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We present an investigation of the statistics of velocity gradient related quantities, in particular energy

dissipation rate and enstrophy, along the trajectories of fluid tracers and of heavy/light particles advected by a

homogeneous and isotropic turbulent flow. The refined similarity hypothesis �RSH� proposed by Kolmogorov

and Oboukhov in 1962 is rephrased in the Lagrangian context and then tested along the particle trajectories.

The study is performed on state-of-the-art numerical data resulting from numerical simulations up to Re�

�400 with 20483 collocation points. When particles have small inertia, we show that the Lagrangian formu-

lation of the RSH is well verified for time lags larger than the typical response time �p of the particle. In

contrast, in the large inertia limit when the particle response time approaches the integral time scale of the flow,

particles behave nearly ballistic, and the Eulerian formulation of RSH holds in the inertial range.

DOI: 10.1103/PhysRevE.80.066318 PACS number�s�: 47.27.�i, 47.10.�g

I. INTRODUCTION

One of the most prominent features of turbulent flows is

the strong variation present in the energy dissipation field, a

phenomenon called intermittency �1�. In an attempt to de-

scribe quantitatively intermittent fluctuations in the inertial

range of turbulence, Kolmogorov and Oboukhov in 1962

�2,3� proposed a general relation linking velocity fluctua-

tions, measured at a given spatial increment �ru=u�x+r , t�
−u�x , t�, with the statistical properties of the coarse grained

energy dissipation, �r=r−3���r���x , t�d3x averaged over a

volume, ��r�, of typical linear size r,

�ru � r1/3�r
1/3, �1�

where � means “scales as” or “equal in law.” Equation �1� is

known as the refined �Kolmogorov� similarity hypothesis

�RSH� and it is considered to be one of the most remarkable

relations between turbulent velocity fluctuations: Many ef-

forts in the last decades have been devoted to its validation

�4–6�. The importance of RSH cannot be underestimated: it

bridges inertial-range properties with small-scale properties,

supporting the existence of an energy cascade mechanism,

statistically local in space. So far, a rather strong evidence

supports the validity of the RSH in the Eulerian frame �i.e.,

the laboratory frame�. On the other hand, no investigation

has been reported in the literature on the validity of RSH in

the Lagrangian frame �i.e., along fluid particle trajectories�.
The main difficulty in studying RSH in a moving reference

frame stems from the necessity to make multipoint measure-

ments along particle trajectories in order to calculate the

stress tensor. As a result, no experimental measurements

along particle trajectories of velocity gradients exists for

time long enough to be able to evaluate temporal correla-

tions. Also numerical experiments are very demanding, re-

quiring refined computations of velocity differences along

particle trajectories. This is usually implemented by comput-

ing the velocity gradients matrix in Fourier space, then trans-

forming it to physical space by �inverse� fast Fourier trans-

form, and performing off-grid interpolations of the gradients

at the particle positions. Here, we report the first of such

measurements using high-resolution direct numerical simula-

tion �DNS� investigations. We also note that when the par-

ticles transported in a turbulent environment have non-

negligible size or mass, i.e., they are inertial particles, their

trajectories becomes strongly sensitive to the statistical and

topological properties of the advecting flow �7–10�. The pos-

sible validity of Lagrangian RSH in this context is far from

being trivial and may shed new light on the physics of par-

ticulate transport in turbulent flows: an ubiquitous phenom-

ena in nature and in industrial applications alike.

In the present study, we will extend the RSH relation to

the temporal domain and test its validity along the trajecto-

ries of fluid tracers and of inertial particles whose density is

smaller/larger than the fluid one while their sizes span the

interval from the dissipative to the inertial range of scales.

The paper is organized as follows. First we give details on

the numerical methods of the DNS. We then present the ex-

tension of RSH to the Lagrangian domain and we test it on

the trajectories of fluid tracers. In the last section we inves-

tigate the case of inertial particles: we show under which

conditions the Lagrangian RSH still holds and how it should

be modified in the special case of highly inertial particles.*enrico.calzavarini@ens-lyon.fr
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II. NUMERICAL METHODS

The incompressible fluid velocity, u�x , t�, � ·u=0,

evolves according to the Navier-Stokes equations,

Du

Dt
�

�u

�t
+ u · �u = −

�p

� f
+ �	u + f , �2�

where p denotes the pressure, � f is the fluid density assumed

constant, and f is an external large-scale forcing injecting

energy at a mean rate ��	= �u · f	. Together with the Eulerian

field we integrated the Lagrangian evolution of fluid tracers:

dx�t� /dt=v�u�x�t� , t�, and point particles by means of a

model of dilute suspensions of small passively advected

spherical particles, as derived in �11–13�,

dx

dt
= v,

dv

dt
= 


Du

Dt
+

1

�p
�u − v� , �3�

where x and v denote the particle position and velocity, re-

spectively. In Eq. �3�, the coefficient 
=3� f / �� f +2�p� is re-

lated to the ratio between the density of the particle ��p� and

of the fluid �� f�; �p=a2
/ �3
�� is the particle response time,

with a as the particle radius. The Stokes number of the par-

ticle is defined as St=�p /��, where ����� / ��	�−1/2 is the

dissipative time scale of the turbulent flow. In our simulation

the parameters 
 and St can be varied independently, there-

fore, it is possible to consider also the case �
=0, St�0�,
corresponding to the limit to very heavy particles for which

the fluid added mass is negligible while Stokes drag is the

only relevant dynamical force. On the other hand the situa-

tion �
=1, St=0� is equivalent to the case of a perfect fluid

tracer.

Equation �2� is numerically integrated by means of a stan-

dard internally 2/3 dealiased pseudospectral algorithm with a

second order Adams-Bashforth time-advancing scheme. The

very same time scheme is used to track the particles evolving

according to Eq. �3�: the time-step size in both cases is

O�10−2���, however, particle informations are recorded for

postprocessing/analysis at a rate of 10−1��. Interpolations of

the velocity field, acceleration field �necessary for Eq. �3��
and velocity gradients at the particle positions, are done via a

trilinear algorithm. For a validation of our numerical method

we address �14,15�, where a satisfactory comparison on ac-

celeration Lagrangian statistics has been performed against

an independent numerical implementation with several dif-

ferent features �field interpolation based on tricubic scheme,

external dealiasing procedure, a slightly different large-scale

forcing�. In our DNS energy is injected at large scale by

maintaining the spectral content of the first two shells in

Fourier space constant. Here, we will report data coming

from two sets of simulations with N3=20483 and N3=5123

collocation points, corresponding to Re�=400 and 180, re-

spectively, and sampling the parameter space 
� �0:3�, St

� �0:4� with 64�
 ,St� particles types. A total amount of

�108 particles are tracked in time. Results on the clustering

of these particles in the turbulence have already been re-

ported in �8,9�. Inertia requires some time before particles

reach their fractal �or multifractal� statistically stationary dis-

tributions �16,17�. We therefore waited till the Lagrangian

statistics became stationary �approximately one large-eddy

turnover time� before performing the analysis presented here.

Measurements of velocity differences and gradients are

based on sets of O�106–107� particles which have been fol-

lowed in time for few O�1� large-eddy turnover times.

III. REFINED SIMILARITY HYPOTHESIS IN THE

LAGRANGIAN FRAME

A. Inertia effect on the statistics of principal invariants of

velocity gradient tensor

We have already noted that the effects of inertia may be of

particular interest for the present study. Inertial particles are

not distributed homogeneously in the volume, centrifugal

force tends to concentrate light particle inside strong ellipti-

cal regions, with high vorticity �7,8,18�, and heavy particle in

hyperbolic regions, typical of intense shear. Following

Chong et al. �19�, the flow topology may be locally defined

in terms of the two principal invariants of the velocity gra-

dient tensor A=Aij =�iu j, namely, Q=−Tr�A2� /2 and

R=−Tr�A3� /3 �see also �20� for a recent study�. Q represents

the difference between a rotation dominated and a

dissipation-dominated flow topology, e.g., it is positive in a

vortex core, while negative in a region characterized by high

strain. The second parameter, R, analogously represents the

competition between the vorticity production and the

dissipation production. Also, the separatrix curve

�R /2�2+ �Q /3�3=0 �so called Vieillefosse line �21�� discrimi-

nate between three real or one real and two complex-

conjugate eigenvalues for A, again meaning only strain or

vortical regions. In Fig. 1, we show the joint probability

density function P�Q ,R� for different particle types as mea-

sured in the simulations at Re�=180. The most striking effect

is for light particles �
=3�, contrary to tracers and heavy

particles �
=0� they spend essentially all of their time in

upper half-plane Q�0, meaning that they constantly trapped

in vortical regions.

B. Time correlation of symmetric and antisymmetric

component of velocity-gradient tensor

One also expects pretty different temporal correlations be-

tween particle trajectories and the underlying topology of the

tracer
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FIG. 1. �Color online� Joint probability density function

P�Q� ,R�� of Q��Q / �Q2	1/2 and R��R / �Q2	3/4 for particles of dif-

ferent types. Contour lines are drawn at values 10−z with z=0, 1, 2,

3, 4, 5, and 6 �from the center to the outside of the figure�. The thick

line traces the curve: �R /2�2+ �Q /3�3=0 �Viellefosse line�, discrimi-

nating between complex �above� and real �below� eigenvalues of A.

Data come from Re�=180 calculations.
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carrier flow. We look now at the symmetric/antisymmetric

component of the velocity-gradient tensor A, because of

their direct link with energy dissipation and enstrophy

�22–24�. We show in Fig. 2 the autocorrelation function of

enstrophy, =
�

2
�A−AT�2=

�

2

i,j��iu j −� jui�

2 and energy dis-

sipation, �=
�

2
�A+AT�2=

�

2

i,j��iu j +� jui�

2, along the particle

trajectories for different values of inertia. As one can see

both these quantities have short autocorrelation time, at

Re�=180 we find T=�0
�C���d��7�� and similarly T�

�5��. However, the autocorrelation of enstrophy turns out to

be rather sensitive to the type of particles, while energy dis-

sipation is probed more or less uniformly. This is a clear

indication that due to inertia, particle tends to leave in re-

gions with very different vorticity contents, while energy

dissipation—although different in intensity—turns out to be

a more robust quantity in term of coherence in time: This

result will be very useful in our following discussion.

C. RSH and its generalized formulation

Along the trajectory of a fluid tracer x�t� the velocity

difference will be denoted as ��v=v�t+��−v�t� and similarly

we define a coarse grained energy dissipation measured

along the trajectory as ��=�t
t+���x�t� , t�dt �see also �25��. The

RSH Eq. �1� can be translated from space to time by

making the assumptions that ��v��ru and ����r when �
and r are linked trough the eddy turnover time definition,

��r��r /�ru. This argument leads to the Lagrangian refined

similarity hypothesis �LRSH�,

��v � �1/2��
1/2. �4�

In order to test Eq. �4� one should verify, for any exponent p,

the scaling relations,

����v�p	 � �p/2���
p/2	 , �5�

where � means equal apart from a multiplicative constant

depending only on p, in the inertial range. In the time do-

main the inertial range is defined as the interval,

�����TL, where TL is the Lagrangian integral time

scale, which is estimated as the autocorrelation time

of velocity of fluid tracers, i.e., TL=�0
�C

v
���d�, with

C
v
�����v�t�v�t+��	 / �v2	. As one can estimate TL /���Re�,

the extension of the inertial range in dissipative time-scale

units extends over roughly two decades in the present nu-

merical study.

In contrast to the 4/5 law �consequence of the Karman-

Howarth equation� leading to exact scaling properties for

third-order velocity increments in the Eulerian frame, we do

not have any exact scaling relation derivable from NS equa-

tions in the Lagrangian domain. Furthermore, it is known

that in the Lagrangian frame, finite Reynolds effects induce

larger deviations from a power law regime than what ob-

served in Eulerian frame �26�. To overcome these effects,

following �27�, we can generalize the above expression �5�
by using its extended self similarity �ESS� form, namely,

����v�p	 � � ����v�2	

���	
p/2

���
p/2	 . �6�

D. Numerical tests of LRSH

In Fig. 3�a� we present a test of Eq. �5� for p=4 for

particles with 
=1, St=0, i.e., fluid tracers �circles� and very

heavy particles with 
=0, St=2 �triangles�. In Fig. 3�b�, we

show instead the relation from Eq. �6� for the same particle

types. Two major results emerge. First the LRSH, as ex-

pressed by Eq. �6� is well verified for the transport of par-

ticles in turbulent flows. The use of the ESS version for

LRSH is able to overcome finite size/time effects which are

usually observed at relatively low Reynolds number �see

�26��. The second important result, which will be investi-

gated later on in this manuscript, comes from inspecting the

validity of Eq. �6� for different Stokes numbers. Equation �6�
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FIG. 2. �Color online� Temporal autocorrelation function, i.e.,

CX�����X��t�−X��t+��	 / �X�
2	 with X��t�=X�t�− �X	, of the enstro-

phy X= �top� and the energy-dissipation-rate X=� �bottom� for

fluid tracers and for inertial particles with St=0.5, 
=0,3, at

Re�=180.

10
-8

10
-6

10
-4

10
-2

10
0

10
2

<(δτ v)
2
>

2
<ετ

2
>/<ετ>

2

(b)

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
-8

10
-6

10
-4

10
-2

10
0

10
2

<
(δ

τ
v
)4

>

τ
2
<ετ

2
>/<ετ>

2

(a)

FIG. 3. �Color online� Test of LRSH along the trajectories of

tracers and heavy particles at Re�=400. �a� For p=4 we show Eq.

�5� for St=0 �circles� and St=2 �squares�. �b� We show the validity

of Eq. �6� for the same values of p and St. Straight lines correspond

to the theoretical scaling prediction. Data come from Re�=400

calculations.
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is supposed to be valid both in the inertial range and in the

dissipative range �where the velocity field is smooth� though

with different offset. This is clearly observed in Fig. 3�b� for

the case St=0. It is already known that by increasing the

Stokes number, particles tends to escape from strong vortic-

ity region, thus decreasing the effect of the dip present in

between dissipative and inertial scales �28�. As a conse-

quence, for St=2 we observe almost no deviation of Eq. �6�
in the range of scales between the inertial and the dissipative

ranges.

To have a more quantitative check, we look now at the

ratio between the two sides of Eq. �6�, namely, at ����v�p	
divided by ���

p/2	����v�2	p/2���	
−p/2, as a function of the time

difference �. In Fig. 4, we show its behavior for the order

p=4 fluid tracers particles, the time difference � is normal-

ized by the dissipative time scale ��. We observe a plateau

�see circles symbols, in Fig. 4� for � /���5. Notice that also

in the dissipative range the compensation works well, as it

should from the requirement that the velocity field becomes

differentiable, ��v��. However, the plotted ratio shows a

mismatch with the value attained in the inertial range. The

transition between the two plateaux occurs around the dissi-

pative time scale, where the presence of vortex trapping has

been shown to spoil the scaling behavior of Lagrangian

structure functions ����v�p	 of the tracers �29–32�. In the

same figure we show that using the coarse grained enstrophy,

i.e., � instead of ��, the compensation is worse �squares�.
Similarly, compensation with enstrophy does not work nei-

ther for heavy nor for light particles �not shown�. Compen-

sating without coarse grained quantities, i.e., checking the

deviation from dimensional, nonintermittent, scaling does

not provide a good plateau �triangles in Fig. 4�. This result

supports the validity of LRSH only when using the energy

dissipation as the main driving process along the particle

motion. The behavior for intense fluctuations �moments

higher then p=6� cannot be checked quantitatively due to the

lack of statistics. Nevertheless, in the same figure, we show

the joint probability density functions, P�� , ���v�� and

P��� , ���v��, for a time lag �=13��. Velocity increments are

more correlated with coarse-grained energy than with enstro-

phy, as shown by the high probability measured for simulta-

neous intense values of ���v� and ��. Having established the

validity of the LRSH, we strive now at investigating the

effect of different Stokes number and different density prop-

erties.

IV. LRSH IN THE (� ,St) PARTICLE PARAMETER SPACE

A. Heavy particles (�=0) at StÈO(1)

When particles have inertia their trajectories deviate from

material lines of the flow. In principle, one expects that for

very small value of the inertia �particles very close to fluid

tracers� no appreciable discrepancies can be measured. In

Fig. 5 it is shown the test for the LRSH compensated with

the energy dissipation rate. From One can appreciate that in

the inertial range, e.g., � /���5 the LRSH is well verified for

all the Stokes considered. In the dissipative range it is also

verified but with a different proportionality constant. In par-

ticular, the important mismatch observed between the two

plateaux for tracers in �Fig. 4� here is reduced considerable

as soon as some inertia is switched on. This confirms that

heavy particles are quickly expelled out of vortex filaments,

and therefore much less sensitive to the transition around

� /���1 than tracers �28� �the opposite will happen for light

particles, see below�.
The behavior of the ratio �AD /AI� of the plateaus dis-

played by ����v�4	���	
2
/ ����

2	����v�2	2� respectively in the

dissipative range �AD for ����� and in the inertial range �AI
for ��10���, is shown in the inset of Fig. 5. The estimate for

the slope of AD /AI vs St can be provided by the following
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verified, as expected, roughly ��10��. In the inset, the behavior of

ratio of prefactors AD /AI is plotted vs St. For small St values a

behavior as St−0.38 is found �solid line in the inset�.
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reasoning. First we notice that the inertial constant AI is al-
most insensitive from the Stokes value, therefore, the dissi-
pative constant AD carries all the St dependency. Moreover,
we have measured that the single point energy dissipation
statistics is pretty insensitive to the Stokes number �see again
Fig. 2�. As a consequence the main dependency on St for the
ratio AD /AI comes from the flatness factor F���
�����v�4	 / ����v�2	2 in the intermediate-dissipative � limit. It
is reasonable to estimate the difference between F��� at
changing Stokes, but fixed Reynolds, as given by the value
of the flatness at the particle response time: F��p��St�4−2�2,
where �p is the pth order scaling exponent for Lagrangian
structure functions ����v�4	���p. Based on the experimental
values �4�1.6 and �2�1 �31�, this estimate gives
AD /AI�St−0.4, not too far from the fit St−0.38�0.05 to our nu-
merical data, see inset of Fig. 5.

B. Finite density contrast: Heavy and light particles

We now look at the statistical properties of particles with
finite density contrast, i.e., also 
�0. In Fig. 6 it is shown,
for St=1, the behavior of the compensated tests for LRSH
for different values of 
 spanning the full range �0:3�. In the
inset it is also shown the behavior, this time as function of 
,
of the AD /AI ratio. Notice how the critical value 
=1, dis-
criminating between heavy �
�1� and light �
�1� particles

plays a crucial role. Again, LRSH is well verified in the

inertial range, but the change to a different plateau around

� /���1 is now much more abrupt when light particles are

considered: for those the vortex trapping is more pro-

nounced, as all light particles quickly move toward high vor-

ticity regions, showing a very sensitive dependency around

the dissipative time dynamics. A model for the dependency

of AD /AI vs 
 is presently not available.

C. Heavy particles (�=0) with large inertia

Having studied the case of particles with small inertia, we

now focus on the case of extreme inertia, i.e., when the re-

sponse time of the particle is at the top end of the inertial

time range, or St�O�10�. In this condition, for time lags

���p when the particle filters out most of the underlying

turbulent fluid fluctuations and evolves nearly ballistically,

one can predict a different behavior for ��v. Along the tra-

jectory of a ballistic particle, the relation linking scale to

time is ��r��r /v0 where the typical particle velocity v0 is

proportional to root mean square fluid velocity. Recasting

Eq. �1� from space to time notation we obtain again an

Eulerian-like RSH relation, ���v���� /v0�1/3��
1/3, or

����v�p	 � � �

v0

p/3

���
p/3	 . �7�

The generalized version of Eq. �7� reads now

����v�p	 �
���

p/3	

���	
p/3

����v�3	p/3. �8�

In Fig. 7, we present a test of this idea for ����v�p	 with

p=6. For particles with very large Stokes numbers �St=70�
we compensate the velocity increments both with respect to

the prediction of the Lagrangian RSH and with respect to the

prediction of the Eulerian RSH in its generalized version.

The compensation with the Eulerian RSH works appreciably

better in the range ��St·�� than the compensation with

LRSH.

V. CONCLUSIONS

In summary, some important statistical properties of ve-

locity gradients along trajectories of fluid tracers, heavy and

light particles have been investigated. We used high reso-

lution high-statistic numerical data to correlate the temporal

properties of velocity gradients and velocity differences

along trajectories. We demonstrated that the refined similar-

ity hypothesis is well verified both for fluid particles and

particles with response time in the dissipative regime, a fea-

ture that we dubbed Lagrangian RSH. Around the dissipative

time lags, heavy and light particles behave strongly differ-
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The LRSH is satisfied both in the inertial and in the dissipative

ranges. As for the case of heavy particles the prefactors differs in

the two regions. In the inset, the behavior of ratio of prefactors

AD /AI is plotted vs 
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ently due to the effect of being expelled/concentrated out/in
vortex filaments. The dynamics at those time lags becomes
markedly dependent on the underlying topological flow
properties.

Understanding the RSH in the Lagrangian domain may
also have important applied consequences. In many applica-
tions, the geometry of the system and/or the intensity of tur-
bulence do not allow for a direct attack of the problem using
numerical simulations of the Navier-Stokes equations. Mod-
eling is needed for both the underlying fluid and for the
particle equations. Typically, the ideal model, would like to
replace Eqs. �3� and �2� with a Langevin-like equation for the
particle evolution �33,34�: dx /dt=v, dv /dt=D�A�v+��t�,
where � represents some stochastic noise induced by the
underlying turbulent fluctuations. The hard physical problem
is in the modelization of the drift term, D�A�, depending on
the local gradient structure along the trajectories �see �35–39�
for recent attempts�. Such term should also take into account
effects induced by preferential concentration in/out vortex
filaments for the case of inertial particles around the dissipa-
tive time lags.

The numerical database presented here can play a crucial
role for benchmarking stochastic models for tracers and in-

ertial particles in turbulence. Data from this study are pub-

licly available in unprocessed raw format from the iCFDda-

tabase �http://cfd.cineca.it�.
During the preparation of this manuscript we got aware of

a slightly similar investigation �40� where Lagrangian corre-

lation of velocity and pressure gradients are studied condi-

tioning on the initial Eulerian energy dissipation, a sort of

mixed Eulerian-Lagrangian refined Kolmogorov hypothesis,

different from the fully Lagrangian view point adopted here.
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