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Abstract

In the context of structural optimization by the level-set method, we

propose an extension of the velocity of the underlying Hamilton-Jacobi

equation. The gradient method is endowed with an Hilbertian structure

based on the H
1 Sobolev space. Numerical results for compliance mini-

mization and mechanism design shows a strong improvement of the rate

of convergence of the level-set method. Another important application is

the optimization of multiple eigenvalues.
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1 Introduction

Optimal design of elastic structures has been widely studied and many different
numerical methods are used to solve this problem. Most of existing methods
can be divided into two main classes : Topology optimization which optimizes
a density of material in each cell and Geometric optimization which moves the
boundary of the domain.

The most recent topology method, the homogeneization method and its
variants (power-law method or SIMP method) may be considered quite classi-
cal in view of the number of publications (see e.g. [All01], [ABFJ97], [Ben95],
[BS03], [BK88], [Che00]). The homogeneization method seems the most promis-
ing because it is independent with respect to initialization and because it gives
strong mathematical result of existence of solution. Sadly this method bears
the difficulty of handling quite badly eigenvalue problems where apparitions of
so-called fictitious-material modes prevents stable numerical computation. An-
other problem is that topology methods give optimal shapes that are composite.
Penalization methods allow to project the composite shape on a classical shape
(a black-and-white design).

The problem of fictitious modes is naturally solved with the geometric meth-
ods where the shape is clearly identified and the void cannot generate fictitious
modes.

The major drawback of geometric methods is their dependency with re-
spect to initialization. Even the most recent level set method ([AJ05],[AJT04],
[WWG03]) is very sensitive to initialization although the topology can change.
In order to avoid this problem, a method of topology optimization, the bubble
method, (or topological gradient method [ES94], [GGM01], [SJP92] [SZ01]) has
been recently coupled with geometric optimization ([AGJT05], [BHR04]). An-
other recent advance in that field has been recently led by [NS04], but numerical
use of this method is still undone.

We wish here to correct the so-called void problem that arises when using
the level set algorithm. This problem is generated by the weak material approx-
imation that give rise to a negative velocity for advecting the shape in the void.
The void problem slows down the algorithm when mesh is refined.

The void problem is presented in Section 3 and the chosen solution is
presented in Section 4. The method mainly consists in applying the ∆−1

operator to the velocity which is costless. This method allows to regularize,
extend and gives a local Hilbertian structure (see discussion of Section 4.2).
Numerical results are presented in Section 4.3 to 4.7, they compare the new
method with the previous one and show strong improvements of the level set
algorithm.

It also has been made possible to deal with the problem of optimizing an
eigenvalue when its multiplicity is greater than one. Theoretical differentiation
of the eigenvalue is made in Section 5. As can be expected from theory on
eigenvalue differentiation, the first eigenvalue is directionally differentiable with
respect to shape variation, even when this eigenvalue is multiple. The algorithm
that optimizes the first eigenvalue is detailed in Section 5.3. It strongly relies
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on the local Hilbertian structure given by velocity regularization. Indeed, be-
cause of this local Hilbertian structure, the differential gives rize to a gradient
and therefore to a steepest descent. We show that the choice of the steepest
descent is a Semi-Definite Program in low dimension that is easily solved. Some
numerical results are presented in Section 6.

The method used for optimizing multiple eigenvalues can be extended to
other criteria that are not differentiable as the robust compliance criterion in
the sense of [CC03]. The method of velocity regularization presented here is
an adaptation of [Bur03], [PBH04], [MP01]. It is a standard issue in numerical
computation.

2 The level-set method in shape optimization

2.1 Eigenvalue maximization

We set our model problem in linearized elasticity. Let Ω ⊂ IRd (d = 2 or 3) be
a bounded open set occupied by a linear isotropic elastic material with Hooke’s
law A0. Recall that, for any symmetric matrix ξ, A0 is defined by

A0ξ = 2µξ + λ
(

Trξ
)

Id,

where µ and λ are the Lamé coefficients of the material. The boundary of Ω is
made of two disjoint parts

∂Ω = ΓN ∪ ΓD, (1)

with Dirichlet boundary conditions on ΓD, and Neumann boundary conditions
on ΓN . The spectral problem is to find an eigenvalue γ and an eigenvector u 6= 0
such that :







−div (Ae(u)) = γρu in Ω
u = 0 on ΓD

(

Ae(u)
)

n = 0 on ΓN

(2)

Where ρ is a scalar field on Ω that represents the material density (typically ρ
is equal to 1 on Ω).

It is well known that Sp(Ω) the set of eigenvalues is a countable set of positive
numbers that tends to infinity. The smallest eigenvalue γ1(Ω) = min Sp(Ω) can
then be defined.

A classical way of improving the rigidity of a structure is to maximize the
first eigenfrequency. Thus, a natural objective function to be minimized is

L(Ω) = −γ1(Ω) + η|Ω|. (3)

Where η is a given Lagrange multiplier for a volume constraint. We want to
minimize L with respect to Ω with a constraint that Ω ⊂ D where D is a given
domain of IRd.

2



2.2 Classical algorithm

The works [OS01], [SW00] or [AJT04] give an extensive explanation of the level-
set method. Only the main ideas are to be reminded in this Section.

As described in [AJ05], when the dimension of the eigenspace associated
to γ1 is equal to 1, the above functional L(Ω) is differentiable with respect to
variation of the domain and the geometrical shape optimization method can be
applied. It reads :

• Calculation of the gradient Let Ωk be the domain at iteration k.
Assuming that γ1(Ωk) is simple, for a given θ ∈ W 1,∞(D;D) define

(Id + θ) ◦ Ωk = {x + θ(x) with x ∈ Ωk}.

Prove that L((Id + θ) ◦Ωk) is differentiable with respect to θ at the point
θ = 0. The value of L′, the differential at the point 0 is given by :

L′(θ) =

∫

∂Ωk

(θ · n)(−v + η) (4)

With

{

v = Ae(u) : e(u) − γ1ρu · u on Γk
N

v = −Ae(u) : e(u) on Γk
D

. (5)

Where u is an eigenvector normalized by
∫

Ωk
ρu · u = 1 which is, up to a

change of sign, by assumption, unique. And where n is the outer normal
of Ωk.

• Calculation of a descent direction Choose θk such that L′(θk) < 0
and let Ωk+1 = (Id+ tθk)◦Ωk, where t is the step of the gradient method.

The level set method is a geometrical shape optimization method where the
domains Ωk are represented through functions φk defined on D in the following
way: x ∈ Ωk ⇐⇒ φk(x) < 0. Such a φk is said to be ”a level set function of
Ωk”. Of course for a given domain, the associated level set functions are not
unique.

The changes of topology are then handled in a very simple way (see [AJT04]
for extensive explanations of numerical advantages). The method relies on the
following lemma :

Lemma 2.1 If φk is a level set function of Ωk, define φk+1 as :

φk+1 − φk + t(θk · n)|∇φk| = 0.

Then there exist an O(t2) such that φk+1 + O(t2) is a level set function for the
domain Ωk+1 = (Id + tθk) ◦ Ωk

Thus, the following scheme for choosing φk+1 is the most commonly used

φ(0) = φk

∂φ

∂t
+ V ∗|∇φ| = 0

φk+1 = φ(T ) (6)
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where T > 0 is the step of the gradient method and V ∗ is the descent direction
chosen accordingly to the calculation (4) of the differential of J . Defining V ∗ =
v − η (v being defined in (4)) is the most commonly used choice, we will call
this choice the natural extension method. The goal of this paper is to find a
different way of defining V ∗.

Remark 2.2 In order to avoid multiple definition of V ∗in the Natural extension
method, it is supposed that the Dirichlet part of the boundary is fixed and that
the v used everywhere in the domain is the one defined for ΓN .

3 The weak material approximation and the nat-

ural extension method

The stiffness matrix that corresponds to the linear operator of elasticity is equal
to zero on the nodes that does not belong to Ω i.e.on x ∈ D such that φ(x) >
0.Then this matrix is not invertible. In order to avoid this problem, the so-called
weak material (or ersatz material) approximation consists in fixing Hooke’s law
A and material density ρ as :

A = A0 and ρ = 1 in Ω
A = εA0 and ρ = εα outside Ω

with a small parameter ε and α ≥ 1. The fictitious modes are avoided by
setting α = ∞. In the continuous case, it has been proven (see [SHSP89]) that
the eigenvector computed with the ersatz material approximation is equal at
first order in ε to the desired eigenvector introduced in (2).

Recalling that the Dirichlet part of the boundary of ∂Ω has been fixed ( see
remark 2.2), v−η = Ae(u) : e(u)−γ1ρu·u−η is now defined everywhere on D and
the natural extension method consists in defining V ∗ = Ae(u) : e(u)−γ1ρu·u−η
on every cell.

This nevertheless raises a problem : since u is everywhere of order ε0, then
Ae(u) : e(u) is of order ε outside Ω which means that the velocity extension is
almost equal to −η outside the domain, and makes it very difficult for the shape
to increase its volume. Even if the descent step T is increased in order to speed
up the method, the parts of the shape where there is a need to decrease the
volume will move faster than the parts of the shape where there is a demand on
increasing the volume.

Numerical practice shows that between each computation of the eigenvalue,
the level-set method can not move ∂Ω of more than one cell away from the orig-
inal boundary when it wants to improve the volume. This leads to a drastically
increasing computational time with mesh-refinement.

This remark is true, of course, for every objective function and not only for
the minimization of the first eigenvalue.

4



4 Velocity regularization by the Hilbertian method

4.1 Definition of the Hilbertian method

We will suppose that the domain Ω has enough regularity so that v(·, ·) defined
in (4) belongs to H−1/2(∂Ω). Even if the optimal domain may possibly be
irregular, physical and numerical intelligence tells that throughout optimization
v(·, ·) has the required regularity but mathematical proof of this fact is still
lacking. Let us first define a scalar product :

Definition 4.1 For a ∈ IR∗+, define the following scalar product on H1(D)

(u,w)H1 =

∫

D

a∇u · ∇w + uw

With the associated norm ‖ · ‖H1 .

The velocity V ∗ in the Hamilton-Jacobi equation (6) is chosen as the unique
solution to

∫

∂Ω

V ∗(−v + η) = min
V ∈H1(D)

‖V ‖
H1=1

∫

∂Ω

V (−v + η) (7)

Where v is the differential defined in (5) and Ω is the actual working domain.

4.2 Advantages of the method

⋄ Scalar versus vector: We choose to extend the normal velocity which
is a scalar field, i.e.: If θ is the vector field that advects the domain, its normal
velocity is equal to θ · n on the boundary of the domain. Seen as a distribution
over D, the normal velocity is more regular than the vector velocity. A good
example is when two parts of the boundary want to merge : θ · n is positive on
the two parts and θ changes orientation. This situation gets worst at the next
step of the algorithm (see Figure 1).

Omega

void

Figure 1: Two merging parts of the boundary leads to a non-regular vector field
as seen as a distribution on D.
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⋄ How to compute V ∗: The problem of finding V ∗ is not difficult: Let V̄
be the unique solution to

(V̄ ,X)H1 =

∫

∂Ω

X(−v + η) ∀X ∈ H1(D)

Where (·, ·)H1 is the scalar product of definition 4.1. Then V ∗ = − V̄
‖V̄ ‖

H1

and

the inversion of the matrix that corresponds to the scalar product (·, ·)H1 has
to be done only once in the optimization process.

⋄ Extension, Regularization and Hilbertian structure: Three differ-
ent goals are sought in the Hilbertian extension of the velocity.

First, the formula for the differential of L gives a velocity that makes sense
only on the boundary of the domain and the Hamilton-Jacobi equation (6) needs
a speed defined everywhere on the domain or else the algorithm cannot move
the boundary of more than one cell during optimization, this is the extension
issue.

Secondly, the velocity is regularized by the application of a ∆−1 operator.
This is the regularization issue. It is expected to increase the accuracy of the
algorithm and is a standard issue in optimization problems (see e.g. [PBH04],
[Bur03],[MP01]).

Thirdly, the problem is endowed with an Hilbertian structure and we work
with gradient-type methods, this issue will be developed later in Section 5.

⋄ Hilbertian extension versus other extensions: The most natural way
to extend the velocity outside ∂Ω would have been to extend v − η according
to the normal of ∂Ω by a front-propagating type method as the fast-marching
method described in [OS88]. This method do not endow the space with an
Hilbertian structure. Neither does it regularize the velocity.

⋄ V ∗ is indeed an extension: Because the scalar product diffuses the
source term, the velocity is now defined everywhere on D and the typical prob-
lem of null velocity in the void that raises with the natural extension method is
now cured .

⋄ V ∗ is indeed a regularization: The speed used in the Hilbertian ex-
tension method, V ∗ is more regular than v − η (the speed used in the Natural
extension method) as can be seen in the following formal derivation :

If v belongs to an Hs(D) then X 7→
∫

∂Ω
X(−v + η) is a linear form on

H−s+1/2(D) and V ∗ belongs to an Hs+3/2(D) by elliptic regularity on the very
smooth domain D. Indeed V ∗ is obtained by operating an inverse Laplacian on
the distribution (on D) X 7→

∫

∂Ω
X(−v + η) and so gains two derivatives.

⋄ Consistency of the extension: This algorithm could be seen as a
gradient-type algorithm if there were a vector field θ∗ ∈ W 1,∞(D;D) such that
θ∗ · n = V ∗ on ∂Ω. Two hypothesis would then be needed: a certain regularity
on V ∗ and a certain regularity of the domain Ω itself.
In order to ensure regularity of V ∗, a scalar product on Hp, p ≥ 1 could have
been used instead of a scalar product on H1 . In this case, formally, V ∗ would
have 2p − 1/2 more derivatives in L2 than v. But numerical computation of
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V ∗ may be quite difficult. Indeed, the computation of the matrix of the scalar
product of Hp needs finite elements that are chosen accordingly to p.

⋄ The extension parameters: The coefficient a characterize the diffusion
of v − η in the sense that setting it small compared to 1 will lead to a solution
V ∗ which is pointwise almost equal to v− η on ∂Ω on equal to zero outside ∂Ω.
It must be set small enough so that a big value of |v − η| on one part of the
boundary does not interfere too much with the values of v−η on the other parts
of the boundary. But it must be set big enough in order to diffuse the value of
v − η outside the boundary of Ω.

4.3 Numerical example: Eigenvalues of a cantilever

Figure 2: Boundary conditions for a 2-d cantilever (the black zone is heavier
and not subject to optimization).

We study a medium-cantilever problem. The working domain is a 2 × 1
rectangle, with zero displacement condition on the left side and a small square
region at the middle of the right side (see Figure 2) which is 500 times heav-
ier and not subject to optimization. This heavier mass allows to avoid trivial
shapes. The Young modulus of the material is set to 1, the Poisson ratio ν to
0.3 and the Lagrange multiplier to 7 × 10−2. In the void, the ersatz material
has a Young modulus set to 10−5 and a density ρ to 0. The mesh is refined al-
ternatively in each direction by a factor 2 and the number of transport iteration
is adequately increased at each mesh refinement (see Table 1 below).

Figure 3: Initialization and optimal shape for the first eigenvalue of a cantilever.

⋄ Explanation of Table 1: That table lists, for different meshes, the
number of transport iteration used for each optimization step in the Hamilton-
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Mesh
No of

Transport

Time per iteration

Hilbertian / Natural

Global time

Hilbertian / Natural

81 × 41
161 × 81
321 × 161

16
32
64

1.46 / 1.62
9.35 / 11.37
72.17 / 94.91

30.68 / 50.13
233.87 / 330.01
2237.2 / 2657.63

41 × 41
81 × 81

161 × 161

14
28
56

0.74 / 0.84
4.46 / 6.19
38.50 / 46.61

13.26 / 22.6
120.62 / 136.1
1116.57 / 1771.44

Table 1: Datas of the optimization of the first eigenvalue of the cantilever.

10 20 305 15 25

0

0.001

0.002

-0.0005

0.0005

0.0015

0.0025

Hilbertian method

Natural method

Finest mesh of the 
Hilbertian method

Hilbertian method
Coarsest mesh of the    

Figure 4: Mesh-refinement influence on the velocity for the Natural extension
(left) and the Hilbertian extension (right).

Jacobi equation , the average computed time used per iteration step of the
gradient method and the global computing time. The number of transport
iteration is shown for the Hilbertian method only. The number of transport
iterations for the natural method is 16 times the number of transport iterations
of the Hilbertian method. This explains that the average time per iteration of
the gradient algorithm is bigger for the Natural method than for the Hilbertian.
The latest column is the global computing time for obtaining the optimal shape.
The Hilbertian method takes the same amount of time than the Natural method
to obtain the optimal shape, but only because it is more accurate: As can be
seen on Figure 4, the convergence curves of the Hilbertian method are indeed
better than the convergence curves of the Natural method. Time is given in
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seconds.
⋄ Explanation of Figure 4 There is two sets of curves in Figure 4. The

better one are obtained with the Hilbertian method. It appears that the more
the mesh is refined, the better the optimal shape is, even if , when mesh is
refined, the decreasing of the smallest eigenvalue leads to an increase of the
criterion. This is easily explained by a better accuracy on the optimal shape
itself.

Remark 4.2 In order to prove mesh-consistency of the algorithm and to have
comparable curves in Figure 4, the optimal shape have to be the same when the
mesh is changed. Thus those examples are chosen so that there is no possibility
for the algorithm to create thin structures when the mesh is refined. This ex-
plains why there is a very few holes in the initialization. It is well known that
the level-set algorithm can produce more complicated structures.

4.4 Numerical example : The compliance of the cantilever

Figure 5: Initialization and optimal shape of the cantilever.

We performed our new velocity extension method on the well-known can-
tilever problem which is fixed on the left wall an supports a unit vertical point
load in the middle of the right wall. The compliance is here optimized. The
working domain size is 2 × 1. The Young modulus is set to 1 and the Poisson
ratio to 0.3. The Lagrange multiplier is set to η = 100.

Optimization is performed for several finer meshes and the number of trans-
port iteration is multiplied by 2 as each square of the mesh is cut into 4 squares.
For the finest mesh (321×161) that corresponds to 51200 elements, the number
of transport iterations is equal to 128 for the Natural extension and 16 for the
Hilbertian. As a result, the Hilbertian extension is really quicker.

⋄ Mesh-refinement influence: The curves of Figure 6 show that the
Hilbertian method is less sensitive to mesh-refinement than the Natural method.
Because there is parts of the boundary that have to increase the volume (one
of them is encircled in Figure 5) and that the Natural extension method have
problems to improve these parts as was said in Section 3, the Natural extension
method is sensitive to mesh-refinement. In Figure 4 there was no such demand
on improving the volume and the mesh-independence of the Hilbertian method
was less obvious.
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Figure 6: Mesh-refinement influence on the natural extension (left) and the
Hilbertian extension (right).

4.5 Numerical example : A 2-d gripping-mechanism

Dirichlet nodes

input forcesoutput 

Figure 7: The definition of the 2-d gripping mechanism and its initialization.

0 10050 150

1.5

1.6

1.55

1.65 Hilbertian extension
Natural extension   

0 100 200 30050 150 250
0.6

0.7

0.8

0.9

1

1.1

1.2
Hilbertian extension
Natural extension   

Figure 8: Evolution of the objective function for the first step (left) with a ratio
for the weak material equal to 0.01 and the second step with a ratio of 10−5

(right).

On a 1.2 × 3.2 rectangle meshed with 241 × 641 nodes, we give a numerical
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Figure 9: Optimal shape for the Hilbertian method (left) and the natural
method (right) at the end of the first step of optimization.

Figure 10: Optimal shape for the Hilbertian method (left) and the natural
method (right) at the end of the second step of optimization.

Figure 11: Optimal shape displacement.

example for minimizing the least square of a prescribed displacement. This
example was given by the Comissariat à l’Energie Atomique for the design of a
grip (see [Ber04]). The objective function is

Jlse(Ω) =

∫

Ω

k(x)|u(x) − u0(x)|2 (8)

where u is the displacement obtained by a given set of forces, u0 is a prescribed
given displacement and k is a scalar field that characterizes the zone of interest.

The ponderation k is equal to 10 on the left black box of Figure 7 (left); is
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equal to 1 on the right black box and is equal to 0 elsewhere. The prescribed
displacement u0 is equal to (0,±1) on the left black box and (0, 0) on the right
box. Enforcing u to be close to zero where the force is input allows to ensure
the stiffness and the connectivity of the structure. These black boxes are not
subject to optimization.

A force of modulus 1 N is applied in the x-direction on the middle of the left
and a uniform pressure which represents a total force of modulus 5.10−2 N is
applied between the jaws of the mechanism in order to enforce the mechanism
to hold objects. The prescribed displacement is located on the black box on the
left and shown in Figure 7. The Young modulus is set to 1, the Poisson ratio
to 0.3 and there is a small Lagrange multiplier of a volume constraint of value
0.05. This Lagrange multiplier helps removing parts of the boundary that are
useless.

This is a typical problem where an adjoint is needed. For some incompletely
understood reasons, the ratio of the weak material (the factor ε in Section 3)
cannot be set too low (typically it must be at least 1 percent of the strong
material) or the algorithm will not work. One of the explanations that may
be given is the tendency of the shape to create hinges. The algorithm then
concentrate on the hinges only, ignoring the rest of the shape and it is believed
it is then stuck in a local minimum. If the ratio of the weak material is high,
hinges are less efficient and the previous problem is avoided.

Optimization must then be made in two steps. First the shape is optimized
with a ratio of the weak material equal to 1 percent. The optimal shape is then
reoptimized with a smaller ratio (10−5 in this numerical case). In the second
optimization procedure, the displacement and the adjoint state are calculated
with a more accurate precision which leads to a better precision of the shape-
derivative.

In Figure 8 (left), it may seem that the Hilbertian method is less efficient
than the Natural method. This is explained by the lack of precision in the
computation of the shape derivative in the first step of the algorithm. But it
is explained too by the lack of precision of the computation of the criterion
during the first step of the algorithm. Indeed when the two shapes of Figure 9
(obtained with ε = 10−2) are computed using ε = 10−5 , the Hilbertian shape
is the better one.

Remark 4.3 The optimal shape for the natural extension method has less vol-
ume than the one for the Hilbertian extension, it is a numerical validation of
the problem raised in Section 3.

4.6 Numerical example : More 2-d mechanism

We briefly present here some more 2-d mechanism, namely a negative Poisson
modulus cell (Figure 12 to 14) and a force inverter (Figure 15 to 17). These
examples are standards of shape optimization problems and their description
can be found in [BS03]. In order to ensure stiffness of the structures, a small
pressure load is applied where the displacement is optimized (on the right black
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Figure 12: The Negative Poisson modulus problem and its deformed solution.
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Figure 13: Negative Poisson modulus’s evolution of the objective function at
the first step (left) with a ratio for the weak material equal to 0.01 and the
second step with a ratio of 10−5 (right).

Figure 14: Negative Poisson modulus’s optimal shape for the Hilbertian method
(left) and the natural method (right) at the end of optimization.

box of Figure 15 for the force inverter and at the top and bottom of Figure
12 for the negative Poisson modulus mechanism). At the location of the input
forces (left black box for the force inverter or the left and right walls for the
negative Poisson modulus mechanism) the displacement is enforced to be close
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Figure 15: The Force inverter problem and its deformed solution.
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Figure 16: Force inverter’s evolution of the objective function for the first step
(left) with a ratio for the weak material equal to 0.01 and the second step with
a ratio of 10−5 (right).

Figure 17: Force inverter’s optimal shape for the Hilbertian method (left) and
the natural method (right) at the end of optimization.

to zero in order to ensure connectivity of the shapes. Optimization is made in
two steps like the 2-d grip of Section 4.5 and the behaviour of the Hilbertian
extension with respect to the natural extension is comparable.
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4.7 Numerical example : A 3-d gripping mechanism

������

������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����

����

����

����

����

����

����

����

����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

output

Dirichlet nodes

input forces

Figure 18: The problem of the 3-d gripping mechanism.

Figure 19: Optimal shape for the Hilbertian method (left) and the natural
method (right) (isovalue 0 of the level-set is shown).

The objective function is defined by (8) in Section 4.5. The working domain
is a 3 × 2 × 6 rectangle. A uniform pressure load is applied on the plane x = 3
and the prescribed displacement is localized on a box at the opposite side (see
Figure 18 where a cross-section at y = 0 is shown ). A uniform pressure load
(of order 60 percent of the one on the plane x = 3) is also imposed between the
jaws of the mechanism so that this mechanism is designed to hold and grip. The
Poisson ratio is 0.3 and the Young modulus is 1. The Lagrange multiplier is set
to 3 and the mesh used is 31× 21× 61. The ratio of the weak material is set to
10−5. There is no need here to perform the two-step optimization of the Section
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Figure 20: Objective function (left) and displacement of the Hilbertian shape
(right) (density of material ≥ 0.3 is shown).

4.5. The reason why things seems to be simpler in 3-d is that the changes of
topology and the hinges are not of the same nature than in 2-d consequently it
is believed that throughout the process of optimization, the objective function
is more regular in 3-d.

5 Optimizing multiple eigenvalues

The development above for optimizing the first eigenvalue stands only when
this eigenvalue is of multiplicity equal to 1. When this is not the case, there
is no more differentiability of the first eigenvalue with respect to θ and the
above method cannot be applied. Nevertheless it has been proven that L is
directionally differentiable. The velocity extension which endows the space with
an Hilbertian structure allows to find a direction of descent. The used algorithm
is now a sub-gradient type algorithm. The goal of this Section is two fold :

• Calculate L′(θ) : W 1,∞(D;D) → IR the non-linear collection of directional
derivative of L. Show that according to Hadamard’s structure theorem
L′(θ) depends only of the value of θ·n on ∂Ω. Let us denote j(θ·n) = L′(θ)

• Compute V ∗ such that j(V ∗) = min
‖V ‖=1

j(V ) and advance the domain ac-

cording to V ∗.

It is in the computation of V ∗ that the Hilbertian structure is compulsory
needed.

16



5.1 A general theorem about eigenvalue differentiation

Differentiating eigenvalues when they are multiple is nowadays quite standard.
Two different approaches exist, the one of [Kat76] followed by [RC90] and
[Lit00]; or the one of [Cox95] (see also [Gou05]) using the subgradient theory of
Clarke [Cla90]. All these references give a proof to Theorem 5.2.

Definition 5.1 Define Ω0 as the actual working domain.

⋄ Let α > 0, β1 > 0 be constants and IL be the space of linear unbounded
auto-adjoint operators from L2(Ω0) → L2(Ω0) such that:

∀L ∈ IL ,∀u ∈ H1
D(Ω0) β1‖u‖

2
H1

D
(Ω0)

≥ (Lu, u)L2 ≥ α‖u‖2
H1

D
(Ω0)

i.e.: IL is made of operator ’uniformly’ coercive with constant α and uniformly
continuous with constant β1

⋄ Let β2 > 0 be a constant and IM be the space of continuous linear auto-
adjoint operators from L2(Ω0) → L2(Ω0) uniformly continuous with constant
β2, ie:

∀M ∈ IM ,∀u ∈ L2(Ω0) β2‖u‖
2
L2(Ω0)

≥ (Mu, u)L2

⋄ Define the norm in those two spaces as follows : If N ∈ IL or N ∈ IM then

‖N‖ = max
u∈H1

D

(Nu, u)L2

‖u‖2
H1

D

i.e., we endow IM with the natural norm of IL

⋄ Let U ⊂ W 1,∞(D;D) → IL × IM
θ 7→ (L(θ),M(θ))

be a Fréchet differentiable map-

ping with respect to the norm just defined. Define L′(θ0) (resp M ′(θ0)) the dif-
ferential of L(θ) (resp M(θ)) with respect to θ at the point θ = 0 applied to
θ0.

Theorem 5.2 Define γ1(θ) the smallest eigenvalue of the generalized eigen-
problem L(θ)u = γM(θ)u and Eθ its eigenspace, Eθ = Ker(L(θ) − γ1M(θ)).
Then, for all θ0 ∈ W 1,∞(D;D), γ1(θ) is directionally differentiable at the point
θ = 0 in the direction θ0 and the value of the directional derivative is

γ′
1(θ0) = min

u ∈ E0

(M(0)u, u) = 1

(

L′(θ0)u, u
)

− γ1(0)
(

M ′(θ0)u, u
)

5.2 Calculus of the directional derivative of L

We want to apply the general Theorem 5.2 in the shape sensitivity setting.
Recall definition of L̃(θ), the functionnal we derivate:

17



Definition 5.3

⋄ Let T = Id + θ and Ωθ = T ◦ Ω0

⋄ Let M̃(θ) and L̃(θ) be defined as : for all u, v in H1
D(Ωθ)

(M̃(θ)u, v) =

∫

Ωθ

ρu · v

(L̃(θ)u, v) =

∫

Ωθ

Ae(u) : e(v)

⋄ Let γ̃1(θ) be the smallest eigenvalue associated to the problem

L̃(θ)u = γ̃1(θ)M̃(θ)u

⋄ Let L̃(θ) = −γ̃1(θ) + η|Ωθ|

The L̃(θ) (respectively γ̃1(θ)) just defined corresponds to what has been denoted
L(Ωθ) (respectively γ1(Ωθ)) in Section 2.1.

Theorem 5.2 cannot be applied to γ̃1(θ) because the the spaces where the
operators L̃(θ) and M̃(θ) are defined changes with θ. That is why we consider :

Definition 5.4

⋄ Let M(θ) ∈ IM and L(θ) ∈ IL be defined as

(M(θ)u, v) = (M̃(θ)u ◦ T−1, v ◦ T−1)

(L(θ)u, v) = (L̃(θ)u ◦ T−1, v ◦ T−1)

⋄ Let γ̄(θ) be the smallest eigenvalue associated to the problem

L(θ)u = γ̄(θ)M(θ)u

We work with those operators instead of the classical one. They are defined on
a domain independent of θ so that the first eigenvalue can be derivated in the
sense of theorem 5.2. First it must be proven that the introduced eigenvalue γ̄
is the same as γ1 the first eigenvalue of the elasticity problem.

Lemma 5.5

⋄ L(θ) and M(θ) indeed belongs to IL and IM.
⋄ γ̄(θ) and γ̃1(θ) coincides, where γ̃1 is defined in definition 5.3.

Proof of lemma 5.5.

⋄ Let us first prove that γ̃1(θ) = γ̄(θ). Using u ∈ H1(Ωθ) ⇐⇒ v = u ◦ T−1 ∈
H1(Ω0) we have :

γ̃1(θ)
−1 = max

u∈H1(Ωθ)

(

M̃(θ)u, u
)

(

L̃(θ)u, u
) = max

u∈H1(Ωθ)

(

M(θ)u ◦ T, u ◦ T
)

(

L(θ)u ◦ T, u ◦ T
)

= max
v∈H1(Ω0)

(

M(θ)v, v
)

(

L(θ)v, v
) = γ̄(θ)−1

18



⋄ Let us now prove that L(θ) belongs to IL. The fact that L(θ) is coercive
and bounded with respect to the H1

D(Ω0) norm comes from the fact that L̃(θ)
is coercive and bounded in the H1

D(Ωθ) norm. We have to show that these
constant of coercivity and boundedness are uniform in θ. Let’s introduce the
tensor A which has the symmetries of the elasticity :

Aijkl = Ajikl = Aijlk = Aklij

such that Aijkl(∂ju
i)(∂lv

k) = Ae(u) : e(v). We use the standard tool of shape
sensitivity, namely a change of variable :

(L(θ)u, v) =

∫

Ωθ

Aijkl∂j(u ◦ T−1)i∂l(v ◦ T−1)k

=

∫

Ω0

|det∇T |Aijkl(∂su
i)
(

∂j(T
−1)s

)

(∂mvk)
(

∂l(T
−1)m

)

(9)

=

∫

Ω0

l(θ)iskm(∂su
i)(∂mvk)

With

l(θ)iskm = Aiskm + (∂lθ
l)Aiskm − Aijkm(∂jθ

s) − Aiskl(∂lθ
m) + o(‖θ‖W 1,∞)

Given α and β the coercivity and continuity constant of L(0), there exist η > 0
such that for every θ with ‖θ‖W 1,∞ < η, we have :

∀u ∈ H1
D(Ω0) 2β0‖u‖

2
H1

D
(Ω0)

≥ (L(θ)u, u)L2 ≥
α0

2
‖u‖2

H1

D
(Ω0)

We then verify the hypothesis of definition 5.1 with α1 = α/2, β1 = 2β and
U = {θ s.t. ‖θ‖W 1,∞ < η}. An analog development stands for M . ✷

We can now apply theorem 5.2 to γ̄(θ) = γ̃1(θ) and end with the following
result.

Theorem 5.6 Recalling definition 5.3, L̃(θ) = −γ̃1(θ) + η|Ωθ| is directionally
differentiable with respect to θ and its directionally derivative at θ = 0 in the
direction θ0 is given by

L′(θ0) = max
u ∈ E0
∫

Ω0

ρu · u = 1

∫

∂Ω0

(θ0 · n) (−v(u, u) + η)

where v(·, ·) is a bilinear functional defined by

{

v(u,w) = Ae(u) : e(w) − γ1ρ(Ω0)u · w on ΓN

v(u,w) = −Ae(u) : e(w) on ΓD

and where E0 is the first eigenspace associated to γ1(Ω0) = γ̃(0) the smallest
eigenvalue for θ = 0.
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One can of course verify that the formula when the dimension of the eigenspace
is greater than one is the same that the formula when the dimension is equal to
one.

Proof of theorem 5.6

We apply Theorem 5.2 to γ̃1(θ) = γ̄(θ) in order to calculate L′(θ0). The calculus
above for L (and the same for M ) shows that

(L′(θ)u, v)=

∫

Ω0

(

(∂lθ
l)Aiskm − Aijkm(∂jθ

s) − Aiskl(∂lθ
m)
)

(∂su
i)(∂mvk)

=

∫

Ω0

Aiskm(∂lθ
l)(∂su

i)(∂mvk) − Aiskm(∂sθ
l)(∂lu

i)(∂mvk)

−Aiskm(∂mθl)(∂su
i)(∂lv

k)

(M ′(θ)u, v) =

∫

Ω0

(∂lθ
l)ρuivi

Applying Theorem 5.2 gives

L′= max
u∈E0R

Ω0
ρu·u=1

−

∫

Ω0

Aiskm(∂lθ
l)(∂su

i)(∂mvk) + Aiskm(∂sθ
l)(∂lu

i)(∂mvk)

+

∫

Ω0

Aiskm(∂mθl)(∂su
i)(∂lv

k) + (∂lθ
l)ρuivi + η(∂lθ

l) (10)

Performing an integration by part on θ , the term in
∫

Ω0

is equal to :

θlAiskm
[

∂l(∂su
i∂muk) − ∂s(∂lu

i∂muk) − ∂m(∂su
i∂lu

k)
]

− θlγ1ρ∂l(u
iui) (11)

Some algebra used in coordination with γ1ρu = −divAe(u) allows us to conclude
that this term is equal to zero. The remaining term is then equal to:

L′(θ) = max

∫

∂Ω0

(θ · n)[−Aiskm(∂su
i)(∂muk) + γ1ρu · u + η]

+

∫

∂Ω0

Aiskmθlnm(∂su
i)(∂lu

k) + Aiskmθlns(∂lu
i)(∂muk)(12)

On the Neumann part of the boundary we use Ae(u) · n = 0 and the definition
of C to conclude that:

Aiskm(∂su
i)nm = 0 = Aiskm(∂muk)ns.

On the Dirichlet part of the boundary we use u = 0 so that ∇u = ∂u
∂n ⊗ n and

(θ · n)(∂muk) = θlnm(∂lu
k) and (θ · n)(∂su

i) = θlns(∂lu
i).

So that

L′(θ) = max

∫

∂Ω0

(θ · n)[−Ae(u) : e(u) + γ1u · u + η] + 2

∫

ΓD

(θ · n)Ae(u) : e(u)

✷
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Remark 5.7 Assumed regularity of Ω0 We need regularity on the domain
Ω0 in two occurrences. The first one is when we perform a change of variable
( (9) in the demonstration of lemma 5.5), and the second one is when we perform
an integration by part ( (11) in the demonstration of Theorem 5.6).

The change of variable is compulsory in order to prove the derivability. It is
sufficient to suppose Ω0 Lipschitz in order to be able to perform it.

The integration by part is only used in order to express the directional deriv-
ative (10) as an integral over ∂Ω0 (see (12)). Performing this integration by
part is asking a lot of regularity on Ω0, because the eigenvector u must be regular
enough ie, u ∈ H1(∂Ω0). But this integration by part is not needed if the only
goal is to prove the directional derivability.

5.3 Calculating V
∗

The goal of this subsection is to calculate V ∗ the minimizer to

min
‖V ‖=1

max
u ∈ E0
∫

Ω0

u · u = 1

∫

∂Ω0

V (−v(u, u) + η) (13)

Where v(·, ·) is defined in Theorem 5.6. We will prove in this Section that this
is an semidefinite programming problem (SDP) in low dimension that is easily
solved. The use of SDP programming for eigenvalue optimization is classical,
the goal of this Section is to show that solving this SDP problem is a very easy
task thanks to the Hilbertian structure endowed by the velocity regularization.
A good introduction to SDP programming is [VB96] and the references therein.
Only some basic facts about SDP problems have been recalled here

Definition 5.8

⋄ Let Y be an unknown vector , Give Y0 a vector and E(Y ) a matrix whose
coefficients depend linearly on Y . Let ≥ 0 stand for ’symmetric positive’. An
SDP problem is of the form :

min
E(Y )≥0

Y T Y0

⋄ SDP problems are efficiently solvable by duality methods. In order to insure
that there is no gap of duality, a sufficient condition is to find Y1 a strictly
primal feasible point ,i.e.: such that E(Y1) > 0 (definite positive).

We now need to introduce the semidefinite programming problem we will work
on.

Definition 5.9 Recall definition 4.1 of the scalar product (·, ·)H1

⋄ Define (ei)i=1..d an orthonormal basis of E0 for the scalar product

(u,w) =

∫

Ω0

ρu · v
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⋄ Define (aij)i,j=1..d and c as

(aij , X)H1 =

∫

∂Ω0

−Xv(ei, ej) and (c,X)H1 =

∫

∂Ω0

Xη

⋄ Define hk an orthonormalized basis of Span(aij , c)i,j for the scalar product
(, )H1 . Let m be the dimension of this space and let (ak

ij)k=1..m (resp (ck)k=1..m)
be the coordinates of aij (resp c) on the basis (hk)k=1..m.
⋄ For any X = (X1, .., Xm) and (z, w) ∈ IR2, let Y = [X,w, z].
⋄ Let A(X) be the d × d matrix A(X)ij = ak

ijXk let C(X) = ckXk and let

D(Y ) =

[

−A(X) + zId 0
0 −C(X) − z + w

]

E(Y ) =





D(Y ) 0 0
0 Id X
0 XT 1





The coefficients of E depends linearly on Y = [X,w, z]
⋄ Let Y ∗ = [X∗, w∗, z∗] be the solution of the following SDP problem :

min
E(Y )≥0

w (14)

Theorem 5.10

⋄ V ∗, the minimizer of the problem (13) is given by

V ∗ =
m
∑

k=1

Vkhk

where the vector X∗ = [V1, .., Vk] is defined as a solution of the Semi-Definite
problem (14).
⋄ The problem min

E(Y )≥0
w is strictly feasible, SDP programming can be applied.

⋄ V ∗ (or equivalently X∗) is attained.

Proof

⋄ We transform the problem (13) into (14) by using the fact that v(·, ·) is bilinear
(see Theorem 5.6 for the definition of v)

min
‖V ‖

H1=1
max

u∈E0R
Ω0

ρu·u=1

(
∫

∂Ω0

V [−v(u, u) + η]

)

= min
‖V ‖

H1=1
maxPd

i=1
λ2

i =1

(
∫

∂Ω0

V [−λiλjv(ei, ej) + η]

)

= min
‖V ‖

H1=1
maxPd

i=1
λ2

i =1
[λiλj(V, aij)H1 + (V, c)H1 ]

= min
‖V ‖

H1=1
maxPd

i=1
λ2

i =1

[

(V, hk)H1

(

λiλja
k
ij + ck

)]
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So that V ∗ is a minimizer of (13) if and only if X∗
k = (V ∗, hk)H1 are minimizer

of the following problem

minP
X2

k
≤1

maxPd
i=1

λ2

i =1

[

λiλja
k
ijXk + ckXk

]

(15)

⋄ Showing that (15) is equivalent to (14) is a standard issue of SDP pro-
gramming: The condition E([X,w, z]) ≥ 0 is equivalent to (X,X) ≤ 1 and
D([X,w, z]) ≥ 0. The condition D([X,w, z]) ≥ 0 is equivalent to zId ≥ A(X)
and w ≥ z + C(X). So that E([X,w, z]) ≥ 0 is equivalent to:

(

∑

k

X2
k ≤ 1

)

and
(

w ≥ z + Xkck
)

and

(

z ≥ maxPd
i=1

λ2

i =1

[

λiλja
k
ijXk

]

)

.

So that minimizing w with the above condition is equivalent to finding X in the
problem (15).
⋄ Choosing X = 0, z > 0 and w > z gives a [X,w, z] for which F ([X,w, z]) > 0
the problem is then strictly feasible, an extended Slater’s condition holds and
the dual problem (in term of semi-definite duality) have the same extremal
value.
⋄ The condition

∑

k X2
k ≤ 1 ensures that X is bounded and that every minimiz-

ing sequence converges up to a subsequence. The maximum is indeed attained
✷

Remark 5.11 The SDP problem is not difficult to solve , recall that d is the
dimension of the first eigenspace, then [X,w, z] is of dimension lower or equal

to d(d+1)
2 + 3 and the matrix E is a d(d+3)

2 + 3 square matrix.

6 Numerical results

6.1 The 3-d eigenvalue of a beam

We naturally set our problem in 3-d with symmetries, where we are sure to
obtain a multiplicity of the first eigenvalue greater than one. The first example
which will be called the ’big domain’ problem is a 3×3×1 rectangle discretized
with a 21×21×23 mesh. A zero displacement boundary condition is imposed on
the plane z = 0 and four cells on the middle of the plane z = 1 are not subject
to optimization and are 50 times heavier (see Figure 21). Since the domain is
symmetric, the shapes are expected to keep a first eigenvalue of dimension at
least 2 along the iterations. The Young’s modulus is set to 1 and Poisson ratio
to 0.3. In the void, the density ρ is set to 0 and the parameter ε is equal to
10−5. The second problem is the same than the first except that the rectangle
is of dimension 0.6 × 0.6 × 1 (discretized by a 15 × 15 × 43 mesh) with a mass
tip that is 200 times heavier . The second problem will be called in this Section
the ’narrow domain’ problem.

⋄ Discussion about the big domain problem The Lagrange multiplier
being set to 5.3×10−8, Figure 23 is a display of the evolution of the three smallest
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Figure 21: Initialization for narrow domain (left) and for the big domain (right).

Figure 22: The optimal shape for the first eigenvalue in a big domain (left) and
its boundary (right).

eigenvalues. There is one eigenvalue that is always (except on iterations 22 to
28) of multiplicity two and one which is of multiplicity one. The eigenvalue of
multiplicity one corresponds to an eigenvector which is localized on the heavy
cells and that interfere in the optimization process. The Figure on the left of
Figure 23 shows the evolution of the eigenvalues. On each iteration, the value of
d the dimension of the subspace of the first eigenvalue is shown. The expected
behaviour of the algorithm can be verified.

⋄ Discussion about the narrow domain problem As can be seen on
Figure 25 (left), the global evolution of the algorithm is as follows: First reinforce

24



0 10050

0.001

0.002

0.003

0.0015

0.0025

0 10 20 30 40 50

0.001

0.002

0.0015

gradient with 1 eigenvalue 
gradient with 2 eigenvalues
gradient with 3 eigenvalues

Figure 23: Evolution of the three smallest eigenvalue (left) and an interpretation
(right) for the big domain.

Figure 24: The optimal shape for the first eigenvalue in a narrow domain (iso-
value 0.2 of the density is drawn).

the structure so that the first eigenvalue raises and then optimize the weight of
the structure. The Lagrange multiplier is set to 10−8 for this example.

⋄ Discussion about the symmetries None of the two problems give rise
to radially-symmetrical shapes. For the narrow-domain problem it can be easily
understood by the fact that the shape is constrained into a box. For the big-
domain problem one can advance an explanation based on a mesh-effect. But
it is known that there exist symmetric problem whose solutions do not respect
the symmetries. We still do not know if the optimal shape is or is not radially-
symmetric for this problem.
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Figure 25: Evolution of the two smallest eigenvalue (left) and the objective
function (right) for the narrow domain.

6.2 The short cantilever

Figure 26: Initialization and optimal shape for the first eigenvalue of a short
cantilever.

We run our algorithm on a vibrating cantilever that is the same test case than
the one of Section 4.3 except that the working domain is of size 1×2 discretized
with a regular 80× 160 mesh. The other parameters that have changed are the
Lagrange multiplier which is set to 0.3 and the heavier mass which has a density
80 times heavier. This test case was introduced in [AJ05] where the authors
pointed out the appearance of multiple eigenvalues. It is not the exact same
test, because when the test of [AJ05] has been run, the improvement of the
multiple eigenvalue method were not as obvious as in the test presented here.

The test is run with the standard single eigenvalue optimization (only one
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Figure 27: Evolution of the objective function for the two different methods.
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Figure 28: Evolution of the two smallest eigenvalues for the Single eigenvalue
optimization (left) and the Multiple eigenvalue optimization (right).

eigenvalue is taken in account during optimization) and the multiple eigenvalue
optimization processes. Figure 27 shows the evolution of the objectives functions
for the two different processes.

At iteration n, the algorithm considers an eigenvalue to be of multiplicity d
if and only if the relative differences γd/γ1−1 ≤ ǫ0 < γd+1/γ1−1. Where ε0 is a
user-defined criterion. If the shape computed at iteration n+1 is not better than
the shape computed at iteration n and if the eigenvalue at iteration n is multiple
then the parameter ε0 is decreased. The parameter ε0 is set to 10 percent at
the beginning of the optimization process. This explains the behaviour of the
algorithm in Figure 28 (right).

It can be seen in Figure 28 (left) that when the first eigenvalue is considered
to be always of multiplicity one, the two first eigenvalues have a tendency to
merge and the algorithm cannot improve the shape. If we follow the branches of
eigenvalues according to the modes, we would see that the smallest eigenvalue
does not correspond to the same modes during optimization. ie, the algorithm
optimizes one mode at iteration n and an other one at iteration n + 1. This
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is standard of optimization with respect to a maximum of a function when the
maximum is multiple and it is well-known to slow down the algorithm.

7 Conclusion

The velocity-regularization method presented here improves the speed and ac-
curacy of the level set method and extends it to new problems. Thanks to the
Hilbertian method, three issues can be dealt with : The extension, the regular-
ization and the endowment of an Hilbertian structure (see discussion in Section
4.2).

The extension issue (i.e. extending everywhere a velocity which is only
defined on the boundary) is only related to the speed of the algorithm. The
2-d compliant cantilever of Section 4.4 which shows the mesh-independence of
the Hilbertian method is a good example of the improvements this new method
brings to the level set algorithm.

The regularization issue is about dealing with more regular velocities. It is
indeed an improvement as can be seen in the mechanism examples because it
allows to improve the accuracy of the optimal shape. It allows to improve too
the speed of the algorithm by diffusing the peaks of the velocity in the vicinity
of the peak. The only test for which velocity regularization is not as efficient in
terms of accuracy as the natural extension is the first step of the optimization
procedure of the 2-d mechanism of Section 4.5 (see figure 8 (left)). This can be
explained by the fact that the adjoint is not computed with an enough accurate
precision when the ratio of the weak material is too high. Sadly for 2-d tests
which need the computation of an adjoint, it still seems compulsory to perform
the two-steps optimization procedure. It was seen in Section 4.7 that this trick
is not needed in 3-d.

Because the velocity-regularization endows the problem with an Hilbertian
structure, it allows to apply the level set method of optimization for several
problems that are not differentiable but whose directional derivative exists. The
computation of the descent direction relies on an SDP problem. The transfor-
mation of the steepest descent algorithm into an SDP problem can be made
because the directional derivative of the problem is a maximum of quadratic
functions over a sphere. This is the case for the eigenvalue problem, for the
robust compliance problem and for the buckling load problem which are all
based on generalized eigenvalues problem. The investigation of the two latest
problems and application of the Hilbertian method to those issues is in progress.
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Université Paris VI, 2004.

[BHR04] M. Burger, B. Hackl, and W. Ring. Incorporating topological deriva-
tives into level set methods. J. Comput. Phy., 194(1):344–362, 2004.

[BK88] M. Bendsoe and N. Kikuchi. Generating optimal topologies in struc-
tural design using a homogeneization method. Comp. Meth. Appl.
Mech. Eng., 71:197–227, 1988.

[BS03] M. Bendsoe and O. Sigmund. Topology Optimization. Theory, Meth-
ods, and Applications. Springer Verlag, New York, 2003.

[Bur03] M. Burger. A framework for the construction of level set methods for
shape optimization and reconstruction. Interfaces and Free Bound-
aries, 5:301–329, 2003.

[CC03] A. Cherkaev and E. Cherkaeva. Principal compliance and robust
optimal design. J. Elasticity, 72:71–98, 2003.

[Che00] A. Cherkaev. Variational Methods for Structural Optimization.
Springer Verlag, New York, 2000.

[Cla90] F. H. Clarke. Optimization and Nonsmooth Analysis. SIAM, classic
in appl. math. edition, 1990.

29



[Cox95] J. Cox. The generalized gradient at a multiple eigenvalue. Journal
of Functional Analysis, 1995.

[ES94] H. Eschenauer and A. Schumacher. Bubble method for topology and
shape optimization of structures. Structural Optimization, 8:42–51,
1994.

[GGM01] S. Garreau, P. Guillaume, and M. Masmoudi. The topological as-
ymptotic for pde systems: the elasticity case. SIAM J. Control Op-
tim., 39(6):1756–1778, 2001.

[Gou05] F.de Gournay. Optimisation de formes par la méthode des lignes de
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