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Abstract Adopting the Standard Halo Model (SHM) of

an isotropic Maxwellian velocity distribution for dark mat-

ter (DM) particles in the Galaxy, the most stringent current

constraints on their spin-dependent scattering cross-section

with nucleons come from the IceCube neutrino observatory

and the PICO-60 C3F8 superheated bubble chamber experi-

ments. The former is sensitive to high energy neutrinos from

the self-annihilation of DM particles captured in the Sun,

while the latter looks for nuclear recoil events from DM

scattering off nucleons. Although slower DM particles are

more likely to be captured by the Sun, the faster ones are

more likely to be detected by PICO. Recent N-body simu-

lations suggest significant deviations from the SHM for the

smooth halo component of the DM, while observations hint

at a dominant fraction of the local DM being in substructures.

We use the method of Ferrer et al. (JCAP 1509: 052, 2015) to

exploit the complementarity between the two approaches and

derive conservative constraints on DM-nucleon scattering.

Our results constrain σSD � 3 × 10−39cm2 (6 × 10−38cm2)

at � 90% C.L. for a DM particle of mass 1 TeV annihilating

into τ+τ− (bb̄) with a local density of ρDM = 0.3 GeV/cm3.

The constraints scale inversely with ρDM and are independent

of the DM velocity distribution.

a Now at Brookhaven National Laboratory
b Now at Canadian Nuclear Laboratories
c Now at Argonne National Laboratory
d also at National Research Nuclear University, Moscow Engineering

Physics Institute (MEPhI), Moscow 115409, Russia

a e-mail: analysis@icecube.wisc.edu

b e-mail: analysis@picoexperiment.com

1 Introduction

Based on inferences from observations of gravitational

effects, it has long been believed that a significant fraction of

the Universe is made up of dark matter (DM) (see [2]). How-

ever, very little is known about its properties and interactions.

A weakly interacting massive particle (WIMP), whose relic

abundance from a state of thermal equilibrium can make up

DM has been the subject of considerable theoretical attention

and experimental focus (see [3] for a comprehensive review).

Various complementary approaches have been pursued to

detect the WIMPs that may constitute the DM halo of our

Galaxy. Terrestrial direct detection (DD) experiments search

for nuclear recoil events from the elastic scattering of WIMPs

with the target nuclei of their detectors. Neutrino and gamma

ray telescopes search for directional excesses over astrophys-

ical backgrounds that may indicate the pair-annihilation of

WIMPs, while collider searches look for the signatures of

WIMPs being created in high-energy interactions of Stan-

dard Model particles.

Although the different search strategies have attained the

sensitivity to probe the physically-motivated WIMP parame-

ter space over the past few decades, they have failed to detect

any signal. In the absence of a convincing detection, con-

straints have been derived on the interaction cross-sections of

these hypothetical particles with Standard Model particles.

Such an inference requires knowledge both of the density

of DM ρDM and of its velocity distribution function (VDF)

f (�v).

In the Standard Halo Model (SHM) [4], the DM of the halo

is a collisionless gas in hydrostatic equilibrium with the stars,
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retaining the velocity distribution obtained during the forma-

tion of our Galaxy. An isotropic Maxwell–Boltzman velocity

distribution in the Galactic rest frame is usually adopted.

Meanwhile, N-body simulations have hinted that a

Maxwell–Boltzmann distribution does not accurately repre-

sent even the smooth component of the halo [5–7]. Recent

observations point to the possibility that a dominant fraction

of the DM in the Solar neighbourhood [8] may not yet have

achieved dynamical equilibrium, perhaps due to the infalling

tidal debris of a disrupted massive satellite galaxy of the

Milky Way. New data also suggest that a substantial fraction

of our stellar halo may lie in a strongly radially anisotropic

population, the ‘Gaia sausage’ [9].

If so, constraints on WIMP-nucleon interactions derived

assuming the SHM (from both direct and indirect searches)

may be weakened. Direct detection experiments are pref-

erentially sensitive to nuclear recoils from high velocity

DM particles, while capture in the Sun is more likely for

the slower fraction of the DM population. In this work we

use the method of [1], which is independent of the veloc-

ity distribution of the halo model to exploit this comple-

mentarity and derive conservative, upper limits on the spin-

dependent DM-nucleon scattering cross-section by combin-

ing the results from [10,11]. Here the DM velocity distri-

bution is taken to be a completely general superposition of

individual ’streams’ (delta functions in velocity), similarly

to the halo-independent analysis of direct detection experi-

ments [12]. Although constraints from individual searches

will now be dependent on the stream velocity, by exploiting

the complementarity of the IceCube and PICO searches, con-

straints independent of the stream velocity can be obtained.

This method also improves on previous assessments of halo

model uncertainties on indirect DM detection [13], by allow-

ing the velocity distribution to be anisotropic. The resulting

constraints are a factor of 2–4 worse than the PICO SHM con-

straints at low DM masses and up to an order of magnitude

worse at high DM masses, depending upon the annihilation

channel, but are independent of the halo model.

2 Detectors and data samples

2.1 IceCube 3 year Solar WIMP search

IceCube is a cubic-kilometer neutrino detector installed in

the ice at the geographic South Pole between depths of 1450

and 2450 m. It relies on photomultiplier tubes housed in

pressure vessels known as digital optical modules (DOM)

for the optical detection of Cherenkov photons emitted by

charged particles traversing the ice. The principal IceCube

array is sensitive to neutrinos down to ∼100 GeV in energy

[14–16]. The central region of the detector is an infill array

known as DeepCore optimized in geometry and DOM den-

sity for the detection of neutrinos at lower energies, down to

∼10 GeV [17].

Over a detector uptime of 532 days corresponding to the

austral winters between May 2011 and May 2014, two non-

overlapping samples of upgoing track-like events, dominated

by muons from charged current interactions of atmospheric

νμ and ν̄μ, were isolated [10]. During austral summers, the

Sun being above the horizon, is a source of downgoing neu-

trinos and the signal is overwhelmed by a background of

muons originating in cosmic ray interactions in the upper

atmosphere.

The first sample, consisting of events that traverse the prin-

cipal IceCube array, is sensitive to neutrinos in the 100 GeV–

1 TeV range in energy, while the second sample is dominated

by events starting in and around the DeepCore infill array, and

is sensitive down to neutrinos of ∼10 GeV in energy.

An unbinned maximum likelihood ratio analysis of the

directions and energies of the events that make up the two

samples was unable to identify a statistically significant

excess of neutrinos from the direction of the Sun. This

enabled 90% CL upper limits on the DM annihilation induced

neutrino flux to be computed according to the prescription of

[18] as presented in [10].

This can be interpreted as both a constraint on the anni-

hilation rate of DM particles in the Sun, as well as on the

scattering cross-section of DM with nucleons, although this

has been usually done under the SHM assumption. In par-

ticle physics models where the DM couples to the spin of

the nucleus and annihilates preferentially into SM particles

that decay to produce a large number of high energy neu-

trinos (such as τ+τ−), the resultant constraints are the most

stringent for DM mass above ∼ 80 GeV [19].

2.2 PICO

The PICO collaboration searches for WIMPs using super-

heated bubble chambers operated at temperature and pressure

conditions which lead to being virtually insensitive to gamma

and beta radiation [20]. Events in PICO consist of the transi-

tion from liquid to gas phase, signalled by the nucleation of

a bubble in the target material. This phase change is imaged

by the cameras surrounding the active area, which trigger

upon detecting the formation of a pocket of gas. Additional

background suppression is achieved through the measure-

ment of the acoustic signal generated by the event, allow-

ing alpha particles to be discriminated from nuclear recoils.

Details of the apparatus are available in [21]. The data used

in this study were obtained from the PICO-60 detector, con-

sisting of a 52.2±0.5 kg C3 F8 target, operated roughly 2 km

underground at SNOLAB in Sudbury, Ontario, Canada. The

results used here come from an efficiency-corrected exposure

of 1167 kg-days taken between November 2016 and January

2017 [11].
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The response of the detector to WIMPs is dependent on

the thermodynamic conditions, and is calibrated using in situ

nuclear and electronic recoil sources. Additionally, the Tan-

dem Van de Graaff facility at the University of Montreal

was used to determine the detector response, using well-

defined resonances of the 51V(p,n)51Cr reaction to produce

mono energetic neutrons at 61 and 97 keV. The combina-

tion of these measurements is simulated using differential

cross-sections for elastic scattering on fluorine to produce

the detector response.

3 DM velocity distributions and impact on constraints:
the method

Following the method of [1], the velocity distribution of the

DM (WIMP) population in the Solar system, f (�v) can be

expressed as the superposition of streams with fixed velocity

�v0 with respect to the Solar frame.

f (�v) =

∫

|�v0|≤vmax

d3v0δ
(3)(�v − �v0) f (�v0) (1)

where vmax is the maximum velocity at which WIMPs can be

found, typically the escape velocity of the Galaxy. For every

stream with velocity �v0 with respect to the Sun, upper limits

can be derived from the null results of IceCube by requiring

that the capture rate for the stream C�v0
be less than or equal

to Cmax, the upper limit on the capture rate from the results

of the experiment. For a direct detection experiment, which

sees the same stream with velocity �v0 − �vE(t) with respect to

the Earth, similar constraints can be derived for each stream

velocity by requiring that the event rate for the stream R�v0
be

less than or equal to Rmax, the upper limit on the event rate

from the results of the experiment. C�v0
and R�v0

are computed

by evaluating the integrals of equations 2 and 3 of [1]. Since

the PICO exposure period was too short for the Earth’s veloc-

ity �vE(t) to average out to zero, velocities are conservatively

shifted by 30.29 km s−1 (the velocity of the Earth around the

Sun at perihelion [22]) when computing R�v0
. For the cap-

ture rates in the Sun, the integrals were evaluated using the

density profile and nuclear abundances in the Sun for pro-

tons and nitrogen nuclei (the second most abundant species

with nuclear spin) in the standard Solar model [23] as imple-

mented in sunpy [24]. Nuclear form factors as implemented

in dmdd [25] for spin-dependent scattering, corresponding to

the �′
1M (Axial transverse electric response) and �′′

1M (Axial

longitudinal response), Table 1 of [26] were employed for

the event rate calculations in PICO.

Figure 1 demonstrates the evolution of the constraints

on the spin-dependent DM-proton scattering cross-section

from both IceCube and PICO as |v0| is varied. The individ-

ual constraints on the cross section are computed from the

constraints on the capture rate in the Sun already derived in

[10] as well as the constraint on the event rate within PICO

presented in [11]. For a WIMP of mass M scattering off a

nucleus of mass m, the maximum stream velocity at which

capture is allowed is given by [1]:

vmax = 2vesc

√

Mm

|M − m|
(2)

where vesc is the escape velocity. Consequently, above certain

threshold values of the stream velocity, capture by scattering

off protons is kinematically impossible and only nitrogen

nuclei contribute to the capture rate.

Subsequently, the largest value of the scattering cross-

section allowed by both IceCube and PICO, σHI, can be

determined at the velocity of least constraint, vLC, where

σ PICO
max (vLC) = σ IceCube

max (vLC). This procedure is illustrated

in Figure 1 for two specific models, 40 GeV and 700 GeV

WIMPs annihilating to bb̄.

4 Results and conclusions

The resultant DM velocity independent constraints are illus-

trated in Fig. 2 and presented in Table 1. For the “hard” chan-

nels ( W +W −and τ+τ−), which produce a relatively large

number of neutrinos at energies just below the DM mass, the

DM-velocity-independent constraints are in general worse

only by a factor of 2–4 compared to the PICO SHM con-

straints. However, at a DM Mass of ∼250 GeV (∼700 GeV

for bb̄), the constraints are significantly worse because the

DM particle velocities just below the PICO threshold are still

too high to be captured by scattering off protons in the Sun

(see Fig. 1). At immediately higher masses, the constraints

improve because the IceCube sensitivity improves with the

DM mass in this range. The constraints are in agreement with

the findings by [27]. The IceCube constraints were recom-

puted with Monte-Carlo data sets under varying assumptions

of all systematic uncertainties as described in [10]. The dom-

inant uncertainties were found to originate in the photode-

tection efficiency of the photomultiplier tubes that make up

the DOMs, as well as the optical properties of the ice. Since

these constraints correspond to the same annihilation rates of

DM particles in the Sun reported in [10], capture-annihilation

equilibrium continues to be a valid assumption. The dominant

uncertainties in the detector acceptance of PICO originate in

the uncertainties of the neutron beam used in the calibration

process. These are propagated to the final level and shown

as shaded regions. Conservatively, the pessimistic efficien-

cies of PICO have been used to derive the constraints. While

these constraints are robust with respect to any uncertain-

ties in the velocity distribution of DM particles, they are still
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Fig. 1 Constraints at � 90% CL on the spin-dependent DM-proton

scattering cross-section from both IceCube and PICO for different val-

ues of |v0|, for 40 (700) GeV WIMPs annihilating to bb̄ are shown on

the left (right). For 40 GeV WIMPs, as the efficiency of PICO falls off

below stream velocities of c (the speed of light) ×10−3, Solar capture

by scattering off hydrogen nuclei provides a complementary bound,

while for 700 GeV WIMPs, a bound is provided only by the much less

abundant nitrogen nuclei in the Sun

Fig. 2 DM velocity distribution

independent constraints on the

SD DM-nucleon interaction

cross-section � 90% CL.

Systematic uncertainties are

presented as shaded regions.

The traditional SHM upper

limits at 90% CL from IceCube

and PICO are shown as dashed

and dash dotted lines. The kinks

in the constraints at ∼ 250 GeV

(for W +W −and τ+τ−) and

∼ 700 GeV (for bb̄) are

explained in Section 4

susceptible to uncertainties and/or fluctuations in the local

density of DM, and are presented for the benchmark local

density of ρDM = 0.3 GeV cm−3, and scale inversely with

this quantity.
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Table 1 Constraints on the SD DM-nucleon cross-section. SHM con-

straints from PICO and IceCube, as well as the DM velocity distribution

independent constraint are presented at � 90% CL. The velocity of DM

particles at which the cross-section is least constrained (VLC) is also pre-

sented for each point. The constraints are conservative with respect to

systematic uncertainties

mχ (GeV) annih. channel vLC (km s−1) PICO σ SHM
SD (pb) IceCube σ SHM

SD (pb) Combined σHI
SD(pb) Syst unc. (%)

20 τ+τ− 229.7 3.78 × 10−5 4.85 × 10−4 2.29 × 10−4 23.4

35 bb̄ 131.5 3.43 × 10−5 9.25 × 10−4 1.26 × 10−3 18.3

35 τ+τ− 236.8 1.35 × 10−4 9.74 × 10−5 10.2

50 bb̄ 137.3 3.72 × 10−5 6.39 × 10−3 8.24 × 10−4 8.0

50 τ+τ− 222.5 7.90 × 10−5 1.08 × 10−4 9.5

100 bb̄ 141.5 3.29 × 10−4 7.23 × 10−4 9.7

100 W +W − 167.8 5.36 × 10−5 9.52 × 10−5 3.56 × 10−4 11.4

100 τ+τ− 170.3 2.91 × 10−5 3.34 × 10−4 14.4

250 bb̄ 106.2 2.80 × 10−3 5.15 × 10−3 26.7

250 W +W − 108.3 1.09 × 10−4 5.30 × 10−5 4.85 × 10−3 31.8

250 τ+τ− 108.4 2.82 × 10−5 3.12 × 10−3 14.0

500 bb̄ 76.4 3.06 × 10−3 4.99 × 10−2 54.1

500 W +W − 122.7 2.06 × 10−4 3.76 × 10−5 3.04 × 10−3 10.2

500 τ+τ− 142.5 1.46 × 10−5 1.58 × 10−3 13.1

1000 bb̄ 72.07 2.59 × 10−3 5.72 × 10−2 9.1

1000 W +W − 126.0 3.90 × 10−4 6.80 × 10−5 4.81 × 10−3 8.6

1000 τ+τ− 145.3 2.07 × 10−5 2.57 × 10−3 10.8

3000 bb̄ 100.3 6.76 × 10−3 1.61 × 10−1 19.8

3000 W +W − 76.09 1.14 × 10−3 5.42 × 10−4 1.59 × 10−1 21.4

3000 τ+τ− 49.52 1.21 × 10−4 1.48 × 10−1 22.4

5000 bb̄ 89.23 1.58 × 10−2 3.11 25.4

5000 W +W − 46.41 1.89 × 10−3 1.37 × 10−3 3.16 16.5

5000 τ+τ− 46.41 3.28 × 10−4 2.66 19.1
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