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The velocity of solid particles flowing in an inclined open channel of which the bottom plate was
covered with very rough sandpaper was measured for three kinds of particle.
Except for the region near the bottom plate, the velocity distribution normal to the bottom plate
appeared to be linear. The velocity gradient in that region was almost independent of the thickness
of the particle layer and increased as the slope of the channel becamesteep.
These observed velocity distributions were analyzed based on the variational principle, by which
the velocity distribution could be obtained as the solution which minimized a certain integral con-
sisting of several energy terms. It was found that such analysis could explain the main feature of
the particle flow in an inclined channel, and the following relation between stress and rate of defor-
mation was obtained.

Tyz =kTy-k^y(dvJdy)

It was also found that the critical inclination angle of the channel, which was anticipated by the
analysis, corresponded to the angle of repose.

Introduction
The gravity flow of bulk solid particles in an

inclined open channel has been investigated on the
basis of observation at the free surface and at the side
and bottom surfaces adjacent to transparent walls4'5>9).
And it was shown that the particle velocity was greatest
at the free surface, decreased with depth, and was
smallest at the bottom.
Hence, this flow is relatively simple and gives a very

thick deformation zone, i.e., the zone with velocity

gradient so that one can measure the velocity distri-
bution in it minutely. Consequently, this flow system
is quite suitable for examining rheological properties of
solid particles.
In the present paper, the velocity within the granular
layer was measured in detail and the velocity distri-
butions obtained were analyzed on the basis of the
variational principle by comparing them with those for
fluids. A simple relation between stress and rate of
deformation for this particle flow was proposed.
1. Experimental

1. 1 Apparatus
Figure 1 shows the outline of the apparatus used

in this study. The inclined channel (4) was 22mm
wide and 850 mmlong. To maketheflowinit similar
to that on an inclined flat plate, the side walls (4-a)
were made of smooth glass plate. Moreover, the bot-
Received May 6, 1978. Correspondence concerning this article should be
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torn plate (4-b) was covered with very rough sand-
paper, #40, to prevent the particles from sliding on it.
The upstream end of this mainchannel was con-
nected to a guide channel (3) which was slightly steeper
than the main one. It was installed to accelerate the
particle velocity to some extent beforehand and hence
to minimize the velocity change along the longitudinal
direction in the mainchannel.
A hopper (1) which could store 30 / of particles was
located above the guide channel. A nozzle (2) was
provided at the bottom of the hopper to control the
flow rate of the particles.
1. 2 Procedure

First set the slope of the channels, select proper
nozzle size, and charge the particles into the hopper.
Then, start feeding the channel with the particles.
After a steady flow is attained, measure the velocity

Fig. 1 Outline of experimental apparatus
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Table 1 Properties of solid particles
Particles dp pB <fir aic kT kp

[mm] [g/cm3] [deg] [deg] [g/cm2 - sec2] [g/cm2 -sec]

Glass beads 0.35 -0.50 1.50 23 23.0 5.7xlO2 0.62
Porous alumina 0.21 -0.30 0.95 31 31.1 4.8xlO2 0.62

F. C. C. 0.044-0.063 0.80 32 32.4 4.2x lO2 0.30

distribution within the particle layer. A fine optical
fiber probe which was the same as that used in the
previous study7} was used to measure the particle
velocity at each local point within the layer. Most
measurement was performed 650 mmfrom the up-
stream end of the main channel.

Three kinds of particle were used in this study.
Their size dp, bulk density pB, and angle of repose $r
are shown in Table 1.
1.3 Results

Figure 2 shows the effect of the side walls on the

lateral particle velocity distribution at z=650 mm.
The particle velocity near the side glass walls was
found to be a little smaller than that at the center of
the channel. However, since the difference between
them was small, the data presented in this paper were
all taken at the center of the channel.
Figure 3 shows the relation between particle velocity,

vZ9 and height from the bottom plate, h, for various
inclination angles of the channel, at. When at was

small, the particle velocity distribution was composed
of two parts. In the lower part near the bottom rough
surface the particle velocity was low and increased
only slightly with height. On the other hand, in the
upper part near the free surface it increased almost
linearly with height. As the inclination angle of the
channel at was increased the region of the lower part
became thin, and the velocity distribution is described
by the following simple relation.

vz=c-h (c: constant) (1)

Figure 4 shows similar relations for thicker layers.

By comparing Fig. 3 with Fig. 4, it was found that
the velocity gradient in the upper region with linear
velocity distribution was almost independent of layer
thickness for such thin layers.
The velocity gradient in the upper region with linear

velocity distribution was calculated from the data in
Fig. 3 and is plotted against the slope of the channel,
sin au by open circles in Fig. 5. It was found thatthe
velocity gradient in that region increased almost line-
arly with sin' a'i.

So far, only the data for the glass beads were ex-
amined. For the other particles, similar results were
also obtained. The relation between slope of the
channel and velocity gradient in the linear velocity
distribution region are shown also in Fig. 5.

Fig. 2 Example data for lateral distribution of

particle velocity

Fig. 3 Effect of inclination angle of the channel,
ai9 on vz-h relation for thinner layers

Fig. 4 Effect of inclination angle of the channel,
ai9 on vz-h relation for thicker layers

2. Variational Analysis
When these observed velocity distributions are

compared with those offluids, one may find out several
distinctive characteristics of the particle flow. Espe-
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Fig. 5 Relation between the slope of the channel
and the velocity gradient for three kinds of narticle

daily, it is noticed that the velocity gradient at the
free surface was not zero. Such peculiarity in parti-
cle flow has been observed also for the case when a
horizontal disk was rotated within a particle bed7).
Although the size of particles is much greater than
that of fluid molecules, a throng of particles may be
treated macroscopically as a continuum, and the
equation of continuity and the stress equation of
motion can be applied. However, they are not suf-
ficient to describe the motion of matter under given
boundary conditions. In addition, one must state the
relation between stress and deformation, in order to
describe the behavior of the particular matter to be
considered. For a Newtonian fluid, this relation gives
the definition ofviscosity. Also for a non-Newtonian
fluid, several relations such as Bingham model,
Ostwald-de Waale model, and Reiner-Philipoff model
have been proposed1}. For the motion of particles,
however, such relations have not been suggested.

Consequently, an attempt was made to find such
a relation for particle flow based on the experi-
mental results by applying the variational principle2'3).
The parabolic velocity distribution for a Newtonian
fluid on an inclined flat plate can be obtained by find-
ing the velocity distribution to minimize the following
integral.

Mli(^)2-^ sin ^> (2)
The integrand consists of two energy terms: The
first one is viscous dissipation, (l/2)(-r: yv), and

the second one is rate of work done by gravity on the
volume element, p(v -g)l).
The velocity distribution to minimize the value of

/ can be found by Pontryagin's maximum principle6>8),
as summarized in Appendix, and the following para-
bolic distribution is obtained.

Similarly, the velocity distribution for a Bingham
fluid on an inclined flat plate can be obtained by

finding the velocity distribution to minimize the fol-
lowing integral.

T tHr dvz taB/dvz\2 . "I

i

The numerical coefficient of the first term in the inte-grand is twice that of the second term, because theseterms are derived from2)(dvz/dh)[TB + pB(dv,/dhMdv,/dh) (5)
0

And the following well-known relation can be obtained
as outlined in Appendix.

pg(H-Hcf sin ajv*= -2^7 y< c(®

pgjH-H^smaf /y-HcVl
2pB \} \H-Hc)rry=H°(7)

where the critical thickness for a Bingham fluid is
given by

He=TB/(pg sinai) (8)
Meanwhile, the shear stress ryz at depth y is given
by the following equation :

Tyz=pgy sinai (9)
By combining Eq. (9) and Eqs. (3) and (7), one ob-
tains the following relation between stress and rate of
deformation :
Tyz= -ju(dvz/dy) for a Newtonian fluid (10)
Tyz=TB-jbLB(dvz/dy) for a Bingham fluid (ll)

Therefore it may be induced that the velocity

distribution for particle flow on an inclined flat plate
can be obtained also by minimizing a certain integral.
As a first-step approximation, the linear distribution
given by Eq. (1) is assumed and the following integral
which explains it is proposed.

where kT and k^ are constants.
Then the following velocity distribution can be

obtained, as outlined in Appendix.
vz=0 for a,<a,c (13)

vz=--y-1-h for at^at (14)

where the critical angle aic is given by
sinaie=kT/(pg) (1 5)

Equation (14) shows that the velocity gradient is
independent of layer thickness H.
By combining Eq. (9) and Eq. (14), one obtains the
following relation between stress and rate of deforma-
tion for the flow of particles on an inclined plate.

Tyz=kTy-k,y(dvz/dy) (1 6)
Equation (16) should be considered as a simple

model which can explain the main features of particle
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flow in an inclined channel. Much more effort should
be madeto establish a more general relation which
is applicable to various kinds offlow of solid particles.

3. Discussion

Although Eqs. (12) and (16), respectively, are very
similar to Eqs. (4) and (ll) for a Bingham fluid, both
yield stress kTy and apparent viscosity kMyfor particles

are proportional to y. This may be related closely
to the fact that buoyancy does not act in the layer of
solid particles. This depth y, which is proportional
to the normal strees a, plays a very important role
and gives a velocity distribution which is entirely

different from that for a Bingham fluid.
For example, a Bingham fluid is able to flow even
at a small inclination angle at when the thickness of the

layer is greater than critical thickness Hc. For
particles, however, when at is less than critical inclina-
tion angle aic, the particle layer remains stationary.

The critical inclination angle aic for each kind of
particle can be obtained experimentally from the inter-
cept on the abscissa in Fig. 5. As shown in Table 1,
the obtained critical inclination angle aic is almost
equal to the angle of repose <j)r. Consequently, the
critical inclination angle aic anticipated by variational
analysis may be considered to correspond to the
angle of repose.
Finally, the values of kT and kp for each kind of
particle are obtained from the critical inclination angle

and the slope of the straight line in Fig. 5, by substi-
tuting the bulk density at stationary state, pB, for p in
Eqs. (15) and (14) as a first-step approximation.
They are shown in Table 1.
These values of kT and kp may be considered as
flow properties of each kind of particle. But, as
has been stated before, further work is required to
grasp all aspects of particle flow.
Conclusion
, The velocity distribution within the layer of parti-
cles flowing in an inclined channel was measured
and the following conclusions were obtained.
}. The velocity distribution near the free surface
appeared to be linear and the velocity gradient in that
region was independent of the layer thickness.
2. The velocity gradient increased as the inclination
angle of the channel became greater.
3. Main features of these linear velocity distributions
were explained by variational analysis.
4. The critical inclination angle anticipated by varia-
tional analysis was found to correspond to the angle of
repose.
Appendix: Velocity Distributions to Make the Intergral /
Minimum

dh =~to;= -PO *fa «i (A-2)
1. Newtonian fluidThe state equation for this flowsystem is

dvjdh =p O ^ O) (A-l)Then, try to find p whichwill maximizethe following Hamil-
tonian function H.H=-[(vl2)p2-pgvz sinad+fclp]

01\2 01*
where fa is a multiplier and satisfies the followingequation.d^__ d#

Hence,

<Pi= -pgh sin ai+c1 (A-3)

// becomes maximumwhen
- _g^,_ 0i _ ~/°fl^ sin a^H-ciP~dh~ii~ ^

Hence,

vz=(-pgh2 sin ai+2c1/0/2/a+c2:

The integral constants cx and c2 are determined by
v,=0 at /*=O (A-4)

0!=O at h=H (A-5)

Equation (A-5) holds because the velocity vg at h=H is not
given. Then, Eq. (3) is obtained. Note that the condition,
dvJdh=0 at h=H, has not been used to derive the velocity
distribution.
2. Bingham fluid
Hamiltonian function H is given as
H= -[TBP+hu>Bl2)p2-pgvg sin ati+falp]

= ^(p^f^Y+(l^i*l+pgVz sin2\^ /i£ / 2^

Hence, Eqs. (A-2), (A-3), and (A-5) hold also in this case. Since
p must be zero or positive, the following two cases are con-
sidered.
(Case 1) 01-rs<O .'.y<Hc

p =dvz/dh=O
(Case2)^-r^O .\y^Hc

_dvz_(p1~rB_pgsin alH-h)-TB
dh ii B ix B

Equation (7) is obtained by integrating Eq. (A-6) with the

boundary condition, Eq. (A-4).
3. Particles

Hamiltonian function H is given as
H= -[kT(H-h)p-^(k^l2)(H-h)p2~pgvz sin aj+^jpl+^g

kjlH-h) T _ fa-krlH-h)!* [fa-kriH-hW
2 lP ic^H-h) J^ ik^H^h)

~\-pgvz sina:?- +02

Hence, Eqs. (A-2), (A-3), and (A-5) hold also in this case.
(Case 1) cpx-kT{H-h)<Q :. sinat<kr/(pg)

p=dvz/dh=0 .'. vz=0

(Case 2) (p1-kT(H-h)^O sin a^kr/ipg)

_dvz (pgsin aj-k^jH-h)
P = dh ~ k,(H-h) (A"7)

Equation (14) is obtained by integrating Eq. (A-7) with the

boundary condition, Eq. (A-4).
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= diameter of particles
= thickness of the layer

[mm]
[mm], [cm]

critical thickness for a Bingham fluid
[mm], [cm]

height measured from the bottom plate
[mm], [cm]

coefficient for apparent viscosity of
particles [g/cm2 à"sec]

coefficient for yield stress of particles
[g/cm2 à"sec2]

longitudinal velocity [cm/sec]
lateral distance [mm], [cm]

depth measured from the free surface [mm], [cm]
longitudinal distance [mm], [cm]

inclination angle of the channel [deg]
critical inclination angle of the channel [deg]

viscosity [g/cm à"sec]

f*B = apparent viscosity for a Bingham fluid

=density
= yield stress for a Bingham fluid
=shear stress
= angle of repose
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