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ABSTRACT

We assessed 3D frequency-domain �FD� acoustic full-
waveform inversion �FWI� data as a tool to develop high-res-
olution velocity models from low-frequency global-offset
data. The inverse problem was posed as a classic least-
squares optimization problem solved with a steepest-descent
method. Inversion was applied to a few discrete frequencies,
allowing management of a limited subset of the 3D data vol-
ume. The forward problem was solved with a finite-differ-
ence frequency-domain method based on a massively paral-
lel direct solver, allowing efficient multiple-shot simulations.
The inversion code was fully parallelized for distributed-
memory platforms, taking advantage of a domain decompo-
sition of the modeled wavefields performed by the direct
solver. After validation on simple synthetic tests, FWI was
applied to two targets �channel and thrust system� of the 3D
SEG/EAGE overthrust model, corresponding to 3D domains
of 7�8.75�2.25 km and 13.5�13.5�4.65 km, respec-
tively. The maximum inverted frequencies are 15 and 7 Hz
for the two applications. A maximum of 30 dual-core bipro-
cessor nodes with 8 GB of shared memory per node were
used for the second target. The main structures were imaged
successfully at a resolution scale consistent with the inverted
frequencies. Our study confirms the feasibility of 3D fre-
quency-domain FWI of global-offset data on large distribut-
ed-memory platforms to develop high-resolution velocity
models. These high-velocity models may provide accurate
macromodels for wave-equation prestack depth migration.

INTRODUCTION

Three-dimensional quantitative seismic imaging in complex en-
vironments �e.g., deep water, thrust belts, subsalt and subbasalt
structures� is a primary challenge of seismic exploration for hydro-

carbon exploitation. In the depth domain, the imaging flowchart for
multichannel seismic reflection data is subdivided into two main
steps: velocity macromodel estimation and prestack depth migration
�PSDM�. These steps typically are performed iteratively until flat-
tening of reflectors in common image gathers �CIGs� is optimized.
The human interactions during several tasks related to velocity mod-
el-building, such as CIG flattening, layer interpretation, and quality
control of picking, makes the PSDM workflow time consuming and
potentially subjective. Therefore, any approach that helps to auto-
mate and optimize velocity model-building will speed up the output
of the final PSDM image.

Estimating the velocity macromodel is critical because it has a
strong impact on the accuracy of the migrated images in terms of fo-
cusing and positioning in depth of the reflectors. The criteria that the
velocity macromodel must verify to provide accurate migrated im-
ages are still unclear �for illustrations of the sensitivity of 2D and 3D
true-amplitude PSDM to the accuracy of the velocity macromodel,
see Operto et al., 2000, 2003�. Estimating a reliable velocity macro-
model for PSDM from conventional multichannel seismic reflection
data is a difficult task — one that becomes even more dramatic in
complex environments because of the velocity-depth ambiguity at
significant depths �Bickel, 1990; Pon and Lines, 2005�.

The most common approaches for building a PSDM velocity
model rely on reflection traveltime tomography �e.g., Bishop et al.,
1985; Stork, 1992� or migration velocity analysis �e.g., Biondi and
Symes, 2004; Sava and Biondi, 2005�. Both approaches result in ap-
proximations for modeling wave propagation, such as the high-fre-
quency approximation or the one-way approximation of the wave
equation. This incomplete modeling of wave propagation, together
with the limitations imposed by narrow-aperture acquisition geome-
tries, can prevent imaging of steeply dipping reflectors. For exam-
ple, Zhang et al. �2006� illustrate that turning waves and multire-
flected arrivals can improve images of the flank of salt bodies. As a
result, research has been dedicated to extending the one-way propa-
gator to exploit these arrivals in PSDM �e.g., Zhang et al., 2007�.

In this paper, we investigate frequency-domain �FD� full-wave-
form inversion �FWI� of wide-aperture data as a tool to build 3D
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high-resolution velocity models in complex environments �Pratt,
2004�. By a wide-aperture acquisition survey, referred to as global-

offset acquisition, we mean any acquisition geometry with suffi-
ciently long offset coverage to record diving waves whose refraction
depths cover the zone of interest. Wide-aperture arrivals such as div-
ing waves and supercritical reflections are sensitive to the large and
intermediate wavelengths of a medium �Pratt and Worthington,
1990; Sirgue and Pratt, 2004�, which are difficult to image from mul-
tichannel seismic reflection acquisition and limited-bandwidth
sources. Moreover, multifold wide-aperture surveys lead to a redun-
dant control of frequency and aperture angle on the wavenumber il-
lumination in the model space. This redundancy can be decimated to
design efficient numerical approaches for seismic imaging in the fre-
quency domain �Pratt and Worthington, 1990; Pratt, 1999�. Global-
offset acquisition surveys can be conducted at sea or on land with a
network of stations �see Clarke et al. �2007� for a recent 3D wide-az-
imuth node survey�.

FWI refers to a quantitative imaging method based on a complete
solution of the full �two-way� wave equation for the forward prob-
lem and on inverse problem theory for the imaging problem �Taran-
tola, 1987�.An improved model is built by minimizing the misfit be-
tween the recorded data and the data computed in the model. FWI
shares some similarities with generalized diffraction tomography
�Wu and Töksoz, 1987; Pratt et al., 1998�. The partial-derivative and
misfit wavefields can be interpreted as the wavefields emitted by the
shots and scattered by secondary sources �virtual sources in Pratt et
al. �1998, their equation 16��, triggered at the position of the hetero-
geneities lacking in the starting model. Zero-lag correlation between
the misfit and the partial-derivative wavefields at the receiver loca-
tions provides an unscaled image of the missing heterogeneities �the
so-called perturbation model� in the opposite direction of the gradi-
ent of the least-squares objective function.

The heterogeneities can be represented by a series of closely
spaced diffractors. By virtue of the Huygens’ principle, an image of
the perturbation model is built by summing the elementary images of
each diffractor. The gradient of the objective function can be com-
puted more efficiently by zero-lag convolution of the incident wave-
fields with the backpropagated residual wavefields, thanks to the
spatial reciprocity of the Green’s function. The zero-lag convolution
between the incident wavefields and the backpropagated residuals is
similar to the imaging principle of reverse time migration originally
proposed by Claerbout �1971� and recast in the framework of inverse
problem theory by Lailly �1984� and Tarantola �1984�.

There are two main drawbacks of FWIs. First, they are very ex-
pensive computationally because of the complete resolution of the
wave equation for a large number of sources. Second, they lack ro-
bustness as a result of the complexity of the global-offset wavefields
and their sensitivity to noise and to the inaccuracies of the starting
model. In the 2D case, the FD formulation of FWI applied to global-
offset acquisition provides a promising approach to mitigate these
difficulties �Pratt, 1999; Sirgue and Pratt, 2004; Brenders and Pratt,
2007a�. The extension of this approach to three dimensions is inves-
tigated in this paper.

The FD formulation of FWI was developed originally for 2D
crosshole acquisition surveys, which involve wide-aperture record-
ing �Song et al., 1995; Pratt, 1999�. Because of the wavenumber re-
dundancy provided by multifold wide-aperture geometries, only a
few discrete frequencies are required to develop a reliable image of
the medium. Some guidelines to define the optimal frequency inter-
val for FWI are given in Sirgue and Pratt �2004�. This FD decimation

leads to a very compact volume of data to be managed, which may be
critical for 3D applications.

The presence of many local minima in the least-squares objective
function can prevent convergence of FWI based on local optimiza-
tion toward the global minimum of the objective function. This orig-
inally motivated development of multiscale strategies in the time do-
main through successive inversions of subdata sets of increasing fre-
quency bandwidth �Bunks et al., 1995�. The FD formulation of FWI
provides a more natural and flexible framework with which to design
a hierarchical multiresolution imaging strategy, helping to manage
the inherent nonlinearity of the inverse problem.

The multiscale approach in the frequency domain is generally im-
plemented by successive inversions of single frequencies of increas-
ing value �Pratt and Worthington, 1990; Pratt, 1999�. This strategy
differs from that of Bunks et al. �1995�, which does not take advan-
tage of the redundant control of frequency and aperture on wave-
number coverage. Indeed, in the approach of Bunks et al. �1995�,
higher frequencies are injected at a given step of the multiscale ap-
proach while keeping the frequencies from the previous steps in-
volved in the inversion. Although this approach may be more robust
in the sense that redundant information is involved simultaneously
in the inversion during the last stages of the multiscale approach, it
may also be prohibitively expensive for 3D FWI. When global-off-
set recording is available, a starting model for FWI typically is built
by first-arrival traveltime tomography �for recent applications at
subsurface and crustal scales, see Ravaut et al., 2004; Operto et al.,
2006; Brenders and Pratt, 2007a, 2007b�, which provides large-scale
velocity models whose resolution limit is on the order of the first
Fresnel zone width �Williamson, 1991; Williamson and Worthing-
ton, 1993�.

Application of FWI to 2D real data case studies has been limited
to frequencies less than 20 Hz �Hicks and Pratt, 2001; Shipp and
Singh, 2002; Ravaut et al., 2004; Operto et al., 2006�. In three di-
mensions, the computational cost of the forward problem suggests
that it is difficult to handle frequencies greater than 10 Hz for repre-
sentative problems �Operto et al., 2007�. At this scale, the resulting
velocity models might be used as macromodels for PSDM. Howev-
er, the relevance of FWI velocity models as reference models for
PSDM requires further demonstration. An illustration with a real
data case study is provided in Operto et al. �2004, 2005� in the frame
of imaging a thrust belt in the southernApennines by combined first-
arrival traveltime tomography, FWI, and true-amplitude ray-based
PSDM.

Full-wave-propagation modeling is a critical issue in FWI meth-
ods because it is the most computationally expensive task in the pro-
cess. In the frequency domain, the forward problem reduces to re-
solving a large, sparse system of linear equations for each frequency
considered. In two dimensions, the few frequencies involved in the
inversion can be modeled efficiently for multiple shots using a direct
solver �Marfurt, 1984�. Since the original work of Pratt and Wor-
thington �1990�, optimal finite-difference stencils have been de-
signed for the FD method based on direct solvers �Jo et al., 1996;
Stekl and Pratt, 1998; Hustedt et al., 2004�. The extension to three di-
mensions of this modeling approach is addressed in Operto et al.
�2007�, who show that problems of representative size �e.g., the 3D
SEG/EAGE overthrust model� can be addressed at low frequencies
��10 Hz� on currently available distributed-memory platforms.

However, it remains unclear which approach �time versus FD
based on direct or iterative solvers� is the most efficient for 3D FWI
�Nihei and Li, 2007; Plessix, 2007�. This may depend on several pa-
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rameters related to the experimental setup, such as dimensions of the
model, frequency bandwidth, number of traces in the acquisition,
and acquisition geometry. Three-dimensional FD modeling meth-
ods based on iterative solvers are presented by Plessix �2007�, Riy-
anti et al. �2007�, and Warner et al. �2007�. These approaches de-
mand far less memory and have better scalability than approaches
based on direct solvers, but their run time depends linearly on the
number of sources, which may be a significant drawback with 3D
surveys involving several thousands of shots or receivers. Alterna-
tively, time-domain modeling methods were proposed to extract the
frequency response of the wavefields by discrete Fourier transform
�Sirgue et al., 2007b� or phase-sensitive detection �Nihei and Li,
2007� and subsequently invert in the frequency domain. The time-
domain approach shares with the iterative FD approach similar ad-
vantages and drawbacks with respect to memory complexity, scal-
ability, and computational burden for multishot simulations.

A few applications of 3D frequency-domain FWI to synthetic
models are presented by Stekl et al. �2007� and Sirgue et al. �2007a�.
Sirgue et al. �2007a� apply frequency-domain FWI at low frequen-
cies �3–5 Hz� to the 3D SEG/EAGE overthrust model. Their scheme
is based on a finite-difference time-domain approach �Sirgue et al.,
2007b�. They illustrate the footprint of narrow- and wide-azimuth
multichannel seismic-reflection acquisitions on the reconstructed
velocity models and compare the convergence rate of 2D and 3D
FWI. Stekl et al. �2007� apply 3D frequency-domain FWI to a chan-
nel model. Their scheme is based on an iterative solver �Warner et
al., 2007�. To overcome the computational burden of multishot sim-
ulations, several shots are triggered simultaneously, following an
approach proposed by Capdeville �2005�.

Our paper presents a massively parallel algorithm for a distribut-
ed-memory platform that performs 3D frequency-domain FWI us-
ing FD modeling based on a direct solver. We provide insight into the
relevance of 3D frequency-domain FWI for building high-resolu-
tion velocity models of isotropic acoustic media and quantify the as-
sociated computational requirement thanks to realistic synthetic
case studies. Numerical examples focus on surface wide-aperture/
wide-azimuth surveys conducted with networks of sources and re-
ceivers on the surface. The most representative example, performed
in a 12-�12-�4.5-km target of the overthrust model, uses a receiv-
er spacing of 300 m, like the order used during a node survey in the
Gulf of Mexico �426 m� �Clarke et al., 2007�. The source-receiver
patch was deployed above the 12-�12-km area of the target. There-
fore, the maximum far-inline and far-crossline offsets are 12 km for
receivers located near the ends of the target area and 6 km for receiv-
ers located in the middle.

We do not address building a reliable starting model for FWI that
is carried out conventionally by first-arrival traveltime tomography
when global-offset acquisitions are considered. The maximum off-
set and the coarsest source and receiver spacings required to build a
reliable large-scale model of the FWI target by first-arrival travel-
time tomography must be clarified to assess the feasibility of this to-
mographic approach. We assume that a starting model describing the
long wavelengths of the true medium is available. The second issue
is to verify that the velocity models inferred from FWI can be used as
a macromodel for 3D wave-equation PSDM.

First, we briefly review the theory of FD full-waveform modeling
and inversion. Second, we discuss the parallel implementation of
frequency-domain FWI for distributed-memory platforms. Third,
we present several numerical examples of increasing complexity
whose aim is to validate the algorithm, to illustrate the sensitivity of

the imaging resolution to the acquisition geometry, and to provide
some insight on the computational complexity of the approach for
representative studies.

THEORY

Frequency-domain full-waveform modeling and inversion is a
well-established method for imaging 2D media. Extension to the 3D
case closely follows 2D strategies. Therefore, only a brief review of
FD modeling and inversion is given here. The reader is referred to
Operto et al. �2007� for the method used in this paper for FD wave-
propagation modeling, to Pratt et al. �1998� for theoretical aspects of
frequency-domain FWI, and to Pratt �1999� for practical aspects
such as waveform-inversion data preprocessing and source estima-
tion.

3D acoustic finite-difference FD modeling

The 3D viscoacoustic wave equation in the frequency domain is
given by
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where ��x,y,z� is density, ��x,y,z� is the complex bulk modulus, � is
frequency, P�x,y,z,�� is the pressure field, and S�x,y,z,�� is the
source. Various attenuation models can be implemented easily in
equation 1 using complex velocities in the expression of the bulk
modulus �Toksöz and Johnston, 1981�. Sponge-like perfectly
matched layer �PML� boundary conditions can be implemented eas-
ily in the frequency domain to absorb outgoing energy �Berenger,
1994; Operto et al., 2007�.

The relationship between the pressure wavefield and the source is
linear, so the discrete acoustic wave equation 1 can be recast in a ma-
trix form as

Ap � s , �2�
where the complex-valued impedance matrix A depends on the fre-
quency and the medium’s properties. System equation 1 can be dis-
cretized with the so-called parsimonious mixed-grid finite-differ-
ence method �Jo et al., 1996; Hustedt et al., 2004; Operto et al.,
2007�. The mixed-grid discretization, which uses multiple rotated
coordinate systems, is complemented by a mass-term distribution
�an antilumped mass� that significantly improves the accuracy of the
stencil �Marfurt, 1984�. The combined use of the mixed coordinate
systems and mass distribution allows one to design both accurate
and spatially compact stencils.

Dispersion analysis demonstrates that only four grid points per
wavelength are needed to obtain accurate simulations in homoge-
neous media. This discretization rule is optimal for FWI, whose res-
olution limit is �/2, where � is the wavelength. A compact stencil is
critical if a direct method is used to solve the system resulting from
discretizing the Helmholtz equation because compact stencils limit
the numerical bandwidth of the matrix and hence its fill-in during LU
factorization. The use of a direct solver is interesting in the case of
multishot simulations as required by tomographic applications be-
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cause LU factorization is independent of the right-hand side terms in
equation 2. To solve system 2, we use the MUMPS massively paral-
lel direct solver, developed for distributed-memory platforms
�Amestoy et al., 2007�. A detailed complexity analysis of this ap-
proach is provided in Operto et al. �2007�.

FD full-waveform inversion

The inverse problem is posed as a classic weighted least-squares
optimization problem and is solved by the steepest-descent method
�Tarantola, 1987�. Newton and quasi-Newton �Gauss-Newton�

methods were rejected because of the computer cost of calculating
either the Hessian or approximate Hessian �Pratt et al., 1998�.

The weighted least-squares objective function is given by

C�m� � �d†Wd�d , �3�

where �d is the misfit �the difference between the observed data and
the data computed with model m� and the superscript † indicates the
adjoint �transpose conjugate�. The value Wd is a weighting operator
applied to the data; it scales the relative contribution of each compo-
nent of the vector �d in the inversion. Minimizing the objective
function leads to the following solution for the model perturbation
�m after scaling and smoothing the gradient �Pratt et al., 1998;
Ravaut et al., 2004; Operto et al., 2006�:

�mi � ���diag Ha � 	��1

� Gm Re�pt� �At

�mi

�A�1Wd�d*� , �4�

where diag Ha � diag Re	JtWdJ*
 denotes the diagonal elements
of the weighted approximate Hessian Ha, J denotes the sensitivity
matrix, and Gm is a smoothing regularization operator.

One element of the sensitivity matrix is given by

Jk�m,n�,i � pm
t � �At

�mi

�A�1
 n, �5�

where k�m,n� denotes a source-receiver couple of the acquisition ge-
ometry; m and n denote a shot and a receiver position, respectively;
and 
 n is an impulse source located at receiver position n.

The diagonal of the approximate Hessian provides a precondi-
tioner of the gradient that properly scales the perturbation model
�Shin et al., 2001�. The damping parameter 	 is used to avoid numer-
ical instabilities �i.e., division by zero�. The matrix Gm is implement-
ed in the form of a 3D Gaussian spatial filter whose correlation
lengths are adapted to the inverted frequency component �Ravaut et
al., 2004�. Amplitude gain with offset can be applied to each seismic
trace within the operator Wd:

wd�oSR� � �oSR�g, �6�

where the scalar g controls the amplitude of the gain with respect to
the source-receiver offset oSR. Originally, this operator was intro-
duced to mitigate the contribution of the high-amplitude direct water
wave when inverting long-offset ocean-bottom-seismic data �Op-
erto et al., 2006�. In our algorithm, the gradient scaling could be esti-
mated once per frequency before the first iteration and kept constant
over iterations or recomputed at each iteration. The term ��A/�mi� is
the radiation pattern of the diffraction by the model parameter mi.

For P-wave velocity, the pattern is an explosion. In other words,
the matrix whose number of rows corresponds to the number of dif-

fractor points in the 3D finite-difference grid has only one nonzero
element located on the diagonal of the ith row. This can be checked
easily by noting that the P-wave velocity only appears in the coeffi-
cient ��2/��x,y,z�� of acoustic wave equation 1. The finite-differ-
ence discretization without antilumped mass of this term leads to one
nonzero coefficient per row on the diagonal of A. Differentiating
these diagonal coefficients with respect to the ith model parameter
reduces to one nonzero coefficient on the ith row. The same conclu-
sion would apply to the attenuation embedded in the expression of
the complex velocity. On the other hand, a more complex radiation
pattern would be observed for density whose expression appears in
the stiffness matrix of the discrete wave equation �Forgues and Lam-
baré, 1997�.

The source term in the FWI algorithm can be estimated by solving
a linear inverse problem �Pratt, 1999�. The inversion code can be ap-
plied to vertical geophone or hydrophone data generated by explo-
sive sources. Indeed, vertical geophone data can be processed as
pressure data thanks to the reciprocity principle �Operto et al., 2006�.
The inversion is applied in cascade to several groups of discrete fre-
quencies. All frequencies of one group are inverted simultaneously.
The final model obtained close to inversion of one group of frequen-
cies is used as a starting model for the next group of frequencies. For
each frequency group, several iterations can be computed.

PARALLEL NUMERICAL IMPLEMENTATION

We use the MUMPS massively parallel direct solver �Amestoy et
al., 2006, 2007� based on a multifrontal method �Duff and Reid,
1983� to solve the forward problem �system 2�. Before LU decom-
position, the matrix coefficients are ordered to minimize dependen-
cies in the graph of the matrix. Using nested dissection ordering, the
theoretical memory complexity of the factorization for a 3D finite-
difference problem is O�n4� and the number of floating-point opera-
tions is O�n6�, where n is the number of grid points along one dimen-
sion of the 3D square finite-difference grid �Ashcraft and Liu, 1998�.
The source vectors for the resolution phase are provided in sparse
format on the host processor.After resolution, the multiple solutions
are distributed over processors following a domain decomposition
driven by the distribution of the LU factors. This means that each
processor stores a spatial subdomain of all the solutions. We take ad-
vantage of this distributed in-core storage of the forward-problem
solutions �FPS� to solve the inverse problem in parallel.

The central component of the FWI algorithm is computing the
gradient of the objective function. This operator is computed basi-
cally by a weighted summation of the FPS, namely, the incident and
the backpropagated residual wavefields computed in the starting
model �equation 4�. The weights in the summation account for the
radiation pattern of the diffraction tomography reconstruction �the
operator �A/�mi in equation 5� and for the data residuals. This
weighted summation is computed in parallel straightforwardly by
taking advantage of the distribution of the FPS: each processor com-
putes the subdomain of the gradient corresponding to the subdomain
of the FPS stored on this processor. At the end of the summation, the
distributed gradient is gathered on the master processor with a col-
lective communication.

When only the P-wave velocity parameter is involved in the inver-
sion, the matrix �A/�mi reduces to a scalar located on the ith diago-
nal. This implies that the gradient at position of mi depends only on
the values of the FPS at this same position. In that case, the parallel
computation of the gradient does not require any point-to-point
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communication, leading to a parallelism efficiency close to one for
this task. Also, all FPS remain in core in the algorithm without disk
swapping. If not enough memory is available to store in core all FPS
values in addition to the LU factors, the FPS, the gradient, and the di-
agonal Hessian are computed in a sequential loop over partitions of
the right-hand-side terms. Each partition loads in core the maximum
number of solutions fitting the available memory. The efficiency of
the parallel inversion algorithm is controlled mainly by that of the
LU factorization. We obtain a maximum speed-up of 13 with
MUMPS on our applications �Operto et al., 2007�.

The parallel FWI algorithm is summarized in Figure 1. More de-
tails on the 2D version of the parallel FWI algorithm can be found in
Sourbier et al. �2007�.

SYNTHETIC EXAMPLES

In this section, we present several numerical examples of 3D FWI
of increasing complexity to validate the algorithm and to give some
insight on the computing cost of the approach on realistic cases. All
examples were computed on an HPDL145G2 Beowulf cluster at the
SIGAMM computer center, located in the Observatoire de la Côte
d’Azur �France�. This parallel-distributed computer is a 48-node
cluster, each node comprising two dual-core 2.4-GHz processors,
giving 19.2 Gflops peak performance per node. The computer has a
distributed-memory architecture, wherein each node has 8 GB of
RAM. The interconnection network between processors is Infini-
band 4X. Data are shared among processors using the MPIHP mes-
sage-passing library. For the examples presented here, the PML lay-
ers spread along five grid points on each side and each direction.

Therefore, no free-surface multiples are considered in the examples.
These PML grid points are not taken into account in the description
of the finite-difference grids.

In the following examples, we use the inverse crime, which con-
sists of computing the data with the modeling tool implemented in
the FWI code. The whole wavefield, including refractions, turning
waves, and reflections, is involved simultaneously in the inversion.
All of the inversions were performed with unweighted data, i.e., us-
ing g � 0 in equation 6.

3D FWI in 2D configuration

In the first step, we validate the 3D FWI algorithm by comparing
the results obtained using a 2D FWI code and the 3D code applied in
a 2D configuration. Two-dimensional experiments can be designed
considering 2.5D velocity models �laterally invariant in the
y-direction� and an infinite line source in the y-direction. The infinite
line source in the y-direction was implemented on a limited compu-
tational domain in the y-direction using periodic boundary condi-
tions on the two faces of the model corresponding to y � 0 and y

� ymax. The periodic boundary conditions are

� � P

� y
�

y��h/2,ymax�h/2
� 0. �7�

They are applied on two virtual ghost faces located outside the com-
putational domain at positions y � �h/2 and y � ymax � �h/2�,
where h stands for the grid interval.

We applied 3D and 2D FWI to a dip section of the overthrust mod-
el �Aminzadeh et al., 1997� �Figure 2�, discretized on an 801�187
grid with a grid spacing h � 25 m. For the 3D application, the dip
section of the overthrust model was duplicated three times in the
y-direction, leading to a 3D 801�3�187 finite-difference grid. A
2D wavefield computed in this 2.5D model with the above-men-

Loop over groups of frequencies [ifreqgroup/Nfreqgroup]

Loop over iterations [it/nitermax]

Initialization of gradient, diagonal Hessian and cost function

Read starting model

Loop over frequencies in one group [ifreq/nfreq]

Build impedance matrix

Parallel factorization with MUMPS

Diagonal Hessian computation (if it = 1)

Build Nshot + Nreceiver RHSs on P0

Parallel multi-RHS resolution with MUMPS

Compute subdomains of diagonal Hessian on P[i],i = 1,Nproc

Gradient computation

Build Nshot RHS for shot positions on P0

Parallel multi-RHS resolution with MUMPS

Extract wavefields at receiver positions on Pi,i = 1,Nproc

Compute data residuals and partial RMS on Pi,i = 1,Nproc

Estimate source

Build Nshot RHS for residual positions on P0

Parallel multi-RHS resolution with MUMPS

Compute subdomains of gradient on P[i],i = 1,Nproc

End of loop over frequencies

Reduce objective function on P0

Centralize the gradient and the diagonal Hessian on P0

Scale the gradient by the diagonal Hessian on P0

Compute step length α

Updated the velocity model on P0

End of loop over iterations

End of loop over groups of frequencies

Figure 1. Outline of the FWI algorithm. Parallel tasks are written in
gray. RHS — right-hand-side terms �i.e., sources in wave modeling�;
Nproc — number of MPI processes in the parallel run; nitermax —
maximum number of iterations of one frequency-group inversion; Pi

— processor i, where P0 is the master processor. An arbitrary num-
ber of frequencies N can be inverted simultaneously �set
Nfreqgroup � 1 and nfreq � N� or successively �set Nfreqgroup
� N and nfreq � 1�.
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Figure 2. Imaging a dip section of the overthrust model. �a� True ve-
locity model. �b� Starting velocity model.
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tioned boundary conditions is shown in Figure 3. PML absorbing
boundary conditions are set on the four edges of the 2D model.

The 2D acquisition geometry consists of a line of 200 sources and
receivers, equally spaced on the surface. The corresponding 2.5D
acquisition geometry consists of duplicating three times the source
and receiver lines in the y-direction. The true model was augmented
with a 250-m-thick layer on top of it; the sources and receivers were
deepened accordingly to avoid having sources and receivers just be-
low the PML-model interface. Velocities in this layer are vertically
homogeneous and are equal to that on the surface of the original
model. We observed strong instabilities during FWI in the near-sur-
face velocities when this layer was not added to the model �Figure 1c
in Ravaut et al., 2004�. These instabilities can be removed by setting
the true velocities in the first 100 m of the starting model without
augmenting the model with an artificial layer �Operto et al., 2008�.

The starting model for inversion is obtained by smoothing the true
velocity model with a Gaussian function of horizontal and vertical
correlation lengths of 500 m �Figure 2�.

We inverted sequentially seven frequencies ranging from
5 to 20 Hz. For each frequency, we computed 40 iterations. The fi-
nal velocity models inferred from 2D and 3D FWI are shown in Fig-
ure 4. Some vertical profiles extracted from these models are com-
pared in Figure 5. They are very similar, providing a first validation
of the 3D FWI algorithm. The agreement between the final FWI
models and the true model is also quite good, although some discrep-
ancies exist between the true and reconstructed velocities around a
low-velocity layer located from 0.7 to 1 km deep �Figure 5b�. This
discrepancy is not observed when the first 100 m of the true model
are set in the starting model �Operto et al., 2008�. Some high-ampli-
tude perturbations are still slightly underestimated, mainly because
of an insufficient number of iterations. �The profiles in Figure 5 can
be compared with those obtained from 2D FWI using 80 iterations
per frequency in Operto et al. �2008�.�

These results also give some insight on the high spatial resolution
that can be achieved in the velocity models at relatively low frequen-
cies �i.e., �15 Hz� by FWI of global-offset data thanks to continu-
ously sampling the wavenumber spectrum up to a maximum wave-
number of 2/�15 Hz m�1. �We define the wavenumber as the inverse
of the wavelength �. The value �15 Hz is the wavelength correspond-
ing to a frequency of 15 Hz.�

Inclusion models

In this section, we apply 3D FWI for simple velocity models com-
posed of a homogeneous background with one and two inclusions.
The models are discretized on a small 31�31�31 grid with 50-m
cubic cells. The velocity in the background medium is 4000 m/s.
The inverted frequencies are 3.72, 6.07, 10.00, and 16.27 Hz for the
one- and two-inclusion models. To select the inverted frequencies,
we chose to remove the wavenumber redundancy in the model space
�Sirgue and Pratt, 2004�. The frequencies were inferred from the re-
lationship between wavenumber, frequency, and aperture angle pro-
vided by the theory of diffraction tomography �Wu and Töksoz,
1987�. The linear relation between wavenumber and frequency al-
lows us to increase the frequency interval when the frequency in-
creases �Sirgue and Pratt, 2004�. One hundred sources �10�10� and
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Figure 3. Example of a 2D wavefield computed in a 3D FD grid.
Note the limited dimension of the grid in the y-dimension. Five grid
points are used in the y-direction.
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Figure 4. Imaging a dip section of the overthrust model where f
� 20.63 Hz. �a� Final velocity model from 2D FWI. �b� Final veloc-
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Figure 5. Imaging a dip section of the overthrust model: Comparison
between vertical profiles extracted from the true �black solid line�,
the starting �gray dashed line�, and the 2D and 3D FWI models �light
and dark gray dotted lines, respectively�. The two profile series are
located at �a� 4.5 and �b� 13.5 km distance. The 2D and 3D FWI pro-
files are almost identical.
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36 receivers �6�6� were distributed uniformly on the top and bot-
tom of the 3D model, respectively. Source and receiver spacings
were 150 and 250 m, respectively.

We first consider a velocity model with one inclusion in the homo-
geneous background. The velocity in the inclusion is 3500 m/s �Fig-
ure 6�. The inclusion is centered on the 3D grid. The four frequencies
were inverted successively. Some horizontal and vertical sections of
the inclusion are shown in Figure 6. Note the vertically elongated
shape of the inclusion in the vertical cross section and the symmetric

shape of the inclusion in the horizontal slice. The vertical elongation
results because the top and bottom of the inclusion are sampled
mainly by downgoing transmitted wavepaths �i.e., forward-scat-
tered wavepaths� that have limited resolution power, but the shape of
the inclusion in a horizontal plane is mainly controlled by reflections
�i.e., backward-scattered wavepaths� associated with shots and re-
ceivers located near the same face of the 3D model.

This relationship between aperture illumination and image reso-
lution is also illustrated on the two profiles extracted from a vertical
and horizontal section running through the inclusion. The vertical
profile exhibits a clear deficit of high wavenumbers as a result of
transmission-like reconstruction, but the horizontal profile exhibits
only a slight deficit of small wavenumbers as a result of reflection-
like reconstruction. The symmetry of the image of the inclusion in
the horizontal plane, which results from the symmetry of the inclu-
sion with respect to the acquisition geometry, is additional validation
of the 3D FWI algorithm.

The second example contains two spherical inclusions �3500 and
4500 m/s� corresponding to positive and negative perturbations in
the homogeneous background �Figure 7a�. The center of the inclu-
sions lies on the same vertical plane in the middle of the grid. The
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Figure 6. Imaging one inclusion by 3D FWI. Vertical �left� and hori-
zontal �right� sections of �a� the true inclusion, �b� the inclusion after
inverting the 3.72-Hz frequency, and �c� the inclusion after inverting
the four frequencies successively. �d� Vertical �left� and horizontal
�right� profiles extracted from models shown in �a� �dotted lines� and
�c� �solid lines�.
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Figure 7. Imaging two inclusions by 3D FWI. �a� True model. Also
included are vertical cross sections of the FWI velocity models after
successive inversion of frequencies of �b� 3.72, �c� 6.07, �d� 10.00,
and �e� 16.27 Hz. �f� Vertical cross section of the 3D FWI velocity
model after simultaneous inversion of the four frequencies: 3.72,
6.07, 10.00, and 16.27 Hz.
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goal of this test is to verify that the 3D inversion properly handles
multiple scattering occurring between the two inclusions. For this
case study, the four frequencies were inverted successively and si-
multaneously �Figure 7b-f�. In both cases, the inversion successfully
imaged the two inclusions.

Inclusion � interface velocity model

A more realistic example consists of a velocity-gradient layer
above a homogeneous layer. A high-velocity inclusion correspond-
ing to a velocity perturbation of �1 km/s was incorporated into the
velocity-gradient layer �Figure 8�. The minimum and maximum ve-
locities were 3.8 and 6.0 km/s, respectively. It was discretized on a
100�100�40 grid with a grid spacing of h � 62.5 m, which corre-
sponds to a physical domain of 6.25�6.25�2.5 km. The grid spac-
ing h was kept constant over the successive monofrequency inver-
sions and was set according to the maximum inverted frequency.

The starting model for inversion was the velocity-gradient layer
extended down to the bottom of the model �Figure 8�. The acquisi-
tion geometry consisted of two regular grids of 17�17 � 289
sources and receivers deployed on the surface. The receiver grid was
shifted with respect to the shot grid, such that each receiver was mid-
way between four adjacent shots. This source-receiver configuration
was chosen to avoid recording high-amplitude zero-offset data,
which degrade the inversion conditioning. The distance between ei-
ther two sources or receivers was 312.5 m. We sequentially inverted
five frequencies, ranging from 1.76 to 12.15 Hz, and computed 20
iterations per frequency.

The final FWI velocity model is shown in Figure 9a. A vertical
profile across the inclusion extracted from the final FWI perturba-
tion model �i.e., the difference between the final FWI model and the
starting model� is shown in Figure 9b. It is compared with that ex-
tracted from the true perturbation model after low-pass filtering at
the theoretical resolution of FWI at 12 Hz. The bottom layer is well
recovered, thanks to the large offset coverage, allowing it to image a
broad range of the layer wavelengths quantitatively. The shape of the
inclusion is recovered incompletely with respect to the expected res-
olution of the imaging at 12 Hz, although the velocity amplitude in
the inclusion is recovered fully �Figure 9b and c�.

The spectra of the two profiles reveal that the amplitudes of the
low wavenumbers were recovered incompletely. This is probably
from an insufficient number of iterations, as suggested by the plot of
the objective function as a function of iteration number �Figure 10�.
Moreover, some discrepancies in the shape of the two spectra of Fig-
ure 9c for wavenumbers greater than 0.0017 m�1 suggest that the in-
version may have converged toward a local minimum. This may
have been caused by the high amplitudes of the model perturbations
and the related complex interactions between waves multiscattered
between the bottom of the inclusion and the top of the layer, which
make the inverse problem more nonlinear. We speculate that simul-
taneous inversion of multiple frequencies following the multiscale
approach of Bunks et al. �1995� may help to manage this nonlinear-
ity.

Qualitative inspection of the vertical profiles also reveals a slight
deficit of small �vertical� wavenumbers in the image of the inclusion
and of the bottom layer �suggested by the negative velocity perturba-
tions with respect to the true model�. This deficit is again explained
by the surface acquisition geometry, which illuminates the vertical
components of the wavenumber vector with reflections only.
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Figure 8. Imaging the inclusion/interface model. �a� True velocity
model. �b� Starting velocity model for FWI.
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SEG/EAGE overthrust model

The 3D SEG/EAGE overthrust model is a constant-density acous-
tic model dimensions are 20�20�4.65 km �Aminzadeh et al.,
1997�. It is discretized with 25-m3 cells, representing a uniform
mesh of 801�801�187 nodes. The minimum and maximum ve-
locities in the overthrust model are 2.2 and 6.0 km/s, respectively
�Figure 11�.

Overthrust model: Channel target

Because of limited computer resources, our first application was
restricted to a small section of the overthrust model centered on a
channel. The maximum frequency involved in the inversion was
15 Hz. A horizontal slice and a vertical section of the model are
shown in Figure 12. The model dimensions are 7�8.75�2.25 km
and is discretized with a grid spacing h � 50 m, leading to a 141
�176�46 grid. The minimum and maximum velocities are 3.3 and
6.0 km/s, respectively. The acquisition geometry consists of two
regular grids of 44�33 sources and receivers on the surface corre-
sponding to 1452 sources and receivers. The distance between two
sources or two receivers is 200 m. The receiver array is shifted ac-
cording to the source array, following the geometry in the previous
example.

We sequentially inverted five frequencies ranging from
5 to 15 Hz. For each frequency, we computed seven iterations. The
starting velocity model was obtained by smoothing the true model
with a wavenumber filter having a cut-off wavenumber of
1/500 m�1 �Figure 13�. The final FWI model provides a low-pass

version of the true model �Figure 14�. To assess the accuracy of the
FWI, we low-pass-filtered the true model in the time domain with a
cut-off frequency of 15 Hz to mimic the exact velocity model that
would have been inferred by FWI �Figure 15�. Qualitative compari-
son between the final FWI velocity model and the low-pass-filtered
true model shows good agreement between the two models.

Figure 16 compares a vertical profile extracted from the starting
model, the low-pass true velocity model, and the final FWI model.
The agreement is reasonably good with, again, a slight deficit of
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Figure 11. The 3D SEG/EAGE overthrust model �Aminzadeh et al.,
1997�.
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Figure 12. Imaging a channel in the overthrust model, true velocity
model. �a� Cross section at x � 4 km. �b� Horizontal slice at z
� 1.5 km.
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ity model. �a� Cross section at x � 4 km. �b� Horizontal slice at z
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small wavenumbers in the FWI profile because of the surface-to-sur-
face illumination. We also note an underestimation of velocities in
the deep part of the model �see the high-velocity layer above 2 km in
depth�. This may result from an insufficient number of iterations. In-
deed, the deep structures are mainly constrained by later-arriving re-

flections of smaller amplitude recorded at larger offsets. Misfit re-
duction may be slower for these arrivals because the value of the ob-
jective function is dominated by the residuals of the high-amplitude
shallow arrivals during the first iterations.

The weighting operator in the data space corresponding to an am-
plitude gain with offset �equation 6� may accelerate the reduction of
the long-offset residuals at the partial expense of the short-offset
ones during late iterations. However, this strategy requires that we
ensure short-offset residuals are reduced enough to avoid propagat-
ing errors associated with inaccurate shallow structures deeper in the
model. This detailed tuning of 3D FWI requires further investiga-
tion.

To perform this application, we used 60 MPI processes distributed
over 15 dual-core biprocessor nodes. Each MPI process used 1.5 GB
of RAM �Table 1�. Seven iterations of the inversion of one frequency

Table 1. Computational cost of imaging the overthrust
model (channel system).

Requirement term Value

MEMFACTO ALL �GB� 67.0

MEMFACTO PROC �GB� 1.5

TIMEFACTO �s� 510.0

TIMESOLVE ALL �s� 1270.0

TIMESOLVE SOURCE �s� 0.9

TIMEGRADIENT �s� 4.0

TIMEdiag HESSIAN a �s� 3093.0

TIMEITERATION �s� 18,865.0

MEMFACTO ALL — Total memory allocated during factorization
MEMFACTO PROC — Average allocated memory per working pro-

cessor during factorization
TIMEFACTO — Elapsed time for factorization
TIMESOLVE ALL — Total elapsed time for multishot resolution
TIMESOLVE SOURCE — Elapsed time for resolution for one source
TIMEGRADIENT — Elapsed time to compute gradient
TIMEdiag HESSIAN a — Elapsed time to compute diagonal Hessian
TIMEITERATION —Average elapsed time to process one iteration

0

2

4

6

8

C
ro
ss
li
n
e
(k
m
)

0 2 4 6

Inline (km)

3800

4300

4800

5300

5800

m
/s

0

2D
e
p
th

(k
m
)

0 2 4 6

Inline (km)

3300
3800
4300
4800
5300
5800

m
/s

a)

b)

3300

Figure 14. Imaging a channel in the overthrust model, FWI velocity
model after successive inversion of the five frequencies, f
� 14.9 Hz. �a� Cross section at x � 4 km. �b� Horizontal slice at z
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tered true velocity model ��15 Hz�. �a� Cross section at x � 4 km.
�b� Horizontal slice at z � 1.5 km.
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took approximately 45 hours. Table 1 lists information related to run
time and memory requirement for LU factorization, multishot reso-
lutions �both tasks being devoted to the forward problem�, gradient,
and diagonal Hessian computation. Run time for the solution phase
is very small �0.9 s per source� and illustrates the main advantage of
FD modeling methods based on direct solvers for tomographic ap-
plications involving a few thousand sources. Computation of the
gradient is also negligible in the frequency domain �4 s� as a result of
summation without disk swapping over a very compact volume of
data limited to few frequency components. Increasing the number of
cores in the inversion would have reduced computational time sig-
nificantly but would have increased the memory requirement be-
cause of overheads during parallel LU factorization �Operto et al.,
2007�.

Overthrust model: Thrust target

We now consider imaging a significant target of the overthrust
model that incorporates the main thrusts of the model �Figure 17�.
The minimum and maximum velocities are 2.2 and 6.0 km/s, re-
spectively. The model dimensions are 13.425�13.425�4.65 km.

The acquisition geometry consists of two coincident 43�43
� 1849 grids of sources and receivers deployed on the surface. The
distance between two sources or two receivers is 300 m. A receiver
spacing of 300 m is representative of the spacing between two adja-
cent nodes in a dense 3D wide-azimuth node survey �Clarke et al.,
2007�. We used the same spacing between two adjacent shots and re-
ceivers, although a more representative shot survey could have been
designed by using smaller shot and line intervals in the dip-line and
crossline directions, respectively. The increased number of shots
should not dramatically increase the computational time needed to
compute the gradient because the residuals recorded at the shot posi-
tions �by virtue of shot-receiver reciprocity� can be propagated at
one time for each receiver.

The extra computational cost caused by a denser shot survey
would have resulted from building and storing denser residual
sources ��d* in equation 4� and from the more expensive backward/
forward substitutions solving A�1Wd�d*. On the contrary, the CPU
time required to compute the diagonal Hessian would increase dra-
matically because it requires a forward simulation for nonredundant
shot and receiver positions. However, a good approximation of the
diagonal Hessian can be computed on a coarser shot grid with a shot
interval of the same order as the receiver’s �Operto et al., 2006�.

We sequentially inverted three frequencies — 3.5, 5, and 7 Hz —
and computed 10 iterations per frequency. For this application, we
adapted the grid interval to the inverted frequency. Grid intervals
were h � 150, 100, and 75 m for frequencies of 3.5, 5, and 7 Hz, re-
spectively. The source and receiver positions were chosen to coin-
cide with the position of the nodes of the FD grids associated with the
three inverted frequencies. This allowed us to bypass the problem of
accurate implementation of point sources in a coarse FD grid, a criti-
cal issue in 3D frequency-domain FWI when the grid interval is
adapted to the frequency �Hicks, 2002�. These discretizations led to
grids measuring 90�90�32, 135�135�47, and 180�180�63.

The starting velocity model was obtained by smoothing the true
model with a 3D Gaussian function having a correlation length of
1000 m in the three directions �Figure 18�.

a)

b)

Figure 17. Imaging the thrust system in the overthrust model, true
velocity model. �a� Cross section at x � 3.3 km. �b� Horizontal slice
at z � 1.5 km.
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The FWI velocity models after inversion of the 3.5-, 5-, and 7-Hz
frequencies are shown in Figures 19–21. One can note a square pat-
tern superimposed on the horizontal and vertical slices of the FWI
velocity models obtained after inverting frequencies of 5 and 7 Hz
�Figures 20 and 21�. The size of the square matches the shot and re-
ceiver spacing, suggesting that it corresponds to the footprint of the
coarse acquisition geometry. This footprint increases from 5 to 7
Hz as model resolution increases. The acquisition footprint has no
preferential orientation because both shots and receivers are de-
ployed uniformly all over the surface, with a constant spacing in the
dip and cross directions.

Another illustration of the footprint of acquisition coarseness on
3D frequency-domain FWI is illustrated by Sirgue et al. �2007a�. For
this application, we ran 40 MPI processes distributed over 10 dual-
core biprocessor nodes �four MPI processes/node� for the 150-m
grid �frequency � 3.5 Hz�, 60 processes distributed over 20 dual-
core biprocessor nodes �three MPI processes/node� for the 100-m
grid �frequency � 5 Hz�, and 90 processes distributed over 30 dual-
core biprocessor nodes �three MPI processes/node� for the 75-m grid
�frequency � 7 Hz�. The number of processes per dual-core bipro-
cessor node decreased from four to three as the size of the problem
increased in order to increase the amount of shared memory assigned
to each processor for large problems. This process optimized memo-
ry use at a partial expense of run time because memory overhead de-
creased with number of processes. The 10 iterations took about 24,
72, and 120 hours for the 3.5-, 5-, and 7-Hz frequencies, respective-
ly. More detailed information is shown in Table 2.
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Figure 19. Imaging the thrust system in the overthrust model,
3.5-Hz FWI velocity model. �a� Cross section at x � 3.3 km. �b�
Horizontal slice at z � 1.5 km.
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Figure 20. Imaging the thrust system in the overthrust model, 5-Hz
FWI velocity model. �a� Cross section at x � 3.3 km. �b� Horizontal
slice at z � 1.5 km.
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Figure 21. Imaging the thrust system in the overthrust model, 7-Hz
FWI velocity model. �a� Cross section at x � 3.3 km. �b� Horizontal
slice at z � 1.5 km.
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We also performed the simulations using multithreading. We used
20, 40, and 60 processes distributed over 10, 20, and 30 dual-core bi-
processor nodes �i.e., one process per processor� for the 3.5-, 5-, and
7-Hz inversions, respectively, and two threads per processor in each
case �i.e., one thread per core�. Fewer processes were used in the
multithread configuration, so less distributed memory was allocated
during LU factorization as a result of reduced memory overhead �Ta-
ble 3�. Moreover, CPU time was reduced significantly for the LU-
factorization and multiple-shot solution phases �Table 3�. These re-
sults suggest that nodes with a large amount of shared memory and
multiple cores provide the optimal architecture to perform FD wave
modeling based on a direct solver to take advantage of multithread-
ing while mitigating the memory requirement.

Figure 22 shows the convergence rate for each processed frequen-
cy. This convergence rate can be compared with that shown in Figure
7a of Sirgue et al. �2007a� for 3.5-Hz frequency, keeping in mind that
the whole overthrust model is imaged in Sirgue et al. �2007a�.

In Figures 23 and 24, the data fit is illustrated in the frequency do-
main for the 3.5-, 5-, and 7-Hz frequencies. We compare the spectral
amplitude and phase of the monochromatic wavefields at the receiv-

er positions computed in the true velocity model and in the FWI
models at the first and last iterations of the three monofrequency in-
versions. One shot is located at the upper-left corner of the receiver
plane �Figure 23�; the second shot is in the middle of the receiver ar-
ray �Figure 24�. The misfit reduction between the first and last itera-
tions is more obvious at 3.5 Hz, illustrating slower convergence as
frequency increases �Figure 22�. We also note this misfit reduction is
more effective for the shot located in the middle of the receiver array,
again illustrating the difficulty of matching the lower-amplitude ar-
rivals recorded at larger offsets.As for the channel case study, the ob-
jective function is less sensitive to the residuals of these low-ampli-
tude arrivals; more iterations would have been required to cancel
them.

Table 2. Computational cost of imaging the overthrust
model (thrust system). The memory available per MPI
process is 2, 2.7, and 2.7 GB for frequencies of 3.5, 5, and
7 Hz, respectively.

Requirement
term

At 3.5 Hz
frequency

At 5.0 Hz
frequency

At 7.0 Hz
frequency

NP 40 60 90

GRID 90�90�32 135�135�47 180�180�63

MEMFACTO ALL �GB� 11.5 45.0 124.0

MEMFACTO PROC

�GB�
0.3 0.8 1.8

TIMEFACTO �s� 72.0 340.0 1850.0

TIMESOLVE ALL �s� 310.0 990.0 3450.0

TIMESOLVE SOURCE �s� 0.2 0.6 1.8

TIMEGRADIENT �s� 0.7 1.5 35.0

TIMEdiag HESSIAN a �s� 1999.0 3432.0 4000.0

TIMEITERATION �s� 2940.0 13,650.0 44,870.0

NP — Number of MPI processes
GRID — Dimension of the 3D FD grid
MEMFACTO ALL — Total memory allocated during factorization
MEMFACTO PROC — Average allocated memory per working pro-

cessor during factorization
TIMEFACTO — Elapsed time for factorization
TIMESOLVE ALL — Total elapsed time for multi-shot resolution
TIMESOLVE SOURCE — Elapsed time for resolution of one source
TIMEGRADIENT — Elapsed time to compute gradient
TIMEdiag HESSIAN a — Elapsed time to compute diagonal Hessian
TIMEITERATION — Average elapsed time to MPI process one itera-

tion

Table 3. Computational cost of imaging the overthrust
model (thrust system) using a multithread configuration (two
threads per MPI process). The memory available per MPI
process is 4 GB for the three frequencies. Compare these
values with those of Table 2.

Requirement term
At 3.5 Hz
frequency

At 5.0 Hz
frequency

At 7.0 Hz
frequency

NP 20 40 60

MEMFACTO ALL �GB� 9.9 40.0 108.0

MEMFACTO PROC �GB� 0.5 1.0 1.4

TIMEFACTO �s� 56.0 222.0 650.0

TIMESOLVE ALL �s� 290.0 650.0 1375.0

NP — Number of MPI processes
MEMFACTO ALL — Total memory allocated during factorization
MEMFACTO PROC — Average allocated memory per working pro-

cessor during factorization
TIMEFACTO — Elapsed time for factorization
TIMESOLVE ALL — Total elapsed time for multishot resolution

1 2 3 4 5 6 7 8 9 10

Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o
rm

a
li
z
e
d
c
o
s
t
fu
n
c
ti
o
n

0.0

1.0

Figure 22. Imaging the thrust system in the overthrust model: objec-
tive function versus iteration number for the 3.5-, 5-, and 7-Hz fre-
quencies �dark to light gray for increasing frequency�.
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a) b) c)

Figure 23. Imaging the thrust system in the overthrust model. Amplitude �left� and phase �right� of the �a� 3.5-Hz, �b� 5-Hz, and �c� 7-Hz wave-
fields at the receiver positions. The horizontal and vertical axes label the receiver number in the dip-line and crossline directions, respectively.
The source is located in the upper-left corner. From top to bottom, the first and second panels show the wavefield computed in the true and the
starting models, respectively; the third is the difference between the two wavefields. The fourth panel shows the wavefield computed in the final
model of the frequency inversion, and the fifth is the residual between the wavefields computed in the true model and in the final model of the fre-
quency inversion.
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CONCLUSION

We have presented a 3D massively parallel frequency-domain
FWI algorithm based on a direct solver. Advantages of our approach
include the robustness of the forward problem provided by a high-
performance direct solver, its efficiency to perform multishot simu-
lations in relatively small 3D finite-difference grids, and a straight-
forward parallelization of the inverse problem resulting from a do-
main decomposition of the monochromatic wavefields performed
by the direct solver. By robustness, we mean that the time required to
perform a simulation with a direct solver depends less on the com-
plexity of the velocity model than the time required to perform this
simulation with an iterative solver. Its main drawbacks are the mem-
ory and CPU time complexity of the LU factorization phase and its
limited scalability, which restricts the size of the models and the fre-
quency bandwidth that can be addressed on realistic distributed-
memory platforms.

We have presented several applications on synthetic examples of
increasing complexity to validate the algorithm and to give insight
into the feasibility of our approach. Some preliminary applications
to the overthrust model suggest that frequency-domain FWI can be
applied successfully at low frequencies ��7 Hz� on limited-size PC
clusters to develop 3D velocity models with a maximum resolution
on the order of half the wavelength �that is, 285 m for a velocity of
4000 m/s�. This resolution scale should be compared with that pro-
vided by reflection tomography and migration-based velocity analy-
sis to assess whether velocity models developed by 3D FWI can pro-
vide accurate background models for wave-equation PSDM.

Assessment of velocity models developed by 3D FWI as macro-
models for PSDM will be one aim of future work. A second aim will
be to assess whether accurate starting models for 3D FWI can be de-
veloped by first-arrival traveltime tomography, provided that global-
offset recording is available. A third objective will be to mitigate the

a) b) c)

Figure 24. Imaging the thrust system in the overthrust model. The same as for Figure 23, but for a source located in the middle of the receiver ar-
ray.

3D full-waveform tomography VE115



memory limitations imposed by using a direct solver only.
In addition to time-domain and iterative approaches, a possible di-

rection is to evolve toward hybrid direct-iterative solvers imple-
mented in a domain-decomposition method based on the Schur com-
plement approach, for which the direct solver is applied to subdo-
mains of limited dimension while the iterative solver is applied to the
grid points located at the boundaries between the subdomains. Com-
pared to a purely iterative approach, the expected benefit is that the
iterative solver in the hybrid approach is applied to a system of
smaller dimension �the Schur complement system� that is better pre-
conditioned theoretically. The drawback is that the hybrid approach
remains more memory demanding because of the direct solver. The
relevance of this approach will have to be demonstrated when many
sources are considered.
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