solving the NCP problem, the value

� �V is returned and used directly in the velocity update.

3.1 Convergence Rate

In this section, we will present results on the iterative solver. If the
iterative method is rephrased as a matrix equation, then we have

�λ = T�λ + �c, (34)

with

T = (D + L)−1U, (35)

�c = −(D + L)−1�b. (36)

For such a fix-point matrix equation to converge at all, the spectral
radius of T must be less than 1. Generally speaking, the smaller the
spectral radius, the faster the convergence. Large mass ratios seem
to affect the magnitude of the eigenvalues of the system matrix.
Thus the spectral radius of the T-matrix is affected. Figures 3 and 4
show results of performing a matrix analysis of the system matrices
A and the T-matrices from a ball grid and a wall animation similar
to Figure 10 and 13. From the figures, it is clear that the system
matrices, A, are extremely sparse, symmetric, and blocked. Also
they have large null spaces, which is indicated from the eigenvalue
plots. This means that the system is highly overdetermined. It is

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



6 • K. Erleben

0 200 400 600 800 1000
0

0.5

1

1.5

2

index

va
lu

e

(a) A-matrix eigenvalues

column index

ro
w

 i
n

d
e
x

200 400 600 800

100

200

300

400

500

600

700

800

900

(b) A-matrix pattern

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

index

va
lu

e

(c) Gauss-Seidel T-matrix eigenvalues

column index

ro
w

 i
n

d
e
x

200 400 600 800

100

200

300

400

500

600

700

800

900

(d) Gauss-Seidel T-matrix pattern

Fig. 3. Analysis of matrix system for the Ball grid configuration from Figure 13.

interesting to look at the eigenvalue plots of the T-matrices. Here,
many eigenvalues have the value 1, and the T-matrices appear to
be more of a lower diagonal. Generally speaking, the best results
are obtained for those configurations where we have fewer multiple
eigenvalues of T equal to 1, and where T is closer to being a lower
diagonal.

In Figure 5, we have plotted the convergence rate as a function
of the number of iterations. We used a nonsmooth reformulation of
the boxed complementarity formulation

�H (�λ) = min(�λ − �λlo, max(�λ − �λhi, �w)), (37)

and plotted the value of the merit function

θ (�λ) =
‖ �H (�λ)‖2

2
=

�H (�λ)T �H (�λ)

2
. (38)

Thus, if θ = 0, then we have found a solution to the boxed comple-
mentarity problem.

The log-plot of the merit function in Figure 5 clearly shows, a
linear convergence rate of the iterative Gauss-Seidel solver. This
implies an exponentially slow convergence, and, after some fixed
threshold, the effort spent on Gauss-Seidel iterations is wasted. Be-
sides, each configuration behaves differently. Thus we cannot find
a global reasonably low iteration limit that will work for all config-
urations. In Section 4, we will introduce shock propagation which

overcomes all of these problems with the iterative Gauss-Seidel
solver.

3.2 Handling Large-Mass Ratios

Large-mass ratios often lead to convergence problems for matrix
splitting methods. In this section, we will discuss the techniques
often applied to this problem.

Preconditioning and diagonal scaling (diagonal scaling is a left-
right preconditioning) can be used to change the spectrum of the
eigenvalues. Generally speaking, the new preconditioned system
looks like

A′ = (C−1AC−T )CT , (39)

�b′ = C−1�b. (40)

For diagonal scaling C2 = 1/diag(A), when comparing the plot
of the error of the preconditioned system with the nonprecondi-
tioned system, a small displacement is observed. Diagonal scaling
lowers the convergence rate by a constant but does not change the
asymptotic behavior.

Preconditioning works best for a C-matrix which is a good ap-
proximation to A−1. If this can be achieved, then one would have
A′ ≈ I. Using diagonal scaling C is not a really good approximation
to the inverse of A since diagonal scaling seems to work best for

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



Velocity-Based Shock Propagation for Multibody Dynamics Animation • 7

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

index

va
lu

e

(a) A-matrix eigenvalues

column index

ro
w

 i
n

d
e
x

1000 2000 3000 4000 5000

1000

2000

3000

4000

5000

(b) A-matrix pattern

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

index

va
lu

e

(c) Gauss-Seidel T-matrix eigenvalues

column index

ro
w

 i
n
d
e
x

1000 2000 3000 4000 5000

1000

2000

3000

4000

5000

(d) Gauss-Seidel T-matrix pattern

Fig. 4. Analysis of matrix system for the wall configuration from Figure 10.

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

iterations

(
i)

Box Stack
Ball Grid
Wall
Tower

(a) Convergence

0 50 100 150 200 250 300
10

10

10

10

10

10

10
0

iterations

lo
g
( 

(
i))

Box Stack
Ball Grid
Wall
Tower

(b) Log Convergence

Fig. 5. Convergence rate plots of a few selected configurations.

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



8 • K. Erleben

5 10 15 20 25 30 35

0.005

0.01

0.015

0.02

0.025

0.03

 = 0
 = 0.05

 = 0.10

iterations

(
i)

(a) Convergence Damped

10 20 30 40 50 60 70

10

10

10

 = 0

 = 0.25

 = 0.50
 = 0.75

 = 1.00

iterations

lo
g
( 

(
i))

(b) Log Convergence Damped

Fig. 6. Convergence rate plots for different relaxation values.

100 200 300 400 500

0

1

2

3

4

5

6

variabel index

i

(a) Undamped solution

100 200 300 400 500
0

0.1

0.2

0.3

0.4

variabel index

i

Fig. 7. Comparison of a slightly damped solution with an undamped solution of the box-stack configuration from Figure 9.

diagonal-dominant systems, and multibody dynamics problems are
not diagonal-dominant. In general, matrix splitting methods seem
to work best on diagonal-dominant systems. Just consider the con-
trived case of using Jacobi on a diagonal system. Here T will be the
identity matrix, and the solution will be reached in a single iteration.

Preconditioning for multibody dynamics problems is not well
described in the computer graphics literature. The reason may be
that only a limited fixed amount of time is set aside for a dynam-
ics update. Applying the preconditioner is computationally more
expensive than throwing more brute force iterations at the problem.

Relaxation or damping has also been applied. That means for
nonnegative γ , the system matrix is changed as follows

A′ = A + γ I. (41)

As k → ∞, we have γ → 0. This is termed constraint force mixing
in the Open Dynamics Engine (ODE) community, although they
use a constant γ . Consider the equivalent quadractic programming
(QP) problem formulation, that is, minimize

f (�λ) = �λT �b + �λT A�λ + γ �λT �λ, (42)

subject to

�λ ≥ 0. (43)

Using Karush-Kuhn-Tucker (KKT) conditions leads to an LCP with
the previous A′ matrix. Looking closely at f , one notice that the

magnitude of �λ is minimized by the last term. Also note that �λ always
will be dampened by this scheme. This leads to weaker constraint
forces as already pointed out by Gleicher [1994]. Although A is
symmetric-positive semidefinite, A′ is symmetric-positive definite,
which from a numerics viewpoint is tractable. This technique can
be used to model soft constraints.

Relaxation seems to change the slope of the convergence rate.
The convergence rate p is defined by

limk→∞

|ek |

|ek−1|p
= c, (44)

where c is the convergence constant. Larger γ means lower c.
For Gauss-Seidel type solvers, p = 1, which results in very slow
convergence. Figure 6 shows how the convergence rate for the
Gauss-Seidel type solver changes for different values of γ when
simulating the box-stack configuration from Figure 9. Notice that
even a small value of γ has a large impact on the convergence.
Further, the damping on the solution is just as significant as shown in
Figure 7.

In Figure 8, we have shown results of a matrix analysis. It is
particularly interesting to compare the eigenvalue plots with the
undamped case. From the figure, it is clear that the large number
multiple eigenvalues with value 1 have disappeared.

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



Velocity-Based Shock Propagation for Multibody Dynamics Animation • 9

0 100 200 300 400 500 600
0

1

2

3

4

5

6

index

va
lu

e

(a) Eigenvalues of undamped box stack A-matrix

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

index

va
lu

e

(b) Eigenvalues of undamped box-stack

Gauss-Seidel T-matrix

0 100 200 300 400 500 600
0

1

2

3

4

5

6

index

va
lu

e

(c) Eigenvalues of damped box-stack A-matrix

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

index

va
lu

e

(d) Eigenvalues of damped box-stack Gauss-Seidel

T-matrix

Fig. 8. Matrix analysis of undamped and damped box-stack configuration from Figure 9.

4. VELOCITY-BASED SHOCK-PROPAGATION

Equations (45) summarizes the explicit timestepping scheme out-
lined in Section 2.

�b = J(�u t + �tM−1 �f ext), (45a)

A = JM−1JT , (45b)

�λ = ncp (A, �b), (45c)

�u t+1 = �u t + M−1JT �λ + �tM−1 �Fext, (45d)

�s t+1 = �s t + �tS�u t+1. (45e)

For ease of notation, let us denote a timestep according to these equa-
tions by dynamics(�t). Applying dynamics(�t) using the iterative
solver in Section 3 could result in slow convergence, as shown in
Figure 9. Experiments [Erleben 2005] indicate that not even 100,000
iterations will work for the box-stack. Figures 10 and 11 show ac-
ceptable visual results with 100 iterations, but the computational
cost is high.

Adopting shock propagation [Guendelman et al. 2003] to the
velocity-based complementarity formulation will yield a signifi-
cantly lower number of iterations and solve the slow convergence
problem of the box-stack in Figure 9. In all our simulations, we
never used more than 10 iterations when performing dynamics(·),

(a) Initial position. (b) 100 iterations after 4 secs.

Fig. 9. Box-Stack: A stack of 25 resting boxes with a poor convergence

rate for the iterative solver.

and only 5 iterations when doing error correction which will be
discussed in the following.

Each body in a configuration is assigned a stack-height number,
which indicates the number of bodies in immediate contact that
needs to be visited in order to reach the closest fixed body. Free-
floating bodies are simply assigned the maximum stack-height. A
stack layer i is defined as all bodies with stack-height i and i + 1
and including all contact points between these bodies. Keeping a
contact graph data structure, the stack-layers are easily analyzed
and constructed by performing a single breadth-first traversal start-
ing at all the fixed bodies in the configuration. This approach is

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



10 • K. Erleben

(a) 10 iterations after 4 secs. (b) 100 iterations after 4 secs.

Fig. 10. Wall: A wall of 200 bricks with an acceptable convergence rate of

the iterative solver.

(a) 10 iterations after 4 secs. (b) 100 iterations after 4 secs.

Fig. 11. Tower: A tower of 320 bricks with an acceptable convergence rate

of the iterative solver.

algorithm shock-propagation(algorithm A)

compute contact graph

for each stack layer in bottom up order

fixate bottom-most objects of layer

apply algorithm A to layer

un-fixate bottom-most objects of layer

next layer

end algorithm

Fig. 12. Pseudocode version of the general shock-propagation algorithm.

a little different from Guendelman et al. [2003] because we want
both to minimize the usage of the collision detection and to keep it
strictly separated from the dynamics. This also implies that we do not
reevaluate contact points during the shock propagation. Figure 12
shows a pseudocode version of the shock-propagation algorithm we
use, and which we will denote shock propagation() in the following.
The initial intention of shock-propagation is to fix simulation errors,
thus we can apply the projection error correction [Baraff 1995] to
each stack-layer in a bottom-up fashion. This has the advantage of
being able to completely fix penetration errors. During error cor-
rection, all contact tangent plane constraints are dropped, and the

right-hand side vector �b is replaced with a �dpenetration-vector of pen-
etration depths in the contact normal direction. This results in the
timestepping scheme,

A = JM−1JT , (46a)

�λ = ncp (A, �dpenetration), (46b)

�s t+1 = �s t + SM−1JT �λ, (46c)

which we denote by correction () for convenience. Note that the
NCP reduces to a linear complementarity problem (LCP) since the
coupling between normal and tangential directions are dropped,

but (46) is still solvable by the same iterative solver. Figure 13
shows the difference in using correction () and shock propagation
(correction ()). Note that within 6 frames, shock-propagation con-
verges correctly even with the low number of iterations, whereas the
correction completely fails to converge without shock propagation.
When using the velocity-based complementarity formulation with
shock propagation, we propose the timestepping scheme shown in
Figure 14. We have introduced a weighting of the dynamics versus
the shock propagation given by a, where 0 ≤ a ≤ 1. The weighting
was necessitated by experiments which indicated that the weighting
was directly related to the amount of simulation error. In order to fix
simulation errors in the velocities during the shock propagation, we
first perform a dynamics step, followed by an error-correction step to
fix positional errors. Ideally a should be set to 1 in which case poor
convergence of the iterative solver will dominate the simulation.
Setting a equal to zero results in perfect behavior of the shock prop-
agation, resulting in perfect error correction. Unfortunately, bodies
initially at rest in configurations of in-equilibrium systems cannot
feel the weight of each other. Therefore a should never be set to
zero in practice. In most cases, we have used a-values in the range
0 < a ≤ 0.01.

The last step in the timestepping scheme consist of a final error-
correction step, and it is needed because we do not reevaluate contact
points during the shock propagation. The final error-correction step
has the effect of smoothing the simulation errors by distributing
them to nearby objects. The benefits is twofold: the amplification
of simulation errors is avoided, and the cyclic dependency problem
of shock propagation is remedied. Usually configurations such as
Figure 17 suffer from the cyclic dependency problem where arti-
facts such as high-frequency oscillating bodies can be observed just
below the top-most bodies. Our simulations do not suffer from such
artifacts.

Shock propagation can be understood as a two-stage iterative
scheme with a preconditioner: first the outer stage consists of di-
viding the problem into stack-layers. Each stack-layer corresponds
to a single block. Then one iterates over the blocks in a bottom-
up fashion. This is an unconventional mixture of Jacobi/Gauss-
Seidel-like iterations: the diagonal blocking is similar to a Jacobi
scheme, but layers must be processed in a certain order which
makes the processing of blocks sequential in nature, that is, sim-
ilar to Gauss-Seidel. The inner stage consists of solving each block,
that is, each stack-layer, using a projected Gauss-Seidel method.
For each of these blocks, the mass ratios are changed by fixat-
ing some of the bodies before solving the block. This is similar to
preconditioning.

5. RESULTS FOR VELOCITY-BASED SHOCK

PROPAGATION

Figure 1(a)–1(d), 15, 16, and Figure 17 show simulation results
using the velocity-based shock propagation timestepping scheme.
Computations were performed on a 1.7GHz CPU with 1GB system
memory. During simulation, we measured the total frametime, the
time used for collision detection, and the total number of generated
contact points. Worst case frametime were: engraved letters, 0.18
seconds, cow pile, 1.2 seconds, falling roof, 0.25 seconds, and silo,
1.1 seconds. In all of our simulations, we have used a timestep of
0.01 seconds. The simulation in Guendelman et al. [2003] ranges
from 500–1000 bodies and frametime go from 5 minutes to 7 min-
utes, whereas frametime for similar configurations using our simu-
lator are more than a hundred times faster. The collision detection
systems for the two simulators are not the same, and, in Section 5.5,
we present a comparison with identical collision detection. Figure 18

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



Velocity-Based Shock Propagation for Multibody Dynamics Animation • 11

(a) 1’st frame with severe penetra-

tions

(b) 6’th frame with out shock-

propagation

(c) 6’th with shock-propagation

Fig. 13. Ball-Grid: A grid stack of 125 balls. The iterative solver used only 5 iterations.

algorithm velocity-based-shock-propagation(a,dT)

collision detection at time t

dynamics(a*dT)

shock-propagration(

dynamics( (1-a)*dT ), correction()

)

collision detection at time t + dT

correction()

t = t + dT

end algorithm

Fig. 14. Pseudocode of velocity-based shock propagation (VSP) algorithm.

shows the actual frametime spent on computing the motion, that is,
frametime minus time used on collision detection.

The plots show a linear dependence on the number of contact
points, the different slopes are the result of the different stacking
topology in the four configurations.

For completeness, we have also plotted the time spent on colli-
sion detection in Figure 19. The silo, engraved plane, and falling
roof configurations all used box and sphere geometries, whereas the
cow pile configuration used signed distance maps combined with
sphere-trees. The plots appear to have linear or piecewise linear
behavior: horizontal or negative slopes are a consequence of the
caching schemes applied to the contact graph in the collision detec-
tion engine. The piecewise positive slopes indicate that the broad-
phase collision detection quickly prunes unnecessary test such that
time is only spent on doing collision detection for objects in close
proximity. The scattering of the cow-pile plot indicate that the prun-
ing capability of the sphere-trees may be improved.

To compare the velocity-based shock propagation (VSP) de-
scribed in this article with other methods, we have selected a chal-
lenging test configuration. The test configuration consists of a 40-
layers-high tower with 800 objects. The stacking causes large mass
ratios, thus leading to a numerical badly conditioned system. An-
imating the tower standing still for a long time stresses the algo-
rithm’s ability to counter accumulation of numerical errors. During
the animation, a large block falls down and impacts with the top
of the tower. On impact, the large block will transfer large im-
pulses down through the tower due to restitution, and the impilses
are then transfered back up through the tower. After a while, it is
expected that the heavy block will come to rest. Besides a badly
conditioned problem due to the large mass of the large block at
time of impact, there are also large penetration errors further stress-
ing the stacking capabilities. Finally, a canonball is used to hit the
tower, and the tower is expected to collapse in a physically plausible
way.

We have compared VSP with the rigid body simulator in Maya6.5,
the aggressive impulse-based shock propagation (ISP) method in
Guendelman et al. [2003], Novodex (v2.1.2), and ODE (v0.30). All
computations were performed on a 1.7GHz CPU with 1GB system
memory. Timing results are presented in Section 5.5. We did not
choose the method in Kaufman et al. [2005] because, even though
it has been shown to work quite well for large scale dense random
piles, it has not been verified to work on large-scale dense structured
stacking. The add-hoc contact model for bounce in Kaufman et al.
[2005] and the approximation of Newton’s third law raise some
concern about stability. In addition, the method tolerates penetration
errors, which are visually displeasing for structured stacks. This
method will not be discussed further in this article.

Figure 20, 21, and 22 show the three best simulation results of
the tower-roof configuration from three different viewing angles.

5.1 Maya6.5

The simulator in Maya6.5 is, as far as we know, an acceleration-
based complementarity formulation [Baraff 1994] using a solver
based on a direct method (Dantzig pivoting) and a bisection root-
searching algorithm for time control. Under the same initial condi-
tions as VSP, this simulator crashed. We speculate that the problem
is caused by objects initially in touching contact. Subsequently, any
timestep regardless of the size will result in penetration, and the
bisection algorithm will enter an infinite loop.

We did alter the initial setup slightly to ensure that all objects were
separated. As soon as objects came in contact, the time complexity
of the direct method affected the performance of the animation.
After 2 hours, the simulation was manually stopped with only half
of the 800 bricks in contact.

5.2 Impulse-Based Shock Propagation

A comparison has been made between our velocity-based shock
propagation (VSP) and the aggressive impulse-based shock prop-
agation (ISP) method in Guendelman et al. [2003]. We have im-
plemented ISP in OpenTissue to make the comparison as fair as
possible.

The timestepping of ISP has the same time complexity, O(n), as
VSP. The major differences are the following.

—ISP uses the equivalent of 15 collision queries per-frame, VSP
uses only 2 queries.

—ISP uses both predicted positions and velocities, implying a more
implicit stepping method than VSP.

—ISP cannot deal with penetration errors.

Both methods are impulse-based, but impulses in ISP are in-
stantaneous, whereas VSP can integrate the effect over time. We

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



12 • K. Erleben

(a) frame 74

(a) frame 0

Fig. 15. Cow Pile: 250 cows falling into a pile simulated with our method. See supplementary movie.

believe this causes the difference in visual quality. When stressing
large-scale structured stacking, like banging a big box on top of a
large stack, objects tend to jitter and shake with the ISP method,
whereas the VSP does not add unnecessary jittering as shown in
Figure 23.

There is a clear difference in how material parameters such as
friction and restitution behave. Simulations with ISP seem to be a
little too lively compared to the physical meaning of these param-
eters. VSP seems to do a better job of simulating plausible physi-
cally correct behavior. When using complex geometries, the query
times of the collision detection really slows ISP down compared to
VSP.

5.3 Novodex (v2.1.2)

Novodex is current state-of-the-art in commodity software, and there
is no way of really telling what kind of algorithms are being used.
Based on the parameters available and the effect of tuning these,
Novodex appears to use some sort of hybrid between a velocity-
based complementarity formulation solved using a iterative Gauss-
Seidel-like scheme and a penalty method.

Novodex is for game animation. It is intended for game scenarios
where exaggeration is acceptable and desired, which is observed
from a simulation using default settings as shown in Figure 24. In
game physics, physical properties are often set to make the simula-
tion look plausible, while running extremely fast. This means low
mass densities and low gravitation, typically density = 10 Kg/m3

and gravity = 0.5 m2/s. Novodex is multithreaded which makes
it very difficult to perform timing comparisons of the algorithms

used. We used the following API calls to make Novodex block its
simulation until it was completed.

NxScene->setTiming(0.01,1,NX_TIMESTEP_FIXED);

NxScene->simulate(0.01);

Nxcene->flushStream();

NxScene->fetchResults(NX_RIGID_BODY_FINISHED,true );

Time duration was measured between calls to simulate and
fetchResults. Novodex offers many parameter-tuning options,
and those that appeared important for us are listed in Table I. It is
difficult to make the tower appear rigid using the default settings
for which the tower tends to be elastic and explode on large impact
as shown in Figure 24. PSV the best tweaked setting we found, the
tower behaved in a rigid manner, but penetration errors were quite
large as shown in Figure 25, and the canonball impact did not behave
as expected as shown in Figure 22.

5.4 Open Dynamics Engine (v.0.30)

Open Dynamics Engine (ODE) is a velocity-based complementar-
ity formulation. It uses a damped iterative solver similar to SOR.
Further error correction is handled by stabilization. Like Novodex,
this engine works best with game-friendly values, that is, low den-
sity and gravity values. Damping, together with stabilization, adds
a soft/elastic impression to the objects. To achieve fast and error-
tolerant simulation, these parameters cannot simply be turned off.
Performance-wise the engine should have the same complexity as
VSP and ISP. We were not able to simulate a tower larger than 6

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



Velocity-Based Shock Propagation for Multibody Dynamics Animation • 13

(a) frame 48 (b) frame 96

(c) frame 240 (d) frame 336

Fig. 16. Falling roof: Roof falling onto a tower of 640 bricks followed by a canon-ball collision simulated using our method. See supplementary movie.

(a) frame 48 (b) frame 96

(c) frame 144 (d) frame 192

Fig. 17. DIKU: 1000 balls of various sizes falling onto an inclined plane with engraved letters simulated with our method. See supplementary movie.

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



14 • K. Erleben

0 0.5 1 1.5 2

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Contacts

S
im

u
la

ti
o

n
 T

im
e

 (
s
e

c
s
)

diku
roof
cow
silo

Fig. 18. Total timestepping computation time as a function of the number

of contacts points showing linear complexity.

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

Contacts

C
o

lli
s
io

n
 T

im
e

(s
e

c
s
)

diku
roof
cow
silo

Fig. 19. Total collision detection computation time as function of the num-

ber of contacts points showing noworse than linear complexity.

layers without obtaining a memory error. The bricks appears quite
squeezed, and upon impact with the heavy block, the bricks are
knocked down onto the ground as shown in Figure 26.

5.5 Comparing Performance

In order to compare the performance of the different methods, we
have measured the total wall-clock time of each update step, that is,
the total time of both doing collision detection and computing the
dynamics. Our results are shown in Figure 27. ODE is incapable of
competing with either ISP, VSP, Novodex, or Maya since it breaks
down due to memory errors for large-scale configurations. We have
therefore omitted ODE from the timing comparisons. The perfor-
mance of Maya was so slow that the simulation was not completed
within reasonable time. We have therefore omitted Maya from the
timing comparisons.

Novodex is extremely fast and works great in most cases, but
for large-scale dense-structured stacking, this engine has trouble
delivering the same kind of quality as ISP and VSP.

ISP is, to our knowledge, the state-of-the-art for stable stacking,
and in comparison to VSP, ISP is slower. The difference in speed
is caused by the difference in interaction with the collision detec-
tion engine. There is also a difference in the visual quality of the
simulation. ISP tends to shake and rattle objects apart in large-scale
dense-structured stacks, which is not observed with VSP.

Neither Novodex nor ODE were able to simulate the initial con-
figuration without tweaking masses and gravity. ISP and Maya were
able to simulate the configuration without altering masses and grav-
ity, but Maya was not able to deal with initial touching objects.

6. DISCUSSION

In the following, we will discuss various aspects of numerical simu-
lation and give some perspective on our method. We will make com-
ments on visual artifacts and make suggestions for improvements.

6.1 Penetration Errors in Multibody Dynamics

Timestepping methods for multibody dynamics can lead to unavoid-
able penetrations. In the following, we discuss the causes that lead
to this unwanted artifact.

(1) Doing physics-based simulation means that some approxima-
tion of the laws of physics is used. For instance, a contact
manifold is often represented as a plane at the point of contact
due to a myopic view of the world. Applying nonpenetration
constraints to planar contacts means that objects are prevented
from moving beyond the plane at the point of contact. Thus,
if the surface is of higher order than a plane, then penetrations
can occur no matter how small the timesteps that are used.

(2) If the order of the timestepping scheme is less than the order of
the spatial representation, then one may overshoot. Often fixed
timestepping schemes are used in real-time interactive simula-
tion in order to deliver predictable performance. This is equiv-
alent to some variant of a first-order Explicit/Modified/Implict
Euler scheme.

(3) There is the problem of precision and round-off errors which are
often dealt with using either thresholds or interval arithmetics.

(4) Future undetected contacts may also lead to penetrations. This
is often caused by the timestepping scheme and is an effect
easily observed for explicit fixed timestepping schemes using
large timesteps. It can lead to jittering/jumping if one uses error
correction by projection, or explosive behavior if one corrects
errors using stabilization. In extreme cases, one may even get
tunneling and overshooting artifacts.

If the motion or surface representation is of higher order than
any of the approximations in (1) or (2), then it is to be expected
that the time-integration of the motion may lead to penetration.
If higher-order approximations are used instead, and thereby gain
more accuracy at a performance degradation, then the number of
troublesome cases will be reduced.

The cow configuration from Figure 15 is a very challenging
configuration to animate. Each cow is basically an ellipsoidal ob-
ject with long thin tentacles. The cows are dropped from several
hundred meters, and, when a cow hits the surface, its speed will
be approximately half its own length per-frame. This causes ex-
treme penetrations between the surface and the cows. After the first
bounce, the cows have gained a large angular velocity, causing them

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



Velocity-Based Shock Propagation for Multibody Dynamics Animation • 15

(a) Velocity-based Shock-propagation (VSP)

(b) Impulse-based Shock-propagation (ISP)

(c) Novodex using 30 iterations and low mass

Fig. 20. Results of roof-tower simulation corresponding to frame 60, 120, 180 and 240. See supplementary movies.

(a) Velocity-based Shock-propagation (VSP)

(b) Impulse-based Shock-propagation (ISP)

(c) Novodex using 30 iterations and low mass

Fig. 21. Results of roof-tower simulation corresponding to frame 60, 120, 180 and 240. See supplementary movies.

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



16 • K. Erleben

(a) Velocity-based Shock-Propagation (VSP)

(b) Impulse-based Shock-Propagation (ISP)

(c) Novodex using 30 iterations and low mass

Fig. 22. Closeup views of simulation results when a canonball hits the tower. Images from left-to-right correspond to frames 110, 120, 130, and 140. Notice

the randomness look of ISP and the failure of Novodex to feel the impact of the canonball. VSP forms a nice crack in the wall on when the ball impacts it.

(a) Velocity-based Shock-Propagation (b) Impulse-based Shock-Propagation

Fig. 23. Closeup of frame 80, showing the shaking and jittering of impulse-based shock propagation compared with the more stable result of velocity-based

shock propagation.

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



Velocity-Based Shock Propagation for Multibody Dynamics Animation • 17

(a) frame 70 (b) frame 80 (c) frame 90 (d) frame 100

Fig. 24. Results of tower simulation with Novodex using default settings. Notice the unwanted explosion due to the impact. See supplementary movie.

Table I. Novodex Options

Name Description

NxBodyDesc.solverIterationCount This seems to be directly related to some kind of Gauss-Seidel maximum iteration count. Tweaking it

definitely has a similar effect. Default value is 4. Using 2000 iterations without tweaking other options

seems to maintain a good rigid structure.

NX DEFAULT SLEEP LIN VEL SQUARED,

NX DEFAULT SLEEP ANG VEL SQUARED

These parameters seem to control the sleepy policy. For a fair comparison, we turn this off by setting the

values to zero.

NX MIN SEPARATION FOR PENALTY Simulations are difficult to perform for values close to zero. The default value of −0.05 seems to work

best even when iteration count are very high.

NX PENALTY FORCE This controls the scale of the penalty forces. Default value is 0.6.

(a) Velocity-based Shock-Propagation (VSP) (b) Novodex using 30 iterations and low mass

Fig. 25. Closeup of frame 80, showing deep penetrations for Novodex and none for VSP.

(a) frame 330 (b) frame 420 (c) frame 450

Fig. 26. Results of a limited roof-tower simulation with ODE. Notice that boxes sink into the plane and large interpenetrations develop. Upon impact, the first

box layer is completely knocked below the plane. See supplementary movie.

to spin violently. The thin legs and tail of one cow can therefor move
completely inside another cow during a single timestep. Figure 28
illustrates the problem. The cow simulation shows that correction by
projection is robust in extreme cases but results in a popcorn effect.

In the supplementary video (see cow pile video with timestep
size of 0.01 seconds), the projection artifacts are prominent in an

initial, very short period of time. However, a long-term popcorn
effect can also be seen. If we study the energy plots of the small-
size timestep simulation, we will notice a particular correspondence
with the the long-term popcorn effects. In Figure 29, we have plotted
the potential energy of two cows showing long-term popcorn effects.
From the plots, it is evident that the potential energy slowly increases

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



18 • K. Erleben

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Iteration

T
im

e
 (

s
e

c
s
)

Erleben Method
Guendelman et. al.
Novodex Default
Novodex Tweaked

Fig. 27. Performance timings of comparisons.

Fig. 28. Fast spinning objects with thin tentacles cause large penetration

in explicit fixed timestepping schemes.

over time, and then almost instantaneously drop. The cause of this
effect is not due to shock propagation but due to the Gauss-Seidel
solver. The langrange multipliers found by the solver are not very
accurate. The lagrange multipliers are slightly too large, causing
bodies to be slowly pushed apart. Once bodies are separated by
more than the size of the collision envelope, then the bodies will
once again experience a free-fall under gravity, and thereby sink
deep into the collision envelope, and the process will be repeated.
This can also be verified in the cow pile video by noticing that with
short-term popcorn effects, the cows are pushed apart, but in the
long-term popcorn effects, cows are sucked down.

We tracked the potential energy of a single cow standing on a
fixed ground to demonstrate that this long-term popcorn effect is
caused by the Gauss Seidel solver. In this configuration our shock
propagation scheme only has a single layer, and shock propagation
thus has no effect on the simulation. The energy plots are shown
in Figure 30. As shown from the figure, the saw-tooth pattern is
diminished with decreasing timestep size. The reason for this is that
the distance a cow falls under gravity during a single timestep is
shortened. This is also visually verified by running the cow pile
simulation with a lower timestep size of 0.001 second. The problem
could also have been handled by using a more accurate NCP solver
but that is out of the scope of this article, and we leave it for future
research.

From a convergence point of view, all of the previous penetration
problems can be made as small as wanted by setting the timestep
size sufficiently low. This implying that, if one knows the maximum
allowable error, then one can find the maximum velocities, and a

timestep size for an explicit method can be computed. However,
in real-time interactive applications which are the ones we have in
mind, one cannot obtain a predictable performance.

Large penetrations are a natural consequence of explicit fixed
timestepping schemes. These schemes can be combined with con-
tinuous collision detection to solve this problem as discussed in next
section.

6.2 Continuous Collision Detection

All the artifacts described in Section 6.1 are unattractive in real-
time animation where we do not have the luxury of decreasing the
timestep size too much. Continuous collision detection may be a
very interesting solution.

Ideally, continuous collision detection will not miss a collision
during a timestep, and the contact time will be computed exactly.
A less restrictive definition would be to ease the requirement of not
missing any collisions. If we consider collision detection algorithms
concerned with the time aspect, these then have existed in graphics
for at least fifteen years. Early work includes space-time bounds
[Cameron 1990] and hyperbolic approximations [Hubbard 1993].
The methods in these works tried to compute a time-of-impact (TOI)
based on a four-dimensional computation. Later, sweeping volumes
and TOI computations based on ballistic approximation of motion
trajectories were introduced [Mirtich 1996]. Oriented bounding-box
hierarchies have been extended to determine first point of intersec-
tion queries using linear and angular velocities to predict object
motion [Eberly 2007a, 2007b]. In Milenkovic and Schmidl [2001],
noninterpenetration positions were solved for by minimizing the ki-
netic energy. Their method required solving a large convex quadrac-
tic programming (QP) problem. Recently [Stephane Redon and Co-
quillart 2002; Redon 2004] introduced screw motion and extended
it to articulated figures [Redon et al. 2004].

Overall methods for continuous collision detection can be divided
into two groups:

—conservative advancement methods and

—interpolation methods.

Conservative advancement methods compute a smaller TOI, ad-
vance time to the TOI, perform collision resolving, and finally re-
compute TOIs before advancing once again. Interpolation methods
take as input two configuration states at different times, and then try
to find a penetration-free state in between these two states. The prob-
lem of interpolation methods is to decide what kind of interpolation
is needed. If objects are penetrating at the starting and ending times,
then it would be difficult to devise an interpolation of the objects
that result in nonpenetration. The problem may sound contrived, but
it is not. In game-like worlds, users are allowed to add and manipu-
late objects in unphysical ways, thus, creating a box halfway inside
another box is quite common.

The continuous aspect has also been addressed in engineering us-
ing more complex timestepping schemes. An implicit timestepping
scheme is capable of seeing future contacts, and these future con-
tacts appear as an extra term which is added to the right-hand side of
a velocity-based complementarity formulation [Sauer and Schömer
1998]. In other words, they act as a kind of TOI estimate. The im-
plicit scheme will guarantee that none of these future contacts are
violated.

In practice, objects appear to have a repel-envelope. If nonzero
restitution is used, then objects will bounce at the future contacts,
and their altered motion may lead to new penetrations at other unde-
tected contacts. To remedy thus, one can either make a fully implicit
scheme using a fixed-point timestepping scheme or use adaptive

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



Velocity-Based Shock Propagation for Multibody Dynamics Animation • 19

5 10 15 20 25 30
11.35

11.4

11.45

11.5

11.55

11.6

11.65

11.7

Time (Seconds)

E
n

e
rg

y
 (

J
o

u
le

)

Potential Energy of cow no. 13, ∆ t = 0.01

5 10 15 20 25 30
11.35

11.4

11.45

11.5

11.55

11.6

11.65

11.7

Time (Seconds)

E
n

e
rg

y
 (

J
o

u
le

)

Potential Energy of cow no. 43, ∆ t = 0.01

Fig. 29. Potential energy of two cows from the cow pile simulation with timestep size of 0.01 second. Both cows have noticeable long-term popcorn effects.

Notice the remarkable saw-tooth shape of the energy plots.

5 10 15 20 25 30
12.9

12.95

13

13.05

13.1

Time (secs)

E
n
e
rg

y
 (

J
o
u
le

)

Potential Energy Convergence Test

 t = 0.01 

 t = 0.001

 t = 0.0001

Fig. 30. Convergence plots of potential energy of a single cow standing

on a fixed ground. Notice that the saw-tooth pattern is diminished when the

timestep size is lowered.

timestepping. In real-time interactive animation, these choices are
undesirable for performance reasons.

In game-engines, velocities and forces are typically clamped with
an upper bound. The benefits are twofold: one can control the maxi-
mum possible penetration, and one can suppress some of the sources
to numerical problems. Often several layers of envelopes are ap-
plied: a small envelope where penetrations are dealt with using sta-
bilization (i.e., penalty forces), and a deeper and larger envelope
where penetrations are dealt with using projection. Many engines
run at an internally faster rate than the frame rate, typically 0.01 sec-
onds, thus keeping the timestep size down and ensuring that bodies
do not move too much in between a timestep.

6.3 Summary

We have presented an algorithm based on an iterative solver and
shock propagation for velocity-based complementarity problems
that yields substantial improvements in performance and quality
over previous methods. It has been shown how to incorporate error-
correction by projection into this scheme, which results in a simple
solution to the problem of cyclic dependency of shock propagation.

A publicly available implementation of the presented algorithms is
available from OpenTissue.

The work presented achieves linear complexity in the number of
contact points. One cannot do better than this since at best it would
require linear time for the collision detection engine to detect the
contact points in the first place.

It is our belief that better convergence of iterative methods could
lower the number of iterations used. Thus, a fertile area for future
research is to study and improve the convergence rate of iterative
solvers applied to the specific case of multibody dynamics. Another
interesting avenue of further work is to use continuous collision
detection to avoid the artifacts of explicit timestepping with large
timestep sizes.

REFERENCES

ANITESCU, M. AND POTRA, F. A. 1996. Formulating dynamic multi-

rigid-body contact problems with friction as solvable linear complemen-

tary problems. Tech. Rep. No 93/1996, Department of Mathematics, The

University of Iowa.

ARMSTRONG, W. W. AND GREEN, M. W. 1985. The dynamics of ar-

ticulated rigid bodies for purposes of animation. Visual Comput. 1, 4,

231–240.

BARAFF, D. 1989. Analytical methods for dynamic simulation of non-

penetrating rigid bodies. Comput. Graph. 23, 3, 223–232.

BARAFF, D. 1994. Fast contact force computation for nonpenetrating

rigid bodies. Comput. Graph. 28, 23–34.

BARAFF, D. 1995. Interactive simulation of solid rigid bodies. IEEE

Comput. Graph. Appl. 15, 3 (May), 63–75.

CAMERON, S. 1990. Collision detection by four–dimensional intersec-

tion testing. IEEE Trans. Robotics Automa. 6, 3, 291–302.

CHATTERJEE, A. AND RUINA, A. 1998. A new algebraic rigid body

collision law based on impulse space considerations. J. Appl. Mechanics.

COTTLE, R., PANG, J.-S., AND STONE, R. E. 1992. The Linear Comple-

mentarity Problem. Academic Press.

EBERLY, D. 2007a. Dynamic collision detection using oriented bounding

boxes. Online Paper. Magic Software, Inc.

EBERLY, D. 2007b. Intersection of objects with linear and angular ve-

locities using oriented bounding boxes. Online Paper. Magic Software,

Inc.

ERLEBEN, K. 2005. Stable, robust, and versatile multibody dynamics

animation. Ph.D. thesis, Department of Computer Science, University of

Copenhagen, Denmark.

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.



20 • K. Erleben

FEATHERSTONE, R. 1998. Robot Dynamics Algorithms, 2nd ed. Kluwer

Academic Publishers.

GLEICHER, M. 1994. A differential approach to graphical manipulation.

Ph.D. thesis, Carnegie Mellon University.

GOYAL, S., RUINA, A., AND PAPADOPOULOS, J. 1989. Limit surface and

moment funktion descriptions of planar sliding. In Proceedings of the

IEEE International Conference on Robotics and Automation. Scottsdale,

AZ, 794–799.

GUENDELMAN, E., BRIDSON, R., AND FEDKIW, R. 2003. Nonconvex rigid

bodies with stacking. ACM Trans. Graph. (July).

HAHN, J. K. 1988. Realistic animation of rigid bodies. Comput. Graph.

22, 299–308.

HUBBARD, P. M. 1993. Interactive collision detection. In Proceedings

of the IEEE Symposium on Research Frontiers in Virtual Reality. 24–

32.

JEAN, M. 1999. The non-smooth contact dynamics method. Comput.

Methods Appl. Mechanics Engin. 177, 3–4 (July) 235–257.

KAUFMAN, D. M., EDMUNDS, T., AND PAI, D. K. 2005. Fast frictional

dynamics for rigid bodies. ACM Trans. Graph. 24, 3, 946–956.

LACOURSIERE, C. 2003. Splitting methods for dry frictional contact

problems in rigid multibody systems: Preliminary performance results.

In The Annual SIGRAD Conference. M. Ollila, Ed, Vol. 10.

MILENKOVIC, V. J. AND SCHMIDL, H. 2001. Optimization-based anima-

tion. SIGGRAPH Conference.

MIRTICH, B. 1996. Impulse-based dynamic simulation of rigid body

systems. Ph.D. thesis, University of California, Berkeley.

MOORE, M. AND WILHELMS, J. 1988. Collision detection and response

for computer animation. In Comput. Graph. 22, 289–298.

MORAVANSZKY, A. 2004. A path to practical rigid body dynamics. An-

nual CISP Workshop, Copenhagen, Denmark.

MOREAU, J. 1999. Numerical aspects of the sweeping process. Comput.

Methods Appl. Mechanics Engin. 177, 3–4 (July), 329–349.

MURTY, K. G. 1988. Linear Complementarity, Linear and Nonlinear

Programming. Helderman-Verlag.

OPENTISSUE. Opensource Project, Physics-based Animation and Surgery

Simulation, www.opentissue.org.

PFEIFFER, F. AND WÖSLE, M. 1996. Dynamics of multibody systems

containing dependent unilateral constraints with friction. J. Vibration

Control 2, 161–192.

REDON, S. 2004. Continuous collision detection for rigid and articulated

bodies. ACM SIGGRAPH Course Notes. To appear.

REDON, S., KHEDDAR, A., AND COQUILLART, S. 2003. Gauss least con-

straints principle and rigid body simulations. In Proceedings of IEEE

International Conference on Robotics and Automation.

REDON, S., KIM, Y. J., LIN, M. C., AND MANOCHA, D. 2004. Fast contin-

uous collision detection for articulated models. In Proceedings of ACM

Symposium on Solid Modeling Applications. To appear.

RENOUF, M., ACARY, V., AND DUMONT, G. 2005. Comparison of algo-

rithms for collisions, contact and friction in view of real-time applications

in multibody dynamics. In Proceedings of the International Conference on

Advances in Computational Multibody Dynamics (ECCOMAS Thematic

Conference).

RENOUF, M. AND ALART, P. 2004. Gradient type algorithms for 2d/3d

frictionless/frictional multicontact problems. In ECCOMAS’04.

SAUER, J. AND SCHÖMER, E. 1998. A constraint-based approach to rigid

body dynamics for virtual reality applications. ACM Symposium on Virtual

Reality Software and Technology, 153–161.

SCHMIDL, H. AND MILENKOVIC, V. J. 2004. A fast impulsive contact suite

for rigid body simulation. IEEE Trans. Visualiz. Comput. Graph. 10, 2,

189–197.

STEPHANE REDON, A. K. AND COQUILLART, S. 2002. Fast continuous

collision detection between rigid bodies. Comput. Graph. Forum (Euro-

graphics’02) 21, 3.

STEWART, D. AND TRINKLE, J. 1996. An implicit time-stepping scheme

for rigid body dynamics with inelastic collisions and coulomb friction.

Int. J. Numeric. Methods Engin.

STEWART, D. E. 2000. Rigid-body dynamics with friction and impact.

SIAM Rev. 42, 1, 3–39.

TRINKLE, J. C., TZITZOUTIS, J., AND PANG, J.-S. 2001. Dynamic multi-

rigid-body systems with concurrent distributed contacts: Theory and ex-

amples. Philosoph. Trans. Mathemat. Phys. Engin. Sci. 359, 1789 (Dec.),

2575–2593.

Received February 2006; accepted December 2006

ACM Transactions on Graphics, Vol. 26, No. 2, Article 12, Publication date: June 2007.


