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A method of calculating the velocity correlation function in monatomic classical liquids 
is developed essentially from ·first principles. The interaction between an atom in a liquid 
and the density fluctuation around it is formulated in the framework of a generalized 
Langevin equation. It is shown that the memory function can be .rigorously expressed in 
terms of the interatomic potential v (r), static pair correlation function g (r) and a Green 
function of a certain linear .operator .£. With the use of sum-rule arguments and an appro-

,. ximation on· the static structure of liquid, the dperator ..£: is shown to be reduced to a (non­
Markoffian) Smoluchowski operator which has been used in studying relative diffusion in 
liquid. 'This gives a prescription for calculating the velocity autocorrelation function in terms 
of v (r) and g (r). Frequency spectrum and the memory function are calculated numerically 
both· for soft core lmd long-range-oscillatory systems. The results have been compared 
with those obtained by machine computations. 

§ I. Introduction 

Recently machine computations by, the use of the molecular dynamics method 

have pro~ided detailed information on ato~ic motion in simple classical liquids. 

For example the velocity aut~correlation function (v.a.f.) is computed for various­

model systems with a Lennard-Janes/' a soft2>.s> and a hard4' core and a long-range­

oscillatory (LRO-II) interatomic potentiaL"' Many theoretical attempts have also 

been made, to reproduce the v.a.f. Observing that the motion of an atom has both 

vibratory and diffusive components, some pr~posed several stochastic models, e.g., 

the itinerant oscillator model and its modifications.6' Since the two modes of motion 

can be easily incorporated in the memory function, others proposed plausible func­

tional forms of the memory function.s>,n In these approaches, parameters are intro­

duced in a rather ad hoc manner, which are hardly related to microscopic quantities. 

Singwi and Sjolander,8' starting from .first principles, developed a theory to 

calculate the v.a.f. They considered one atom, marked blue, in the liquid to be 

an external driving agent on the other atoms and calculated the response of the 

other atoms to the blue atom from a siniplified kinetic equation. With this and 

a further_ series of approximations,8' they derived an expression for the memory 

function which i~volves a Green function ofthe kinetic equation. Later GaskelV' 

using a statistical decoupling approximation, expressed the memory function in a 

similar form to that of Singwi-Sjolander. One characteristic of these theories is 
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1636 T. Munakata 

that the v.a.f. or the memory function is obtained with the use of the interatomic 

potential v (r), the static pair correlation function g (r) and the self-part of the 

Van Hove correlation function G,(r; t) . .It is to be noted, however, that in the Gaussian 

appro;._imation, G,(r; t) is a functional of the v.a.f. and that the G,(r, t) used in 

these theories was calculated with the v.a.f. obtained by .machine computations. 

In this paper, we discuss atomic motion in liquids and develop a method of calculat­

ing the v.a.f. without making use of the knowledge of G. (r, t). First we formulate the 

interaction between the blue atom and the other atoms in the framewark of a 

generalized Langevin equation choosing the momentum of the blue atom and the 

fluctuation of the density field of the other atoms as the set of dynamical variables. 

The damping function ¢ (r, r', t) or the damping operator ..[ which appears in 

this equation plays the central role in our theory. It is shown that the memory 

function can be rigorously expressed in the same form as Gaskell's, in terms of 

v(r), g(r) and a function G(r, tir'). G(r, tlr') is the Green function of the 

damping operator ..[ and plays a similar role to G, (r, t) does in the theories of 

Singwi-Sjolander and of Gaskell. Secondly we introduce two approximations to 

obtain a concrete expression of ..f. One is on the static structure of liquid. That 

is, three-body equilibrium distribution function is replaced by a product of two 

static pair correlation fun,ctions. The other which is essentially a short time ap­

proximation is based on sum rule arguments. Then it can be shown that the 

operator ..[ is reduced to a (non-Markoffian) Smoluchowski one which has been 

derived and used in the investigation of transport phenomena in fluids.w~Js>;m 

Thus it is possible to calculate the v.a.f. or the memory function from v(r) and 

g(r). We notice that G(r, tir') can be 'interpreted as the transition probability 

of an other atom from r' to r in a. time interval t, where r and r' represent the 

position of the other atom relative to the blue atom. 

In § 2 a generalized Langevin equation is set up and the expression for the 

memory function mentioned above is derived. In § 3 some approximations are 

introduced to give the operator an explicit form. Frequency spectra for Soft core 

and LRO-II systems are calculated numerically in §4. Section 5 contains some re­

marks. 

§ 2. Formal development 

We consider a system of N + 1 atoms, each with mass m, in a box of volume 

v. Atom 0 will be called the blue atom and atoms 1, ... , N will be called the 

other atoms. The position and momentum of the i-th atom are denoted by ri(t) 

and jh ( t), respectively. The caret on a indicates that a is a dynamical variable. 

The deviation of the number density of other atoms around the blue atom from 

its equilibrium value is expressed microscopically as 

N 

iJ(J (r, t) = L: iJ (r + r0 (t) -ri (t)) -ng (r) =(i(r, t) -ng (r), (2·1) 
i=l 
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Velocity Correlation and Relative Diffusion in Simple Liquids 1637 

where n and g (r) are the number density and the static pair correlation function, 
respectively. 

The interaction between the blue atom and the other atoms is now formulated 
with the use of a generalized Langevin equation14> (2 · 2) for the set of dynamical 
variables A*(t) = {Po(t), (Jg(r, t)}, where A* is the row vector adjoint to A and 
r- plays the role of a continuous suffix: 

d it -A(t)-i(l)·A(t)+- ¢(t-s) ·A(s)ds=f(t). 
dt 0 ' 

(2·2) 

Fi:i-st let us calculate the collective frequency matrix i(l)= (A, A) · (A, A)-\ where 
the dot on A denotes the time derivative, i.e., A= {A, Hh.s.=iLA, { ···, ···}P.B. 
and L being a Poisson bracket and a Liouville operator, respectively. The inner­
product (A, B) of two dynamical variables A, B is defined as a canonical ensemble 
average of AB*, that is, (A,B)=z- 1 fAB*exp{-/3H}dF=<AB*) where 
/3= (kT) -t, k and T being the Boltzmann constant and the temperature of the 
system, respectively. It is a straightforward task to show that 

·. ( 0 : -kTnP'' g (r')) (A. A)= ---------------------:----------------- -- ------- · , 
' kTnP'g(r)! 0 

(
mkTI: 0 ) (A A) = -------------:------------------------ -----------------------------

' 0 !(fJ(r),fJ(r'))-n2g(r)g(r')' 

where I denotes a 3 X 3 unit matrix. From Eq. (2 ·1), 

(g(r), f}(r')) =ng (r) (J(r-r') +n2n(r, r'), 

(2·3) 

.(2·4) 

where n(r, r')' is connected with the three-body generic distribution function 
n~~ 1 (r 0 , r0 +r, r0 +r') through n~~~(r 0 , ro+r, ro+r') =n8n(r, r'). For later use, we 
write two relations between g(r) and n(r,r'): 

P'g(r)+f3g(r)P'v(r) +n/3 J n(r, r')P''v(r')dr' =0, (2·5) 

P'g(r) +f3g(r)P'v(r) +n/3 J {n(r, r') -g(r)g(r')}P''v(r')dr' =0, (2·6) 

where we have taken the thermodynamic limit v~oo, N+1~=. with n= (N+1)/v 
held fixed. v (r) denotes the interatomic potential and Eq. (2 · 5) is the first of 
the B-B-G-K-Y- hierarchy equation. Equation (2·6) is derived from Eq. (2·5) 
by noticing that g(r) and v(r) depend only on lrl. If we write (A, A)- 1 as 

(A, A)-t = c-112~~)-~~-!_,(P'(;~-;~-)-)' (2·7) 

(J)(r, r') satisfies the followin'g integral equation from Eq. (2 · 4) and the definition 
of the inverse matrix, f((Jg(r), (Jg(r'))(J)(r', r")dr' =(J(r-r"): 

ng(r)(J)(r, r") +n2 S {n(r, r') -g(r)g(r')}(J)(r', r")dr' =(J(r-r"). (2·8) 
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1638 T. Munakata 

From Eqs. (2·3) and (2·7), we obtain 

iw. A= (kT~~g-(~)i_~~.!~~'O:_C~))(-\1rl_~Itl![-~-(~~:;;;)) ((Jg~;")) 

= (- - kTn S 17' g (r') fP (r', r") (Jg (~") dr' dr") . 

nl7g(r) · Po/m 

(2·9) 

Operating -{3- 1nf£P(r,r')···dr on Eq. (2·6) and using Eq. (2·8), we get· 

- a-ln s 17 g (r) r; (r' r') dr= 17' v (r')'' (2·10) 

where the symmetry n(r, r') =n(r:, r) is used.- Thus the first -line on the r.h.s. 

of Eq. (2·9) is reduced to fl7v(r)ag(r)dr where the symmetry fP(r, r')=rD(r', r) 

is used. The random force f in Eq. (2 · 2), defined to be A- iw ·A, becomes 

f = (~o · 17 {fJ(r~- ng (r)} /m -17 · "'L. Pta (ro+ r ~r,)/m) = (; ) · (2 1 ll) 

Fro~ the above discussion and the definition of the damping matrix ¢ = (f(t) ,f) · 

(A, A)-\ we finally arrive at the following Langevin equation: 

where 

__!j_Po(t) = Jrv(r)(Jg(r, t)dr, 
dt ' 

(2 ·12) 

_!__(Jg(r,t)=nl7g(r) · p0 (t)/m- fdr' f'ds¢(r,r',s)og(r',t-s) +f,.(t) 
at J' Jo 

=nl7g (r) ·Po (t) /m +..Log (r, t) +f .. (t), - (2 ·13) 

¢ (r, r', t) = S dr" (f,. (t) , f ... (0)) fP (r", r') dr", (2·14) 

and f,.(t) =exp{i(1-.P)Lt}f,., .P denoting a projection operator defined by its 

action on an arbitrary dynamical variable G as .PG = (G, A)·· (A, A) -t. A. Equa­

tion (2·12) is the Newtonian equation of motion for the blue atom. ¢(r, r', t) and 

the linear operator _[ defined by Eq. (2 ·13) we call as the damping function and 

the damping operator, respectively. 

The memory function K(t) corresponding 'to the v.a.f. </J(t) =(p0 (t) · p0 (0) )/ 

(Po (0) ·Po (0)) is defined by 

d' i' -cjJ(t) =- K(t-s)cjJ(s)ds. 
dt 0 -

(2·15) 

As is shown in the Appendix, K(t) can be expressed as follows: 

K(t) =- (n/m) s av(r)/ax·ag(r')/ax' ~G(r, tfr')drdr', _ (2·16) 
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Velocity Correlation and Relative Diffusion in Simple Liquids 1639 

where x(x') denotes an arbitrar'y Cartesian compqnent of r(r'). The Green func­
tion G(r,t/r') satisfies the equation 

_§_G(r, t/r') =..LG(r, t/r'), (2·17) 
at 

with the initial condition 

G(r, 0/r') =a(r~r'). (2·18) 

As is well known, if one neglectsf(t), a generalized Langevin equation (2·2) 
describes the most probable path of A(t), (A(t))av in the linear approximation.l4> 
Thus <afJ(r, t) )av'satisfies 

D <afl(r, t) )a.=..L<afl(r, t))av, 
Dt 

(2·19) 

where D/Dt(=a/at-nP'g(r) ·<p0 (t) )av/m) denotes a Lagrangian~like derivative. 
From Eqs. (2·17), (2·18) and (2·19~, G(r, t/r') can be regarded as a transition 
probability of another atom from r' to r in the time- interval t. The expression 
of the memory function (2 ·16) is similar to those derived. by Singwi-Sjolander al).d 
Gaskell,s>,g> but it is· to be noted that Eq. (2 ·16) is exact. 

§ 3. The d~mpi~g function and a modified Smoluchowski equation 

We make two crude approximations on the damping function ¢ (r, r', t) with­
out using its mi~roscopic definition, (2 ·14). This will elucidate some aspects of 
the Langevin equations (2·12) 'and (2·13). First we put ¢(r,r', t) =0. Then 
from Eqs. (2·17) a~d (2:18), G(r, t/r') =a(r-r') and the memory function K(t) 
_becomes a constant <ol) which is defined by 

(3·1) 

The constancy-of K(t) leads to the sinusoidal v.a.f. <jJ(t) ~cos .J<ol)t. If the 
number density g(r, t) is fixed' to. its average, ng(r) and the blue atom is displaced 
by L1r from its equilibrium point: the force on the blue atom is given by 

- F(L1r) = n S Pv (r) g (r + L1r)dr::::::n J P'v (r) P'g (r) · Llrdr= - m<w2)L1r. (3 ·2) 

. Thus ../ (w~) may be considered to· be an Ei~stein frequency of an atom in fluid. 
It is seen that neglect_ of the damping function corresponds . to that of the density 
fluc.fuation around the blue atom. Secondly, let us assume that ¢ (r, r', t) = r, -I. 
a(r-r')a(t). From Eqs. (2·16), (2·17) and (2·18), we have an exponential 
memory function 

(3·3) 

This memory function was first derived by Gray15> and later used by Berne et al.n 
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1640 T. Munakata 

in their calculation of correlation functions. It is readily seen from _[ (Jg (r, t) 

=- r, -lr;g (r, t) that r, represents a relaxation time of the density fluctuation of the 

other atoms. 

We now calculate if;(r, r', t) starting from its microscopic definition (2·14), 

by putting the following two approximations: (I) if;(r, r', t)=if;(r, r', O)m(t), 

where m(O) =1, (II) n(r, r')=g(r)g(r'). The decaying feature of if;(r, r', t)' in 

time is assumed to be described by a representative function m(t) and it is readily 

seen that with simple forms for m(t) we can satisfy all frequency moment sum 

rules for G(w) (cf. Eq. (4·1)) up to sixth. Thus (I) is essentially a short tjme 

approximation and has been used in deriving kinetic equations approximately.16> 

We notice that (II) is cruder than the superposition approximation10> n (r, r') = 
g(r)g(r')g(r-r'). To calculate if;(r,r', 0), we first consider (f,.(O),f,.,(O)). 

From Eq. (2 ·11) it is obtained that 

Cf .. (O) ,f,., (0)) =2(kT /m) (fi' · fi'') {ng (r) (J(r-r')} +n2 (kT /m) (fi' ·fi'') 

X {n(r, r') -g(r)g(r')}. (3·4) 

With (II) we obtain 

Cf .. (0) ,f,., (0)) = (2kT /m) (fi' · fi'') {ng (r) (J(r-r')}: (3 · 5) 

From Eq. (2·8) and with (II), it is seen that 

rb(r, r') =(J(r-r') / {ng (r)}. (3·6) 

The approximate expression for rb (r, r'), (3 · 6) is also obtained by retaining the 

first term of the iterative solution to the integral equation (2 ·8). Using Eqs. 

(3·5), (3·6) and (2·14), we obtain 

rb(r, r', 0):::::::::- {2kT /mg(r')} fi' · {g (r) fi'(J(r-r')}. (3 · 7) 

From Eq. (3 · 7) and with (I), the generalized Langevin equation (2 ·13) becomes 

as follows: 

-.Lr;g(r, t) = (n/m)fi'g(r) · p0 (t) +D'fi' · {fi'(Jg(r, t) -(Jg(r, t)fi' ln g(r)} +f .. (t), 
at . 

(3·8) 

where D'=2kTr/m, r being f 0oom(t)dt and 

(Jg(r, t)=(1/r) fm(s)(Jg(r,t-s)ds. (3•9) 

We notice that (Jg (r, t) and (Jg(r, t) in Eq. (3 · 9) can be replaced by g (r, t) and 

g(r, t), respectively. The damping operator _[ becomes 

_fG(r, t) = D'fi' · {fi'G (r, t)- G (r, t) fi' ln g (r) }, (3 ·10) 

r represents the correlation time of the random force f .. (t) and the bar on (Jg (r, t) 

or G(r, t) denotes the time average with the weight function m(t). If we put 
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Velocity Correlation and Relative Diffusion in Simple Liquids 1641 

m(t) =ro(t), og(r, t) in Eq. (3·8) is replaced by of}(r, t) and we obtain a Marcof­

fian kinetic equation. Equation (3 · 8) or its Markoffian equation has a clear physi­

cal meaning. The first term on the r.h.s. of Eq. (3 · 8) express the "linear part" 

of the streaming term f7g (r, t) ·Po (t) jm. The first term in the bracket denotes 

the current due to diffusion and the second term represents the current induced 

by the effective force exerted by the blue atom.l2l . Thus D', defined to be 2kTrjm 

may be identified with the relative diffusion constant and it is usually set about 

2D, l2l,t3> where D is the self-diffusion -constant. If we neglect the random force 

f,.(t) in Eq. (3·8), we obtain a modified Smoluchowski equation (S-eq). which 

is non-Markoff and contains a streaming term. 

§ 4. Numerical calculation 

Using the Markoffian and the non-Markoffian Smoluchowski operator derived 

m § 3 as the damping operator .£, we calculate K(t), cp(t) and the normalized 

frequency spectrum f(w)=G{w)/G(O), where 

G(w)= r=¢(t)coswtdt. (4·1) 

It is well known that the self-diffusion constant D is given by 

D= (kT/m) r=¢(t)dt= (kT/m)G(O). (4·2) 

Two model systems are investigated, one with a soft-core interatomic potential 

v(r) =e((Jjr) 12 and the other with a Long-range-oscillatory one v(r) =e¢(r/rJ),5> 

where 

¢(x) =Ax-3 cos{2kFrJx+B} +E exp{F-G(rJ/r0)x}. (4·3) 

The equilibrium state of the soft-core system is specified by one parameter,2> the 

reduced .density p* defined to be (e/kT) 114p, p=(N+1)r58/v. We investigate the 

state p* = 1.144 ·which is very close to the freezing point, p* = 1.15. By molecular 

dynamics nondimensional diffusion constant is given to be Dm.d. =0.026. The state 

of LRO-II system we investigate is at T=377oK with the density p=0.927g/cc and 

D=6.18X105 cm2/sec. This. state is considered to represent liquid sodium just 

above the melting point.5> The parameters in Eq. ( 4 · 3) are given in Ref. 5). 

We list here the set of equations (A.8), (A·9), (A·lO) and (3·11), used 

in the calculation of K(t): 

_.J_K(r, t) =D' {f72K(r, t) -17 ·K(r, t)f7 In g(r)}, 
at 

K(r, 0) = (n/m)8g(r)/8x, 

K(t) =- J (8v(r)/8x)K(r, t)dr·. 

(4·4) 

(4·5) 

(4·6) 
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1642 T. Munakata 

In a polar coordinate system, the initial condition ( 4 · 5) becomes 

K(r, 0) = (n/m)dg(r)/dr·cos (}. 

We assume a ~solution to the S-eq. of the form 

K(r, t) =u(r, t)cos(}, 

and insert it into Eq. ( 4 · 4). to obtain 

au(r,t) =D'{82u(r,t) +~ au(r,t) 

at ar2 r or 

The initial condition for Eq. ( 4 · 9) is, from Eqs. ( 4 · 7) and (4 · 8) 

u(r, 0) = (n/m)dg(r)/dr. 

and from Eqs. (4-6) and (4·8), 

K(t) =- (4n"/3) f" dv(r) jdr u(r, t)r2dr. 

(4·7) 

(4·8) 

(4-10) 

(4-11) 

g (r) is given numerically by machine colllputations2>. 6> and application of iterative 

numerical techniques (six-point symmetric method18>) permits solution to Eqs. (4·9) 

and (4·10). With the use of this solution, we calculate .K(t) from Eq. (4·11), 

<{;(t) from Eq. (2·15), j((J)) from Eq. (4·1) and D from Eq. (4·2). We attach 

a suffix s to quantities thus obtained and m.d. to those obtained by .molecular 
dynamics. 

First we use the Markoffian S-eq., replacing u(r,t) by u(r, t).· Since D' 

(=2kTr/m) may be considered to be a relative diffusion constant, we take the 

ratio .a==D' /Dm.d. as a parameter and change it around 2. As a increases D, 
increases (Table I) and the maxim-um of j,-((J)),f.=x((J)) decreases monotonically. 

Comparing D. and J.=x((J)) with Dm.d. and .f::a~((J)), we choose a~2A for both 

. systems. Frequency spectrum is shown in Fig. -1 for soft-core syste~ and in Fig. 

2 for LRO-II system. Next we turn to the non-Markoffian S-eq. If we choose . 

.an a, the correlation time r is determinE;d by r=mD' /2kT=Dm.d.m/2kT. For 

the LRO-II system, r is about 4 X 10-14 sec and for the soft-core -system, the non­

dimensional r, in the time unit r0 =l../mjkT, 1 being n- 113, is about 0.025. We 

choose the time mesh Jt of our difference scheme equal to r/4 and replace .u(r, t) 

Table I. Calculated (with the use of Markoffian S~eq.) diffusion constant D, and maximmn 
of frequency spectrum,f,max((J)). O=.D,/Dm.d.· r==f,max((J))/f':,~[.(liJ). . 

a 1.8 2.0 2.2 2.4 

Q(S-C) 0.82 0.91 1.01 1.10 

r(S-C) 1.83 1.65 1.47 1.33 

Q(LRO-II) 0.96 1.01 1.04 1.13 

rCLRO-II) 1.45 1.39 1.19 1.05 
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Velocity Correlation and Relative Diffusion in Simple Liquids 1643 

= (1/r)folm(s)u(r, t-s)ds by .L:~~oa.u(r, t-iJt) where .L:~~oat=1 because of J':m 

(s)ds=r. Since the detailed feature of the correlation function m(t) is left un­

known, we choose as {a;} _two sets {0.5, 0.25, 0.125, 0.125} and {0.5, 0.3, 0;15, 0.05} 

and find that the two sets make no appreciable difference in the resulting f. (w). 

In Figs. 1 and 2, frequency spectra obtained by setting a=2.5 and {at}= {0.5, 

0.25, 0.125, 0.125} for both systems are drawn. Memory function of the Soft-core 

system and v,a.f. of the LRO-II system are also shown in Fig. 3 and Fig. 4, 

respectively . .In these figures, f(w), K(t) and ¢(t) from the exponential memory 

function (3·3) with rr=kT/mD(w2) are also shown for comparison. r, is deter­

mined so as to give a correct diffusion constant. The approach to v.a.f. with the use 

of S-eq. is seen to give better agreement with experiments than that with the use 

of the exponential memory function.7)' 15' It is readily shown that S-eq. makes the 

·relaxation time r, wav~-number dependent (§ 5). Frequency spectrum f. (w) is 

similar in shape to fa(w). obtained by Gaskell who investigated liquid argon just 

above the meiting point.9' Comparing ratios r fmax(w)/}':,''l.(w) and CJ=D/Dm.d. 

between Gaskell's and ours, it is seen that ra is a little larger than ours, i.e., 

ra=1.27, r,=l.18 (Soft-core) and r,=l.O (LRO-II) and CJa is a little smaller, i.e., 

CJa=0.8, (],=1.08 (Soft-core) and (],=1.08 (LRO-II). Connection of our method 

with that of Gaskell is discussed in detail in § 5. 

Fig. 1. Normalized frequency spectrum f((J)) of Soft-

· core system calculated from a Markoffian S-eq. 

with a=2A (dotted curve), a non-Markoffian S-eq. 

with a=2~5 (thick curve) and the exponential 

memory· function (thin curve). The dashed curve 

represents experimental results.'> 

3.0 

w (10"sec '') 

0 0 1.0 2.0 

Fig. 2. Normalized frequency spectrum 

f((J)) of LRO-II system calculated tl'om 

a Markoffian S-eq. with a=2.4 (dotted 

curve), a non-Markoffian S-eq. with 

a=2.5 (thick curve) and' the exponen­

tial memory function (thin curve). 

The dashed curve represents experi­

mental results. 20> 
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1644 T. Munakata 

1.0 

0.5 t(70 ) 0.75 

Fig. 3. Normalized memory function K(t)/K(O) 

calculated from a Markoffian S-eq. with 
a=2.4 (dotted curve) and a non-Markoffian 
S-eq. with a=2.5 (thick curve) compared 
to the exponential memory function (thin 
curve) and experimental results. •> Two 
curves (dotted curve and thick one) coincide 
after t=:::O.lro. 

\ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0.5 \ 

0 0 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Fig. 4. Velocity autocorrelation function r/J (t) 
calculated from a Markoffian S-eq. with a= 
2.4 (thin curve), a non-Markoffian S-eq. with 
a=2.5 (thick curve) and the exponential 
memory function (dotted· curve) compare 
to experimental results'> (dashed curve). 
.Three theoretical curves do not deviate 
appreciably from experimental results for 
t<to (the first zero of r/J (t}). Therefore only 
experimental results are shown for t<to. 

§ 5. Some remarks 

We have shown that the memory function K(t) can be expressed rigorously 
as in Eq. (2·16) in terms of v(r), g(r) and the Green function G(r, t[r') which 
can be regarded as the transition probability of another atom from r' to r in a 
time interval t. It is to be noted that r and r' denote positions relative to the 
blue atom. If we assume that the blue atom and the other atom move independ­
ently, G(r, t[r') may be expressed as 

G(r, tlr') = S G,(r", t)G,(r+r" -r', t)dr", (5·1) 

where G, (r, t) denotes the self-part of the Van-Hove correlation function and r" 
is the displacement of the blue atom in the time interval t. Under the Gaussian 
approximation to G, (r, t) ,10> G(r, t[ r') becomes as follows: 

G(r, t[ r') = {4na (t)} - 312 exp{ -:-1 r-r'[ 2/4a(t)}, (5·2) 

where 

a(t) = (kT/m*) f¢(s) (t-s)ds, (5·3) 

and the effective mass m * is equal to m/2: Inserting Eq. (5 · 2) to Eq. (2 ·16), 
we obtain the same expression for K(t) as derived by Gaskell. Since G(r, t[r') 
given by Eq. (5·2) has a finite non-zero value near [r[=O, which results from 
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Velocity Correlation and Relative Diffusion in Simple Liquids 1645 

neglect of correlations between the blue atom and others, K(t) diverges for large 

t. 9> To check this divergence Gaskell had to' introduce further a rather intuitive 

approximation. In our approach, the effective force term in S-eq. prevents another 

atom from coming near the blue atom and assures the convergence of Eq. (2 ·16) 

for large t. 

If -we neglect the effective force term in the S-eq. for G(r, tl r'), we obtain 

G.' (r, tl r') = {4n-D' t} - 312 exp{ -/r-r'I 2/4D' t}, (5·4) 

as the fundamental solution of the diffusion equation. In order to take ac­

count of the effective force, we multiply Eq. (5 · 4) by a step function a(/ rl), 
which is zero for I rl <(J and 1 for I rl >(J where (J is some characteristic length 

of hard core repulsion. Inserting this into Eq. (2 ·16), we obtain 

K(t) =- (n/3m) S P' g (r') · Pv* (r)G.' (r, tl r')drdr', (5·5) 

where v*(r)=v(r) for lri>(Jand v*(r)=O for lri<(J. It is evidentfrom Eqs. 

(5·2) and (5·4) that the appearence of the effective mass m*(=m/2) in the 

theory of Gaskell corresponds to that of the relative diffusion constant D' =2D 

in our theory. Fourier and Laplace transforming Eq. (5 · 5), we obtain 

K(t) =- (1/Sn-3) (n/3m) J d 3kk2g(k) v* (k) exp ( -D'Pt), 

K(z) =-::-- (1/Sn-3) (n/3m) J ~kk 2 g(k)v*(k)/(z+D'k 2 ). 

(5·6) 

(5·7) 

If we put D'k2 =rn Eq. (5·6) gives an exponential memory function. From Eq. 

(5·6), K(t) has a leading term proportional to r 512 at large t. However it has 

been cshown recently that asymptotically K(t) "'-'r312.19l Thus our S-eq. approach 

to v.a.f. cannot give a correct asymptotic fori:n of v.a.f. The reason for this defect 

may be traced back to the assumption (I) introduced in § 3. The assumption, 

(I) together with Eqs. (A· 8), (A· 9) and (A ·10) permits one to satisfy all 

frequency moment sum rule up to forth. Thus the time region covered by our 

theory is much smaller than that of hydrodynamics. 

If the assumption (II) in § 3 is replaced by the Superposition approximation, 

we would obtain a correction to S-eq. which takes into account of correlations 

among other atoms. This point will be discussed elsewhere. , If we consider the 

blue atom to be a heavy isotope, our formalism developed in § 2 can be used to 

investigate Brownian motion from a new point of view. More elaborate analysis 

of Eqs. (2 ·12), (2 ·13) and (2 ·14) than those given in §§ 3, 4 is now in progress. 
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Appendix 

--· Derivation of Eqs. (2·16) and (2·17)--

Laplace transforming Eqs. (2 ·12), (2 ·13) and (2 ·15), we obtain 

zp0 (z) = p 0 (0) +Ji'v(r)og(r, z), 

zog(r, z) = (n/m)Ji'g(r). Po(z) -¢(r, r', z)og(r',z) +F' 

z</J(z) =1-K(z)</J(z). 

(A·1) 

(A·2) 

(A·3) 

A convention is employed that if a space variable, say r, appears twice in a term, 

the integration over the .space, fdr, is performed. F(=fr(z) +og(r; t=O)) is 

orthogonal to po (0) and may be set equal to zero when one calculates the cor­

relation function <{J(t) or K(t). Thus we set. F=O in what follows. We solve 

Eq. (A· 2) for g (r, z) by iteration and insert it into Eq. (A ·1) to obtain 

zpo (z) = po(O) + _!_ (n/m) Ji'v (r) Ji'g (r) · po (z) 
z 

+ (n/m) Ji'v (r) :£; { -1/ ( -z)"+l} ¢ (r, r<1> ,.z) ¢ (r<1>, r<2>, z): .. 
71.=1 . 

X¢ (r<"-1l, r<">, z) Ji'<">g (r<11>) • po (z). (A: 4) . 

We take the innerproduct of (A·4) and p0 (0) and compare the resulting equation 

with Eq .• (A·3) to obtain 

' [ 1 K(z) =- (n/3m)Ji'v(r) · --;Ji'g(r) 

00 

· + :E { -1/)- z)"+1} ¢ (r, r<1>, z) .. ·¢ (r<"-1>, r<"l, z) Ji'<">g (r<">)]. (A· 5) 
71.=0 

If we define a vector K(r, z) by 

K(r, z) = (n/3m)Ji'g(r)/z-¢(r,'r', z)K(r', z)/z, (A·6) 

it is readily shown from Eq. (A·5) and the iterative solution to Eq. (A·6) that 

K(z) = -Ji'v(r) ·K(r, z). (A·7) 

From the isotropic property of the system, we finally obtain an equation for K(t) 
as follows: 

K(t) =- S fJv(r)/fJxK(r, t)dr. · (A·8) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

4
/6

/1
6
3
5
/1

8
4
7
0
9
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Velocity Correlation and Relative Diffusion zn Simple Liquids 1647 

where the. scalar K(r, t) satisfie's 

_§_K(r,t)=- Sdr' r1ds if>(r, r', s)K(r', t-s) =..fK(r, t), 
f)t · Jo (A·9) 

with the initial condition 

K(r, 0) = (n/m)Bg(r)/8x, (A·lO) 

x denoting an arbitrary Cartesian component of the position vector r. If we define 

a Green function G(r, ti r') of the damping operator _f by requiring in to satisfy 

Eq, (A·9} with the initial condition G(r, t=Oir') =tl(r-r'), K(t) is expressed as 

K(t) =- (n/m) s av(r)/8x8g(r')/8x'G(r, tir')drdr'. (A·ll) 
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