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Abstract

Recent observations of global velocity gradients across and along molecular filaments have been interpreted as
signs of gas accreting onto and along these filaments, potentially feeding star-forming cores and protoclusters. The
behavior of velocity gradients in filaments, however, has not been studied in detail, particularly on small scales
(<0.1 pc). In this paper, we present MUFASA, an efficient, robust, and automatic method to fit ammonia lines with
multiple velocity components, generalizable to other molecular species. We also present CRISPY, a PYTHON

package to identify filament spines in 3D images (e.g., position–position–velocity cubes), along with a
complementary technique to sort fitted velocity components into velocity-coherent filaments. In NGC 1333, we
find a wealth of velocity gradient structures on a beam-resolved scale of ∼0.05 pc. Interestingly, these local
velocity gradients are not randomly oriented with respect to filament spines and their perpendicular, i.e., radial,
component decreases in magnitude toward the spine for many filaments. Together with remarkably constant
velocity gradients on larger scales along many filaments, these results suggest a scenario in which gas falling onto
filaments is progressively damped and redirected to flow along these filaments.

Unified Astronomy Thesaurus concepts: Interstellar medium (847); Interstellar filaments (842); Star formation
(1569); Interstellar molecules (849); Molecular gas (1073); Radio astronomy (1338); Molecular clouds (1072);
Molecular spectroscopy (2095)

1. Introduction

Molecular cloud filaments appear to play a pivotal role in
star formation. In addition to being featured prominently in
star-forming regions (e.g., Schneider & Elmegreen 1979; Bally
et al. 1987) and being ubiquitous in molecular clouds at large
(e.g., André et al. 2010), filaments appear to harbor most of the
observed dense cores (e.g., Menʼshchikov et al. 2010; Könyves
et al. 2015), the smallest structure from which stellar systems
emerge (see Di Francesco et al. 2007). Theoretically, filaments
appear to form naturally from supersonic turbulent motions of a
cloud in numerical simulations, both in the absence (e.g., Porter
et al. 1994) and in the presence (e.g., Jappsen et al. 2005) of
self-gravity. Moreover, filaments appear to be analytically the
most favored structure to grow locally and fragment readily
under weak perturbations in a finite cloud (Pon et al. 2011).
Such properties likely make filaments highly effective at
assembling dense cores from a molecular cloud prior to, or
even in the absence of, an overwhelming, global cloud
collapse.

How dense cores relate to their host filaments is currently not
well understood. Gravitationally induced fragmentation along
filament lengths, like those found in numerical models (e.g.,
Bastien et al. 1991; Inutsuka & Miyama 1997), has been
suggested to be how supercritical filaments produce cores, as
inferred by Herschel observations (see André et al. 2014).
While Hacar & Tafalla (2011) found that dense structures in the
L1517 filament correlate with oscillatory line-of-sight

velocities, suggesting filament fragmentation, such behavior

has not been generally observed in other filaments (e.g., Tafalla

& Hacar 2015). Other core formation mechanisms, such as

those that form cores and filaments simultaneously in

simulations (e.g., Gong & Ostriker 2011; Chen & Ostri-

ker 2014, 2015; Gómez & Vázquez-Semadeni 2014), may thus

play an important role in star formation as well.
In addition to forming cores, filaments in simulations accrete

material from their surroundings and transport mass along their

lengths to feed dense cores and protoclusters (e.g., Balsara et al.

2001; Smith et al. 2011, 2016; Gómez & Vázquez-

Semadeni 2014). Indeed, velocity gradients observed across

(e.g., Palmeirim et al. 2013; Fernández-López et al. 2014;

Dhabal et al. 2018) and along (e.g., Friesen et al. 2013; Kirk

et al. 2013) filaments have been interpreted as evidence for

such accretion onto and along these filaments, respectively.

Further kinematic studies are needed to understand how such

filaments fit within the wide variety of existing models and how

they assemble mass in star formation in detail.
A filament that appears to be a single, coherent (i.e.,

continuous) structure on the sky may not necessarily be truly

coherent in three-dimensional, position–position–position

(ppp) space. Multiple structures that are distinct in ppp space

can appear as a single structure by mere projection along lines

of sight. With CO observations, Hacar et al. (2013) showed that

a seemingly coherent filament on the sky can in fact contain

The Astrophysical Journal, 891:84 (18pp), 2020 March 1 https://doi.org/10.3847/1538-4357/ab7378

© 2020. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0003-4242-973X
https://orcid.org/0000-0003-4242-973X
https://orcid.org/0000-0003-4242-973X
https://orcid.org/0000-0002-9289-2450
https://orcid.org/0000-0002-9289-2450
https://orcid.org/0000-0002-9289-2450
https://orcid.org/0000-0002-5204-2259
https://orcid.org/0000-0002-5204-2259
https://orcid.org/0000-0002-5204-2259
https://orcid.org/0000-0003-2628-0250
https://orcid.org/0000-0003-2628-0250
https://orcid.org/0000-0003-2628-0250
https://orcid.org/0000-0002-3972-1978
https://orcid.org/0000-0002-3972-1978
https://orcid.org/0000-0002-3972-1978
https://orcid.org/0000-0001-7594-8128
https://orcid.org/0000-0001-7594-8128
https://orcid.org/0000-0001-7594-8128
https://orcid.org/0000-0003-1481-7911
https://orcid.org/0000-0003-1481-7911
https://orcid.org/0000-0003-1481-7911
https://orcid.org/0000-0001-6222-1712
https://orcid.org/0000-0001-6222-1712
https://orcid.org/0000-0001-6222-1712
https://orcid.org/0000-0001-9732-2281
https://orcid.org/0000-0001-9732-2281
https://orcid.org/0000-0001-9732-2281
https://orcid.org/0000-0003-1252-9916
https://orcid.org/0000-0003-1252-9916
https://orcid.org/0000-0003-1252-9916
https://orcid.org/0000-0001-6004-875X
https://orcid.org/0000-0001-6004-875X
https://orcid.org/0000-0001-6004-875X
https://orcid.org/0000-0002-0528-8125
https://orcid.org/0000-0002-0528-8125
https://orcid.org/0000-0002-0528-8125
https://orcid.org/0000-0002-9485-4394
https://orcid.org/0000-0002-9485-4394
https://orcid.org/0000-0002-9485-4394
mailto:mcychen@uvic.ca
mailto:mcychen@uvic.ca
mailto:mcychen@uvic.ca
http://astrothesaurus.org/uat/847
http://astrothesaurus.org/uat/842
http://astrothesaurus.org/uat/1569
http://astrothesaurus.org/uat/1569
http://astrothesaurus.org/uat/849
http://astrothesaurus.org/uat/1073
http://astrothesaurus.org/uat/1338
http://astrothesaurus.org/uat/1072
http://astrothesaurus.org/uat/2095
https://doi.org/10.3847/1538-4357/ab7378
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab7378&domain=pdf&date_stamp=2020-03-06
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab7378&domain=pdf&date_stamp=2020-03-06


multiple velocity-coherent “fibers” when viewed in position–

position–velocity (ppv) space.
While some ppv fibers may indeed trace physical ppp

subfilaments like those produced in simulations (e.g., Moeckel

& Burkert 2015; Smith et al. 2016; Clarke et al. 2017),

synthetic CO observations of a simulation showed that ppv

fibers do not necessarily map well onto ppp structures, and

vice versa (Clarke et al. 2018). Structures that are coherent in

ppv space can still suffer from line-of-sight confusion when

distinct ppp structures possess similar velocities (e.g., Beau-

mont et al. 2013). Such a scenario can be common, for

example, when multiple ppp structures are swept up by a large-

scale flow. Fortunately, denser gas tracers such as NH3 and

N2H
+ are expected to be less susceptible to these problems due

their lower volume-filling fraction in a cloud. This claim seems

to be supported by Tafalla & Hacar (2015), who observed only

a single N2H
+ ppv fiber over each line of sight where multiple

CO ppv fibers had been detected earlier by Hacar et al. (2013).
Regardless of how well ppv coherent (hereafter velocity-

coherent) structures map onto ppp space, multicomponent line

modeling is needed to avoid deriving erroneous gas properties

that are unphysical. Kinematic analyses that perform multiple-

component fits to a large number of spectra, however, are

uncommon. This situation is due to the typical need for human

intervention in popular least-squares fitting methods, such as

the Levenberg–Marquardt (LM; Levenberg 1944; Mar-

quardt 1963; Moré 1978) method, and the inefficiencies

associated with many automated approaches, such as the

grid-search or Markov Chain Monte Carlo (MCMC) methods.
Recent automated methods for multicomponent fits, such as

Behind The Spectrum (BTS; Clarke et al. 2018) and GAUSSPY

+ (Riener et al. 2019), work only with optically thin, Gaussian

lines by design. Other methods that fit hyperfine lines, such as

those used by Henshaw et al. (2016, SCOUSE) and Hacar et al.

(2017), are semiautomatic and hence are still subject to human

biases. An efficient, automated method that fits hyperfine lines

is therefore highly desirable for kinematic studies that use

species like NH3 and N2H
+ to trace dense cores and filaments.

In this paper, we describe an automated, generalizable

method that fits two-component NH3 (1, 1) spectra efficiently

using the LM method, without the need for user-provided

initial guesses. The fitted models are subsequently used to

identify filament spines in ppv space, which are sorted into

velocity-coherent filaments accordingly. Moreover, we present

a novel approach to study velocity gradients in filaments on

beam-resolved scales, where velocity gradients are decom-

posed into components that are parallel and perpendicular with

respect to local filament spines. Such a technique enables us to

explore filament kinematics and accretion flow directions on

the dense core (<0.1 pc) scale in addition to the filament

scale (>0.5 pc).
We apply our new methods to filaments seen in NH3 (1, 1)

data of the NGC 1333 region. Located at a distance of about

295 pc away (Ortiz-León et al. 2018; Zucker et al. 2018), the

NGC 1333 star-forming clump in the Perseus molecular cloud

is one of the nearest cluster-forming regions. Its properties

make NGC 1333 an ideal place to study the interplay between

filaments and cores in a cluster-forming environment in detail.

NGC 1333 is also one of the most extensively studied star-

forming clumps (see Walawender et al. 2008), providing a

wealth of context within which our study can be placed.

This paper is laid out as follows. We describe our NH3 (1, 1)
model, synthetic data, and observed data of NGC 1333 in
Section 2. Methods behind our analysis, as well as test results
of our line-fitting method, are presented in Section 3. The
results of our analysis on the NGC 1333 observations are
presented in Section 4, followed by a discussion of these results
in Section 5. A concluding summary is in Section 6.

2. Models and Data

We used two data sets for our work presented here: one
synthetic and one observational. The spectral model behind our
line fits is described in Section 2.1 while the synthetic data used
to test the accuracy of our line-fitting method is described in
Section 2.2. The observations we used for this work are
obtained from the Green Bank Ammonia Survey (GAS; Friesen
et al. 2017) and are presented in Section 2.3.

2.1. NH3 Line Models

We modeled observations of the NH3 (1, 1) inversion
transition along a given line of sight with up to two
homogeneous bodies of beam-filling gas known as slabs. Each
slab in our model corresponds to a kinematic (i.e., velocity)
component observed in a spectrum and is assumed to be at a
local thermal equilibrium with itself. Furthermore, we assume
the emission can be parameterized by excitation temperature
(Tex), optical depth (τ0), velocity dispersion (σv), and velocity
centroid in the local standard of rest frame (vLSR). The optical
depth profile of each slab is described by

⎡

⎣
⎢

⎤

⎦
⎥( )

( )
( )åt s t

d
s

=
- - -

=

v W
v v v

, exp
2

, 1v

i

n

i
i

v1

0
LSR

2

2

where Wi and δvi are the relative weight and velocity offset of

each of the eighteen NH3 (1, 1) hyperfine components,

respectively. These weights and velocity offsets are tabulated

by Mangum & Shirley (2015). We further note that the τ0 here

corresponds to the combined optical depth of all the hyperfine

components.
The radiative transfer of our model emission through each

slab is governed by:

( )( ) ( )= - +n n
t

n
t- -n nI B T e I e1 , 2ex

bg

where nI
bg is the specific intensity of the background radiation

and ( )nB T is the Planck function at a temperature T. Each slab

is assumed to have a constant Tex and we adopt the cosmic

microwave background (CMB), as the nI
bg for our first slab, i.e.,

the slab farthest from the observer. We then subsequently use

the emergent Iν of the first slab as the nI
bg of our second slab to

complete the calculation. To mimic baseline-removal used in

our data reduction, a constant value of ( )=nB T 2.73 KCMB is

subtracted from Equation (2) in our final Iν model.
While we assume the slab farthest from an observer to be the

optically thicker slab in our initial guesses, our least-squares
fitting routine ultimately decides the order of the modeled slabs
along the line of sight. We note that such an ordering of the
slabs is unimportant when the two slabs are optically thin with
respect to each other, or when two optically thick slabs are not
spectrally overlapped due to large vLSR separations. Since the
satellite hyperfine lines of NH3 (1, 1) emissions are optically
thin in most cases, they help to constrain our kinematic fits well

2
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even when the main hyperfine lines are optically thick. Such a
constraint allows our fitting method to distinguish double
spectral peaks resulting from a line absorption profile from
those resulting from superpositions. We implicitly explore how
the ordering of the slabs affects our fitting accuracy with the
performance test described below in Section 2.2.

Since this paper focuses exclusively on understanding the
gas kinematics, we analyzed only the NH3 (1, 1) lines to
maximize our spatial coverage for the study. As the (2, 2) line
is expected to be weaker than the (1, 1) line, this strategy
enabled us to extend our analysis over wider regions where the
NH3 (2, 2) line is not detected. While such an approach does
not allow us to derive Tex and τ0 accurately for purely optically
thin slabs, where the two parameters are spectrally degenerate,
it does remove the potential bias that comes with assuming a
single Tex for both the (1, 1) and (2, 2) lines.

2.2. Synthetic Spectra

To test the accuracy of our line-fitting method, we generated
a set of 25,000 synthetic NH3 (1, 1) spectra, each from either a
one- or two-slab model that fills the beam. To motivate our test
set physically, we constructed each of our synthetic slabs with
the NH3 model adopted by the GAS DR1 first results paper
(Friesen et al. 2017) instead of using our fitting model,
described earlier in Section 2.1. The model adopted by the DR1
paper is based on the work by Rosolowsky et al. (2008) and
Friesen et al. (2009), and developed from the framework
described in Mangum & Shirley (2015).

Each gas slab in our testing model is physically parameter-
ized by the para-ammonia column density, N, and the kinetic
temperature, Tk, in addition to σv, vLSR, and Tex. We further
assumed these slabs are in local thermal equilibrium (LTE),
i.e., Tex=Tk, and drew parameters behind each instance of
synthetic slab randomly from the predefined distributions
specified below:

1. N is drawn from a log-uniform distribution in the range
of ( ) <- N13 log cm 14.5;2

2. Tk is drawn from a uniform distribution in the range of 8
K � Tk<25 K;

3. σv is the quadrature sum of the thermal line width,
s = 0.08v,T km s−1, and the nonthermal line width, sv,NT,
where [ ( )]s -ln km sv,NT

1 is drawn from a normal
distribution with a mean and a standard deviation of
−2.3 and 1.5, respectively. This particular line width
distribution is chosen to resemble those found in the GAS
DR1 first results, and;

4. vLSR of the first gas slab is drawn from a uniform
distribution in the range of −2.5 km <-  vs 2.51

LSR

km s−1 while the vLSR offset of the second slab from the
first is drawn independently from the same distribution.

We chose these distributions to represent broadly the typical
physical conditions seen toward nearby molecular clouds with
NH3.

We constructed a two-slab spectrum using the same radiative
transfer formalism described by Equation (2), with the CMB
subtracted as a constant. The final synthetic spectrum is
produced by adding random Gaussian noise with an rms value
of 0.1 K to the model spectrum. The value of 0.1 K is chosen to
mimic the typical noise level found in the GAS DR1
observations (Friesen et al. 2017).

For each instance of randomly generated spectrum, eight
additional, spatially correlated spectra are produced. Collec-
tively, these spectra are placed in a 3×3 spatial grid with the
original spectrum positioned in the center. The purpose behind
creating such a cube is to provide spatial information for fitting
methods that utilize them, including the method presented in
this paper.
The spatial correlation between pixels of a synthetic cube is

achieved by applying spatial gradients to the model parameters,
referenced at the central pixel. The gradients used for each
parameter are randomly drawn from a Gaussian distribution
with 1σ values of 0.2 K, 0.1 km s−1, 0.1 km s−1, and 0.01 for
Tk, σv, vLSR, and ( )Nlog , respectively, per pixel. Figure 1 (left)
shows spectra extracted from such a synthetic cube, displayed
spatially on a 3×3 grid.

2.3. NH3 Observations, Reduction, and Imaging

We observed the Gould Belt molecular clouds with NH3 (1,
1) and (2, 2) inversion lines as a part of the GAS survey
(Friesen et al. 2017). The GAS observations were made with
the Robert C. Byrd Green Bank Telescope (GBT) using its
7-beam K-Band Focal Plane Array (KFPA) and its VErsatile
GBT Astronomical Spectrometer (VEGAS) backend. The
angular and spectral resolutions (FWHMs) of our NH3 data
are 32″ and ∼0.07 km s−1

(i.e., 5.7 kHz at 23.7 GHz),
respectively.
Our targets are observed using the On-The-Fly (OTF)

technique, where a 10′×10′ on-sky tile was scanned with a
Nyquist-sampled spacing between each row. We reduced these
observations with the GBT KFPA data reduction pipeline
(Masters et al. 2011) and imaged them with the recipe
described by Mangum et al. (2007). Further details of the
observations, data reduction, and imaging are available in the
GAS first results paper (Friesen et al. 2017). For this work, we
will focus on the observations of NGC 1333 star-forming
clump, available to the public via Data Release 1 (DR1) of the
first results paper. Figure 1 shows example spectra on its right
panel extracted from the DR1 data over a 3×3 pixel region in
NGC 1333.

3. Analysis Methods

Here, we present our analysis methods in this section below.
Details of our spectral fitting method are provided in
Section 3.1. We conducted a performance test on our fitting
method to quantify its accuracy and completeness, and we
present the details and the results of this test in Section 3.2.
Methods for identifying velocity-coherent filaments and
assigning component memberships to these filaments based
on the fits are presented in Section 3.3. Methods behind
velocity gradient analysis are presented in Section 3.4.

3.1. Spectral Fitting

We fitted our synthetic and real data automatically using the
LM (Levenberg 1944; Marquardt 1963; Moré 1978) least-
squares minimization method. We bypassed the need for user-
provided initial guesses using an automated approach described
in Section 3.1.1 and performed least-squares fits using the
PYSPECKIT package (Ginsburg & Mirocha 2011). The
Python implementation of the LM method used by the
PYSPECKIT is based on the FORTRAN version found in the
MINPACK-1 package (Moré et al. 1980), made available via a

3
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series of translations (Rivers 2002; Markwardt 2009). Our fits
are performed on a pixel-by-pixel basis for all the pixels in our
data, excluding noisy regions near the map edges. We use a
statistical method described in Section 3.1.2 to discern whether
a pixel is better modeled by noise, a one-component model, or
a two-component model. Our fitting package is publicly
available via GitHub under a GNU General Public License as
the MUFASA

10
(i.e., MUlti-component Fitter for Astrophysical

Spectral Applications). The version we used for this work is
archived in Zenodo (Chen 2020a).

3.1.1. Making Initial Guesses

The LM method is an iterative approach to find local minima
using a hybrid algorithm of the gradient-ascent and the Gauss-
Newton methods (see Lourakis 2005). Due to the nature of
these methods, good initial guesses are typically needed with
the LM method to find the global minima. Such guesses are
particularly required for complex spectral models with many
local chi-squared minima and are the reasons why many earlier
efforts to fit multiple slab models (e.g., Hacar et al. 2013;
Henshaw et al. 2016) require human intervention and are not
fully automated. For our method, i.e., MUFASA, we fit spectra
automatically using initial guesses generated from a recipe
described below. A statistical technique (see Section 3.1.2) is
used thereafter to decide which of the one- or two-slab models
fitted for each pixel is more appropriate, without human
intervention.

The GAS DR1ʼs one-slab fitting method used an effective
and automated recipe to make initial guesses. The recipe used
the first and second moments of the central, i.e., main, NH3 (1,
1) hyperfine lines as its initial vLSR and σv guesses. Such a
calculation excludes the satellite hyperfine lines because their
large velocity offsets are not a kinematic feature. The main
hyperfine lines were isolated for such a calculation in DR1 via
a user-defined spectral window.

For our one-slab model fits, we adopt the DR1 recipe for our
initial guesses of vLSR and σv, but define our spectral windows
automatically instead. We automate such a process by centering
a 6 km s−1 full-width window on the emission peak of the
spatially integrated spectrum of our data. Since the NH3 (1, 1)
emission should be optically thin throughout the majority of the

data, such an emission peak should locate the whereabouts of
the main hyperfine lines. Once the window is defined, we
follow the DR1 recipe and calculate the zeroth, first, and
second moments (μ0, μ1, μ2) of the main hyperfine lines over
the window.
To obtain initial guesses for Tex and τ0 better than assuming

fixed values, we use the zeroth moment (μ0) map as a proxy
instead. Specifically, we calculate our guesses by first normal-
izing the 99.7 percentile value of the μ0 distribution across the
map to one. The initial guesses for Tex and τ0 are then obtained
from the normalized μ0, i.e., m~0, as ·m~ Tgmx0 and ·m t~

gmx0 ,
respectively, where Tgmx=8 K and τgmx=1. The resulting
fits from adopting such guesses do not depend sensitively on
Tgmx and τgmx around these chosen values.
We expand the DR1 fitting recipe further for our two-slab

fits via the following steps:

1. Adopt the first and second vLSR guesses as μ1±0.4μ2,
respectively.

2. Adopt the first and second σv guesses both as 0.5μ2,
respectively.

3. Adopt the first and second Tex guesses as m~0 Tgmx and

m~ T0.8 gmx0 , respectively.

4. Adopt the first and second τ0 guesses as m t~0.75 gmx0 and

m t~0.25 gmx0 , respectively.

As with the guesses used for one-slab fits, our choices for
Tgmx and τgmx, and their respective scaling factors, do not affect
the fitting outcome sensitively. Our choices for these values are
motivated by a hypothetical scenario where the two gas slabs
emitting a spectrum have comparable velocity dispersions,
densities, and kinetic temperatures. We note that our initial
guesses assume the slab further from the observer has a higher
optical depth. As we show below in Section 3.2, our recipe for
making guesses for the two-slab fit is robust even when the gas
slabs emitting the spectrum have dissimilar velocity disper-
sions, i.e., contrary to this assumption.
To take advantage of spatial information present in our

observations, we first fit data that are spatially convolved to an
angular resolution twice the size of the original resolution. The
parameter maps derived from this initial fit are then median
smoothed and interpolated. For Tex and τ0 guesses, values
outside of ranges 3–8 K and 0.2–8, respectively, are removed
prior to median-smoothing and interpolation. These post-

Figure 1. NH3 (1, 1) spectra (gray) taken from a synthetic spectral cube (left) and the NGC 1333 observation (right) over a grid of 3×3 footprint, zoomed in to focus
on the main hyperfine structures. Models fitted to all 18 hyperfine components of the spectra in the center pixel are shown in black, and the individual components of
the model are shown in blue and orange.

10
MUFASA codebase:https://github.com/mcyc/mufasa.
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processed parameter maps are then adopted as the initial
guesses of our fits to the full-resolution cubes.

By using parameters fitted to the spatially convolved cube as
initial guesses for the full-resolution fit, we are able to take
advantage of the enhanced signal-to-noise ratio (S/N) in
addition to the spatial information present in the convolved
cube to improve our fits. Figure 1 shows spectra extracted over
a 3×3 pixel region from a synthetic data cube (left) and the
DR1 data of NGC 1333 (right), demonstrating the spatial
correlation of these spectra between pixels. The two-slab model
fitted to the central pixel using this method is overlaid over the
central spectrum.

Since moment estimates for making initial guesses may
overlook a faint spectral component in the presence of a much
brighter one, we further fit one-slab models to our fit residuals
in an attempt to recover missing components. The spectral
window used to estimate initial guesses for this fit is centered
on the vLSR derived from the initial one-slab fit, with a full
window width of 7 km s−1.

We use the results of the one-slab residual fit subsequently to
assist with the recovery of a missing component. These results
are taken in tandem with those of the original one-slab fit as
initial guesses for the re-attempt at fitting a two-slab model. We
perform these re-attempts over pixels where one-slab models
initially fit the full spectrum better than the two-slab models, as
determined by the selection criterion described in the next
section (i.e., Section 3.1.2). The same criteria is used further to
determine whether or not this new two-slab fit is justified over
the one-slab fit.

3.1.2. Model Selection

Many previous multicomponent fitting methods selected
their best-fit models for each component via an S/N threshold
(e.g., Sokolov et al. 2017), a velocity separation threshold, or
both (e.g., Hacar et al. 2013, 2017; Chen et al. 2019). While
these criteria are effective at avoiding overfitting, they are not
necessarily good at picking up all the spectral components
present along a given line of sight. We addressed this issue by
using the corrected Akaike information criterion (AICc;
Akaike 1974; Sugiura 1978) to select the best model between
the one- and two-slab fits, on a pixel-by-pixel basis.

The AICc is a second-order corrected estimator, based on the
K-L information loss (Kullback & Leibler 1951), for the
relative likelihood of one model with respect to another at
representing a data set with N samples. Assuming the errors in
the data are normally distributed, the AICc can be written in

terms of the χ2 of the fit as:

( )
( )c= + +

+
- -

p
p p

N p
AICc 2

2 1

1
, 32

where p is the number of parameters used in the model. At each

pixel, we accept a two-slab model as the better fit over its one-

slab counterpart when their relative likelihood, K1
2, given by

( ) ( )= -Kln exp AICc AICc 41
2

2 1

is greater than 5 (Burnham & Anderson 2004). Similarly, we

accept a one-slab model as the better fit over a Iν=0 model of

noise with no free parameter when their relative likelihood,

Kln 0
1, is greater than 5.

Pixels with reduced χ2 values of c >n 1.52 are further
masked from our analysis to ensure spectra which are
inadequately modeled by our fits, e.g., those with possibly
three or more velocity slabs, are not included in the analyses. In
NGC 1333, no pixel is masked out as all pixels best fitted by

2-slab models have c <n 1.52 .

3.2. Performance Tests on Line Fitting

Figure 2 summarizes the performance of our line-fitting
method, MUFASA, at identifying the correct number of velocity
slabs behind a synthetic spectrum, using confusion matrices.
These results are obtained from fits to all 25,000 synthetic test
spectra described in Section 2.2 and are binned into separate
matrices according to the S/N of their true underlying spectra.
Unless stated otherwise, we refer to S/N as the modeled peak
brightness to noise ratio of a final, radiatively transferred
spectrum rather than that of its individual components. As
illustrated in Figure 2, our fitting method identifies true one-
slab spectra robustly. The true-positive rate of this identifica-
tion is greater than 96% even for our lowest S/N (<5) bin. For
two-slab identification, the true-positive rate correlates with the
S/N value of the spectra, reaching values upwards of about
90% at higher S/N. Even at moderate S/Ns between 5 and 20,
the true-positive rate is roughly 80% for two-slab spectra.
We next explore the impact of velocity separation between

the slabs and intrinsic velocity dispersion (i.e., σv) on the
success of our fitting method. Figure 3 shows the rate of true-
positive identification of a two-slab spectrum as a function of
the vLSR separation between the slabs, i.e., ΔvLSR. The left
panel shows these rates binned according to the S/N value of
the fainter slab, i.e., S/Nmin.
The response curves in Figure 3 show the same shape across

various S/Nmin regimes. Namely, they increase monotonically

Figure 2. Confusion matrices quantifying MUFASAʼs ability to classify the number of velocity slabs behind a synthetic spectrum. Each matrix contains a subset of our
samples at a given range of S/N values.
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with ΔvLSR until the fraction of true-positive identification
plateaus at 100%. Prior to plateauing, these curves shift
vertically upwards as the S/Nmin increases and behave
qualitatively the same even when they are binned instead
according to the S/N of the brighter slab, i.e., S/Nmax, or the
S/N taken from the peak of the combined spectrum (i.e., the
S/N).

The only exception to this plateauing trend is when S/Nmin

is low, i.e., at a value less than 5. At this low S/N regime, the
true-positive rate reaches a maximum of 95% at a value of
about 1.9 km s−1 before it turns around instead of plateauing.
This turnaround in the true-positive rate likely reflects the limit
of our ability to make initial guesses, suggesting that moment
maps may have trouble picking up fainter components when
these components reside near the edges of the spectral window
from which moment maps are calculated from.

The performance of MUFASA decreases with decreasing
ΔvLSR, likely resulting from a lack of velocity acuity between
two slabs when they have similar velocities. As ΔvLSR
decreases, the spectral profiles of the two slabs start to blend
together, making them more difficult to distinguish from a one-
slab profile. This lack of acuity is what prompted many studies
to adopt a ΔvLSR threshold for their model selection to guard
against overfitting (e.g., Hacar et al. 2013), and remains a
challenge even for advanced machine-learning techniques (e.g.,
Keown et al. 2019).

The right panel of Figure 3 shows the true-positive
identification rates divided into various regimes of velocity
dispersion ratio, i.e., the line width of the narrower slab relative
to its wider counterpart along a line of sight
( fσ=σv,narrow/σv,wide). Here, the true-positive rate anticorre-
lates strongly with fσ. This true-positive rate is likely enhanced
when the spectral profiles from the slabs are less similar, i.e.,
when fσ is low, which makes them easier to discern from one
another when their amplitudes are different. Indeed, this rate
can be as high as 90% for spectra with fσ<0.3 and correlates
weakly with ΔvLSR in this regime.

Such enhanced identification rates in the low fσ regime make
MUFASA particularly useful for disentangling subsonic gas
from supersonic gas along lines of sight. For reference, the
median σv values for the narrow and wide components in our
test samples are 0.23 km s−1 and 0.48 km s−1, respectively,
whereas the isothermal sound speed at 10 K is ∼0.2 km s−1.
Like the trend seen in the left panel, the true-positive rate
correlates with ΔvLSR for most fσ values prior to plateauing.

The slope of these correlations, however, becomes shallower as
fσ decreases.
Figure 3 reveals that MUFASA is able to recover a large

fraction of two-slab spectra that would otherwise be missed by
using a ΔvLSR threshold for model selection. For a spectral
population described by our synthetic spectra, at least 20% and
30% of the second slabs missed by a threshold of 0.25 km s−1

(e.g., Hacar et al. 2017) and 0.4 km s−1
(e.g., Chen et al. 2019),

respectively, are recovered with MUFASA. These recovery rates
can be significantly higher, however, depending on the S/N
and fσ.
Figure 2 reveals that MUFASA rarely overfits one-slab

spectra, i.e., misidentifying a one-slab spectrum as having
two slabs. Our test shows MUFASA only misidentifies one-slab
spectra <3% of the time. Even in the lowest S/N regime, such
misidentification only occurs 4% of the time. Performing model
selection via AICc alone is thus sufficient to guard against
overfitting without needing an additional threshold criterion.
To quantify how well MUFASA captures the true vLSR and σv,

Figure 4 shows the true 1σ errors of these two parameter fits as
a function of the following values: the S/N of a two-slab
spectrum, the S/N of an individual slab in a two-slab spectrum,
and the S/N of a one-slab spectrum. These S/N-error relations
are plotted with errors calculated from the median absolute
deviation (MAD) of the fitted parameters with respect to the
true value behind a synthetic spectrum. As expected, the
parameter errors are anticorrelated with the S/N. We note that
these errors also account for any potential cases where the
spatial order of velocity slabs may not be ordered correctly
along a line of sight.

3.3. Identifying Velocity-coherent Filaments

Velocity gradient analyses are only useful for understanding
gas flows if the structures being analyzed are velocity coherent,
i.e., continuous in velocity. Velocity slabs derived from our fits
must therefore be sorted into velocity-coherent structures prior
to such analyses. In this subsection, we present methods to
reconstruct fits to our data as simple emission line models in
position–position–velocity (i.e., ppv) space without hyperfine
structures. We further present methods to identify filament
spines from these models in ppv space and sort the fitted slabs
into velocity-coherent filaments based on these identified
spines.

Figure 3. The rate of true-positive identification of a two-slab spectrum plotted as a function of the vLSR separation between the slabs. The left panel shows these test
samples binned by the S/N values of the fainter slab while the right panel shows these values binned by velocity dispersion ratio fσ of the narrow slab with respect to
the wide slab. The median σv values for the narrow and wide components in these samples are 0.23 km s−1 and 0.48 km s−1, respectively.
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3.3.1. Reconstructing Velocity Structures

To help identify velocity-coherent structures in ppv space,
we first reconstruct our best-fit models with the hyperfine
structures removed to avoid confusion from these nonkinematic
features. Such a reconstruction, known as “deblending,” is
accomplished by computing the spectral profile of each gas
slab using a single Gaussian τν profile based on our best-fit
model, which accounts for all 18 hyperfine structures (see
Section 2.1). In other words, we reconstruct the spectral profile
along a line of sight with either one or two Gaussian τν
components using our best-fit parameters and number of
components as determined by the AICc criterion.

Since our τ0 value derived from a fit (see Equation (1))
represents the peak optical depth of all the NH3 (1, 1) hyperfine
lines combined, we scale down our fitted τ0 by a factor of 10 to
represent better the actual optical depths of individual hyperfine
groups in our reconstruction. For reference, the main and
satellite hyperfine groups each contain about 50% and 10% of
the optical depth represented by τ0, respectively. The observed
satellite lines are thus typically optically thin even when the
main hyperfine lines are not, which enables these thin lines to
reveal unobstructed structures along lines of sight.

We further assume each deblended velocity component is
optically thin with respect to each other but not with respect to
the CMB, individually. Our deblended model, with the CMB
subtracted as a constant baseline, can thus be expressed as,

[ ( ) ( )][ ] ( )å= - -n n n
t

=

- nI B T B T e1 , 5
j i

m
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j,

where j designates each velocity component along a line of
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Here, T jex, , t j0, , v jLSR, , and sv j, are obtained from previously

fitted models with hyperfine structures. To ensure the

deblended emission have high spectral acuities for structure

identification in ppv space, we further set sv j, to 0.09 km s−1

instead of adopting the line widths previously derived from our

fits. This constant σv value is roughly the minimal line width

required to be Nyquist-sampled at our 0.07 km s−1 full-width-

half-max (FWHM) spectral resolution.

To illustrate structures revealed by deblending, Figure 5
shows the volume-rendered deblended ppv cube of our fits to
the NH3 (1, 1) observations of NGC 1333.

3.3.2. Identifying Filaments

We identify filaments in ppv space by using a multi-
dimensional density ridge identification algorithm known as the
Subspace Constrained Mean Shift (SCMS); (Ozertem &
Erdogmus 2011). The mathematical framework behind SCMS
was generalized by Chen et al. (2014) to operate on weighted,
particle-like data in addition to their unweighted counterparts,
which enables SCMS to run on gridded, multidimensional
images. Since the publicly available R code developed by Chen
et al. (2015) for cosmological applications only implemented
the original framework, we modified the code to reflect the
generalized one. We further translated the code to Python,
parallelized it for multiprocessing, and made it publicly
available on GitHub via the CRISPY

11
(i.e., Computational

Ridge Identification with SCMS for Python) package under a
GNU General Public License. The version of CRISPY we used
in this paper is archived in Zenodo (Chen 2020b).
While the DisPerSE algorithm (Sousbie 2011; Sousbie et al.

2011) recently used in star formation studies (e.g., Arzouma-
nian et al. 2011) also operates in 3D (e.g., Smith et al. 2016), it
requires two more user-defined parameters to run than SCMS.
The SCMS’ ability to find density ridges consistently is also
well established in statistical studies (Chen et al. 2014), making
SCMS an attractive option over other methods. Furthermore,
SCMS captures local information, such as ridge orientations,
better than methods that derive ridges from monolithic filament
objects (e.g., Koch & Rosolowsky 2015) or approximate them
as line segments (Hacar et al. 2013, 2017).
The SCMS algorithm defines a ridge as a smooth,

continuous, one-dimensional object in a multidimensional
density field. In addition to this nomenclature, we define a
skeleton as a ridge that has been gridded onto an image and a
spine as a skeleton with all its branches removed. The SCMS
algorithm finds ridges by moving walkers iteratively up the
density field using a gradient-ascent method. This approach is
subspace constrained (see Chen et al. 2014) to ensure the
walkers converge on one-dimensional ridges instead of zero-
dimensional peaks. Figure 6 demonstrates how SCMS
identifies such a ridge in 2D from an NH3 integrated intensity
map of a source in NGC 1333 using the CRISPY package.

Figure 4. The 1σ error of the fitted vLSR (left) and σv (right) as a function of (blue) the total S/N of a 2-slab spectrum, (orange) the S/N of a given slab in a spectrum,
and (green) the S/N of a one-slab spectrum, for fits with a correct number of identified components.

11
CRISPy codebase: https://github.com/mcyc/crispy.
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In general, the SCMS algorithm operates primarily on two
user-defined parameters: density (e.g., intensity) threshold and
smoothing bandwidth. The density threshold masks out noisy
features in the density field while the smoothing bandwidth
performs a kernel estimate of the field from particle-like data.
Even though a gridded image, e.g., an emission cube, can in
principle serve directly as a density field without a kernel
estimate, a smoothing kernel is still required by the generalized
SCMS to estimate density gradients efficiently and move its
walkers accordingly (Chen et al. 2014). A smoothing length
comparable to, or greater than, the resolution of the image is
thus required still.

For this work, we adopted a density threshold of 0.15 K and
a smoothing length of 1.5 pixels for our SCMS run with
CRISPY. The deblended cube was spatially convolved to twice
its original beamwidth prior to the run. This additional step was
performed to suppress noisy features further in the cube
without sacrificing spectral resolution, particularly given that
SCMS smooths its data indiscriminately in all three dimen-
sions. Since SCMS operates natively in a continuous space, we
set our convergence criterion such that the ridges identified are

less than one voxel in width prior to regridding. We describe
details on our choice of parameters further in Appendix A.
Once CRISPY identified emission ridges in the continuous

ppv space, we map these ridges back to the native grid of the
deblended cube. These regridded ridges are referred to as
skeletons and are subsequently pruned down to branchless
structures we call spines. We accomplish such a pruning by
using a graph-based technique developed by Koch &
Rosolowsky (2015), which we have generalized to operate
in 3D.
We prune branches by first decomposing a skeleton into

intersection and branch objects known as nodes and edges in
graph theory, respectively. We then find the longest path in the
graph, measured in Euclidean distance, and subsequently
remove all the edges outside of this path. To ensure our spines
represent velocity-coherent structures, branches that may
bridge velocity discontinuities are further removed. We define
these “bad” branches as ones with an on-sky length less than 9
pixels and a velocity projected length greater than that of its on-
sky length in pixels (i.e., ∼4.8 km s−1 pc−1 for NGC 1333 with
our data). Figure 7 shows a demonstration of our pruning
process with “bad” branches shown in red. We note that

Figure 5. The debelended ppv cube of NGC 1333 reconstructed from the best-fit models (gray), and the filament spines identified from the cube using CRISPY (red).

Figure 6. Snapshots of SCMS finding a 2D “density” ridge from the image
shown in the background, as carried out by CRISPY. The respective iteration
number for each snapshot is labeled in each panel. The black dots represent the
SCMS walkers and the background image was taken from the integrated NH3

emission map of NGC 1333, cropped around a source in its northeast.

Figure 7. A gridded, 3D skeleton being pruned into a spine, projected onto the
xy and xv planes on the left and right panels, respectively. Top: the skeleton
prior to pruning. Middle: the skeleton decomposed into branches (black),
intersections (gray), and “bad” branches (red; see Section 3.3.2). Bottom: the
resulting spine, defined by the longest path in the skeleton with “bad” branches
excluded.
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removing “bad” branches does not necessarily impose a
maximum velocity gradient limit on a filament. This process
merely breaks filaments apart.

3.3.3. Assigning Membership to Filaments

We group our fits-derived velocity slabs obtained with
MUFASA into velocity-coherent structures by associating them
with filament spines. In brief, we do so hierarchically by first
placing velocity slabs into structures we call associations based
on each slab’s proximity to a spine in the ppv space. Such
proximity is calculated using a spatial extension of a spine we
call ppv-footprint, a structure from which the vLSR separation
between a slab and a spine can be referenced at each pixel. This
first step intends to disentangle filaments that overlap in
projection into associations.

Associations, which are allowed to have more than one
velocity slab at each pixel, are then sorted internally to produce
velocity-coherent structures (vc-structures) that contain only a
single slab at a pixel. This sortation is carried out based on
kinematic similarities between the velocity slabs. The vLSR map
resulting from this sortation is subsequently median smoothed
and adopted as the new ppv-footprint. This last step serves to
grow and update the association iteratively starting from the
filament spine, one pixel at a time.

We repeat such an assignation and sortation for five
iterations. This number of iterations grows our vc-structures
to an extent where S/N values of the new pixels start to drop
off below 3. Figure 8 shows ppv-footprints corresponding to
each of these iterations in panels labeled with the iteration
number n. The vLSR maps of the first and second velocity slabs
in the final association are shown in the last two panels of
Figure 8. This first velocity slab shown in the figure is
representative of those that go into our final vc-structures,
which are used in our velocity gradient analyses. Further details
of our membership assignment to vc-structures are described in
Appendix B.

3.4. Velocity Gradient Analysis

3.4.1. Decomposition of Vector Fields

To study gas motions geometrically with respect to filament
spines, we devised a technique to decompose a vector field
(e.g., the velocity gradient field) into orthogonal components
that are either parallel or perpendicular to a filament spine.
Such a decomposition is accomplished by first taking a distance
transform of a sky-projected spine to map out the shortest
Euclidean distance between a given pixel and the spine. In
other words, we calculated the radial distance between a pixel
and a spine from which radial profiles of filaments can be
constructed.
Vector fields that point orthogonally away from the filament

spines are then created by taking gradients of our distance
transforms over a sampling distance of 1 pixel using the
second-order accurate central differences method. We refer to
these fields as the divergence fields. Figure 9(a) shows an
example of a divergence field superimposed on its corresp-
onding distance transform.
Due to the sampling method of the gradient calculation and

symmetry, the divergence field vectors right on the spine often
have magnitudes of zero. To avoid a loss of information due to
this limitation, we reconstructed an on-spine vector field
parallel to the spine by taking gradients, i.e., central
differences, of the spine’s pixel coordinates. This on-spine
field is then rotated by 90° and inserted into the divergence
field, as shown in Figure 9(a) in white.
We construct the corresponding parallel field of a filament by

rotating the divergence field by 90°. Since the divergence field
is discontinuous across the spine, where its vectors point
oppositely away from each other, a uniform rotation of the
divergence field will result in a discontinuous parallel field,
where its vectors are antialigned with respect to each other
across the spine. To address this issue, we rotated the
divergence field vectors on each side of the spine indepen-
dently in the directions opposite to each other. Such a rotation
is accomplished by exploiting angular degeneracy in the arctan
function to differentiate vectors on the two sides of the spine.
Figure 9(b) shows an example of a parallel field overlaid on the
distance transform of its corresponding spine.

Figure 8. A ppv-footprint during each iteration of its creation, shown in panels
labeled with the iteration number n. The vLSR maps of the sorted velocity slabs,
which have been assigned to the final ppv-footprint (n=5) as members of an
association based on their vLSR proximities, is shown in the last two panels,
framed with bold borders. Only the first velocity slab represents a velocity-
coherent structure we used for our velocity gradient analyses.

Figure 9. Distance transform of a filament spine overlaid with its
corresponding (a) divergence field and (b) parallel field. The vectors on and
off the spine are colored white and black, respectively. The color scale
corresponds to pixel distances between 0 and 5.
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3.4.2. Computing Velocity Gradients

We calculate vLSR gradients, i.e., vLSR, from vLSR maps of
velocity-coherent structures determined with the methods
described in Section 3.3.3. These gradients are calculated on
a pixel-by-pixel basis by fitting a plane over pixels within a
6 pixel diameter aperture centered on them. The diameter of the
plane-fitting aperture is explicitly chosen to be twice the size of
our FWHM beam to ensure the velocity gradients are
calculated over resolved structures. To ensure the quality of
our calculations, we calculate vLSR only over apertures where
vLSR values are available for more than one-third of the pixels.

We further decompose the calculated vLSR fields into
components that are perpendicular and parallel with respect to
their associated filament spine. This decomposition is accom-
plished by taking the dot products between the vLSR field and
the divergence field, as well as between thevLSR field and the
parallel field (see Section 3.4.1).

4. Results

Earlier in Section 3.2, we presented the performance of our
fitting method, MUFASA, as characterized by our test fits to
synthetic spectra. Here we present our best-fit models to the
GAS NH3 (1, 1) observations of NGC 1333 in Section 4.1,
along with the deblended emission reconstructed from these
fits. The filament spines identified from the deblended emission
by CRISPY and the velocity slabs assigned to these spines are
also presented in the same subsection. We further present our
velocity gradient analysis on these velocity-coherent filaments
in Section 4.2.

4.1. NGC 1333—Fitted Models

Figure 10 shows the relative likelihood of the two-slab fit
over the one-slab fit, i.e., K1

2, in NGC 1333 as determined by
the AICc (see Section 2.1). A significant fraction, i.e., 40%, of
the pixels in NGC 1333 with S/N > 3 are determined to be
better fitted with two-slab models based on the statistically
robust threshold of >Kln 51

2 (Burnham & Anderson 2004).
This fraction is significantly higher than that suggested by the

GAS DR1 paper (Friesen et al. 2017), where when examined
by eye, only 5% or less of the pixels with S/N > 3 appear to be
inadequately fitted by a one-component model. No pixel best
fitted with our two-slab model has χν>1.5, which indicates
that our observations of NGC 1333 are indeed well modeled
with two or fewer velocity slabs.
The right panel of Figure 10 shows examples of our best fits

to the NH3 (1, 1) emission, superimposed on spectra extracted
from positions marked in the left panel. It is qualitatively
apparent that these spectra are indeed better fitted by two-
component models when >Kln 51

2 , even in the limiting case

where Kln 1
2 is near 5.

The deblended ppv cube of NGC 1333 derived from our
best-fit models is shown earlier in Figure 5, overlaid with their
respective spines identified by CRISPY. The left panel of
Figure 11 shows these spines projected onto the sky, and
overlaid on top of the vLSR maps of selected vc-structures,
which are further overlaid on top of the Herschel derived N(H2)

map (A. Singh et al. 2020, in preparation). All the spines
identified are used to sort fitted slabs into vc-structures, but
only vc-structures with spines longer than 15 pixels in length
(∼6 beam widths) are considered filaments in our analysis. In
NGC 1333, we identified 10 velocity-coherent filaments in
total, and have labeled them alphabetically from “a” to “j” in
Figure 11.

4.2. NGC 1333—Velocity Gradients

The center and right panels of Figure 11 show, respectively,
the spatial distribution of perpendicular and parallel compo-
nents of velocity gradients (vLSR) in the NGC 1333 filaments.
These filaments display a wealth of vLSR structures within
them. A large fraction of these pixels have values of
∣ ∣ >v 2LSR km s−1 pc−1 in both components, with many of
them exceeding 4 km s−1 pc−1.
At our sampling distance of two beam widths (∼0.06 pc in

NGC 1333), our measured velocity gradients appear consistent
with those median values reported by Hacar et al. (2013) in
NGC 1333, measured with N2H

+ in the parallel direction on

Figure 10. Left panel: relative likelihood of the two-slab fit over its one-slab counterpart in NGC 1333. The gray contour shows the integrated NH3 (1, 1) emission at
the 0.35 K km s−1 level. Right panel: the observed NH3 (1, 1) spectra (gray) extracted from the positions marked with red x’s shown in the left panel, cropped to focus
on the spectral regions near the main hyperfine lines. The spectra are superimposed with their corresponding two-slab fits (black) and models of their individual
components (blue and orange).
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the same spatial scale. Similarly, Lee et al. (2014) also reported
comparable values in Serpens Main, measured in the parallel
direction for filaments with mass ∼4 Me. Parallel gradients
measured on larger scales (>0.2 pc), however, tend to have
smaller values. For example, the Serpens South filaments (Kirk
et al. 2013; Fernández-López et al. 2014) and the Serpens Main
filaments with masses of ∼15 Me (Lee et al. 2014) all have
larger-scale parallel gradients �1.5 km s−1 pc−1.

5. Discussion

5.1. Comparing with N2H
+ Analysis of NGC 1333

Hacar et al. (2017, hereafter H17), conducted a multi-
component spectral analysis of NGC 1333 with a dense gas
tracer, i.e., N2H

+
(1−0) lines. Their data have a spatial and

spectral resolution (30″ and 0.06 km s−1, respectively) similar
to our NH3 (1, 1) data, and a typical rms noise of 0.15 K, which
is about 50% higher than ours. H17 fitted their observations
with a semiautomatic method, using either one- or two-
component models as determined by eye.

About 15% of the spectra successfully fitted by H17 are
fitted with a two-component model. Considering not all of
these successfully fitted spectra have S/N > 3, we estimate
upwards to about 20% of those spectra with S/N > 3 are fitted
with two-component models. This estimate assumes all the
successful two-component fits have S/N > 3 in this limit. This
20% fraction is significantly lower than that of our NH3 (1, 1)
fits, where two-component models best fit about 40% of our
spectra with S/N > 3. The difference in the model-selection
criteria between our method (MUFASA) and that of H17 may
contribute predominantly to this reported difference, where the
conservative ΔvLSR threshold adopted by H17 may have culled
out a significant fraction of their two-component fits.

Figure 12 shows the fσ and ΔvLSR values derived from two-
slab fits in NGC 1333 plotted against each other. The colored

contours in the background show the kernel density estimate of
this scatter plot. The filled curves to the right and the top of the
plot show the 1D kernel estimated distributions of fσ and
ΔvLSR. Most of the points on this plot cluster around fσ and
ΔvLSR values of 0.3 and 0.25 km s−1, respectively. This
clustering places these values in the regime where the true-
positive identification rate for two-slab spectra is in the range of

Figure 11. Left panel: projections of filament spines identified in NGC 1333, overlaid on top of the vLSR maps of selected velocity-coherent filaments (color). Spines
less than 15 pixels in length are colored in red and their associated filaments are excluded from our analysis. Center and right panels: spatial distribution of the parallel
and perpendicular components of vLSR, respectively, relative to their filament spines. The call-out boxes in these panels show the same vLSR components of the
additional, overlapping velocity-coherent filaments in the sky. The FWHM beam of the NH3 (1, 1) data (black circle) and the Herschel N(H2) map (gray; A. Singh
et al. 2020, in preparation) are shown on the top right corner and the background of each panel, respectively.

Figure 12. The ratio between the fitted line widths of two velocity slabs (i.e.,

sf ), plotted against velocity separation between these slabs (ΔvLSR) for
successful fits in NGC 1333. The colored background shows the contours of a
kernel density estimate (KDE) while the filled curves to the top and the right
show the 1D KDE distributions of fσ and ΔvLSR, respectively.
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∼70%–90% according to our truth test shown in Figure 3(b),

accounting for all S/N values found in our synthetic test set.

Given that MUFASAʼs performance at identifying two-slab

spectra decreases toward higher fσ values and lower ΔvLSR
values, the true peak of the underlying two-slab population

likely sits higher on the fσ axis and lower on the ΔvLSR axis.

We reiterate that MUFASA only misidentifies a one-slab

spectrum as a two-slab spectrum in <4% of the test cases for

all S/N values.
About 40% of our two-slab fits to spectra with S/N > 3 in

NGC 1333 have ΔvLSR values that are less than 0.25 km s−1,

the threshold used by H17 to determine whether or not

additional components are justified for their fits to N2H
+

(1−0)

observations of the same region. If NH3 (1, 1) and N2H
+

(1−0)

indeed trace the same gas population in this region, then the

fraction of dense gas spectra in NGC 1333 with multiple

velocity components and S/N > 3 may be significantly

underreported by H17 due to their choice of ΔvLSR threshold.

Given that two-slab identification with MUFASA is successful

even with moderate S/N values (i.e., 5–20; see Figure 2), the

actual number of two-slab spectra with S/N > 3 is likely

higher than those reported in both the H17 study and our

study here.
The NH3 (1, 1) and N2H

+
(1−0) lines have critical densities

of ∼2×103 cm−3 and ∼5×104 cm−3, respectively, at gas

temperatures 20 K (Shirley 2015). The ratio between these

critical densities remains similar even at higher temperatures. If

the second velocity component detected in our study tends to

trace more diffuse gas, then the difference between the reported

fraction of multicomponent spectra between this work and that

of H17 may be due to density differences in the tracers

themselves in addition to the line-fitting methods used. The

sensitivity difference between our data and that of H17 may

also play a role as well.
A recent high angular-resolution study of NGC 1333

concluded that NH3 (1, 1) and N2H
+

(1−0) trace the same

gas population well (Dhabal et al. 2019). Since this study only

fits one velocity component along each line of sight, however,

it is unclear how robust their conclusion is. Further

investigation on how well NH3 (1, 1) and N2H
+

(1−0) trace

each other in NGC 1333 is thus needed, particularly for diffuse

emission to which the data of Dhabal et al. (2019) are less

sensitive.
The filament spines we identified from our NH3 data with

CRISPY (see Figure 11, left) are morphologically similar to the

“filament axes” identified by H17 with N2H
+ observations.

Some of the longer filaments, however, are “split” differently.

Our filament f, for example, is split into filaments 12 and 14

by H17, while our filament g is split into filaments 1 and 2

by H17. Moreover, we identify a kinematically distinct filament

(i.e., h) that was not identified earlier by H17, which runs

closely parallel to our filament c (i.e., 10).
Even though the spatial separation between spines of

filament c and h is only slightly resolved in our data, the

spectral separation of these spines (∼0.9 km s−1
) is well

resolved. When observed at higher spatial resolutions with

NH3 and N2H
+

(Dhabal et al. 2019), these two filaments can be

seen by eye as distinct structures. Filament h is thus likely

missed by H17 due to their approach rather than observational

biases introduced by the tracers used.

5.2. Velocity Gradients on Large Scales

Figure 13 shows 1D σv and vLSR profiles of the filaments
identified in NGC 1333, taken directly from the pixels on their
spines. The vLSR values displayed in Figure 13 have been zero-
point shifted arbitrarily from the local standard of rest (i.e.,
LSR) to fit nicely on the same axes as the σv. We note that these
spine profiles run in the direction that starts on the ends closest
to the map origin, i.e., the south-eastern corner.
The vLSR variations along these spines are generally smooth

with respect to their estimated errors. Only a few disconti-
nuities are found in these profiles. Such a lack of discontinuity
suggests that CRISPY does indeed identify density ridges
robustly as continuous structures, which form the basis of our
membership assignment to velocity-coherent filaments.
The vLSR values shown in Figure 13 do vary significantly

along most of the identified filaments. Many of the vLSR
profiles are approximately linear and monotonic on scales
larger than 0.2 pc, and have velocity gradients typically in the
range of 0.8–2.5 km s−1 pc−1 on those scales. The large-scale
(>0.2 pc) velocity gradients are similar to those found with
N2H

+ observations in NGC 1333 (∼0.5–2.5 km s−1 pc−1,
Hacar et al. 2017) and the Serpens South SF region
(1.4 km s−1 pc−1, Kirk et al. 2013; ∼1 km s−1pc−1, Fernán-
dez-López et al. 2014). These gradients also fall within the
range measured in the Serpens Main SF region
(0.7–4.8 km s−1 pc−1, Lee et al. 2014).
Velocity gradients along filaments on a large scale have

often, but not uniquely, been interpreted as signatures of mass
flow toward a star-forming core or cores (e.g., Kirk et al. 2013).
While dense structures in NGC 1333 do not necessarily display
a classical “hub and spokes” geometry, overdensities of dense
cores and Class 0/I YSOs, as estimated by Hacar et al. (2017),
are often found at the ends of our filament spines in projection.
Filaments c and h, for example, have very linear vLSR profiles
and large-scale vLSR values of roughly 1.9 km s−1 pc−1 and
2.5 km s−1 pc−1, respectively. The fact that the north-western
ends of these filaments coincide with the most prominent peak
of overdensities in NGC 1333, in the SVS 13 vicinity (see
Walawender et al. 2008), suggests these filaments are indeed
transporting gas along their lengths toward a small (i.e.,
n<10) cluster/protocluster.

Figure 13. The profiles of σv (orange dots) and vLSR (blue dots) along filament
spines identified in NGC 1333. The vLSR shown here have been shifted to fit on
the same axes as σv.
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While filament b has no end that correlates with an
overdensity of dense cores and Class 0/I YSOs, it does have
an overdensity midway through its length, located at the apex
of its sharp turn near the HH 12 IR sources (i.e., VLA 42; see
Walawender et al. 2008). Remarkably, this filament has a very
linear and continuous vLSR profile despite having such a
distinct bend in its middle. Considering that this profile has a
large-scale vLSR of 1.4 km s−1 pc−1, filament b is likely a
velocity-coherent system of two filaments that are transporting
material toward a small hub.

Interestingly, the vLSR seen on the largest scale of our
observation (∼4 pc), i.e., at the clump scale, also appears to be
fairly ordered along the north–south direction. Nearly all the
filaments featuring linear vLSR profiles along their spines have
vLSR values that increase northwards. Filament b is the only
exception, where half of its western segment prior to its sharp
bend has vLSR values that increase southwards instead. Even
though filament f does not have an overall linear vLSR profile,
its western portion prior to its sharp bend does have a segment,
∼0.2 pc in length, with a fairly linear vLSR profile and a vLSR
of ∼2.5 km s−1 pc−1. The vLSR values of this segment increase
northwards as well.

In addition to the prevalent trend that vLSR increases
northward in most filaments, the median vLSR value of each
filament tends to increase northwards across the NGC 1333
clump as well. Considering that NGC 1333 is relatively
elongated in the north–south direction on the clump scale
(>4 pc; see map by Sadavoy et al. 2012 for example), most of
these filaments may trace a larger filamentary inflow like those
assumed by Matzner & Jumper (2015) in their model, of which
these smaller filaments may be a part.

5.3. Velocity Gradients on Small Scales

5.3.1. Parallel Components

In addition to well-organized velocity structures on larger
scales, Figures 11 and 13 reveal many quasi-oscillatory vLSR
structures that can be found on the 0.1 pc (∼3 beam widths)
scale in NGC 1333. This behavior is prominently visible along
the spines of many filaments (see Figure 13) and shows up in
the parallel vLSR, map (see Figure 11, center) as “zebra
stripes.” These small-scale structures, e.g., gradient peaks and
dips, also appear to be somewhat evenly spaced by ∼0.1 pc,
which suggests a quasi-oscillatory wavelength of ∼0.2 pc.
Interestingly, this behavior is not confined to the spines of
filaments and extends spatially across the width of a filament.

Similar quasi-oscillatory vLSR behaviors have been found in
Taurus L1495/B213 (Tafalla & Hacar 2015) and in Serpens
South filaments (Fernández-López et al. 2014) based on one-
component fits to N2H

+
(1−0) observations. Filaments and

fibers identified from multicomponent fits to C18O (1−0)
observations in Taurus-Auriga L1517 (Hacar & Tafalla 2011),
and Taurus L1495/B213 (Hacar et al. 2013), respectively, also
showed similar results. These quasi-oscillatory vLSR behaviors
generally resemble those seen in synthetic C18O observations
of simulated filaments, constructed with various degrees of
realism (e.g., Moeckel & Burkert 2015; Smith et al. 2016;
Clarke et al. 2018).

We find no strong spatial correlations between quasi-
oscillatory vLSR and dense structures in NGC 1333. This result
is contrary to that found in Taurus-Auriga L1517 (Hacar &
Tafalla 2011) using C18O observations but agrees with the

behavior found in Taurus L1495/B213 (Tafalla & Hacar 2015)
using N2H

+
(1−0) observations. This agreement extends to

synthetic C18O observations of simulations (e.g., Smith et al.
2016). The lack of correlation between quasi-oscillatory vLSR
values and dense structures suggests the former is not driven by
periodic gravitational instabilities. Alternative mechanisms,
such as magnetic waves explored by Tritsis & Tassis
(2016, 2018), and Offner & Liu (2018), may be responsible
for these quasi-oscillatory behaviors.

5.3.2. Perpendicular Components

Filaments in NGC 1333 also contain a wealth of perpend-
icular velocity gradients, i.e.,  ^vLSR, , structures on smaller
scales (see right panel of Figure 11). Regions with high
∣ ∣ ^vLSR, values (>2 km s−1 pc−1

) tend to form spatially
compact but resolved  ^vLSR, structures on the outskirts of
the filaments, i.e., away from the spine. Similar to interpreta-
tions made in the literature (e.g., Palmeirim et al. 2013; Dhabal
et al. 2018), these compact  ^vLSR, structures may be
indicative of recent or ongoing accretion of nearby gas onto
the filaments.
Freefall accretion in analytic models typically has estimated

infall velocities of a few km s−1 at filament “boundaries” (e.g.,
Heitsch 2013; Palmeirim et al. 2013). Such an infall velocity
will likely result in shocks if the accreting filament is in
hydrostatic equilibrium like those described in classic models
(e.g., Stodólkiewicz 1963; Ostriker 1964). Even in numerical
models for which filaments are not equilibrium substructures,
shock-induced discontinuities in velocities are expected from
accretion (e.g., Clarke et al. 2018).
We neither saw nor expected velocity discontinuities in our

filaments because velocity-coherent structures are continuous
in their velocities by definition. Velocity discontinuities,
however, can be inferred from the ΔvLSR observed between
velocity slabs along a line of sight. With the exception of
filaments c and h, which have typical ΔvLSR values of
∼0.8 km s−1 between them, we did not find filaments with
overlapping velocity slabs that had ΔvLSR values greater than
0.4 km s−1, i.e., about twice the isothermal sound speed at 10
K. Interestingly, the region where filaments c and h overlap
along lines of sight is also where some of the most prominent
 ^vLSR, structures are found in NGC 1333. We note that this
observed  ^vLSR, structure is unlikely driven by the highly
collimated outflow originated from IRAS 4 (e.g., Blake et al.
1995) given that it poorly aligns with the orientation of the
outflow.
Except for where filaments overlap in projection, we

typically only detect two-slab spectra near filament spines
rather than the edges. This lack of detection near the edges is
likely limited by the sensitivity of our data. Not much
information is therefore available on ΔvLSR over filament
edges to infer the nature of spatially compact  ^vLSR,
structures that reside there. Furthermore, despite having a
critical density of 103 cm−3, it remains unclear how effective
NH3 is at tracing accretion flows, which themselves are likely
more diffuse than the dense filaments. Further investigation
with NH3 synthetic observations, similar to that conducted by
Clarke et al. (2018) with C18O transitions, would be highly
valuable.
To search for potential sources of accretion flows, we looked

for structures around our filaments in the column density, i.e.,
N(H2), map of NGC 1333 derived from Herschel observations

13

The Astrophysical Journal, 891:84 (18pp), 2020 March 1 Chen et al.



(A. Singh et al. 2020, in preparation). We find no strong spatial
correlation, however, between ambient Herschel structures
(e.g., subfilaments) and the observed  ^vLSR, structures. This
lack of correlation suggests that accretion from subfilaments,
such as those seen in Taurus B211/B213 (Goldsmith et al.
2008; Palmeirim et al. 2013), is unlikely to explain the origin of
the compact  ^vLSR, structures seen near filament edges.

Nevertheless, the lack of visible, interconnected ambient
structures does not necessarily rule out  ^vLSR, as a sign of
accretion flows onto dense filaments in NGC 1333. According
to models where a postshock layer of a converging flow
produces filaments (e.g., Chen & Ostriker 2014; Chen &
Ostriker 2015), a subfilamentary network only arises in a strong
magnetic field. In these models, gravity drives the accretion
flows in a postshock layer. The resulting flows move
predominately along the field lines and may not necessarily
contain substructures with densities high enough to be
distinguished from the rest of the planar, accretion flow.
Without visible substructures, these flows may appear as a
large-scale background to Herschel due to their planar
geometry, making them difficult to discern.

Postshock accretion models, such as those developed by
Chen & Ostriker (2014), have been proposed by Dhabal et al.
(2019) as an explanation for the observed large  ^vLSR, along
the south-western edge of filament c. This particular  ^vLSR,
structure has been found in both the high-resolution NH3 and
N2H

+ observations by Dhabal et al. (2019) as well as our NH3

observations. The filament h we identify with two-slab fits,
which runs parallel to filament c, also displays similar  ^vLSR,
over the same region. In a postshock accretion interpretation,
such a similarity suggests that filament h belongs to the same
planar flow as filament c. Interestingly, filament h is spatially
well resolved in the high-resolution observation by Dhabal
et al. (2019) as a filament distinct from c.

It is worth noting that Walsh et al. (2006) measured infall
velocities of ∼1 km s−1 toward the south-western edge of
filament h with HCO+

(1−0) observations, modeled as self-
absorbed lines. The infall velocities measured with HCO+

(1
−0), which were interpreted as a sign of large-scale (∼0.2 pc)
infall, are similar to the observed vLSR separation
(∼0.8 km s−1

) between filaments c and h in NH3 along lines
of sight. Given that this infall region spatially correlates with
filaments c and h, the HCO+

(1−0) observed there may indeed
trace the same planar accretion flow as that suggested by the
large NH3  ^vLSR, we see toward filaments c and h.

Not all the observed  ^vLSR, structures in our filaments can
be well explained by models of accretion flow along a
postshock layer. While the compact nature of  ^vLSR, may be
explained by clumpy, inhomogeneous accretion, the sign (i.e.,
direction) alternation of  ^vLSR, along filament edges,
however, does not conform well to the planar geometry naively
expected from a postshock layer. Some, if not all, of these
observed  ^vLSR, features, may thus be driven by a different
physical process.

While rotation of small bodies, such as dense cores, may
produce compact  ^vLSR, signatures, no clear correlation
exists between cores and many of these compact  ^vLSR,
regions in the majority of the cases. Inhomogeneous accretion
flows, on the other hand, similar to those seen in the
nonmagnetized simulation by Clarke et al. (2017) may explain
the sign-changing behavior of these  ^vLSR, along filament
edges. Indeed, the shocked regions bordering dense structures

in their simulation, as traced by local velocity divergence,
morphologically resemble the  ^vLSR, structures seen in NGC
1333. Further investigation with synthetic observations of
simulations is needed to see if such a resemblance holds and
whether or not magnetic fields play an important role in such an
accretion.

5.3.3. Radial Dependencies

Figure 14 shows the magnitudes of the perpendicular and
parallel velocity gradients plotted as functions of their
respective distances from the filament spines. Their median,
15th, and 85th percentile values are marked. While the parallel
velocity gradients show little correlation with their distances
from filament spines, the perpendicular velocity gradients tend
to decrease as one moves toward the spine in many filaments.
Specifically, filaments b, e, f, g, and j clearly show such a

trend. Indeed, the Wald Test (see Fahrmeir et al. 2013) revealed
that these filaments all have p-values <0.01 for a null
hypothesis where the data are consistent with a zero-slope
linear trend. The linear least-squares regression slopes of these
trends are 0.40, 0.41, 0.17, 0.21, and 0.16, respectively, in units
of km s−1 pc−2. Moreover, the Pearson correlation coefficients,
i.e., r-values (see Cohen 1988), of these regressions all fall in
the range of 0.2–0.4, suggesting that these positive correlations
are indeed significant but relatively scattered.
The decreasing trends in these filaments persist when

gradients are calculated with smaller sampling distances
(r<3 pixels). Indeed, the regression slopes for these filaments
actually increases with smaller sampling distances.
A decrease in ∣ ∣ ^vLSR, toward a filament spine contradicts

the behavior of free-falling gas. Such a freefall behavior is
often assumed for gas accretion onto a filament in simple
analytical models (e.g., Heitsch et al. 2009; Palmeirim et al.
2013). While filaments themselves are not typically expected to
behave like pressureless systems, except for maybe the very
massive ones (e.g., M ∼ 600 Me; Gómez & Vázquez-
Semadeni 2014), a simple analytical examination of such an

Figure 14. Median magnitudes of the perpendicular (blue) and parallel
(orange) velocity gradients plotted as a function of their distance to the filament
spines. The median values are marked by the connected dots while the 15th and
85th percentile values mark the lower and upper bound of the shaded regions,
respectively.
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assumption can still provide valuable perspectives in light of
our results.

Consider a parcel of gas falling onto an infinitely long
cylinder axially centered at r=0. Such a parcel would have a
velocity profile of [ ( )]µv r rlnff 0

1 2 if the parcel was initially
at rest at r0 (see Heitsch et al. 2009). The radial derivative of
this profile, i.e.,  ^vLSR, , thus would be

[ ( )]µ -dv dr r r rlnff
2

0
1 2 and would increase monotonically

in magnitude toward the filament spine for r values less than
∼r0/2. The observed ^vLSR, for that parcel of gas should thus
increase toward a filament spine if the parcel’s emission
dominates over others along the line of sight, and its trajectory
is not parallel to the plane of the sky.

While such a geometric assumption does not describe a
simple, axially symmetric accretion of a filament, it reasonably
approximates inhomogeneous (e.g., Clarke et al. 2017) or
anisotropic (e.g., Chen & Ostriker 2014) accretion flows found
in realistic simulations. In fact, the former model is unlikely to
produce observable  ^vLSR, in the first place, contrary to what
we have observed. Thus, if these nonsymmetric assumptions
hold true for our observations, then the observed decrease in
∣ ∣ ^vLSR, toward the filament spine indeed suggests these
filaments do not behave like a pressureless system under the
accretion flow interpretation. The  ^vLSR, we observed may
thus suggest ongoing accretion that is being damped by the
higher density material as the accreting gas moves closer to the
filament spine.

5.3.4. Orientations

Figure 15 shows the orientation angles of the measured
velocity gradients, θ, binned into polar histograms. The
direction along a filament spine away from the end closest to
the image origin, i.e., the bottom left corner, defines the zero-
point reference of our angle θ. The convention is set such that
vectors with q-  < < 180 0 point away from the spine and
vectors with q < < 0 180 point toward the spine.

Most of the vLSR vectors within an NGC 1333 filament are
not randomly oriented and often display unimodal or bimodal
behaviors. A circular statistics analysis conducted with a
Rayleigh test (Wilkie 1983) shows that the θ values found in 9
out of the 10 filaments are very unlikely to have been drawn
from a random distribution (p<0.01).

Coherent vLSR orientations may seem perplexing at first
considering how complex the vLSR structures appear on small
scales. A clearer picture emerges, however, when the vLSR,
on large scales and the radial dependency of∣ ∣ ^vLSR, on small
scales are considered together. For example, mass flows along
filaments combined with perpendicular (i.e., radial) accretion
onto filament edges may have caused the preferential vLSR
orientations observed here. After all, physics that are likely
important in forming filaments, e.g., gravity and magnetic
fields, do tend to impose order. If the observed vLSR values
are indeed indicative of mass flows, then filaments in NGC
1333 may be viewed as loci of collapsing flows where radially
accreted gas changes direction to flow along filaments and into
cores.

6. Summary

In this paper, we devised an efficient and robust method (i.e.,
MUFASA) to fit two-slab NH3 (1, 1) spectra automatically, one
that is generalizable for other molecular species. We tested the
performance of MUFASA on synthetic spectra and found it to be
particularly robust at identifying two-component spectra with
dissimilar σv between their components. This behavior makes
MUFASA effective at disentangling subsonic gas from super-
sonic gas along lines of sight. By selecting our best-fit model
via a statistical approach, we recovered ∼40% of the two-
component NH3 spectra from our synthetic data with
ΔvLSRvalues below the 0.25 km s−1 culling threshold used
by Hacar et al. (2017) for their study of NGC 1333 with N2H

+.
Based on our fit residuals, we find no strong evidence that
three-component fits are warranted in NGC 1333.
We identified 3D filament spines in ppv space from MUFASA

line-fitted models using our implementation of the generalized (

i.e., weighted) SCMS algorithm (see Chen et al. 2014), CRISPY.
The generalized SCMS operates on a well-established
statistical framework where the orientations of the density
ridges (e.g., spines) are well defined locally. We sorted the
fitted models into velocity-coherent filaments with these spines
and measured the velocity gradients of their filaments on a
beam-resolved scale (∼0.05 pc). We further decomposed these
velocity gradients into parallel and perpendicular components
with respect to the local spine.
By applying our analysis techniques to the observation of

NGC 1333, we found the following:

1. Many filaments have remarkably linear changes in vLSR
along their spines on larger scales (>0.2 pc). The ∇vLSR
corresponding to these changes are in the range of
0.8–2.5 km s−1 pc−1, similar to those found in previous
works (e.g., Kirk et al. 2013). Several of these filaments
have ends or sharp bends that spatially correlate with the
kernel estimated overdensities of dense cores and
embedded YSOs derived by Hacar et al. (2017). This
result suggests the observed∇vLSR may indeed be tracing
mass flow along filaments toward star-forming cores.

2. Most filaments with a linear vLSR profile along their
spines have values that increase northwards. Considering
that the median vLSR of these filaments tends to increase
northwards as well, these filaments may trace a larger-
scale (>4 pc) filamentary accretion flow, similar to that
assumed by Matzner & Jumper (2015) in their model,
from which the NGC 1333 clump may be fed.

Figure 15. Polar histograms of thevLSR orientations shown for each filament.
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3. The vLSR, measured on small scales show quasi-
oscillatory vLSR along filaments. These quasi-oscillations,
however, do not correlate well with dense structures, a
result similar to those found by Tafalla & Hacar (2015) in
real N2H

+ observation and by Smith et al. (2016) in
synthetic C18O observations of a simulation. This lack of
correlation suggests periodic gravitational instabilities are
not responsible for such an observed behavior. Alter-
native mechanisms, such as magnetic waves (e.g., Tritsis
& Tassis 2016) may be responsible instead.

4. The  ^vLSR, found on small scales tend to form compact
structures near the filament edges, potentially indicating
perpendicular accretion flows. The compact nature of
these  ^vLSR, structures combined with an apparent lack
of ambient subfilaments suggest these accretion flows are
likely clumpy, i.e., inhomogeneous. Alternations in the
direction of these  ^vLSR, structures along filament
edges also suggest these accretion flows may not be
purely planar like those found in simulated magnetized
postshock layers (e.g., Chen & Ostriker 2014), except
possibly those first reported by Dhabal et al. (2019) for
filaments c and h.

5. The magnitudes of the measured  ^vLSR, decrease
prominently toward filament spines in half (i.e., 5) of
our filaments. Assuming our observations trace gas flows
that are inhomogeneous or anisotropic with respect to the
filament spines, such a trend is inconsistent with freefall
accretion models and suggests that these filaments do not
behave like pressureless structures. Such an observed
behavior may thus indicate the infall of accretion flows
being damped by the denser, pressure-supported gas
within filaments.

6. The vLSR vectors measured on small scales are not
randomly oriented within a filament. Their orientations
tend to be unimodally or bimodally distributed. This
global trend within filaments conforms to a scenario by
which the gas falling onto a filament is redirected to flow
along the filament as it approaches the spine.

For our interpretations, we assumed the observed velocity
gradients are indeed signs of accelerating gas seen along lines
of sight. We plan to apply our analysis to synthetic NH3

observations in future work to understand better the nature of
these velocity gradients.
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(Hunter 2007), MUFASA (Chen 2020a), NumPy (van der Walt
et al. 2011), scikit-image (van der Walt et al. 2014), SciPy
(Jones et al. 2001), PySpecKit (Ginsburg & Mirocha 2011),
Python.

Appendix A
Parameter Choices for CRISPY

As mentioned in Section 3.3.2, the operation of SCMS,
including our implementation in CRISPY, primarily depends on
two user-defined parameters: density (i.e., intensity) threshold
and smoothing bandwidth. We adopted a density threshold of
0.15 K to capture most of our emission in the model while
avoiding going near the typical rms noise level of our data
(∼0.1 K). We further adopted a smoothing length of 1.5 pixels,
which corresponds to about the 1σ sampling width of our data,
i.e., ∼3 pixels across the FWHM beam. Since our deblended
cube at its native resolution is too noisy for SCMS even after a
density cutoff, we further smoothed our deblended cube
spatially to twice its original beamwidth prior to running
SCMS. We smoothed the data only spatially and not spectrally
to avoid further loss in our spectral resolution.
In addition to density threshold and smoothing bandwidth

parameters, SCMS requires a few additional parameters to run
in practice: convergence criterion, the maximum number of
iterations, and walker placement. Convergence criterion and
the maximum number of iterations are used to decide when to
stop running SCMS further. We set our convergence criterion
to 10−3 to ensure the ridges represented by the converged
walkers have scatters that are smaller than the equivalent width
of a voxel in the deblended cube. We set the maximum number
of iterations to 1000 and the walker placement such that a
walker is placed at each voxel in the deblended cube above a
density threshold. We adopted a walker placement threshold of
0.16 K to sample the density field well without placing walkers
near the edges of the field defined by our cutoff threshold
(0.15 K).
The CRISPY implementation of SCMS also includes scaling

parameters for which each dimension of the deblended
emission can be rescaled. The purpose of such a rescaling is
to renormalize the distance between each particle in the field
and consequently the density field. Such a renormalization is
essential for structure identification in a parameter space with
dimensions that are not necessarily physically related, e.g., a
ppv space.
Since the two spatial distances in a ppv space are physically

related, only the velocity axis needs to be rescaled, provided
that the smoothing bandwidth was already chosen appropriately
based on the spatial sampling. For our runs, we kept velocity
scaling the same as the one native to our deblended cube. We
made this choice deliberately to avoid elongating spatially
compact structures along the velocity axis such that they are
misidentified as filaments. Shorter scaling was avoided to
prevent further loss in our spectral resolution from bandwidth
smoothing.

Appendix B
Membership Assignment to Velocity-coherent Structures

As briefly described in Section 3.3.3, velocity slabs are
assigned memberships to velocity-coherent structures (vc-
structures) based on their proximity to filament spines in the
ppv space. This process is performed iteratively, starting with
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pixels spatially closest to the filament spine. At each iteration,
velocity slabs are assigned to spine-derived ppv-footprints
nearest to them in vLSR along a line of sight, which forms what
we call an association. The slabs in each association are
subsequently sorted internally, based on their kinematic
similarities, into a vc-structure that contains only a single
velocity slab along a line of sight. Here, we describe the
process of assigning membership to vc-structures in more
detail.

We first create a ppv-footprint, a spatial extension of a spine,
to serve as a reference from which the vLSR proximities
between a slab and a spine are calculated along a line of sight,
i.e., a pixel. We construct a ppv-footprint by dilating, i.e.,
expanding, filament spines by one pixel in the two spatial
dimensions but not in the velocity dimension. This expansion is
initially accomplished by taking the first-moment map of a
filament spine, dilating the map’s on-sky footprint by one pixel,
and adopting the median vLSR value of the moment map within
a 3 pixel radius of each pixel as its new value.

Once the ppv-footprint is created, velocity slabs with vLSR
values closest to the ppv-footprint at each pixel are then
assigned to that ppv-footprint as a member of the association.
Only slabs with velocity separations <0.21 km s−1 from the
ppv-footprint, i.e., about three spectral channel widths, are
accepted to ensure the assigned members are reasonably
velocity coherent with respect to the ppv-footprint. We note
that this threshold implicitly imposes an upper limit to velocity
gradients of 0.42 km s−1 pix−1

(i.e., ∼29 km s−1 pc−1
) for a

given association.
Following these assignments, member slabs within each

association are further sorted into a vc-structure containing only
a single slab along each line of sight, based on their similarities
in vLSR, σv, and δvLSR, i.e., the Jacobian estimated error of vLSR
from the fits. We used δvLSR similarity as our additional proxy
for spatial coherence assuming that spectral components which
are spatially similar in their properties, such as their brightness,
will produce fitted δvLSR that are spatially similar as well.

At each iteration, we sort these velocity slabs as follows:

1. Assign velocity slabs with the smallest δvLSR values at
each pixel in a given association into a new, single slab
structure we call a vc-structure.

2. Median smooth the δvLSR map of the vc-structure with a
circular aperture, 1 pixel in radius, to serve as a
reference map.

3. Reassign velocity slabs at each pixel with the most
similar δvLSR values, i.e., the least difference between the
smoothed δvLSR map and their respective δvLSR values, to
the vc-structure.

4. Create reference maps of vLSR and σv by employing the
same median-smoothing technique used in step 2 on
property maps of the vc-structure.

5. Reassign velocity slabs with the minimum quadrature
sum difference between the reference maps and their
respective vLSR and σv values, i.e.,
[( ) ( ) ]s s- + -v v v vLSR LSR, ref

2
,ref

2 0.5, to the vc-
structure.

Following each sortation above, we median smooth the final
vLSR map in each vc-structure with a 3 pixel radius aperture and
adopt the resulting vLSR map as our new ppv-footprint for the
subsequent iteration of membership assignment and sortation.
This procedure is carried out for five iterations in total, growing

ppv-footprints and their respective associations radially one
pixel at a time. This five pixel radial distance typically marks
the spatial extent for which the S/N values of our pixels start to
fall below 3.
To illustrates such a process, Figure 8 shows a ppv-footprint

at each iteration in panels labeled with the iteration number n.
The last two panels of Figure 8 show vLSR maps of the first and
second velocity slabs in an association, taken from the final
iteration. The first slab shown here defines the final vc-structure
used in our filament analyses.
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