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Velocity Predictors for Predictive Energy

Management in Hybrid Electric Vehicles
Chao Sun, Xiaosong Hu, Member, IEEE, Scott J. Moura, Member, IEEE, and Fengchun Sun

Abstract—The performance and practicality of predictive en-
ergy management in hybrid electric vehicles (HEVs) are highly
dependent on the forecast of future vehicular velocities, both in
terms of accuracy and computational efficiency. In this paper, we
provide a comprehensive comparative analysis of three velocity
prediction strategies, applied within a model predictive control
(MPC) framework. The prediction process is performed over
each receding horizon, and the predicted velocities are utilized
for fuel economy optimization of a power-split HEV. We assume
that no telemetry or on-board sensor information is available for
the controller, and the actual future driving profile is completely
unknown. Basic principles of exponentially varying, stochastic
Markov-chain, and neural network based velocity prediction
approaches are described. Their sensitivity to tuning parameters
is analyzed, and the prediction precision, computational cost, and
resultant vehicular fuel economy are compared.

Index Terms—Energy Management, Hybrid Electric Vehicle,
Model Predictive Control, Velocity Prediction, Artificial Neural
Network, Comparison.

I. INTRODUCTION

S
OPHISTICATED energy management strategies have

been developed to provide better fuel economy perfor-

mance in HEVs [1], [2]. This paper intends to facilitate

the performance of predictive energy management through

evaluating different horizon velocity predicting approaches.

In the literature, dynamic programming (DP) and equiva-

lent consumption minimization strategy (ECMS) are crucial

in resolving the energy management problem for HEVs.

Globally, DP can ensure an optimal result when complete

knowledge of driving conditions is prescribed [3]. However,

the exact future power demand is usually unknown and the

computational burden is prohibitive. DP solutions are often

realized offline and deployed as benchmarks [2]. ECMS is an

instantaneous optimization for HEV energy management [4],

[5]. By defining an equivalent fuel cost for battery energy,

ECMS solves the optimal power split at each time instant

rather than over a time horizon. It has demonstrated that given

an appropriate equivalence factor, ECMS is comparable to

DP [6]. Nevertheless, tuning the equivalence factor is nontriv-

ial. ECMS variants, such as telemetric-ECMS and adaptive-

ECMS, are proposed to adjust the equivalence factor based
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on information from telemetry equipment or on-board sensors

[7], [8]. Due to the uncertainty of future driving profiles,

endowing the controller with an appropriate prediction ability

can achieve better performance. The forecast ability in the

adaptive-ECMS is different from the model predictive control

approach used in this paper.

MPC has attracted increasing attention in the HEV en-

ergy management research community. Given a finite moving

horizon, an MPC controller can maintain computational load

within a practical range. An MPC controller solves a short-

term energy management problem at each time step, via

nonlinear programming [9], quadratic programming [10], Pon-

tryagin’s minimum principle [11] or DP [12]. The performance

of MPC strongly depends on the power reference provided

in each prediction horizon. The precision of future power

prediction is instrumental for the overall vehicle fuel economy.

Considering that road grade information is static, we focus

on the horizon velocity prediction. No telemetry devices or

environment detecting sensors are assumed, and the future

driving information is completely unknown.

We investigated three velocity predicting approaches. In

reference [9], the authors assumed power demand decreases

exponentially over the prediction horizon. The aim of this sim-

ple method was to provide an intuitive understanding of how

velocity prediction affects fuel economy. To systematically

investigate this method, a generalized exponentially varying

velocity predictor is considered in this paper.

Markov-chain models are widely used for vehicular velocity

modeling [13], [14]. An MPC controller with a stochastic

Markov-chain velocity predictor is usually called stochastic

MPC (SMPC) [12], [15]. The 1-stage Markov-chain process

has proven to be effective in generating fixed-route driving

patterns. However, when comprehensive driving tasks are

considered, the accuracy of 1-stage Markov-chain may decline.

On the other hand, the predicted power demand relies not

only on the present vehicle states, but also on the historical

values [16]. Typically, the more historical data used, the more

accurate the prediction. For SMPC, multi-stage Markov-chain

processes can hence be formulated to enhance the velocity

prediction accuracy.

Artificial neural networks (NNs) are a successful method

for time series forecasting [17]. Applications of NNs to

predicting city power load [18], driving handling behaviors

[19], and traffic flows [20] have verified its strong capability

in predicting nonlinear dynamic behaviors. In reference [21],

the authors also employed NN to predict the road type and

traffic congestion in order to improve the HEV fuel efficiency.

Although tuning the NN parameters may produce different pre-
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diction performances, it’s easy to design a NN-based velocity

predictor with reasonable precision. To our best knowledge,

NN-based velocity predictor for predictive energy management

of HEVs has not been investigated.

In this paper, we present a comparative study of three classes

of velocity predictors for MPC-based energy management of

a power-split HEV. This work adds two original contributions

to the related literature. First, a NN-based velocity predictor

is implemented, for the first time, in MPC-based HEV energy

management. Three different NN structures are examined in

terms of prediction accuracy and consequent fuel economy.

Second, the generalized exponentially varying and Markov-

chain velocity predictors are investigated to fully explore

their potential. The above three classes of velocity predictors

are systematically compared in terms of prediction precision,

computation time, and consequent fuel consumption. Although

the foregoing contributions are made specifically for MPC-

based energy management of a power-split HEV, the proposed

approach extends to other HEV configurations.

The remainder of the paper is arranged as follows. In

Section II the problem formulation is introduced, including

the control-oriented vehicle model and nonlinear MPC opti-

mization strategy. Section III details the three different types of

horizon velocity predictors. Comparison results are illustrated

in Section IV, followed by key conclusions in Section V.

II. PROBLEM FORMULATION

A. Control-oriented Power-split HEV Model

Power-split HEVs are dominant in the current HEV market

[14]. In a planetary gear set functioned power-split HEV, the

engine and MG1 (motor/generator 1) are connected to the

planet carrier and the sun gear, respectively. A torque coupler

is used to combine the ring gear with MG2 to power the final

drive. The kinematic constraint on the ring, carrier, and sun

gear angular velocities is given mathematically by

ωsS + ωrR = ωc(S +R), (1)

where S and R are the radii of the sun gear and the ring gear,

respectively. Angular speeds of the ring, sun, and carrier gears

are denoted as ωr, ωs and ωc, respectively. By neglecting the

inertia of the pinion gears and assuming that all the powertrain

shafts are rigid, inertial dynamics of the powertrain is derived

as

JMG1
dωMG1

dt
= TMG1 + FS, (2)

Jeng
dωeng

dt
= Teng − F (S +R), (3)

JMG2
dωMG2

dt
= TMG2 − (Taxle/gf ) + FR, (4)

where JMG1, Jeng and JMG2 are inertias of MG1, engine and

MG2, respectively; Teng = Tc is the engine torque; TMG1 =
Ts and TMG2 = Tr are MG1 and MG2 torques (positive in

motoring mode), respectively; F represents the internal force

on pinion gears; gf is the gear ratio of the final drive; Taxle
is the torque produced from powertrain on the drive axle. To

reduce the control-oriented model’s complexity, we disregard

the inertial dynamics, and use the steady-state values of (2)-

(4). MG2 torque and vehicle velocity are given by

ωMG2 =
gf

Rwheel

V, (5)

m
dV

dt
=

Taxle + Tbrake
Rwheel

+mg sin(θ),

−
1

2
ρACdV

2 − Crmg cos(θ), (6)

where Rwheel is the wheel radius; V is the vehicle velocity;

m is the vehicle mass; Tbrake is the friction brake torque;

g is gravitational acceleration; θ denotes the road grade and

is assumed to be zero; 1
2ρACd is the aerodynamic drag

resistance; Cr represents the rolling resistance coefficient.

At each time instant, the controller computes an optimal

split between the engine, MG1, and MG2 to minimize fuel

consumption. Fuel flow rate of the engine (ṁfuel) and power

transfer efficiencies for MG1 and MG2 (ηMG1 and ηMG2) are

extracted from empirical maps,

ṁfuel = ψ1(ωeng, Teng), (7)

ηMG1 = ψ3(ωMG1, TMG1), (8)

ηMG2 = ψ2(ωMG2, TMG2), (9)

where ψ1, ψ2 and ψ3 are corresponding empirical maps.

Upper and lower boundaries of the battery state of charge

(SOC) need to be specified to maintain the battery within a

safe operating region and extend its life [22]. For HEV energy

management, the SOC is modeled as a single state. Although

more sophisticated battery models have been developed to

describe battery dynamics [23], [24], the internal resistance

model is still the most prevailing model for HEV supervisory

control due to its simplicity, described as

˙SOC = −(Ibatt/Qmax), (10)

Pbatt = VocIbatt − I2battRbatt, (11)

where Ibatt and Qmax are battery current and maximum

capacity, respectively; Pbatt and Rbatt are batter power and

internal resistance; Voc represents the open circuit voltage.

Positive Pbatt denotes discharge. The battery in a power-split

HEV is connected to a bi-directional converter to supply power

or recuperate energy from the electrical machines. Terminal

battery power is described by

Pbatt = PMG1/(ηMG1ηinv)
kMG1 + PMG2/(ηMG2ηinv)

kMG2 ,
(12)

where PMG1 and PMG2 are MG1 and MG2 shaft powers,

respectively (positive in motoring mode); ηinv is the inverter

efficiency;

ki =

{

1 if Pi > 0
−1 if Pi ≤ 0

, for i = {MG1,MG2}. (13)

A complete description of the battery SOC dynamics can

be obtained from (9)-(13). Equations (1)-(13) summarize the

control model used for MPC. Throughout this study, MPC is

applied to a detailed plant model furnished by the QSS-toolbox

developed at ETH Zürich [25].
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B. Nonlinear Model Predictive Control

A hierarchical MPC [26] is employed for fuel consumption

minimization, formulated as a constrained nonlinear optimiza-

tion problem and solved by DP at each time step. The engine

torque and speed are selected as control variables. Denoting x
as the state variable, u as the control variable, d as the system

disturbance, and y as the output, the proposed control-oriented

powertrain model can be represented as

ẋ = f(x, u, d), y = g(x, u, d),

with x = SOC, u = [Teng, ωeng]
T

, d = Vpredict, y =

[ṁfuel, Pbatt, TMG1, ωMG1, TMG2]
T

, where Vpredict is the

future velocity sequence provided by a velocity predictor in

each control horizon.

Considering a one second time step (∆t = 1), at time step

k, the cost function Jk is formulated as

Jk =

∫ (k+Hp)∆t

k∆t

([ṁfuel(u(t))]
2
+ λO(t)) dt, (14)

where Hp is the prediction horizon length, which is herein

equal to the control horizon length [9]; O(t) is the engine

on/off switching time; λ is the penalty for engine on/off

switching. Additionally, the following physical constraints

must be enforced:

SOCmin ≤ SOC ≤ SOCmax,
Tmin
eng ≤ Teng ≤ Tmax

eng , ω
min
eng ≤ ωeng ≤ ωmax

eng ,
Tmin
MG1 ≤ TMG1 ≤ Tmax

MG1, ω
min
MG1 ≤ ωMG1 ≤ ωmax

MG1,
Tmin
MG2 ≤ TMG2 ≤ Tmax

MG2, ω
min
MG2 ≤ ωMG2 ≤ ωmax

MG2,
Imin
batt ≤ Ibatt ≤ Imax

batt , P
min
batt ≤ Pbatt ≤ Pmax

batt .

(15)

For HEV structures, the final battery SOC is requested to be

the same as the initial SOC,

SOC(T ) = SOC(0). (16)

In our study, the driving information of an assigned trip

task is completely unknown, which complicates the task of

satisfying (16) over the global time horizon via MPC. This

problem can be addressed by approximating a cost-to-go

function, or by regulating the terminal SOC reference in each

control horizon. The second approach is used in this paper.

Terminal SOC references in all control horizons are specified

to be SOC(0) to guarantee the battery SOC converges to the

initial value at the end of the trip. This approach is conservative

in utilizing battery energy, but effective in enforcing constraint

(16),

SOC(k +Hp) = SOC(0), (17)

where SOC(k+Hp) is the terminal SOC reference in control

horizon k.

The MPC controller is applied in the supervisory level of

the control architecture. The optimization task is solved using

DP when predicted vehicle velocities are provided in each

receding horizon. For compactness of notation, denote Vk =
V (k∆t). The control procedure is described as follows [27]:

• A horizon velocity predictor is used to estimate the

control horizon driving profile, based on current velocity

request Vk and historical velocities. Assume fp is the

velocity prediction function,

Vpredict = fp (. . . , Vk−3, Vk−2, Vk−1, Vk)

=
{

Vk+1, Vk+2, . . . , Vk+Hp−1

}

;

• Given Vpredict, calculate the optimal control policy min-

imizing the objective function (14);

• Apply the first element of the control policy. Feedback

states, and repeat the control procedure.

In this paper, we assume the target vehicle is equipped

without any radar, GPS or similar devices. The road grade

is zero and future driving profiles are completely unknown.

III. HORIZON VELOCITY PREDICTORS

Three horizon velocity predictors are investigated in this

paper: generalized exponentially varying predictor, Markov-

chain based predictor and artificial neural network based

predictor. The NN-based velocity predictor is implemented for

the first time in the HEV energy management problem, and is

compared with the other two approaches.

A. Exponentially Varying Velocity Predictors

The relationship between predicted future velocities and

total fuel consumption is complex. To obtain an intuitive

understanding of this relationship, exponentially varying future

velocities were considered in the related literature [28].

In each receding horizon, the exponentially varying horizon

velocities are formulated as

Vk+n = Vk × (1 + ε)n, for n = 1, 2, ..., Hp, (18)

where Vk is the initial velocity at time step k, ε is the

exponential coefficient. Different ε values are considered to

examine the sensitivity of fuel economy to the predicted future

velocities.

B. Markov-chain Velocity Predictors

Markov-chain is an important methodology used in model-

ing driving velocities or power demands in HEVs [12]-[15]. In

this study, the Markov-chain states and emissions are defined

on discrete-valued domains given by vehicle velocity V (0

to 36 m/s) and vehicle acceleration α in (−1.6 to 1.6 m/s2),

respectively.

Note that the driving behavior studied in this paper is com-

prehensive in an average sense. Thus, the Markov emission

probability distribution is computed from a comprehensive

dataset. Eight different driving cycles are included in this

dataset, considering both highway and urban driving scenarios.

Six of the sample cycles are standard driving cycles and the

other two are real collected driving data. Suppose the vehicle

velocity and acceleration are discretized into p and q intervals

and indexed by i and j, respectively. Velocity at time step k is

Vk+n−1, and next step acceleration is αk+n, where n indexes

time in the receding horizon. The Markov-chain process is

defined by an emission probability matrix T ∈ R
p×q with

[T ]ij = Pr[αk+n = αj |Vk+n−1 = V i], (19)

for i ∈ {1, . . . , p}, j ∈ {1, . . . , q} and n ∈ {1, . . . , Hp} [29].

Suppose p = 60 and q = 60, the probability matrix extracted

from the sample dataset is shown in Fig. 1.
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Fig. 1. One-stage Markov emission probability matrix (60×60).

A random Markov-chain model can update its emission

probability matrix online by utilizing historical driving data

[29]. To reduce complexity and ensure fairness in the compar-

ison, we do not consider such adaptive Markov chain models

in this paper. The complexity of the Markov-chain model will

also increase if more conditions, such as temperature, position

and road grade, are considered.

The precision of Markov-chain velocity predictors relies

heavily on the emission probability matrix. To increase the

prediction accuracy, 1-stage Markov-chain process can be

extended to multi-stage [30], using the following probabilities

Pr[αk+n = αj |Vk+n−1 = V i1 , (20)

Vk+n−2 = V i2 , . . . , Vk+n−s = V is ]

where s is the Markov-chain stage number. When the stages

increase, more historical speeds are needed for computing the

probability matrix, and the number of Markov states increases

exponentially. Thus, the resolution of the emission probability

matrix can be improved, leading to higher velocity prediction

precision. In the meantime, the sample velocity dataset for

generating multi-stage Markov-chain processes needs to cover

all possible input states. This requirement is inevitable and

may cause both the size of the emission probability matrix

and the online computation to grow substantially.

C. NN Velocity Predictors

NNs can be trained to learn a highly nonlinear input/output

relationship by adjusting weights to minimize the error be-

tween the actual and predicted output patterns of a training set

[31]. Three different types of network structures are examined

in this paper: back propagation (BP-NN), layer recurrent (LR-

NN) and radial basis function neural network (RBF-NN).

A three-layer BP-NN has a hierarchical feed forward net-

work structure, which is also the basis of other network

architectures. The input layer is used to receive and distribute

the input pattern, followed by a hidden layer that depicts the

nonlinearities of the input/output relationship. Output layer

yields the desired output patterns. For a BP-NN, the activation

function is hyperbolic tangent sigmoid function. The basic

formula of BP-algorithm is

a1 = tan sig(n) =
en − e−n

en + e−n
, (21)

n = Wa0 + b,

where a1 and a0 are neural outputs of the current layer and

prior layer, respectively; n is accumulator output; W is weight

and b is bias. The literature shows that a three-layer BP-

NN with a sigmoid function as the activation function can

approximate any nonlinear systems with arbitrary precision.

The main disadvantage of BP-NN is that it has a slow learning

convergence and is at risk of getting trapped into local minima.

With a self-connected hidden layer, the LR-NN has an

internal state, which allows the network to exhibit temporal

dynamic behavior [32]. However, this may increase the train-

ing convergence time. The basic formula of the recurrent layer

in a LR-NN is

a1(t) = tan sig(n(t)) =
en − e−n

en + e−n
, (22)

n(t) = Wa0(t) +W ′a1(t−∆t) + b,

where W ′ is the feedback weight; a1(t −∆t) is the delayed

output at time (t−∆t).
RBF-NN is a widely used feed forward network for time

series forecasting. In the standard approach to RBF-NN im-

plementation, a radial basis function needs to be predefined at

first. Then, the number of hidden layer neurons is determined.

A RBF-NN usually has better convergence speed and perfor-

mance compared with BP-NN. In our simulation, the Gaussian

function is used as the radial basis function in the hidden layer

to activate the neurons, formulated as

a1 = exp

(

−
‖ n− c ‖2

2b2

)

, (23)

n = Wa0 + b,

where c is the neural net center and b is the spread width.

Both c and b can be fit using a gradient descent method.

For velocity prediction purpose, the inputs of neural net-

works are historical velocity sequences, and the outputs are

predicted horizon velocity sequences. Each input-output pat-

tern is composed of a moving window of fixed length, which

can be expressed as

[Vk+1, Vk+2, . . . , Vk+Hp
] = fNN(Vk−Hh+1, . . . , Vk), (24)

where Hh is the dimension of the input velocity sequence;

fNN represents the nonlinear map function of an NN-based

predictor. In an MPC framework, the prediction horizon length

is Hp, so that the NN velocity predicting process is Hp-step

ahead.

The size of the neural network depends on the number

of input nodes and the number of hidden nodes. Here we

only focus on evaluating the speed prediction performance of

neural networks with different numbers of hidden layer nodes.

The same driving dataset which is used for Markov emission

probability computation is used for networking training. About

85% of the data is employed as training sample to establish the

network and the rest 15% is used for performance validation.

IV. SIMULATION RESULTS AND COMPARISON

In this section we provide a comprehensive comparative

analysis of the three velocity forecasting methods. Our dis-

course begins with an explanation of the training and valida-

tion data. Then a definition of performance metrics are defined.
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Fig. 2. Sample (training) and testing (validation) dataset. Real HW means data real life highway driving trip; Real UB means real life urban driving trip.

The eight driving cycle samples used for training include

four highway types and four urban types. The same data

is used both for probability computation in Markov chain

approach and network training in NN approach. A different

set of eight driving cycles are used for testing and comparing

performance of the velocity predictors, which are standard

driving cycles HWFET, WVUINTER, UDDS, WVUSUB and

real collected driving data Real HW2, Real HW3, Real UB2

and Real UB3. The real collected cycles in sample and testing

data are from [33], [34]. All sample and test cycles are

concatenated for ease of presentation in Fig. 2.

The vehicle parameters and efficiency maps are obtained

from the Toyota Prius HEV model in Autonomie [35]. Sim-

ulation was performed on a personal computer with an Intel

Corel i7-3630QM CPU @2.4GHz. The prediction and control

horizon length Hp is specified to be 10, and the step compu-

tation is completed within 0.75 seconds. The initial SOC and

final SOC in all the simulations are set as 0.60. Upper and

lower SOC bounds are 0.8 and 0.3, respectively. Simulations

for eight testing trips are conducted. Detailed results for the

UDDS testing cycle are provided in this section, along with

the performance distributions across all eight validation cycles.

The following four metrics are used to assess the tested

velocity predictors:

1) Average root mean squared error (RMSE, in m/s) of

the predicted velocities in all of the control horizons;

2) Online computation time Tcal (in microseconds) of the

velocity prediction process at each time step;

3) Violating frequency e of the velocity and acceleration

constraints from the predicted velocity sequences;

4) Compensated fuel consumption (in grams), which is the

most important metric to evaluate vehicle fuel economy.

Due to the property of prediction, MPC can’t guarantee

an exact final SOC constraint at the end of a global time

horizon. For fair comparison in the following analysis, the

produced fuel consumption results are compensated by con-

verting the final battery SOC deviation into equivalent engine

fuel. Simulation results for the UDDS cycle are illustrated

from subsection A to D. The same simulation procedure is

TABLE I
SIMULATION RESULTS OF EXPONENTIALLY VARYING VELOCITY

PREDICTOR FOR UDDS

No. ε SOC(T ) RMSE Fuel Tcal

1 -0.03 0.5851 3.6261 259.13 0.023

2 -0.02 0.5830 3.4514 257.26 0.026

3 -0.01 0.5981 3.3790 253.18 0.032

4 0 0.5989 3.4439 256.99 0.034

5 +0.01 0.6154 3.6707 260.75 0.029

6 +0.02 0.6288 4.0667 268.33 0.023

(Fuel consumption is the value after compensation.)

conducted for the other seven testing cycles. A comprehensive

fuel consumption performance comparison is demonstrated in

subsection E based on all simulation results.

A. Results of Exponentially Varying Predictor for UDDS

As shown in Table I, improved fuel efficiency can be

achieved when the predicted velocity decreases slightly, as

opposed to an increase or a large decrease. Terminal SOC of

MPC simulation becomes larger as ε grows. This is because

when the predicted velocity changes aggressively, the engine

tends to provide more power. Thus, more engine power will

be absorbed by the battery through the generator. The average

RMSE reaches its minimum when ε = −0.01, yielding the

best fuel economy.

B. Results of Markov-chain Predictor for UDDS

Different types of driving cycles are included in the Markov

probability generation dataset: four highway types and four

urban types. In this case, the driving behavior we studied is

comprehensive and blended, which is the main reason that

the 1-stage Markov-chain model has the worst performance

in characterizing future horizon velocities, as shown in Table

II. The 1-stage model is, however, the most computationally

efficient.

For multi-stage Markov-chain models, one requires an often

prohibitively large set of driving data to identify the transition
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TABLE II
SIMULATION RESULTS OF MARKOV-CHAIN PREDICTOR FOR UDDS

Stage SOC(T ) RMSE e (%) Fuel Tcal

1 0.5755 3.6678 0 273.30 1.647

2 0.5840 3.2328 0 252.10 2.821

3 0.6219 3.2144 0 247.10 2.919

4 0.6132 3.1436 0 248.86 2.831

5 0.6181 3.1133 0 245.39 2.797

matrix. This phenomenon exemplifies the poor applicability of

multi-stage Markov-chain velocity predictors. To address this

problem in realistic implementation, a sufficiently rich sample

database is required. In our work, the emission probabilities

for unavailable high-stage Markov states are replaced by the

ones derived from lower-stage states to overcome the lack of

a large dataset. The maximum Markov stage in this simulation

is five, since when the stage number is larger than five, the

extracted probability matrix changes negligibly.

Simulation results of Markov-chain velocity predictor for

UDDS testing are shown in Table II, from which we can see

that more stages results in smaller RMSE. Hence, increased

fuel efficiency can be achieved via multi-stage Markov-chain

velocity predictors. However, in real-world implementation, it

is usually difficult to guarantee that all possible Markov states

be contained in the probability generation dataset. Moreover,

the magnitude of the probability matrix for a multi-stage

Markov-chain model scales exponentially. Therefore, Markov-

chain models with greater than 3 stages are rarely used. Note

that adaptive or self-learning improving approaches are not

considered here for fair comparison of the three velocity

predictors.

C. Results of NN-based Predictor for UDDS

For NN-based predictors, the dimension of the input, Hh,

is specified to be 10. Although more neural nodes result in

higher training precision, excessive complexity can lead to

over-fitting. Table III shows the comparison results between

different types of neural networks with different numbers of

nodes. Note that the error caused by velocity/acceleration

constraint violations (e) of the predicted horizon speed is

included in the average RMSE computation.

The RBF-NN structure achieves better fuel economy than

the LR-NN or BP-NN velocity predictors, despite a similar

RMSE, since there are substantially fewer constraint violations

TABLE III
SIMULATION RESULTS OF NN-BASED PREDICTOR FOR UDDS

Net-Node SOC(T ) RMSE e (%) Fuel Tcal

BP-20 0.6101 2.3221 914 (6.67%) 233.92 0.218

BP-50 0.6074 2.2958 528 (3.85%) 230.46 0.214

LR-20 0.6193 2.2842 819 (5.98%) 233.49 0.214

LR-50 0.5990 2.2851 933 (6.81%) 229.16 0.216

RBF-50 0.6158 2.2811 26 (0.19%) 229.81 0.219

RBF-100 0.6037 2.2747 24 (0.18%) 228.51 0.208

TABLE IV
VELOCITY PREDICTOR COMPARISON FOR UDDS

Methods SOC(T ) RMSE e (%) Fuel Tcal

DP 0.6000 – – 216.39 –

ECMS 0.6877 – – 242.40 –

OECMS 0.6004 – – 217.05 –

DMPC 0.6014 0 0 226.19 –

-0.01 EV 0.5981 3.3790 0 253.18 0.032

1-stage MC 0.5755 3.6678 0 273.30 1.647

5-stage MC 0.6181 3.1133 0 245.39 2.919

RBF-100 0.6037 2.2747 24 (0.18%) 228.51 0.208

(e). Besides, RBF network structure needs much less training

time and tuning effort.

D. Velocity Predictor Assessment

DP, deterministic MPC (DMPC) and ECMS are bench-

marks. In DMPC, the controller has full knowledge of the

horizon velocity profile at each time step. In ECMS, the

equivalence factor is tuned from the sampling cycles and

implemented in the testing trips as a constant (-357.5). To

fully exploit the potential of ECMS, we also tuned the optimal

equivalence factor for each testing trip through trial-and-error.

This well-tuned ECMS is noted as OECMS and demonstrated

for comparison.

The 1-stage and 5-stage Markov-chain velocity predictors

are selected to compare with the best velocity predictors from

the exponentially varying and NN types, denoted as 1-stage

MC, 5-stage MC, -0.01 EV and RBF-100, respectively. These

four simulations together with benchmark results are shown

in Table IV.

1) Prediction precision: As can be seen from Table IV,

the average RMSE of the 1-stage MC velocity predictor is

larger than that of the -0.01 EV velocity predictor. This means

that the 1-stage MC process behaves poorly in modeling

comprehensive and blended driving cycles. The prediction

precision from 5-stage MC predictor is improved by 16%

compared with 1-stage MC, proving that employing more

states can increase the prediction precision. Consequently, the

average RMSE of RBF-100 is the minimum one as opposed

to the other approaches, although the constraints are violated

slightly by 0.18%. This indicates that the RBF-100 predictor

is preferable in modeling comprehensive driving behaviors.

The nature of each prediction method can be seen visually

in Fig. 3. This figure elucidates how a 1-stage MC is too

short-sited to capture velocity profiles longer than a few time

steps. One can also observe how the 5-stage MC roughly pre-

dicts constant acceleration. In contrast, the RBF-100 captures

micro-trip-like behaviors better than the other three.

2) Fuel consumption: From Table IV, we can see that the

RBF-100 predictor is the most energy-saving predictor, which

is reasonable as it achieves the minimum prediction precision.

Fig. 4 shows the SOC trajectories for DP, DMPC and the

selected MPC controllers given in Table IV. The difference

between the DP and MPC-based trajectories is due to DP being

a global optimization; whereas the MPC controller yields a
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locally optimal solution for each control horizon. With the

same terminal SOC constraint in each receding horizon, the

SOC trajectories of RBF-100 MPC and DMPC are overlaid.

The SOC trajectory for the 5-stage MC approach differs

noticeably from the DMPC benchmark, due to poor velocity

prediction.

3) Computation time: From Table IV, it is obvious that

the Markov-chain method is computationally heavier than the

NN-based and exponentially varying methods. This is because

the process of generating a stochastic Markov emission needs

additional calculations to form the probability distributions.

4) Constraint violation: The exponentially-varying and

Markov-chain approaches do not violate the velocity and

acceleration constraints. In the RBF-100 case, the constraints

are violated 24 times (0.18%) in the UDDS cycle. The

constraint violation pertaining to the RBF-100 predictor is thus

negligible.
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Fig. 5. Normalized fuel consumption and final SOC comparison. SE is simple
ECMS; OE is well-tuned OECMS; DM is DMPC.

E. Summarized Simulation Results

Similar outcomes are achieved for the remaining seven tests.

Fig. 5 shows the average values and standard deviations of

normalized fuel consumption and final SOC. DP and OECMS

produce the optimal/near-optimal results if the driving profiles

are known a prior. NN-based predictors generally maintain the

average fuel optimality over 92%, which is considerably better

than the other two predictors and fairly close to DMPC, both

in terms of average and standard deviation. Compared with

simple ECMS, MPC with NN-based velocity predictors saves

more than 7% fuel, and guarantees the final SOC constrained.

Furthermore, the 4% gap between DP and DMPC fuel

economy is because DP is a global approach, whereas DMPC

conservatively optimizes the fuel consumption locally. Com-

pared with DMPC, the extra fuel consumption caused from

velocity predicting errors varies from 2% to 21% based on

different methods. Note these results are evaluated across both

emission certification cycles and real-world drive cycle data.

Consequently, we conclude the NNs provide a promising blend
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of prediction capability and computational efficiency for MPC

energy management in HEVs.

V. CONCLUSIONS

This paper presents a comparative study of three classes of

velocity predictors for MPC-based energy management in a

power-split HEV: generalized exponentially varying, Markov

chains, and artificial neural networks. The NN-based hori-

zon velocity predictor is proposed, and the sensitivity of its

prediction precision on different NN structures is examined

to elucidate a successful template. Generalized exponentially

varying and Markov-chain velocity predictors are systemat-

ically described and compared with the NN-based predictor

in terms of the prediction precision, computational cost, and

fuel economy. Results demonstrate that NN-based velocity

predictors provide the best overall performance across a range

of certification and real-world drive cycles. The study provides

better understanding for predictive HEV energy management.
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