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Abstract
Particle swarm optimization (PSO) is one of the most well-regard metaheuristics with remarkable performance when

solving diverse optimization problems. However, PSO faces two main problems that degrade its performance: slow

convergence and local optima entrapment. In addition, the performance of this algorithm substantially degrades on high-

dimensional problems. In the classical PSO, particles can move in each iteration with either slower or faster speed. This

work proposes a novel idea called velocity pausing where particles in the proposed velocity pausing PSO (VPPSO) variant

are supported by a third movement option that allows them to move with the same velocity as they did in the previous

iteration. As a result, VPPSO has a higher potential to balance exploration and exploitation. To avoid the PSO premature

convergence, VPPSO modifies the first term of the PSO velocity equation. In addition, the population of VPPSO is divided

into two swarms to maintain diversity. The performance of VPPSO is validated on forty three benchmark functions and

four real-world engineering problems. According to the Wilcoxon rank-sum and Friedman tests, VPPSO can significantly

outperform seven prominent algorithms on most of the tested functions on both low- and high-dimensional cases. Due to its

superior performance in solving complex high-dimensional problems, VPPSO can be applied to solve diverse real-world

optimization problems. Moreover, the velocity pausing concept can be easily integrated with new or existing metaheuristic

algorithms to enhance their performances. The Matlab code of VPPSO is available at: https://uk.mathworks.com/matlab

central/fileexchange/119633-vppso.

Keywords Particle swarm optimization � PSO � Velocity pausing � Velocity pausing particle swarm optimization �
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1 Introduction

Optimization is an essential process that helps to achieve

the best performance in many scientific fields such as

engineering and artificial intelligence. As a consequence,

the development of effective optimization algorithms is

crucial. The need for such development has recently

increased due to the increased difficulty level of opti-

mization problems [1]. Although the traditional optimiza-

tion approaches can be used to solve optimization

problems, they have two main limitations: the requirement

of gradient information that causes the conventional

approaches to be unable to solve non-differentiable

functions and local optima entrapment particularly when

solving complex problems that have numerous local

optima [2].

Metaheuristic algorithms are an effective way to solve

diverse optimization problems regardless of their charac-

teristics [3–5]. Due to its robustness, efficiency and sim-

plicity, particle swarm optimization (PSO) has become one

of the most widely used metaheuristic algorithms [6]. In

addition, PSO has demonstrated superior performance

when solving a wide range of optimization problems in

various areas such as wireless communications [7, 8] and

artificial intelligence [9, 10]. Other applications of PSO

include truss layout [11], prestress design [12, 13], image

segmentation [14] and flat-foldable origami tessellations

[15]. Nonetheless, PSO still severely faces the problem of

premature convergence [6, 16, 17]. Moreover, the
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performance of PSO in high-dimensional problems is poor

[6]. This motivates the development of novel PSO variants

that can overcome the limitations of the classical PSO

algorithm and its state-of-the-art versions.

In PSO, the iterative process is split into two stages:

exploration and exploitation. Exploration performs exten-

sive search at the early stages of the search process in order

to move toward the optimal solution [18]. It is essential that

PSO algorithms have strong exploration abilities in order to

escape from local optima entrapment. On the other hand,

exploitation focuses on regions that have a great potential

to be the place where the optimal solution can be found.

Balancing between exploration and exploitation is crucial

in order to be able to locate optimal solutions [19].

The no free lunch (NFL) theorem [20] states that an

optimization algorithm that performs well on a given set of

problems achieves poor performance when it is tested on a

different class of problems. Many state-of-the-art PSO

variants and metaheuristic algorithms have shown

promising results on a certain class of optimization prob-

lems; nonetheless, they have shown degraded performance

when they solve different sets of problems. This motivates

the development of new PSO variants that can achieve the

best solutions when they are applied to a diverse set of

optimization problems.

This work proposes a novel PSO variant called velocity

pausing particle swarm optimization (VPPSO). The main

contributions of this work can be summarized as follows:

• A novel idea called velocity pausing is proposed where

particles are provided with a third movement option

(besides faster or slower speeds as in the classical PSO

algorithm) that allows them to move with the same

velocity as they did in the previous iteration.

• The proposed VPPSO algorithm modifies the first term

of the classical PSO velocity equation to to avoid

premature convergence.

• To maintain diversity, a two-swarm strategy is imple-

mented where particles in the first swarm update their

positions based on the classical PSO algorithm, whereas

the remaining particles follow the global best position

only to update their positions.

• A comprehensive comparison analysis that validates the

effectiveness of VPPSO is carried out. The performance

of VPPSO is evaluated on 23 classical benchmark

functions, the CEC2019 test suite, the CEC2020 test

functions and 4 real-world engineering problems. The

performance of VPPSO on high-dimensional problems

is also evaluated. VPPSO is compared with PSO, a

recent high-performance PSO variant and five recent

prominent metaheuristic algorithms.

The purpose of this work is to develop a high-perfor-

mance robust PSO variant that can be used to optimize

complex real-world problems. The rest of this work is

organized as follows. Section 2 presents the related work

that includes the classical PSO algorithm and its existing

variants. In Sect. 3, the proposed VPPSO algorithm is

described in detail. Section 4 presents the results of

VPPSO and the competitive algorithms and it provides an

in-depth discussion. The performance of VPPSO on real-

world engineering problems is presented in Sect. 5. Sec-

tion 6 concludes this work while Sect. 7 provides some

potential research directions that can help to improve the

PSO performance further.

2 Literature review

In this section, the preliminaries and essential definitions

of PSO are first introduced. This includes the PSO source

of inspiration and its mechanism. Although the original

PSO algorithm has shown good optimization performance,

it still faces some limitations such as local optima entrap-

ment and slow convergence. This has motivated research-

ers to develop new PSO variants to tackle the

aforementioned issues. Several related works on alleviating

the PSO drawbacks are reviewed and discussed in the

second subsection.

2.1 Particle swarm optimization

PSO is introduced by Kennedy and Eberhart [21] where its

mechanism is inspired by social behaviors of birds flocking

and fish schooling. In PSO, a swarm of particles flies in the

search space to seek an optimal solution [22, 23]. Each

particle i of the swarm in the D-dimensional space has a

position and a velocity that can be mathematically written

as follows:

Vi ¼ ½Vi1;Vi2; :::;ViD�; i ¼ 1; 2; :::;N ð1Þ

Xi ¼ ½Xi1;Xi2; :::;XiD�; i ¼ 1; 2; :::;N ð2Þ

where Vi and Xi are the velocity and position vectors of

particle i, respectively, D is the number of dimensions and
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N is the swarm size. At the beginning of the PSO opti-

mization process, the velocity and position of each particle

are randomly generated within specific ranges. During the

PSO iterative process, a particle i is guided by the global

best particle ( gbest ¼ ½gbest1; gbest2; :::; gbestD�) which is

the best particle that has been found so far and by its

personal best position

(Pbest ¼ ½Pbest1;Pbest2; :::;PbestD�) to update its velocity

and position, respectively, as follows:

Vidðt þ 1Þ ¼wVidðtÞ þ c1r1 PbestidðtÞ � XidðtÞð Þ
þ c2r2 gbestdðtÞ � XidðtÞð Þ

ð3Þ

Xidðt þ 1Þ ¼ XidðtÞ þ Vidðt þ 1Þ ð4Þ

where w is the inertia weight, c1 and c2 are the the

cognitive and social acceleration coefficients, respectively,

and r1 and r2 are two random variables distributed uni-

formly in the range [0,1]. The role of the inertia weight w is

to avoid the velocity explosion problem faced by the

standard PSO algorithm [21]. The acceleration coefficients

c1 and c2 control the speed of a particle toward Pbest and

gbest, respectively. These three PSO parameters (w, c1 and

c2) play a crucial role for balancing the PSO exploration

and exploitation abilities [24, 25]. Equation (3) is the core

of the PSO algorithm, and it is the most essential formula

that is needed to develop novel PSO variants.

After a particle updates its velocity and position, its

personal best position is updated as follows:

Pbesti t þ 1ð Þ ¼
Xi t þ 1ð Þ if f Xi t þ 1ð Þð Þ\

f Pbesti tð Þð Þ
Pbesti tð Þ otherwise

8
><

>:
ð5Þ

In Eq. (5), the personal best position of a particle i is

updated only if the fitness of the newly generated particle

Xi is better than the current fitness of Pbesti. The next step

in PSO is to update gbest based on the following:

gbest t þ 1ð Þ ¼

Pbesti t þ 1ð Þ if

f Pbesti t þ 1ð Þð Þ\
f gbest tð Þð Þ

gbest tð Þ otherwise

8
>>><

>>>:

ð6Þ

The PSO process is repeated until a stopping criterion is

satisfied.

2.2 Literature review of related works on PSO
improvement

PSO has been modified by several strategies such as

adjustment of PSO controlling parameters [26–28], multi-

swarm schemes [29, 30], hybridization [31, 32] and new

velocity updating mechanisms [33]. The controlling

parameters of PSO, namely the inertia weight w, the cog-

nitive component c1 and the social component c2 have a

direct impact on the searching behavior of PSO [34].

Choosing the optimal values of w, c1, c2, is a challenging

task since some values might perform well on certain

optimization problems while the same values achieve poor

performance on other sets of problems [6]. Many research

efforts have attempted to develop new inertia weight

strategies that aim to balance exploration and exploitation.

One of the most well-known inertia weight approaches is

time-varying inertia weight [35] that linearly decreases

throughout the iterative process. In [35], the inertia weight

is updated at each iteration as follows:

wðtÞ ¼ wmax � wminð Þ T � t

T

� �

þ wmin ð7Þ

where wmax and wmin represent the maximum and minimum

values of the inertia weight, T is the maximum number of

iterations while t is the current iteration. Other common

inertia weight approaches that have been proposed to

enhance the PSO performance are adaptive inertia weight

[36–39], linearly decreasing inertia weight [27], nonlinear

time-varying inertia weight [40–42], quadratic inertia

weight [43], exponentially decreasing inertia weight

[44, 45], chaotic inertia weight [46]. On the other hand,

significant studies have attempted to improve the PSO

performance by adjusting the PSO acceleration coefficients

c1 and c2. The authors in [47] proposed a self-organizing

hierarchical PSO where the two PSO acceleration coeffi-

cients vary with time (HPSO-TVAC). In HPSO-TVAC, c1
and c2 are initially assigned a large and small values,

respectively, to enable strong exploration at the beginning

of the PSO search process. Conversely, c1and c2 should

have small and large values, respectively, at the final stages

of the iterative process to allow particles exploit the search

space significantly. The values of c1 and c2 are updated at

each iteration as follows:

c1 ¼ c1f � c1i
� � t

T
þ c1i ð8Þ

c2 ¼ c2f � c2i
� � t

T
þ c2i ð9Þ

where the i and f subscripts represent the initial and final

values, respectively. The authors in [48] proposed a fitness-

based multi-role PSO (FMPSO) algorithm that adjusts its

controlling parameters based on fitness. Similarly, a unique

adaptive PSO (UAPSO) algorithm is developed in [25] to

assign each particle unique inertia weight, c1, and c2 values
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based on its fitness. A phasor PSO (PPSO) algorithm is

proposed in [49] where the first PSO velocity term that

contains the inertia weight w is omitted, whereas c1 and c2
are replaced by phasor coefficients.

Multi-swarm techniques where particles are grouped

into several sub-swarms based on a certain criterion have

been widely used to enhance the PSO performance. In [50],

a cooperative PSO (CPSO) approach is proposed where a

number of swarms cooperate to optimize different seg-

ments of the solution vector. The work in [51] proposed a

novel improved PSO algorithm based on individual dif-

ference evolution mechanism (IDE-PSO). According to

particle’s performances throughout the iterative process,

particles are divided into several sub-swarms. The authors

in [52] presented a new multi-swarm PSO algorithm based

on dynamic learning strategy (PSO-DLS). In the proposed

approach, particles are divided into conventional and

communication particles where conventional particles

perform exploitation while communication particles

explore the search space. Using differential mutation

operations, a two-swarm PSO algorithm is proposed in

[53]. The authors in [54] proposed a multipopulation

cooperative PSO (MPCPSO) algorithm that implements a

difference mutation operator that can help to achieve better

exploration. Another multi-swarm PSO variant is proposed

in [55] where the total population is split into a main swarm

and a hovering swarm. Utilizing an elite learning strategy,

the authors in [56] presented a dynamic multi-swarm PSO

(DMS-PSO-EL) algorithm.

One of the most common approaches in the field of

metaheuristics that can help to enhance the performance is

hybridization where the best properties of two algorithms

are combined to develop a more efficient algorithm. In

[31], a novel hybrid PSO with genetic algorithm (GA) is

proposed where the mechanisms of PSO and the operators

of GA (crossover and mutation) are implemented together

to create a new generation of candidate solutions. The work

in [57] hybridized PSO with Ant Colony Optimization

(ACO). In the proposed approach, PSO and ACO execute

their individual algorithms separately during the iterative

process to create their own new solutions. However, the

global best solution among the two algorithms is used to

update the positions of particles and ants at each iteration.

PSO has been also hybridized with other optimization

algorithms such as simulated annealing (SA) [58], gray

wolf optimization (GWO) [59], firefly algorithm (FA) [60]

and whale optimization algorithm (WOA) [61] where in all

proposed approaches the hybrid PSO versions outperform

the individual PSO algorithm.

Besides the three aforementioned strategies, many

works have proposed other methods such as implementa-

tion of different neighbourhood structures and development

of new velocity updating mechanisms to enhance the PSO

performance. In [62], a Fully Informed PSO (FIPS) algo-

rithm is developed where a particle requires the positions

information of its neighbors to update its velocity. A new

PSO algorithm is developed in [63] by proposing a

dynamic PSO neighbourhood strategy that continuously

updates the neighbourhood of each particle throughout the

iterative process. The four PSO search strategies presented

in Comprehensive Learning PSO (CLPSO) [64], Unified

PSO (UPSO) [65], Linearly Decreasing Inertia Weight

PSO (LDWPSO) [35], distance-based locally informed

PSO (LISP) [66] are combined into one algorithm to

develop a PSO with Strategy Dynamics (SDPSO) algo-

rithm [67]. The authors in [68] have proposed an enhanced

social learning PSO algorithm that updates the best three

particles based on a differential mutation approach. To

solve constrained optimization problems, a novel PSO

variant named PSO? is proposed in [69] where the authors

have proposed a novel strategy to update the positions of

particles. A new PSO variant called Generalized PSO

(GEPSO) is introduced in [33] where the velocity of the

classical PSO algorithm is modified by including two new

terms. A novel chaotic grouping PSO algorithm that

implements a Dynamic Regrouping Strategy (CGPSO-

DRS) is proposed in [70]. The work in [71] has developed

an enhanced PSO algorithm by using complex-order

derivatives. In [72], a new PSO variant is developed by

applying two strategies: multi-exemplar and forgetting

ability. Some recent prominent PSO variants are presented

in Table 1. The PSO variants mentioned in this section can

be applied to optimize various problems including truss

layout [11], image segmentation [14], wireless communi-

cations [7], prestress design [12, 13] and flat-foldable ori-

gami tessellations [15]. Although existing PSO variants

have shown that they can significantly improve the per-

formance of the classical PSO algorithm, the effectiveness

of [33, 48, 49, 52–54, 56, 63, 68, 71, 72] on real-world

optimization problems is not validated. In addition, the

performances of [33, 48, 52, 53, 56, 69, 71] on high-di-

mensional problems are not investigated. In

[33, 48, 54–56, 68, 71], the proposed algorithms are

compared with PSO variants only without comparing their

performances with other well-known metaheuristics such

as GWO and WOA. Finally, the works in

[48, 53–56, 68, 70] require massive number of function

evaluations to achieve competitive results.
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3 Velocity pausing particle swarm
optimization

This work proposes a novel idea called velocity pausing

where each particle does not have to update its velocity at

each iteration. In other words, a particle is allowed to move

with the same velocity as it did in the previous iteration.

This idea allows particles to have the potential of moving

with three different speeds, i.e., slower speed, faster speed

and constant speed unlike the standard PSO algorithm

where particles move with only faster speed or slower

speed. The main advantage of velocity pausing is the

addition of a third movement option (constant speed) that

can help to balance exploration and exploitation and avoid

the severe premature convergence of the classical PSO.

The velocity pausing concept can be written mathemati-

cally as follows:

Viðt þ 1Þ ¼

ViðtÞ if rand\a

wViðtÞ Otherwise

þc1r3ðPbestiðtÞ � XiðtÞÞ
þc2r4ðgbestðtÞ � XiðtÞÞ

8
>>><

>>>:

ð10Þ

where ViðtÞ and Viðt þ 1Þ are the velocities of particle i at

iterations t and t þ 1, respectively, a is the velocity pausing

parameter. In case the pausing parameter a has a value

higher than 1, all particles will update their velocities at

each iteration exactly in the same way as the classical PSO

algorithm does. This situation is undesired since no

velocity pausing can occur. On the other hand, an extre-

mely low value of a will force particles to move with

constant speed and it will restrict them from moving with

faster or slower speed. Therefore, it is crucial to choose the

best a value to achieve a balanced velocity pausing sce-

nario that can lead to an optimal performance. To further

help PSO avoid premature convergence, the velocity

equation of the conventional PSO algorithm is modified by

changing the first velocity term and omitting its inertia

weight component as follows:

Table 1 Some recent prominent PSO variants

Algorithm Contribution(s) High-

dimensional

problems

Benchmark

functions

Statistical

test(s)

Engineering

problems

FEs

Two-swarm learning PSO

(TSLPSO) [73]

Dimensional learning and

comprehensive learning

strategies

No 16 functions

and CEC2014

Yes Yes 3� 105

PSO-ALS [74] An adaptive learning strategy No 15 functions

and CEC2017

Yes Yes 2� 105

Expanded PSO (XPSO) [72] Multiple exemplars and forgetting

ability

No CEC2013 Yes No 10000D

Triple archives PSO

(TAPSO) [75]

A three archives strategy No 30 classical

functions

Yes Yes 10000D

Novel social learning PSO

(NSLPSO) [68]

A new social learning strategy No CEC2013 Yes No 10000D

Pyramid PSO [76] Novel cooperation and competition

strategies

No CEC2013 and

CEC2017

Yes No 10000D

Multi-population cooperative

PSO (MPCPSO) [54]

Multi-dimensional comprehensive

learning approach

Yes 16 classical

functions

No No 200,000

Bee-foraging learning PSO

(BFL-PSO) [77]

Integration of PSO and artificial

bee colony algorithm

No CEC2014 Yes Yes 10000D

Generalized PSO (GEPSO)

[33]

Modification of the velocity

equation

No 16 classical

functions

No No 10,000

Adaptive strategy PSO

(ASPSO) [78]

PSO is hybridized with an adaptive

strategy

No CEC2017 Yes Yes 50,000

PSO? [69] A new particles update strategy No 24 classical

functions

Yes Yes 30,000

FEs denotes the number of function evaluations
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Viðt þ 1Þ ¼ ViðtÞr5aðtÞ þ c1r6 PbestiðtÞ � XiðtÞð Þ
þ c2r7 gbestðtÞ � XiðtÞð Þ

ð11Þ

where a(t) is mathematically written as follows:

aðtÞ ¼ exp�
bt
Tð Þb ð12Þ

In Eq. 12, b is constant. By applying the velocity pausing

concept and utilizing the modified velocity equation in

(11), a particle in VPPSO updates its velocity as follows:

Viðt þ 1Þ ¼
ViðtÞ if rand\a

Viðt þ 1Þ as in (11) Otherwise

�

ð13Þ

Utilizing Equation (13), the position of a particle i is

updated as follows:

Xiðt þ 1Þ ¼ XiðtÞ þ Viðt þ 1Þ ð14Þ

To maintain diversity and avoid premature convergence,

the proposed algorithm divides the total population N into

two swarms. The first swarm consists of N1 particles that

update their velocities and positions based on the classical

PSO mechanism except the following: The first term of the

velocity equation is modified and the velocity pausing

concept is applied as shown in Eq. 13. The second swarm

has N2 particles that rely only on gbest to update their

positions. Each particle in the second swarm updates its

position as follows:

Xiðt þ 1Þ ¼ gbest þ aðtÞr8jgbestjaðtÞ if r9\0:5

gbest � aðtÞr10jgbestjaðtÞ Otherwise

(

ð15Þ

The optimization process of VPPSO starts by randomly

generating the velocities and positions of all particles.

During the VPPSO iterative process, particles in the first

swarm update their velocities and positions based on

Eqs. 13 and 14, respectively, while particles in the second

swarm update their positions based on (15). The next step

of VPPSO is to evaluate the fitness of all particles. Con-

sidering the first swarm, the personal best positions of

particles are updated based on Eq. 5 followed by updating

the global best position based on (6). The global best

position is also updated in the second swarm of VPPSO if a

particle in the second swarm can achieve a better fitness.

The VPPSO process is repeated until a stopping criterion is

satisfied. The Pseudo-code of VPPSO is provided in

Algorithm 1. Applying Algorithm 1 is important to solve

complex real-world problems particularly high-dimen-

sional problems. Moreover, Algorithm 1 includes velocity

pausing, a new velocity equation and a two-swarm strategy

that can better balance exploration and exploitation and

enhance diversity.

The flowchart of the proposed VPPSO algorithm is

presented in Fig. 1. The modifications of VPPSO are

highlighted in green colour. The flowchart shows the first

VPPSO modification which is updating the velocities of

PSO particles based on a new proposed equation. The new

velocity equation changes the first term of the original PSO

velocity equation to avoid premature convergence. More-

over, the proposed velocity equation implements velocity

pausing to help balancing exploration and exploitation. The

other modification of VPPSO is the addition of a second

swarm where particles in this swarm update their positions

differently. The VPPSO two-swarm strategy is needed to

enhance diversity. For PSO, VPPSO and the other existing

metaheuristic algorithms, the gbest vector is entirely

replaced at iteration t if its fitness is better than the fitness

of gbest at iteration t � 1. This is not the optimal approach

for gbest replacement as some dimensions of gbest at

iteration t may be not better than their corresponding

dimensions at iteration t � 1. This gbest replacement

problem has been tackled in [50]; however, the proposed

approach is computationally prohibitive. Other novel

approaches are needed to replace the gbest vector more

efficiently.

3.1 Complexity analysis

The complexity of swarm algorithms is mainly depen-

dant on the population size N, number of dimensions D, the

cost of function evaluations C and the maximum number of

function evaluations. Functions are evaluated N times at

each iteration t; thus, the number of the overall function

evaluations is NT where T is the maximum number of

iterations. In PSO and other swarm algorithms, the com-

plexity can be divided into two parts: initialization and the

iterative loop. The initialization phase randomly generates

particles and evaluates their fitness. Generating random

particles and evaluating their fitness have complexities of

O(ND) and O(NC). As a result, the initialization com-

plexity of PSO becomes OðNDþ NCÞ. The PSO iterative

loop consists of positions update, function evaluations and

memory savings
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where their computational complexities are given as

O(TND), O(TNC) and O(TN), respectively. The overall

PSO complexity can be written as follows:

OðPSOÞ ¼ OðNDþ NC þ TNDþ TNC þ TNÞ ð16Þ

The initialization complexity of VPPSO is the same as PSO

which is given as OðNDþ NCÞ. In the iterative loop of

VPPSO, the complexity is the same as PSO except that the

the VPPSO second swarm does not involve memory

savings.

The overall VPPSO complexity can be written as

follows:

OðVPPSOÞ ¼ OðNDþ NC þ TNDþ TNC þ TN1Þ ð17Þ

From (17), it is clear that VPPSO modifies the original PSO

algorithm without increasing its complexity. On the con-

trary, the VPPSO complexity is lower than the complexity

of the standard PSO version as the second swarm of

VPPSO does not require the information of the personal

best positions as in the original PSO. The complexity of

VPPSO can be further reduced by relying less on the

personal best positions of PSO as they require memory

savings and by the implementation of new low-complex

searching strategies. In case N1 ¼ N2 as in this work, N1 ¼
N
2
which slightly reduces the complexity of VPPSO to:

OðVPPSOÞ ¼ O NDþ NC þ TNDþ TNC þ T
N

2

� �

ð18Þ

4 Results and discussion

The effectiveness of VPPSO is first validated by testing it

on twenty-three classical benchmark functions that have

been widely used to evaluate the performance of new

metaheuristic algorithms or their variants [79–83]. These

conventional functions are grouped into three categories:

unimodal functions (Table 2), multimodal functions

(Table 3) and multimodal functions with fixed dimensions

(Table 5). The mathematical expressions of the twenty-

three functions are shown in Tables 2, 3 and 4. In addition,

these three tables show the search range of each bench-

marking function as well as its optimal value. The main

purpose of testing novel metaheuristic algorithms on uni-

modal functions (f1-f7) is to assess their exploitation per-

formance since a unimodal function possesses only a single

optima. On the other hand, multimodal functions (f8–f23)

help to evaluate the exploration ability of an optimization

algorithm as they have multiple optima. The main dis-

tinction between the f8–f13 and f14–f23 multimodal func-

tions is that the dimensions of f8–f13 can be varied while

Algorithm 1 Pseudo-code of VPPSO

1: Define the values of N , N1, N2, α, T , and a
and set f(gbest) = ∞

2: for i = 1 : N do
3: Randomly generate the position of the par-

ticle i (Xi) and set its velocity to zero Vi =
0.

4: Evaluate the fitness of particle i, i.e.,
(f(Xi))

5: Set Pbesti = Xi and f(Pbesti) = f(Xi)
6: if f(Pbesti) < f(gbest) then
7: gbest = Pbesti
8: f(gbest) = f(Pbesti)
9: end if

10: end for
11: for t = 1 : T do
12: for i = 1 : N do
13: if i ≤ N1 then
14: Update the particle’s velocity Vi

and position Xi based on Equations 13 and
14, respectively

15: else
16: Update the particle’s position Xi

based on Equation 15
17: end if
18: end for
19: for i = 1 : N do
20: Evaluate the fitness of particle i, i.e.,

f(Xi)
21: if i ≤ N1 then
22: if f(Xi) < f(Pbesti) then
23: Pbesti = Xi

24: f(Pbesti) = f(Xi)
25: if f(Pbesti) < f(gbest) then
26: gbest = Pbesti
27: f(gbest) = f(Pbesti)
28: end if
29: end if
30: else
31: if f(Xi) < f(gbest) then
32: gbest = Xi

33: f(gbest) = f(Xi)
34: end if
35: end if
36: end for
37: end for
38: return gbest
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f14–f23 have fixed dimensions. Moreover, the search range

of f8–f13 and f14–f23 are different. The performance of the

proposed VPPSO algorithm is further validated by testing it

on the CEC2019 test suite that consists of ten benchmark

functions. Table 5 lists the names, search ranges, dimen-

sions and optimal values of the CEC2019 functions. To

further challenge VPPSO, VPPSO is applied to solve the

ten CEC2020 complex optimization problems. As shown in

Table 6, the CEC2020 test suite consists of one unimodal

function (f34), three basic functions (f35 � f37), three hybrid

functions (f38 � f40) and three composition functions

(f41 � f43). A summary of the CEC2020 functions that

include their names, search range and optimal values is

shown in Table 6. VPPSO is compared with the classical

PSO algorithm as well as with a recent high-performance

PSO variant known as PPSO [49]. PPSO has shown that it

outperforms several existing well-known PSO variants

including CLPSO [64], adaptive particle swarm optimiza-

tion (APSO) [39] and FIPS [62]. Besides the PSO algo-

rithms, the performance of VPPSO is compared with five

Fig. 1 Flowchart of the VPPSO

algorithm

Table 2 Unimodal test functions

Function Range fmin

f1ðxÞ ¼
Pn

i¼1 x
2
i

[�100,100] 0

f2ðxÞ ¼
Pn

i¼1 j xi j þ
Qn

i¼1 j xi j [�10,10] 0

f3ðxÞ ¼
Pn

i¼1ð
Pi

j�1 xjÞ
2 [�100,100] 0

f4ðxÞ ¼ maxifj xi j; 1� i� ng [�100,100] 0

f5ðxÞ ¼
Pn�1

i¼1 ½100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2� [�30,30] 0

f6ðxÞ ¼
Pn

i¼1ð½xi þ 0:5�Þ2 [�100,100] 0

f7ðxÞ ¼
Pn

i¼1 ix
4
i þ random½0; 1Þ [�1:28,1.28] 0
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Table 3 Multimodal test

functions
Function Range fmin

f8ðxÞ ¼
Pn

i¼1 �xisinð
ffiffiffiffiffiffiffiffiffi
j xi j

p
Þ [-500,500] �418:9829� Dim

f9ðxÞ ¼
Pn

i¼1½x2i � 10cosð2pxiÞ þ 10� [-5.12,5.12] 0

f10ðxÞ ¼ � 20exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

x2i

s !

� exp
1

n

Xn

i¼1

cosð2pxiÞ
 !

þ 20þ e

[-32,30] 0

f11ðxÞ ¼ 1
4000

Pn
i¼1 x

2
i �

Qn
i¼1 cos

xiffi
i

p
� 	

þ 1 [-600,600] 0

f12ðxÞ ¼
p
n
f10sin py1ð Þ þ

Xn�1

i¼1

yi � 1ð Þ2 1þ 10sin2 pyi þ 1ð Þ

 �

þ yn � 1ð Þ2þ
Xn

i¼1

u xi; 10; 100; 4ð Þg

[-50,50] 0

yi ¼ 1þ xiþ1
4

uðxi; a; k;mÞ ¼
k xi � að Þm xi [ a

0 �a\xi\a
k �xi � að Þm xi\� a

8
<

:

f13ðxÞ ¼0:1fsin2 3px1ð Þ þ
Xn

i¼1

xi � 1ð Þ2½1þ sin2 3pxi þ 1ð Þ�

þ xn � 1ð Þ2½1þ sin2 2pxnð Þ�g þ
Xn

i¼1

u xi; 5; 100; 4ð Þ

[-50,50] 0

Table 4 Fixed-dimension multimodal test functions

Function Dim Range fmin

f14ðxÞ ¼ 1
500

þ
P25

j¼1
1

jþ
P2

i¼1
ðxi�aijÞ6

� ��1 2 [�65,65] 1

f15ðxÞ ¼
P11

i¼1 ai � x1ðb2i þbix2Þ
b2i þbix3þx4

h i2 4 [-5,5] 0.00030

f16ðxÞ ¼ 4x21 � 2:1x41 þ 1
3
x61 þ x1x2 � 4x22 þ 4x42 2 [-5,5] -1.0316

f17ðxÞ ¼ x2 � 5:1
4p2 x

2
1 þ 5

p x1 � 6
� �2þ10 1� 1

8p

� �
cosx1 þ 10 2 [-5,5] 0.398

f18ðxÞ ¼ 1þ ðx1 þ x2 þ 1Þ2ð19� 14x1 þ 3x21 � 14x2 þ 6x1x2 þ 3x22Þ
h i

� 30þ ð2x1 � 3x2Þ2 � ð18� 32x1 þ 12x21 þ 48x2 � 36x1x2 þ 27x22Þ
h i

2 [-2,2] 3

f19ðxÞ ¼ �
P4

i¼1 ciexp �
P3

j¼1 aijðxj � pijÞ2
� 	

3 [1,3] �3.86

f20ðxÞ ¼ �
P4

i¼1 ciexp �
P6

j¼1 aijðxj � pijÞ2
� 	

6 [0,1] �3.32

f21ðxÞ ¼ �
P5

i¼1 ðX � aiÞðX � aiÞT þ ci

 ��1 4 [0,10] �10.1532

f22ðxÞ ¼ �
P7

i¼1 ðX � aiÞðX � aiÞT þ ci

 ��1 4 [0,10] �10.4028

f23ðxÞ ¼ �
P10

i¼1 ðX � aiÞðX � aiÞT þ ci

 ��1 4 [0,10] �10.5363

Neural Computing and Applications (2023) 35:9193–9223 9201

123



prominent recent metaheuristic algorithms: GWO [79],

Henry gas solubility optimization (HGSO) [84], salp

swarm algorithm (SSA) [85], WOA [81] and Archimedes

optimization algorithm (AOA) [86]. The results of these

five algorithms have shown superior optimization perfor-

mance when compared with many optimization algorithms

including equilibrium optimizer (EO) [2], sine-cosine

algorithm (SCA) [87], L-SHADE, GA, gravitational search

algorithm (GSA) [88] and differential evolution (DE) [89].

For all algorithms, results are averaged over 30 indepen-

dent runs while the population size is 30. Following the

recommendations of the original references, the parameter

settings of all compared algorithms are summarized in

Table 7.

4.1 Exploitation analysis

To evaluate the exploitation ability of the proposed

approach, its performance is compared with seven algo-

rithms on seven unimodal functions (f1–f7). The statistical

results of unimodal functions including the average fitness

and standard deviation are recorded in Table 8. From

Table 8, it is clear that VPPSO outperforms all other

algorithms on all seven functions except f7. VPPSO

achieves competitive results on f7 that allows it to be

ranked second. It can be also noted that VPPSO is the only

algorithm that can achieve the optimal solutions for f1, f2, f3

Table 5 CEC2019 test functions
No Function name Dim Range fmin

f24 Storn’s Chebyshev Polynomial Fitting Problem 9 [�8192,8192] 1

f25 Inverse Hilbert Matrix Problem 16 [�16,384,16,384] 1

f26 Lennard–Jones Minimum Energy Cluster 18 [�4,4] 1

f27 Rastrigin’s Function 10 [�100,100] 1

f28 Griewangk’s Function 10 [�100,100] 1

f29 Weierstrass Function 10 [�100,100] 1

f30 Modified Schwefel’s Function 10 [�100,100] 1

f31 Expanded Schaffer’s F6 Function 10 [�100,100] 1

f32 Happy Cat Function 10 [�100,100] 1

f33 Ackley Function 10 [�100,100] 1

Table 6 CEC2020 test functions
No Function name Range fmin

f34 Shifted and Rotated Bent Cigar Function [�100,100] 100

f35 Shifted and Rotated Schwefel’s Function [�100,100] 1100

f36 Shifted and Rotated Lunacek biRastrigin Function [�100,100] 700

f37 Expanded Rosenbrock’s plus Griewangk’s Function [�100,100] 1900

f38 Hybrid Function 1 (N ¼ 3) [�100,100] 1700

f39 Hybrid Function 2 (N ¼ 4) [�100,100] 1600

f40 Hybrid Function 3 (N ¼ 5) [�100,100] 2100

f41 Composition Function 1 (N ¼ 3) [�100,100] 2200

f42 Composition Function 2 (N ¼ 4) [�100,100] 2400

f43 Composition Function 3 (N ¼ 5) [�100,100] 2500

Table 7 Parameter settings of all compared algorithms

Algorithm Parameter Value

VPPSO a, N1, N2 0.3, 15, 15

PSO C1, C2, w 2, 2, 0.9–0.4

PPSO

HGSO Cluster size, M1, M2, 5, 0.1 , 0.2

K, a, b 1, 1, 1

GWO a 2–0

SSA Position update probability 0.5

WOA a 2–0

AOA C1, C2 2, 6
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and f4. From Table 8, it is evident that VPPSO can achieve

a near optimal solution when solving f5 while all other

algorithms achieve poor performances when solving the

same function. Overall, VPPSO is ranked first according to

the Friedman test as can be seen in Table 8. These results

have shown that VPPSO possesses a robust exploitation

abilities.

4.2 Exploration analysis

The exploration performance of VPPSO is evaluated on 16

multimodal functions (f8–f23) that consist of functions with

different dimensional sizes and different search ranges as

illustrated in Tables 2 and 3. The statistical results of all

algorithms for the 16 multimodal functions are provided in

Table 8 (f8–f13) and Table 9 (f14–f23) when D ¼ 30. From

these two tables, it is clear that VPPSO obtains better

solutions on f8, f12, f13, f20, f21, f22 and f23 compared with

other algorithms. The two tables also show that VPPSO

achieves the best solutions equally with a few other algo-

rithms on f9, f11, f16, f17 and f18. It is also remarkable that

VPPSO can achieve the optimal solutions for 8 functions,

i.e., f9, f11, f16, f17, f18, f21, f22 and f23. For f10, f14, f15 and f19,

VPPSO shows a competitive performance compared with

all other algorithms. According to Friedman mean rank, the

proposed VPPSO approach is ranked first when solving the

multimodal functions. This demonstrates the strong

exploration ability of VPPSO.

4.3 Impact of high dimensionality

One of the main problems of PSO is its poor performance

on high-dimensional problems. Therefore, it is crucial to

develop a novel PSO variant that can achieve effective and

consistent performance on low- and high-dimensional

optimization problems. The performance of VPPSO on

high-dimensional cases is investigated by increasing the

number of dimensions of functions f1 � f13 to 100 and 500.

Tables 10 and 11 show the comparative results for all

algorithms on f1 � f13 functions when D ¼ 100 and

D ¼ 500, respectively. As Table 8 (D = 30), Table 10

(D = 100) and Table 11 (D = 500) show, VPPSO

achieves a consistent performance on the tested functions

unlike other algorithms. It is also notable from Tables 10

and 11 that VPPSO still achieves the optimal solutions for

f1 � f4, f9 and f11 when D ¼ 100 and D ¼ 500, respec-

tively. Tables 8, 10 and 11 demonstrate that all other

algorithms particularly PSO and SSA achieved degraded

performance as the number of dimensions increases.

Overall, according to the Friedman mean rank, VPPSO

achieves the best high-dimensional performance in com-

parison with the seven other algorithms as Tables 10 and

11 show.

4.4 Performance of VPPSO on the CEC2019
and CEC2020 test functions

The performance of VPPSO on the CEC2019 test functions

is recorded in Table 12. From Table 12, it is clear that

VPPSO outperforms all algorithms on 7 functions out of

10. Table 12 also shows that VPPSO and HGSO are able to

obtain the optimal solution of f24 while the remaining

algorithms achieve poor performance. For f27 and f29,

VPPSO achieves the second best solutions while the best

solutions are achieved by GWO. Based on the Friedman

mean rank, VPPSO achieves the best performance as

Table 12 illustrates.

The 10 CEC2020 complex optimization problems are

used to further challenge the performance of VPPSO.

Table 13 presents a performance comparison of VPPSO

and other algorithms when they are applied to solve the

CEC2020 test functions. As Table 13 shows, it can be seen

that VPPSO can perform better than all compared algo-

rithms on f34, f35, f36, f39 and f43 while its performance on

f37 is equal to the performances of all other algorithms. For

the remaining functions, the performance of VPPSO is

comparable to other algorithms. The results in Table 13

demonstrates the strength and superiority of VPPSO to

solve complex optimization problems. The Friedman mean

rank presented in Table 13 shows that VPPSO achieves the

first rank when compared with the 7 well-known and high-

performance optimization algorithms.

4.5 Sensitivity analysis

This subsection investigates the impact of the VPPSO

parameters on its optimization performance. The main

parameter of VPPSO that is expected to have a direct and

significant influence of the VPPSO behavior is the velocity

pausing parameter a where a can have any value that is

equal to or less than one. A value of a ¼ 1 represents the

classical PSO algorithm. To study the impact of a on the

performance of VPPSO, ten different scenarios are studied

where a varies from 1 to 0.1 in steps of 0.1. Another main

parameter that can affect the performance of VPPSO is the

number of particles per swarm as VPPSO is a two-swarm

algorithm. Three different swarm-size cases are studied

where the size of the PSO swarm and the size of the second

swarm are N1 ¼ 20, N2 ¼ 10, and N1 ¼ 15, N2 ¼ 15, and

N1 ¼ 10, N2 ¼ 20, respectively. For each swarm-size case,

results are generated for the 23 classical benchmark func-

tions (f1 � f23) while considering the 10 different scenarios

of a. Tables 14, 15 and 16 present the results of the average

fitness and the standard deviation for swarm-size case 1,

swarm-size case 2 and swarm-size case 3, respectively,
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where in each swarm-size case a is varied from 1 to 0.1.

From these three tables, it is evident that a better perfor-

mance is achieved when a decreases from 1 to 0.3 while

the performance starts to degrade when the value of a is

less than 0.3. It is also clear from the overall rank that the

best performance is achieved when a ¼ 0:3 in all swarm-

size cases. For any value a, it is observed from Tables 14,

15 and 16 that swarm-size case 2 where N1 ¼ 15 and N2 ¼
15 outperforms both swarm-size case 1 and swarm-size

case 3. Overall, the best performance is achieved when

a ¼ 0:3, N1 ¼ 15 and N2 ¼ 15.

4.6 Convergence analysis

Convergence to local optima is a major challenge faced by

most of metaheuristic algorithms including PSO. To tackle

this issue, it is crucial to achieve a proper balance between

exploration and exploitation. PSO has shown that it can be

easily trapped in local optima resulting in a poor solution

accuracy [6, 16]. The convergence curves of VPPSO, PSO

and the best four algorithms (according to Friedman test as

shown later in Table 17), i.e., HGSO, PPSO, GWO and

AOA, are presented in Fig. 2. One of the main limitations

of PSO is that particles prematurely converge toward a

local solution. This problem can be clearly seen from

Fig. 2e where PSO prematurely converges toward a sub-

optimal value at the 77th iteration. It is evident that the PSO

particles cannot make any further improvements from the

77th iteration until the end of the PSO searching process.

This happens because of the poor exploration ability of the

PSO algorithm when the algorithm is trapped in a local

optima. On the other hand, Fig. 2e shows that VPPSO can

avoid premature convergence by performing efficient

exploration that can help to find better solutions as the

number of iterations increase. Figure 2f shows another

example where PSO suffers from the premature

Table 8 Statistical results of f1-f13 when D = 30

Fun VPPSO PSO PPSO HGSO GWO SSA WOA AOA

f1 Mean 0 2.03E-03 2.35E-02 5.37E-185 8.15E-28 1.59E-07 6.38E-70 2.18E-84

Std 0 4.62E-03 2.73E-02 0 1.23E-27 2.56E-07 3.48E-69 1.14E-83

f2 Mean 0 1.27E-02 1.04E-01 1.00E-90 8.98E-17 2.00E?00 2.42E-51 5.13E-47

Std 0 1.34E-02 7.25E-02 4.01E-90 7.05E-17 1.84E?00 8.44E-51 2.80E-46

f3 Mean 0 4.35E?02 2.04E-01 1.11E-134 1.21E-05 1.49E?03 4.28E?04 2.80E-64

Std 0 1.73E?02 2.69E-01 6.10E-134 2.50E-05 1.05E?03 1.60E?04 1.53E-63

f4 Mean 0 3.36E?00 2.59E-02 2.69E-83 9.62E-07 1.22E?01 4.74E?01 5.57E-40

Std 0 7.03E-01 4.04E-02 1.47E-82 1.36E-06 3.88E?00 3.15E?01 3.05E-39

f5 Mean 1.29E-03 7.47E?01 2.89E?01 2.84E?01 2.71E?01 2.69E?02 2.80E?01 2.88E?01

Std 1.52E-03 5.59E?01 5.03E-01 4.08E-01 7.98E-01 4.47E?02 4.30E-01 9.83E-02

f6 Mean 1.20E-07 2.51E-03 3.63E-01 4.22E?00 7.47E-01 1.47E-07 3.65E-01 5.69E?00

Std 3.63E-08 7.43E-03 2.39E-01 5.50E-01 3.54E-01 1.59E-07 2.16E-01 3.67E-01

f7 Mean 6.10E-04 2.08E-02 2.73E-03 2.00E-04 1.76E-03 1.60E-01 4.32E-03 7.69E-04

Std 5.95E-04 5.11E-03 2.22E-03 1.36E-04 6.97E-04 4.22E-02 4.76E-03 5.49E-04

f8 Mean -1.22E?04 -6.70E?03 -9.62E?03 -6.04E?03 -6.02E?03 -7.45E?03 -1.00E?04 -3.58E?03

Std 5.00E?02 6.91E?02 1.43E?03 4.35E?03 7.92E?02 7.78E?02 1.72E?03 2.37E?02

f9 Mean 0 5.26E?01 4.31E-01 0 3.76E?00 5.75E?01 0 0

Std 0 1.69E?01 1.83E?00 0 5.22E?00 1.86E?01 0 0

f10 Mean 7.99E-15 3.46E-01 6.06E-02 1.00E-15 9.96E-14 2.57E?00 4.32E-15 2.54E-15

Std 0 5.70E-01 1.17E-01 6.48E-16 1.69E-14 6.13E-01 2.37E-15 1.80E-15

f11 Mean 0 1.49E-02 8.76E-02 0 3.09E-03 1.66E-02 1.96E-02 1.90E-02

Std 0 1.66E-02 9.34E-02 0 6.57E-03 1.37E-02 6.13E-02 1.04E-01

f12 Mean 1.83E-07 3.45E-02 3.67E-02 4.42E-01 4.21E-02 8.00E?00 2.45E-02 8.19E-01

Std 3.52E-07 4.96E-02 5.72E-02 1.18E-01 1.98E-02 3.25E?00 2.38E-02 1.77E-01

f13 Mean 1.83E-03 8.95E-03 1.64E?00 2.79E?00 6.46E-01 1.56E?01 5.17E-01 2.91E?00

Std 4.16E-03 1.29E-02 5.06E-01 1.31E-01 2.18E-01 1.31E?01 2.27E-01 5.19E-02

Mean rank 1.30 5.07 5.15 3.15 4.30 6.38 4.15 4.53

Rank 1 6 7 2 4 8 3 5
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convergence problem. From Fig. 2, it is clear that VPPSO

can avoid premature convergence by balancing exploration

and exploitation. Although HGSO has shown fast conver-

gence speed on unimodal functions, it can easily converge

to a non-optimal point shortly after the the optimization

process starts when it solves multimodal functions. This

can be clearly seen in Fig. 2.

4.7 Statistical significance analysis

To statistically validate the effectiveness of VPPSO, two

prominent statistical tests are used: Friedman test and

Wilcoxon rank-sum test. The Friedman test ranks algo-

rithms for each problem separately. The best algorithm is

ranked first while the remaining best algorithms are ranked

second, third and so on. From Tables 8-11, it is clear that

VPPSO achieves the first rank on unimodal and multimodal

functions when tested on low- and high-dimensional cases.

To evaluate the overall VPPSO performance, the Friedman

mean rank is calculated for all tested functions as shown in

Table 17. This table shows that VPPSO achieves the first

rank which indicates the superiority of VPPSO.

Wilcoxon rank-sum test is another widely used statisti-

cal test to evaluate the significance of novel metaheuristic

algorithms or their variants. Considering a 0.05 signifi-

cance level, the results of a pair-wise comparison between

VPPSO and the seven other algorithms are shown in

Table 18 for f1 � f13 (D ¼ 30) and (f14 � f24). The results

demonstrate that VPPSO is significantly better than other

algorithms.

5 Engineering problems

The performance of VPPSO is further evaluated by

applying it to solve four well-known engineering opti-

mization problems: welded beam design, speed reducer

design, pressure vessel design and tension/compression

spring design. Since these four engineering problems have

some constraints to be satisfied, particles are divided into

valid and invalid ones. A particle that can satisfy all con-

straints is valid; otherwise it is not. This work follows one

of the most common ways to penalize invalid particles in

minimization problems where the fitness of each invalid

particle is assigned an extremely large value. The param-

eter settings of all algorithms are exactly the same as in

Table 7. The following subsections describe the

Table 9 Statistical results of f14-f23

Fun VPPSO PSO PPSO HGSO GWO SSA WOA AOA

f14 Mean 1.13E?00 3.00E?00 9.98E-01 1.94E?00 4.87E?00 1.163E?00 3.61E?00 1.04E?00

Std 3.29E-01 2.59E?00 2.16E-16 7.54E-01 4.44E?00 5.26E-01 3.78E?00 1.81E-01

f15 Mean 1.15E-03 2.51E-03 4.47E-03 3.90E-04 5.14E-03 1.52E-03 6.54E-04 8.54E-04

Std 3.63E-03 6.06E-03 8.08E-03 1.35E-04 8.54E-03 3.56E-03 3.71E-04 3.50E-04

f16 Mean -1.03E?00 -1.03E?00 -1.03E?00 -1.03E?00 -1.03E?00 -1.03E?00 -1.03E?00 -1.03E?00

Std 9.18E-11 6.45E-16 5.37E-16 1.08E-04 1.80E-08 3.17E-14 1.96E-09 1.67E-04

f17 Mean 3.97E-01 3.97E-01 3.97E-01 4.00E-01 3.97E-01 3.97E-01 3.97E-01 4.04E-01

Std 3.63E-11 0 0 2.37E-03 7.21E-07 9.40E-15 5.90E-06 2.62E-02

f18 Mean 3.00E?00 3.00E?00 3.00E?00 3.00E?00 3.00E?00 3.00E?00 3.00E?00 4.17E?00

Std 5.5508E-09 1.4659E-15 2.0417E-15 4.2673E-04 4.5341E-05 1.6157E-13 5.6013E-04 3.1285E?00

f19 Mean -3.86E?00 -3.86E?00 -3.86E?00 -3.85E?00 -3.86E?00 -3.86E?00 -3.85E?00 -3.83E?00

Std 2.40E-03 2.65E-15 2.44E-15 5.80E-03 3.03E-03 2.86E-10 3.11E-02 2.8777E-02

f20 Mean -3.28E?00 -3.27E?00 -3.25E?00 -3.05E?00 -3.22E?00 -3.22E?00 -3.21E?00 -2.90E?00

Std 7.03E-02 5.82E-02 5.99E-02 1.26E-01 7.40E-02 5.92E-02 1.27E-01 1.73E-01

f21 Mean -1.01E?01 -6.07E?00 -9.40E?00 -4.68E?00 -9.31E?00 -8.31E?00 -8.10E?00 -6.37E?00

Std 2.43E-08 3.67E?00 2.29E?00 1.54E-01 2.21E?00 3.14E?00 2.53E?00 1.92E?00

f22 Mean -1.04E?01 -7.95E?00 -1.01E?01 -4.72E?00 -1.04E?01 -8.58E?00 -7.38E?00 -6.29E?00

Std 1.90E-08 3.53E?00 1.39E?00 1.22E-01 7.34E-04 3.10E?00 3.14E?00 1.94E?00

f23 Mean -1.05E?01 -6.82E?00 -9.50E?00 -4.77E?00 -1.02E?01 -9.00E?00 -5.95E?00 -6.50E?00

Std 2.41E-08 3.80E?00 2.67E?00 1.90E-01 1.48E?00 2.89E?00 3.32E?00 2.41E?00

Mean rank 1.6 3.5 2.3 4.8 3.4 2.9 4.2 4.7

Rank 1 5 2 8 4 3 6 7
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aforementioned engineering problems and they provide the

results of all compared algorithms.

5.1 Welded beam design (WBD)

Welded beam design problem is a well-known engineering

benchmark to test the effectiveness of optimization algo-

rithms. The purpose of this design engineering problem is

to obtain the best fabrication cost by defining the optimal

values of the given variables. The number of variables and

constraints in WBD are four and five, respectively. The

mathematical representation of WBD is given in Appendix

A [90].

The performance of VPPSO on the welded beam design

problem is compared with 13 algorithms including CPSO

[91], IPSO [92], marine predators algorithm (MPA) [93],

GSA, Harris’ Hawk optimization [94] and EO. The best

fabrication costs achieved by all compared algorithms are

recorded in Table 19. In addition, Table 19 shows the best

variable values obtained by each algorithm. From Table 19,

it is obvious that VPPSO achieves the best cost in com-

parison with all algorithms.

5.2 Speed reducer design (SRD)

The main objective of this problem is to minimize the

weight of speed reducer based on certain constraints

associated with diverse components such as gear teeth,

bending stress, surface stress, shafts stresses and transverse

deflections of the shafts. The SRD problem consists of 7

variables and 11 constraints that must be satisfied. The

SRD problem is mathematically written as shown in

Appendix B.

Table 20 presents the best variables and the best results

achieved by all compared algorithms. Results show that the

best weight is achieved by VPPSO.

Table 10 Statistical results of f1-f13 when D = 100

Fun VPPSO PSO PPSO HGSO GWO SSA WOA AOA

f1 Mean 0 1.98E?02 6.94E-01 3.58E-154 1.42E-12 1.45E?03 5.79E-71 2.91E-78

Std 0 5.53E?01 7.51E-01 1.96E-153 1.15E-12 3.29E?02 3.08E-70 1.47E-77

f2 Mean 0 1.84E?01 5.61E-01 8.24E-88 4.34E-08 4.88E?01 3.33E-50 4.93E-39

Std 0 4.49E?01 4.63E-01 4.51E-87 1.68E-08 1.77E?01 1.52E-49 2.67E-38

f3 Mean 0 4.15E?04 6.64E?00 3.43E-140 7.02E?02 4.95E?04 1.07E?06 5.98E-62

Std 0 9.42E?03 1.33E?01 1.88E-139 5.98E?02 2.42E?04 2.90E?05 2.29E-61

f4 Mean 0 2.58E?01 4.06E-02 2.45E-75 6.87E-01 2.80E?01 7.70E?01 6.28E-39

Std 0 1.95E?00 6.58E-02 1.34E-74 6.12E-01 3.17E?00 2.37E?01 2.27E-38

f5 Mean 6.26E-01 1.72E?04 1.02E?02 9.86E?01 9.78E?01 1.36E?05 9.80E?01 9.89E?01

Std 7.47E-01 1.89E?04 4.63E?00 2.95E-01 7.10E-01 6.31E?04 2.80E-01 4.85E-02

f6 Mean 6.03E-02 2.14E?02 1.16E?01 2.01E?01 1.02E?01 1.41E?03 4.52E?00 2.31E?01

Std 4.33E-02 8.86E?01 2.56E?00 1.37E?00 9.52E-01 4.85E?02 1.15E?00 3.40E-01

f7 Mean 3.30E-04 4.29E-01 6.07E-03 2.00E-04 7.75E-03 2.93E?00 4.29E-03 6.30E-04

Std 4.38E-04 9.48E-02 5.29E-03 1.39E-04 4.06E-03 5.01E-01 4.27E-03 4.51E-04

f8 Mean -4.02E?04 -2.02E?04 -2.62E?04 -4.73E?03 -1.63E?04 -2.11E?04 -3.55E?04 -6.66E?03

Std 2.16E?03 2.06E?03 2.85E?03 7.82E?02 2.48E?03 2.49E?03 5.89E?03 1.00E?03

f9 Mean 0 2.36E?02 3.31E?00 0 7.16E?00 2.38E?02 0 0

Std 0 2.43E?01 1.22E?01 0 5.36E?00 4.14E?01 0 0

f10 Mean 7.99E-15 3.83E?00 7.90E-02 8.88E-16 1.33E-07 9.98E?00 4.55E-15 3.01E-15

Std 0 2.66E-01 5.21E-02 0 5.90E-08 1.15E?00 2.18E-15 1.77E-15

f11 Mean 0 2.79E?00 2.62E-01 0 5.22E-03 1.31E?01 0 0

Std 0 6.45E-01 2.35E-01 0 1.21E-02 3.87E?00 0 0

f12 Mean 2.61E-03 8.90E?00 1.97E-01 8.27E-01 2.93E-01 3.46E?01 4.14E-02 1.06E?00

Std 3.72E-03 2.24E?00 5.10E-02 8.47E-02 5.10E-02 1.00E?01 1.55E-02 5.09E-02

f13 Mean 6.25E-02 2.68E?02 1.01E?01 9.93E?00 6.73E?00 6.89E?03 2.46E?00 9.93E?00

Std 1.27E-01 2.32E?02 7.77E-01 5.32E-02 3.94E-01 1.17E?04 7.65E-01 4.13E-02

Mean rank 1.30 6.23 4.46 3 4.15 7.07 3.30 3.69

Rank 1 7 6 2 5 8 3 4
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5.3 Pressure vessel design (PVD)

Pressure vessel design problem is another well-known

engineering problem that is used as a benchmark to vali-

date the effectiveness of metaheuristic algorithms. In PVD,

the objective is to find the minimal cost of a pressure

vessel. PVD is a problem with four variables and four

constraints as shown in Appendix C. Table 21 presents the

best solutions of all algorithms. It is evident from Table 21

that VPPSO achieves the best result.

5.4 Tension/compression spring design (TSD)

The main objective of this well-known engineering prob-

lem is to find the minimum weight of the tension/com-

pression spring while satisfying its design constraints:

shear stress, surge frequency and deflection. Three design

variables need to be taken into account: wire diameter,

mean coil diameter and the number of active coils. The

mathematical representation of TSD is given in Appendix

D. The performance of VPPSO and the compared algo-

rithms when solving the TSD problem is presented in

Table 22. According to the results, VPPSO, PSO, GWO,

SSA, WOA, AOA and GSA outperform the other algo-

rithms in terms of finding the minimum weight.

The addition of the third movement option has sup-

ported VPPSO to better balance exploration and exploita-

tion. This has been clearly seen in the results provided in

this section where VPPSO has shown effective and robust

exploration and exploitation abilities in low- and high-di-

mensional cases. The implementation of a two-swarm

strategy has further assisted VPPSO to main diversity and

avoid premature convergence. Moreover, the proposed

modified velocity equation in VPPSO has played an

important role in avoiding undesired rapid movements of

particles.

Table 11 Statistical results of f1-f13 when D = 500

Fun VPPSO PSO PPSO HGSO GWO SSA WOA AOA

f1 Mean 0 5.31E?04 5.09E?00 7.32E-164 1.71E-03 9.50E?04 5.64E-68 6.39E-73

Std 0 6.03E?03 6.55E?00 0 5.68E-04 6.52E?03 2.93E-67 1.87E-72

f2 Mean 0 1.14E?03 3.19E?00 4.60E-86 1.08E-02 5.35E?02 1.79E-47 7.84E-38

Std 0 6.08E?01 2.64E?00 2.52E-85 1.56E-03 1.79E?01 5.55E-47 2.02E-37

f3 Mean 0 1.25E?06 1.03E?04 1.41E-138 3.22E?05 1.36E?06 2.81E?07 2.13E-48

Std 0 2.51E?05 3.81E?04 7.76E-138 7.66E?04 6.16E?05 8.88E?06 1.17E-47

f4 Mean 0 5.70E?01 6.02E-02 6.48E-85 6.65E?01 4.08E?01 7.64E?01 7.12E-37

Std 0 2.81E?00 1.24E-01 3.28E-84 4.56E?00 2.90E?00 2.76E?01 1.82E-36

f5 Mean 1.13E?01 2.96E?07 5.49E?02 4.98E?02 4.98E?02 3.78E?07 4.96E?02 4.98E?02

Std 2.26E?01 4.20E?06 5.11E?01 9.77E-02 3.21E-01 5.08E?06 5.09E-01 1.90E-02

f6 Mean 2.97E?00 5.09E?04 1.19E?02 1.18E?02 9.10E?01 9.67E?04 3.30E?01 1.22E?02

Std 4.83E?00 4.37E?03 1.09E?01 1.73E?00 1.99E?00 7.05E?03 9.29E?00 5.73E-01

f7 Mean 3.60E-04 2.20E?02 1.25E-02 2.17E-04 4.72E-02 2.87E?02 2.05E-03 6.45E-04

Std 4.71E-04 3.81E?01 1.40E-02 2.13E-04 9.85E-03 4.04E?01 1.98E-03 4.53E-04

f8 Mean -1.95E?05 -7.08E?04 -6.68E?04 -9.74E?03 -5.74E?04 -5.86E?04 -1.72E?05 -1.48E?04

Std 1.26E?04 4.69E?03 7.31E?03 2.47E?03 3.81E?03 4.63E?03 2.90E?04 2.05E?03

f9 Mean 0 3.13E?03 9.52E?00 0 8.22E?01 3.13E?03 3.03E-14 0

Std 0 1.19E?02 1.14E?01 0 3.08E?01 1.06E?02 1.66E-13 0

f10 Mean 7.99E-15 1.24E?01 2.15E-01 8.88E-16 1.88E-03 1.42E?01 3.84E-15 3.96E-15

Std 0 6.07E-01 1.42E-01 0 2.64E-04 2.83E-01 1.63E-15 1.22E-15

f11 Mean 0 4.66E?02 6.76E-01 0 1.64E-02 8.28E?02 0 0

Std 0 4.93E?01 4.10E-01 0 3.36E-02 5.74E?01 0 0

f12 Mean 2.18E-02 8.69E?06 7.26E-01 1.06E?00 7.57E-01 1.52E?06 1.06E-01 1.16E?00

Std 3.36E-02 2.72E?06 6.05E-02 3.32E-02 7.36E-02 1.01E?06 5.33E-02 1.20E-02

f13 Mean 6.91E-01 5.31E?07 5.38E?01 4.99E?01 5.01E?01 3.41E?07 1.87E?01 4.99E?01

Std 7.65E-01 1.20E?07 5.46E?00 1.66E-02 1.67E?00 7.64E?06 4.98E?00 5.21E-02

Mean rank 1.30 6.38 4.69 2.84 4.61 6.84 3.23 3.69

Rank 1 7 6 2 5 8 3 4
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6 Conclusion

A novel PSO variant called Velocity Pausing Particle

Swarm Optimization (VPPSO) is proposed in this work.

The mean idea of the proposed approach is to provide

particles an option that allows them to move with the same

velocity in subsequent iterations. The merit of the velocity

pausing approach is that it is not limited to PSO variants

only but it can also be applied to new or existing meta-

heuristic algorithms to improve their performances.

VPPSO changes the first term of the standard PSO velocity

equation to help avoid the premature convergence of PSO.

To enhance diversity, the proposed approach implements a

two-swarm strategy where particles in the first swarm

update their positions based on the classical PSO mecha-

nism while particles in the second swarm are attracted by

the global best position only to update their positions. The

performance of VPPSO is validated by testing it on 43

challenging optimization problems: 23 classical benchmark

functions, the 10 CEC2019 test functions and the CEC2020

test suite. Moreover, VPPSO is applied to solve four real-

world engineering problems. According to the statistical

results, VPPSO outperforms recent well-known high-per-

formance optimization algorithms including PPSO, GWO,

HGSO and AOA on both low- and high-dimensional

problems. This significant VPPSO performance is achieved

because the velocity pausing idea can better balance

exploration and exploitation. In addition, the two-swarm

strategy and the proposed modified velocity equation can

help to enhance diversity and better control the movements

of particles, respectively. Moreover, VPPSO has shown

superior performance when it solves the four real-world

constrained engineering problems. These promising results

motivate other researchers to apply VPPSO to solve opti-

mization problems in their fields.

7 Future work

Some potential directions that can help to improve the

optimization performance of VPPSO and other meta-

heuristic algorithms are summarized as follows:

• The velocity pausing concept can be integrated with

other metaheuristic algorithms to enhance their

performance.

• Further work is need to develop a binary VPPSO

version to solve binary optimization problems such as

feature selection and the 0–1 knapsack problem.

Table 12 Statistical results of the CEC2019 test functions

Fun VPPSO PSO PPSO HGSO GWO SSA WOA AOA

f24 Mean 1.00E?00 3.18E?05 5.84E?04 1.00E?00 2.53E?04 2.30E?06 2.15E?07 2.97E?00

Std 0 4.47E?05 2.94E?05 1.03E-09 6.32E?04 2.69E?06 2.20E?07 1.08E?01

f25 Mean 4.59E?00 3.01E?02 4.61E?01 4.62E?00 4.61E?02 1.51E?03 6.34E?03 5.15E?00

Std 3.84E-01 9.82E?01 7.90E?01 3.41E-01 2.84E?02 8.91E?02 2.62E?03 1.04E?00

f26 Mean 2.45E?00 3.23E?00 2.76E?00 7.26E?00 2.47E?00 4.73E?00 5.87E?00 5.63E?00

Std 1.28E?00 1.86E?00 1.48E?00 8.66E-01 1.46E?00 2.13E?00 2.46E?00 8.11E-01

f27 Mean 2.42E?01 3.16E?01 4.78E?01 6.09E?01 1.88E?01 3.47E?01 5.41E?01 5.93E?01

Std 1.18E?01 1.28E?01 1.99E?01 8.56E?00 1.08E?01 1.94E?01 2.12E?01 1.00E?01

f28 Mean 1.20E?00 1.21E?00 1.63E?00 1.27E?01 2.09E?00 1.22E?00 2.70E?00 4.39E?01

Std 1.20E-01 1.35E-01 4.11E-01 3.95E?00 9.52E-01 1.45E-01 7.91E-01 1.40E?01

f29 Mean 4.16E?00 4.53E?00 7.19E?00 7.42E?00 2.87E?00 5.02E?00 8.63E?00 8.23E?00

Std 1.62E?00 1.18E?00 1.77E?00 8.01E-01 9.54E-01 2.15E?00 1.66E?00 1.34E?00

f30 Mean 9.13E?02 1.07E?03 1.17E?03 1.72E?03 9.64E?02 1.04E?03 1.44E?03 1.58E?03

Std 4.00E?02 3.21E?02 2.79E?02 2.04E?02 3.21E?02 3.80E?02 3.30E?02 2.30E?02

f31 Mean 4.05E?00 4.29E?00 4.50E?00 4.73E?00 4.07E?00 4.34E?00 4.75E?00 4.55E?00

Std 4.78E-01 3.01E-01 4.43E-01 2.13E-01 5.23E-01 4.30E-01 2.57E-01 2.30E-01

f32 Mean 1.19E?00 1.21E?00 1.38E?00 1.56E?00 1.21E?00 1.40E?00 1.47E?00 2.55E?00

Std 9.53E-02 1.19E-01 2.17E-01 1.44E-01 7.32E-02 2.01E-01 1.84E-01 6.93E-01

f33 Mean 1.98E?01 2.13E?01 2.10E?01 2.12E?01 2.14E?01 2.10E?01 2.13E?01 2.12E?01

Std 4.84E?00 1.04E-01 8.31E-02 7.64E-01 8.02E-02 9.84E-02 1.34E-01 3.88E-01

Mean rank 1.2 4 4.2 5.9 3.3 4.5 6.9 6

Rank 1 3 4 6 2 5 8 7
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• Another interesting future work is the development of a

multi-objective VPPSO algorithm.

• VPPSO can be hybridized with other recent algorithms

such as EO, HGSO and AOA to further improve its

performance.

• In terms of applications, VPPSO can be applied to solve

diverse real-world optimization problems such as

maintenance scheduling [100], data clustering [101],

lot-sizing optimization [102, 103] and multilevel

thresholding image segmentation [14, 104].

• One potential direction is to combine VPPSO with well-

known approaches such as Levy flight and chaotic maps

to develop an enhanced version of VPPSO.

• VPPSO can be applied to optimize real-world engi-

neering problems such as three-bar truss design and

multiple disc clutch brake.

Table 13 Statistical results of the CEC2020 test functions

Fun VPPSO PSO PPSO HGSO GWO SSA WOA AOA

f34 Mean 2.60E?02 4.67E?02 4.67E?02 1.69E?03 2.07E?03 6.35E?02 1.30E?03 3.40E?02

Std 2.53E?02 1.39E?03 1.39E?03 1.56E?03 2.08E?03 9.25E?02 1.23E?03 4.40E?02

f35 Mean 1.10E?03 1.11E?03 1.10E?03 1.10E?03 1.11E?03 1.10E?03 1.11E?03 1.10E?03

Std 2.15E-01 3.57E?01 2.41E?01 4.25E-01 3.59E?01 6.81E?00 2.48E?01 3.56E?00

f36 Mean 7.01E?02 7.01E?02 7.01E?02 7.02E?02 7.02E?02 7.01E?02 7.02E?02 7.01E?02

Std 1.01E?00 7.02E-01 1.02E?00 7.29E-02 4.32E-01 1.03E?00 4.76E-01 4.58E-01

f37 Mean 1.90E?03 1.90E?03 1.90E?03 1.90E?03 1.90E?03 1.90E?03 1.90E?03 1.90E?03

Std 0 3.60E-03 5.00E-03 0 6.52E-03 5.00E-03 0 0

f38 Mean 2.84E?03 1.82E?03 1.76E?03 2.90E?03 2.96E?03 3.46E?03 3.40E?03 3.09E?03

Std 1.14E?03 1.21E?02 7.39E?01 1.07E?03 2.40E?03 3.10E?03 2.27E?03 1.52E?03

f39 Mean 1.60E?03 1.62E?03 1.60E?03 1.60E?03 1.60E?03 1.60E?03 1.61E?03 1.60E?03

Std 6.83E-01 4.50E?01 8.1324 5.95E-01 8.15E-01 7.67E?00 3.68E?01 1.20E?00

f40 Mean 2.79E?03 2.20E?03 2.15E?03 3.42E?03 3.83E?03 3.59E?03 5.57E?03 3.55E?03

Std 7.05E?02 1.17E?02 1.43E?02 7.90E?02 1.31E?03 2.15E?03 5.19E?03 3.75E?03

f41 Mean 2.23E?03 2.26E?03 2.25E?03 2.28E?03 2.27E?03 2.20E?03 2.27E?03 2.30E?03

Std 3.90E?01 4.51E?01 4.39E?01 3.79E?01 4.45E?01 6.21E?00 4.45E?01 3.04E?01

f42 Mean 2.55E?03 2.58E?03 2.61E?03 2.51E?03 2.59E?03 2.56E?03 2.62E?03 2.55E?03

Std 9.16E?01 1.21E?02 1.14E?02 4.18E?00 1.02E?02 1.07E?02 1.07E?02 4.77E?01

f43 Mean 2.83E?03 2.84E?03 2.84E?03 2.85E?03 2.84E?03 2.84E?03 2.84E?03 2.86E?03

Std 6.39E?01 1.06E-02 3.03E-02 2.61E?00 3.28E-02 1.44E?01 1.42E?01 1.38E?01

Mean rank 1.6 4 3.3 4.5 5.1 3.8 6 4.4

Rank 1 4 2 6 7 3 8 5
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Appendix A: Welded beam design problem

min
x

f ðxÞ ¼ 1:10471x21x2 þ 0:04811x3x4ð14þ x2Þ

s.t. g1ðxÞ ¼ sðxÞ � smax� 0

g2ðxÞ ¼ rðxÞ � rmax � 0

g3ðxÞ ¼ x1 � x4 � 0

g4ðxÞ ¼ 0:10471x21 þ 0:04811x3x4ð14þ x2Þ � 5� 0

g5ðxÞ ¼ 0:125� x1 � 0

g6ðxÞ ¼ dðxÞ � dmax � 0

g7ðxÞ ¼ P� PcðxÞ� 0

range 0:1� xi � 2 i ¼ 1; 4

0:1� xi � 10 i ¼ 2; 3

where sðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs0Þ2 þ 2s0s00
x2
2R

þ ðs00Þ2
r

s0 ¼ P
ffiffiffi
2

p
x1x2

; s00 ¼ MR

J

M ¼ PðLþ x2
2
Þ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22
4
þ x1 þ x3

2

� 	2
r

J ¼ 2

(
ffiffiffi
2

p
x1x2

x22
12

þ x1 þ x3
2

� 	2� 
)

rðxÞ ¼ 6PL

x4x23
; dðxÞ ¼ 4PL3

Ex33x4

PcðxÞ ¼
4:013E

ffiffiffiffiffiffi
x2
3
x6
4

36

q

L2
1� x3

2L

ffiffiffiffiffiffi
E

4G

r !

;

smax ¼ 13600psi; rmax ¼ 30000psi;

dmax ¼ 0:25in; P ¼ 6000lb

E ¼ 30� 106psi; L ¼ 14in; G ¼ 12� 106psi

Appendix B: Speed reducer design problem

min
x

f ðxÞ ¼ 0:7854x1x
2
2 3:3333x23 þ 14:9334x3 � 43:0934
� �

� 1:508x1 x26 þ x27
� �

þ 7:4777 x36 þ x37
� �

þ 0:7854 x4x
2
6 þ x5x

2
7

� �

s.t. g1ðxÞ ¼
27

x1x22x3
� 1� 0

g2ðxÞ ¼
397:5

x1x22x3
� 1� 0

g3ðxÞ ¼
1:93x34
x2x

4
6x3

� 1� 0

g4ðxÞ ¼
1:93x35
x2x

4
7x3

� 1� 0

g5ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745x4
x2x3

� 	2
þ16:9� 106

r

110x36
� 1� 0

g6ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745x5
x2x3

� 	2
þ157:5� 106

r

85x37
� 1� 0

g7ðxÞ ¼
x2x3
40

� 1� 0

g8ðxÞ ¼
5x2
x1

� 1� 0

g9ðxÞ ¼
x1
12x2

� 1� 0

g10ðxÞ ¼
1:5x6 þ 1:9

x4
� 1� 0

g11ðxÞ ¼
1:1x7 þ 1:9

x5
� 1� 0

range 2:6� x1 � 3:6; 0:7� x2 � 0:8; 17� x3 � 28;

7:3� x4 � 8:3; 7:3� x5 � 8:3; 2:9� x6 � 3:9;

5:0� x7 � 5:5

Table 17 Friedman test result
VPPSO PSO PPSO HGSO GWO SSA WOA AOA

Mean Rank 1.3768 5 4.1159 3.8986 4.1739 5.4493 4.4928 4.4348

Rank 1 7 3 2 4 8 6 5

9216 Neural Computing and Applications (2023) 35:9193–9223

123



Fig. 2 Convergence curves for some of the benchmarking functions
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Table 19 Best results of the

comparative algorithms for the

welded beam design problem

Algorithm x1 x2 x3 x4 Optimal cost

VPPSO 0.1961 3.3885 9.2006 0.1988 1.6740

CPSO [91] 0.202369 3.544214 9.04821 0.205723 1.72802

PSO [84] 0.2157 3.4704 9.0356 0.2658 1.85778

IPSO [92] 0.2444 6.2175 8.2915 0.2444 2.3810

MPA [93] 0.205728 3.470509 9.036624 0.205730 1.724853

GA [95] 0.2489 6.1730 8.1789 0.2533 2.4300

HGSO 0.2005 4.0017 8.6053 0.2410 1.9736

GWO [79] 0.205676 3.478377 9.03681 0.205778 1.72624

SSA 0.1880 3.5364 9.2523 0.1986 1.6880

WOA 0.1797 4.0355 9.8861 0.1958 1.8236

AOA[86] 0.2057 3.4705 9.0366 0.2057 1.7249

GSA [84] 0.2191 3.6661 10.000 0.2508 2.2291

HHO [86] 0.2134 3.5601 8.4629 0.2346 1.8561

EO [2] 0.2057 3.4705 9.03664 0.2057 1.7249

Table 20 Best results of the

comparative algorithms for the

speed reducer problem

Algorithm x1 x2 x3 x4 x5 x6 x7 Optimal weight

VPPSO 3.5000 0.7000 17.0007 7.3075 7.7340 3.3506 5.2867 2995

PSO [84] 3.500 0.70 17 7.74 7.85 3.36 5.389 2998.12

HHO [86] 3.4981 0.7 17 7.6398 7.8 3.3582 5.2853 2999.6

HGSO 3.6000 0.7148 17.0000 8.3000 8.3000 3.9000 5.5000 3433.0

GWO 3.5043 0.7000 17.0000 7.4386 7.7555 3.3606 5.2900 3002.9

SSA 3.5080 0.7000 17.0000 7.3386 7.8456 3.3568 5.2867 3002.4

WOA 3.5080 0.7000 17.0000 7.7490 7.8598 3.4031 5.2867 3018.5

GA [86] 3.5592 0.7133 19.659 7.9365 8.0197 3.6719 5.3276 3727.4

PSO [84] 3.500 0.70 17 7.74 7.85 3.36 5.389 2998.12

SCA [87] 3.508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563

GSA [88] 3.6 0.7 17 8.3 7.8 3.369658 5.289224 3051.12

AOA 3.5109 0.7 17 7.3 7.7198 3.3505 5.2867 2998.8

Table 21 Best results of the

comparative algorithms for the

pressure vessel design problem

Algorithm x1 x2 x3 x4 Optimal cost

VPPSO 0.7783 0.3847 40.3274 199.9140 5886.1

CPSO [91] 0.8125 0.4375 42.091266 176.7465 6061.0777

PSO-DE [96] 0.8125 0.4375 42.098446 176.6366 6059.71433

HPSO [97] 0.8125 0.4375 42.0984 176.6366 6059.7143

GA [98] 0.81250 0.43750 42.097398 176.65405 6059.94634

HHO [86] 0.9833 0.4758 49.9297 98.9036 6391.9

GWO [79] 0.812500 0.434500 42.089181 176.758731 6051.5639

HGSO 1.1992 0.6511 61.8141 29.1838 7666.4

SSA 0.8031 0.3970 41.6104 184.2422 5962.7

WOA 1.0003 0.5510 51.3396 88.0599 6695.4

AOA 0.7831 0.3871 40.5777 196.4388 5893.9

SCA [86] 0.8951 0.4579 44.8371 147.3388 6403.7

ACO [99] 0.812500 0.437500 42.098353 176.637751 6059.7258
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Pressure vessel design problem

min
x

f ðxÞ ¼ 0:6224x1x3x4 þ 1:7781x2x
2
3 þ 3:1661x21x4

19:84x21x3

s.t. g1ðxÞ ¼ �x1 þ 0:0193x3 � 0

g2ðxÞ ¼ �x2 þ 0:00954x3 � 0

g3ðxÞ ¼ x4 � 240� 0

g4ðxÞ ¼ �px23x4 �
4

3
px33 þ 1296000� 0

range 0� xi � 100; i ¼ 1; 2

10� xi � 200; i ¼ 3; 4

Tension/compression spring design problem

min
x

f ðxÞ ¼ x21x2 x3 þ 2ð Þ

s.t. g1ðxÞ ¼
x1 þ x2
1:5

� 1� 0

g2ðxÞ ¼ 1� x32x3
71785x41

� 0

g3ðxÞ ¼
4x22 � x1x2

12566 x2x
3
1 � x41

� �þ 1

5108x21
� 1� 0

g4ðxÞ ¼ 1� 140:45x1
x22x3

� 0

range 0:05� x1 � 2:00

0:25� x2 � 1:30

2:00� x3 � 15:00
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