K

4"(‘

REFERE_ = IC/66/90

(\
o’%\
-~
-
ey

22 AUG '965 .?2

INTERNATIONAL ATOMIC ENERGY AGENCY

INTERNATIONAL CENTRE FOR THEORETICAL
PHYSICS

VELOCITY SPACE DIFFUSION
FROM WEAK PLASMA TURBULENCE
IN A MAGNETIC FIELD

C. F. KENNEL

AND
F. ENGELMANN

1966

PIAZZA OBERDAN

TRIESTE







16/66/90

INTERNATIONAL ATOMIC ENERGY AGENCY
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

VELOCITY SPACE DIFFUSION FRCH WBAK

PLASMA. TURBULENCE IN A MAGNETIC FIELD.

¢ .F. KENNEL*
and
F. ENCELMANN**

(This ig a revised version of 10/66/17 issued in March 1966)

TRIESTE
July 1966

4o bo submitted to "Physics of Fluids"
*pgrmanent address: AVCO-Everett Research laboratory,
Everett, Mass., USA
*#pormanent address: Laboratorio Gas Ionizzati, EURATOM - CNEN,
Frascati (Rome), Italy







ABSTRACT

We consider quasi~linear velocity space diffusion for waves of
any oscillation branch propageting at an arbitrary angle to a uniform
magnetic field in a spatially uniform plasma., The space-averaged
distribution function is assumed to ohange slowly compared to a
gyroperiod and characteristic times of the wave motion. We neglect
non=linear mode coupling. An Helike theorem shows that both resonant
and non-resonant quasi-linear diffusion forces the particle distri-
butions towards marginal stability. Creation of the marginally stable
state in the presence of a sufficiently broad wave speoctrum in general
involves diffusing particles to infinite energies, and so the
marginally stable plateau is not accessible physically, except in
special casmes, ‘

Resonant particles with velocities much larger than typical
phase velocities in the exoited spectrum are scatiered primarily in
pitch angle about the magnetic field. Only partiqlés with velocities
the order of the wave phase veloclties or less are scattered in
energy at a rate comparable with their pitch angle scattering rate.




VELOCITY SPACE DIFFUSION FROM WEAK PLASMA TURBULENCE IN A4 MAGNETIC
FIELD

l. INTRODUCTION

The theory of weak plasma turbulence has recently undergone
considerable development'1_13 « Much of this extensive development
clarified the formal nature of the theory. The present paper makes
no contribution to the basic understanding of quaasi-linear theory, but
attempts to draw general conclusions assuming the correctness of the
present theoretical approach with the aim of possibly being useful in
the interpretation of experimental phenomena. Therefore, we Temove
some restrictions which were unimportant in investigations of the formal
structure of weak turbulence theory but which greatly simplified the
algebraic manipulations. These restrictions involve mainly the nature
of the waves considered, and are not basio mathematical restrictions

inherent in the weak fturbulence approximation.

One such limitation was the usual but by no means universal
congideration of turbulence only in electrostatic wave modes. DBecause
of the very low particle energy densities (relative to magnetic)
commonly encountered in laboratory devices, elecirostatic waves may
play the dominanit role in the laboratory. Hoﬁever, the investigations
of the Earth's immediate environment in space using artificial Earth
satellites have created a new class of plasma cbmervations in which
electromagnetioc waves such ag whistlers and ion cyclotron waves most
certainly play & role., Thus we consider electromagnetic as well as

electrostatic wave turbulence.

In addition, special propagation directions, in general parallel
to the magnetic field, were usually ;hosen for analytic simplicity.
Clearly, waves propagating at an ahgle to the magnet;c field will be
present in actual experiments. The removal of the abdve two

restrictions are the basic effects we investigate.

The basgic plasma is assumed nonnrelativis%ic, collisionless,
infinite and spatially unifomm ih the absence of wave excitation, and
immersed in a static magnetic field of constant magnitude with no
curvature, We do not restrict the excitation speotrum, except to
roquire that wave amplitudes be small. However, we investigate only
the form of the lowest order turbulent welooity diffusion, disregarding
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the direct non~linear coupling hetween waves., This may enter spsen.

tially into the detsrmination of the spectrum, and, as previous work 7,11

indicates, it can be very important for how the system develops and
finally is stabilized.

There are physical systems for which non~linear mode couplings
can be neglected. For instancs, convectively unstable waves may
propagate out of finite systems before mode~-mode couplings can get
offective., This is the case for the-whistler turbulence in the magmeto-
sphere 14 + Another example is provided by situations where resonant
mode coupling vanishes as in the case of Alfvén waves propagating
parallel to the external magnetic field., The diffusion equation derived
here will adequately describe the evolution of the disitribution function
when the exoitation spesotrum is known. This corresponds 1o a complete
solution of the problem, if the motion of the waves can be described
in linear approximation; otherwise it forms one part of a more complex

plcture.

In order to derive the guasi-linear -diffusion equation (Section
2), it is necessary to asgume that the distribuiion function averaged
over space ohanges slowly in the time scales associated with the
motion of the waves. FPor magnetioc fields so strong that the gyration
frequencies of the particles are larger than the frequencies and
growth rates of the waves, this implies that there is no stirong
dependence of the averaged distribution function on the azimuth of
velocity around the magnetic field. Only this case will be considered
in the sequel. It comprises, on the one hand, all situations in
whioh the spectrum of the excited modes is likewise approximately
axially symmetric. On the other hand, it also contains cases of
strongly anisotropio spectra, provided that the fime variation of the
averaged distribution is small during one particle gyration. This
requirement is similar to that used in Chewncoldbérge:—Low theoxry.

We leave the diffusion equation inrterms of the polarigatiocns
of the waves in the excited spectrum, Findiﬁg_the appropriate
expression for a given turbulent mode requires a solution of the linear
dispersion relation to find the polarizations. However, the general
diffusion equation for arbitrary polarizations is remarkably simple,
In partioular, the strings of Bessel funotions, whioch usually plague
the analysis for waves propagating at an angle td the magnetio field,




have been reduced to a pomitive definite form.

Interestingly enough, this apparently undiscriminating approach
leads to0 several interesting conclusions, which are, albeit of a
qualitative nature, quite general because both the diffusion operator
and the diffusion coefficient, when expressed in terms of the electric
field polarization amplitudes,do have simple forms. In Section 3, we
uge an H=-theorem to demonstrate that unstable plasma waves force the
particles' velooity distributions to a marginally stable state. Since

ws do not specify the magnitude of the growth rate,
this is true for both resonant and non-resonant instabilities.

In Section 4, we discuss the resonant limit, where the growth
rates are all taken émall. Here the diffusion is even simpler, being
characterized by a single velocity space operator, for a given wave
number, throughout velocity space. The characteristics of this
operator are Jjust the orbits of single particles interacting with
single wavea. Qualitative arguments based on our knowledge of these
characteristics suggest that reconstruction of the particles' initial
velocity distributions in the form of 5, 'plateau) ordinarily requires
that particles diffuse from finite to infinite velocities, and that the
rigorous plateau defined by the Hwtheorem is therefore not physically

accessible, except in special circumstances.

In Section 5;"we investigate the conditions under which an
arbitrary turbulent wave spectrum soatters particles in pitch angle
relative to the magnetic field and when it scatters particles in energy.
Particles with velogities ﬁuch larger than typical phase velocitics in
the excited spectrum are scattered primarily in pitch angles, whereas
only particles with velocities of the order of phase wave velocities or
less are energizedg at the same rate they are ascattered in pitch angle.
We almo suggest that gquasi-plateaus, charaocterized by slow diffusion

rates, may exist.

Because it is difficult to draw rigorous conclusions at this
level of generelity, many of our results are qualitative. However, we
hope these may gerve as a guideline for future more specific theoretical

work and, possibly, for the interpretation of experiments.




2, DERIVATION OF THE QUASI-LINEAR DIFFUSION EQUATION

We outline only briefly the relatively standard derivation of
the quasi-linear diffusion equation. The Vlasov equations describe
the evolution of the one~particle digtributions f:(ﬁ.){ ,+—) for a two~
component plasma of electrons and singly charged ions, dencted by - and

+, Trespectively:

13 * ¥
- + V'V T E JE+van[r ¥ o . 2.1
= § SRR 2 (2.1)

X and V denote configuration and velocity space coordinates, respec—
tively, and t the time, e is the elementary charge, M, the mass either
of ions (+) oxr electrons ( -~ ), and ¢ the speed of light. E(x;t)
and g(ﬁ ,t)  are the electric and magnetic field vectors. Maxwell's
equations using the current and electric charge moments of the particle
velocity distributions as scurce terms complete the set of equations,
The generalization to a plasma consisting of more than two components

or with multiply charged ions is straightforward.

Quasi-linear theory separates ,ft, E . and ,[3, into space indepen-
dent components and small, rapidly fluctuating parts due to waves.
Denoting the fluctuating components of the distribution function by 6f1
with Sdsx §ft =0  and Fourier-analysing in space, we obiain

. ; - .
{t (3l¥|£] ® ﬂt(\.{.ﬁ) + g:l.‘;f:); Fu-.‘é 645 (yﬂ{) (2.2a)
and analogously, |
: 3 . |
Bix,4): B, + 5';--"- X B (4)
(2.,2b)

¢

E(x¢) = 5"_‘72‘ FEE (9

LY

ig the volume of infegra‘tion. The plasma under consideration is
infinite, spatially homogeneous in the absence of wave excitation, and
immersed in a uniform static magnetic field B,, aligned along the Z -
axis of a Cartesian coordinate system., There is no static electrio
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field, The condition that the time dependence of f*; E and 3 split
up into a2 rapid variation due to waves, and a slow variation due to the
reaction of the wave digitribution back on the space-averaged velocit&

distribution is that all wave amplitudes remain small.

We firat discuss the linear fast time scale properties of Jfk y
depending upon the instantaneous valus of % Lv t) , and then derive the
quasi-linear diffusion equation for the slow evolution of 3# It is
convenlent to transform to oylindrical coordinate systems in velocity
and wave number space, using the magnetic field direction as the axis:

sz- V.I.C&q’; KX‘ K‘COS"'P,
Vgs Vasng, Kyz K$inP, (2.3)
VI a \/" kzi Kn .

3
Since there are only two basioc direotions for the linear wave problem,
those of the static magnetic field, B_ ¢, , and of the wave vector, 5 ,
the dispersion properties must be independent of ¥ . However, due, for
ingtance, 1o unsymmetric initial conditions or wave gources, the wave
digtribution may be wnsymmetrically distributed about the magnetic field

direction.

Becausge the fast oscillation frequenciés can be of the order of
the gyro-frequencies, it is useful to express the wave electromagnetio
field component perpendicular to B, in terms of complex polarization
vectors denoting right and left-handed rotation (v, k) about 0B,, and
of plane components parallel ( 1) to B, , since in the limit of
parallel wave propagation the linear eigénmodes involve pure right-hand,

1eft-hand, or parallel components aloneg

2 ExaiE L BHLB)')

65 3 ( :;-?. Y)K , 65 3' ( ﬁ- 5 )

¥ [EguE _ r B'«-'bﬂr) 2.4
- (), e+ (B2h)

1

é: = (E‘L)ﬁ‘ . : (3; = (B‘.,:)5




'
We define &i and 65 a0 that they respectively repressnt lefte
hand and right-hand components, for positive real part of the frequency.

If the real part of the frequency is negative, the polarization
properties are reversed. Because of the axial symmetry of the wave
properties, Et and E; can be simply rotated by the angle V and the
basic eigenvector EK for a single wave (K,,K,,Y) has the form

¢, vt
Eﬁz é: e-\-‘»‘? (2.5)

s

~
In this way the eigenvectors and dispersion relation for Y}# 0 can be

obtained direotly from the two-dimensional ocase, YW= 0, usually treated.

The Vlasov equation (2.1), after Fourier analysis and transform-
:ation to cylindrical velocity and wave number space coordinate systems,

may be symbolically writiten as follows:

Lu CS';H = Aj%* * Y ABK (%*’ 54 +'.§: 5§:il<‘

2 cm £ ~ ~ o~

and

A ; . . -
L; s .é_t* L (K“V.,* KLV¢COSC¢"QP)) -O.t D/a¢ )

" s
1% 1o

A .
whezre [ denote the operators

L S

_ | (2.7)
R S PRI LR Ty N

~ K
Ma ~
< oV

b

fly=te Ba/H:C is the gyrofrequency for each species. Note that
‘Q'*.' contains the sign of the charge. '

The oonvolution term in (2.6 ), which has been explicitly sym=-
metrized, is formally second order in the wave a.mplitude and represents
non-linear mode-mode couplings, which will be'negleoted in this
analysis. We solve now for the linear waves on the fast time scale
by treating ?5 as conetant in time, a procedure formally identical to
that in ordinary linear theory. Then a/&t may be replaced by -LV!& .
where 'V!s is the complex wave frequency, \)i =Wy & i'Y.'S. , and w.'f. and Yff,
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e
are both real. | * becomes, to lowest order

4
k

L*s.Vn‘ a - 0N kv, cos (b-w)) -9, %4,

el N d- Kovigm () 2 + ¢ (Thé=¥av g (p-3))
= =8y exp S - 3 |S*P
L1y LT

’ (2.8)
with %K = \)k -k Ve

The relation between Vk and Kk must be found from the linear
dispersion relation for the wave mode of interest. The condition that

»

all physical quantities be real will then lead to the relation Vi = -V__k .

Inverting (2.6), we find, to lowest order,

Q
~A, B2y Y W RVPAN )| G EWINS Y4 ¢ W URAPRIA PR
PR VN | T
At ¢ ' |
- P & (2.9)

-4 -
where (L 7) is eagily found from the second form of Eq. (2.8).

Vk is supposed to have at 1east a small positive imaginary part which

-4
ensures the convergence of (L K, % ) y and causal solutions of the

linearized Vliasov equation. ThlB means that only unstable (Y, > 0 )
modes are explicitly oconsidered, though da.mped modes could be included
by proper analytic continuation of the resulis for Yk £0. (See also

I.B. BERNSTEIN AND F. ENGELMANN 13 )+ The Bessel func‘tlon identity

xp i LAY an(@-w)} '2: A (K‘V*) exp E ‘-"‘-("?“") (2.10)

Nz=¢

A

x -4
further simplifies (L K, ) to

~ 4 )--‘-* _ E Jo. T exp{l(h_m)q;_h(fs-mﬂi)éi k

L .
( K,V e Ky : Ly P (2.11)
. | 4o icx P{L o n;nﬂ*)‘f’}
3
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J is an ordinary Bessel function of integral order, with argument

n

v

:%rﬁ « Henceforth the arguments will be suppressed; which particle
¥ .

species is being referred to will usually be clear from the context.

Using Paraday's Law to express wave magnetio fields in terms
of wave electric fields, and considering only the fast time acale,
where'QBt -7 -LVK s We arrive at the following form for P:

- RCALY) LR L PPN
-r;:_-.e‘- iéﬁe (Gr*ﬂ‘ BA ) K.LG-‘K +-,_J_;; )
' —U‘Z ~ vI(V_L VL /aq)

- Q L) { ,-.‘b.q, Ly +‘UW>D li
*E{L"&(exe‘ & ), é%":,§ (2.12)
d \{5 . Vo !

where we, have abbreviated the following differential velocity space

operators
Gy= (- K)o, » MY o2 k]
5 Vi oV YV, OV T 73\6.~ .;;x B
) (2.13)
A

. VO
*4 = M /g‘ﬁ.-'vg’é%;\vh

Notice that ﬁ is & gradient in pitch angle relatlve to the magnetio

field. Thus, we have solved for 6f5 in terms of 3 , and the wave

polarizations, Now, we find an expression for ?he rate of change of
%! « Writing the space-averaged Vlasov equafion, and introducing

Fourier transforms, ons has




(2.14)

where wWe have substituted the linear expression for Sf in the

r
K
convelution term.

Observe the formal similarity beiween Eg. (2.14) above and those
for the diatribution functions in the so-called Chew=Goldberger-Low, or
small Larmor radius a.pproximation‘15 + In that theory, all changes are
coneidered small over space scales comparable with particle Larmor
radii or time scales comparable with typical gyroperiods. Therefore,
the Larmor radius and gyroperiod are convenient small expansion para-—
meters. The LarmoT orbiting of particles about the magnetic field is
go rapid that all inhomogeneities in the ¢-distribution of particles
smooth out on the macroscopic scales, and the distribution functions
are independent of ¢ to lowest order. Here the actual distribution
may have rapid wvariations, dus to the waves. However, the space-~
averaged distribution funotions gt have been assumed to be effectively
congtant over times of the order of gyroperiods and characteristic wave
periods in accordance with the asgumed low excitation of waves. Conse-

~quently, for consistency, the ¢ dependence of 31 must also be weak and
it is reasonable to look for an expansion of‘gt in powers of 1[Q§,

t £ 1 A -
¥ *% * 7, %1+0(‘9_i) . | (2.15)

Substituting Bq. (2.15) into Eq. (2.14) and usihg the assumption that
the wave background croates only a slow time variation in ?:;, we find

to loweat order

+
Ej’_o. = 0 . (2.16)
¢
- 10 -
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Thue the lowest order spatially averaged distribution function
is independent of Larmor phase #: » Basioally, a particle has time to
make many gyro-orbits about the magnetio field before it diffuses a
significant amount. By the same reasoning, even if the turbulent
interaction between waves and particles were limited to a given
localized region of ¢ and ¥ , all particles would gyrate many times
through the turbulent interaction region and the turbulence would
therefore affect particles with all values of qﬁ elmost equally. Thus
the corrssponding diffusion is two-dimensional, since c)gj/acﬁ is
always zero. The condition that the expansion (2.15) be valid here is
that the mean diffusion time for all particles be long relative to
the particles' gyropericds. Hence, in this case the theory is useful
in practice only if there are no waves with growth rates much larger
than the gyrofrequency, since these reach large amplitudes, causing a
considerable gﬁ-dependent diffusion, beforse the particles have a
chance to complete one gyro-orbit. On the other hand, when the
excited wave spectrum is axially symmetric, the diffusion is itwo=
dimensional in any case and thus preserves an initial axial symmetry

of (},i; for all times.

The time dependence of 9-;' is still undetermined by Eq. (2.16)
and we must go to next order to find the variations in 3'-:- dus to the

wave excitation:

. 33: 33: e Py AD 5: 1
Q@ o A E’i’m‘i wrPEg L ean

The physical requirement that all"%i be periodic in ¢ , so
that averaging from Oir 277 in 43 annihilates the unwanted higher order

term, leads to the following Larmor-phass-averaged egquation:
R _

+ T ’
3 RNTY O Ar +
\ K -
an WU, (o) ' ’

Henceforth, we work only with the lowest order ;ﬁ-independen‘t part of
the distribution, and therefore drop the ¢ subscript notation. Then

+
6f % simplifies considerablyj from Bgs. (2.9), (2.11) and (2.12) we
find

-1l -



(2.19)

¥
Here E; x is the following composition of wave fields and Bessel
p DA

functions: - a2 4 W
t -
E'n,ls £ g!s e.H J;Hl + els € v J-n-:t
NS - — (2.20)
14
d Kh..‘.’) is the following operator: 7
» o »
or 20 b Vg, - Teende y
" K | aV,, VeV Vy v5 Vi (2.21)

where in the second form we have explicitly separated terms with and

without the resonance faotor A -nfl.,.

Noting that in cylindrical coordinates -k = (k- k,, Y+u)
and that wave fields are real, so that E,?-k = E? and B K = B* .
~ ~ e

we find ( : X .
L '
€ ¢’ ‘v.+v)= - (6;) A (€§ Q‘W) )
e (e AL,
E-¢ < 2 - (égt*ﬂﬂ ) (2.22)
P K
¢, : (Gy) .

Using these relations and V Lk = -V Kk 5 we find F = (ka )* as well
as 6f (Sf*k) and (D b) (\)M‘)"i 8o that the quasi-linear
dlffuslon term in Eq. {2.,18) is pure real., Since Eq. (2.18) involves
an average fromO4sr A9 in the Larmor phase ¢ , the terms i 3/0?5 :Ln P'
may be integrated by parts; this is equivalent to replacing et ; a/a¢

n? and ¢ 3/3¢ by 0. The modified operator Q K resulting
from theas replacements is

- 12 -




1(@-@) Y - i A
+~~T-:-;e [":__i. G§¢I\§_)+K¢EK|(H+\_/1)
. A A 2V Vi
A P L d
= S(-) +iW TR
Q-¥ :i" (- [egﬁ (As*’ Y )*K'Lé'E(H*YEL:)
3 . -Ji' val avx VJ,
%
- € € . J
Y ( 5) /zv

4 A _ ‘ (2.23)

where all quant:f.tles ¢n the r,h.s. above refer to +,|5’ .

integral S e_‘(“ -m)$ d¢ = 27 only if n=m and gero otherwise,
the dou‘ble sum of Bessel functions reduces to a single sum and Bq. (2.18)

becones
E e’ &
'!-M —— o

Vae ~ M-_p" V(‘Jn‘)a

c) e 2 Ye ) ki )] -
35 _J _ ~ Jevs | |
Py _ | (2.24)

L + " n.' nd +
; P TRE, g
v.!s = Knvu"nQ.:t { E '® GS *. é“ '\ ™k -\ 3

Since the

In vector notation this may be written as

%&:# av (9 *ﬁj)

(2.25)

» ) *
with the diffusion tensor J) defined by

L= A
[

- 13 ~




. ' 1 L] y ¥ +
ID:. Lim £ i_r-u — (9..:? y K (5'\. K
pt - g’ Ni" {3 v Vi = KaV,s -nn* ¢ ™ ) "',)

Ve
(2.26)
wheTe
+ g t .Kn V’E v e Vi ]
GPntE 2 Ca,pe ';3 (___ -Vl €y + M€
B ’ (2.27)

W O
+ & Jn i_?} LY (v,,ev -\ f})
~ \)BV'L N& i ’ '

Here €, is the unit vector in the direction of v, . In deducing

the preceding results, we noted that the first and the second term in
Eq. (2.18), after summing over k and h , are real and, hence, equal. If
the wave distribution is independent of the .k;epace azimuth ¥ ,

Eqs. (2.24) and (2.25) may be obtained alternatively by summing over

¥ , since the integral on the r.h.s. of BEq. (2.14) depends only on

the combination ¢-¥. When turbulence in more than one branch of
oscillations is excited, the diffusion equation will be a sum of

terms of the above form, one for each branch, since different branches

are uncorrelated in lowest order.

To find specific information about diffusion rates, the above
formal diffusion equation nust be coupled with the solution of the
linear dispersion relation, which, for a apecific branch of waves,
relates the wave polarization components to one another. In several
particularly simple circumstances, the wave polarizations are a priori
known. For instance, for a distribution of waves all with k- 0,
the eigenmodes are pure right- or lefi-hand or pure‘longitudinal,
corresponding to excitation in the whistler, ion cyclotron-Alfvén and
electrostatic branches. The previously obtéined results of VEDENOV et
a1.,,®  CEANG ana PEamisTEIN,'®  mmeEn,)?  kEMNEL ana PETSOHEK 14

DRUMMOND(IB) and others for these modes may be easily obtained.

Similarly, the polarizations in the low @ purely longitudinal
approximation are known in advance, and the diffusion equation follows

- 14 -




inediately. With E, = £ ana

(e) E 2 -
€, = 1 | & | (2.28)
g (zm*V 8T

for the electrostatic energy density associated with the mode }S s One
obtains

(e)
E’zf_,__gmz_e_’i d’k.éj_[f—@-’i+k _@__.]
3t n M; k* Vs ov, " 3v,
(2.29)
T
‘N , nly 2,2 *
v, ov,, oK oV, 3 ’

Vi =k, Vi —-n.Qi_

~

in the vector notation of Eq. (2.25) this may be expressed by a

diffusion tensor

: & J.
D" - e ): L) dk : 5'“5 ‘"6:«,!5 (2.30)

T
x TR K [r-kove-nf,]
with
Wil s
= I 2.31
<ok vy ~ Vv + k"_ S?; : ' (2.31)

In Bqs. (2.29) and (2.30) the factor i[v’,& - KV - w sl J" may be
replaced by its real part YL‘,/ [(@k - K,,_\/“Y' + \(k"-] s Bineces the

contribution from the imaginary part vanishes.

However, in general, the soclution of the dispersion relation
is quite difficult, since it is a determinant each of whose elementis
is a transcendental function. Meaningful 'a,pproximations are of'ten
crucial to this procedure. The above unapproximated but formal
diffusion equation (2.24) allows somez conclusions to be drawn indepen=~

dent of the particular mode of excitation and 'apfroxima.tion gcheme,

-15 -




3. QUASI H-TEECREM

To investigate siabilization of growing modes for a two-
dimensional velocity distribution in the framework of quasi-linear
theory we first define the positive definite functional H;

He 2T £y (5*)&, (3.1)
4

dH/it y upon integration by parts and using Egs. (2.21) and (2.24), is

l E.G'I Z div ask % G . vﬁ k,v ‘“..ij' éh A +2
- L 3 e X
Voo +,e M‘ w | V‘(Tlr) ", K 3 E \/J- " 5 Hj
FL
dt ¥ .
i< ' '
—_— :;-,< o (3.2)
(ME - K..V,,-V')ﬂ:) *Ylf-
vhere 'B'I is x+
“Jf — ¥ )]
8"‘-“:'_ En.,K -+ y—'Lj;ék .
g - v, 7 (3.3)

Since H is positive definite and dH/dt negative definite, H decreaszes
monotonically with time to an asymptotic steady limit. This is given
by a zero of dH/dt .J—I-[t is clear that the zeros of dH/dt correspond
to a marginally stable state for all the waves. Suppose Y!S, were
positive in a certain domain of k-space, but dH/dt’—» + Then, since
dH/AL’ is a summation of positive definite terms,

.(‘&"nl‘, 65-' .K'V"-an:r é H g#-go (3.4)
' Vi Vy '

identically in v for all " and within the Eadomain considered,

It may easily be seen that the perturbed distribution functions

E)fk (l‘f.) would then be identically zero also, and we reach the contra-
digtory conclusion that no waves are exoited in the above domain.
Therefore, the asymptotic state must be onse of marginal stability to

all waves,

- 16 -




Notice that in the sbove argument, the limit Vi -» 0" wap not
taken first. Therefore, there is no distinction betwe‘;n non-resonant
adiabatic diffusion and the resonant diffusion of those particles which
satisfy w, - k, v, - nﬂ,t =0 .+ Therefore, as well as quasi-linear
gtabilization of resonant particle insgtabilities, the case ordinarily
treated in the literature, there is stabilization of non-resonant
instabiiitiea, with any ratio of Yk /w,‘ » Drovided that the quasi-
linear assumptions are satisfied. "V.I.‘hussﬁ;na.n;,r weakly growing fluid-iype
instabilities will saturate in the non-linear regime. The extension to
spatially irhomogeneous plasmas is particularly interesting for these

waves,

An example of quasi-linear stabilization of non~resonant
instabilities, concerning magnetohydrodynamio waves being wmstable by
the firehose mechanism, has been discussed by SHAPIRO and SCHEVCHENKO
Here, even though 'Yk >0 and LJE =0 quasi—lineai'_ theory applies
if ¥, « k, Vi  (where Vg is a typical thermal velooity) and
leads to stabilization of firehose unsiable Alfvén waves.

19

Since the growth rates of all unstable waves decrease monoton-
ically to mero, the final asymptotioally sieady sitate may be treated in
the resonant diffusion limit where Yk - 0" . Therefore, we devote
our attention to resonant diffuaiozjx in~the remainder of this paper.

4, LIMIT OF RESONANT DIFFUSION

L}
In this section we perform the limit ¥, —> o+ first, and then
discusas the development of the quasiwlinear plateau, In this limit,
Eq. (2.24) beocones '

9qt | T fk A 1%-* ‘ , . " T ? 't
_aat_.-: L\m E — 3 {(65* ;J:i-". S(w_ls-.gn?fn-.'“nt)lﬁn’ﬁ l 65 %g

-

(1)
where the Bessel funotion-polarization compoa:.t:.on '9'-,, K is defined
in Bqs (3.3). In derivlng {(4.1), we noted}’m the limit Y., —» 07 the

second term -'-%—'ﬂ—- H of R" x (see Eq. 2.21)) will be non-zero only
k Vo
if there are zerc frequenocy osoillations excited. These we rule out on

-17 =



' ' 4
physical grounds. Thus b\:: " “'5 . Wl{/ é .

The above rescnant diffusion Eq. (4.1) is easier to interpret
than the non-resonant form (2.24). The function 'Bn k may be thought
of as we:u.ghting the strength of the wave-partiocle coupling in various
velocity space regions; however, the kinematics of the wave-particle
scattering, deacribed by the operator a’!& s are now independent of the

wave properiies.

In the resonant limit, the vectors G, i eﬁtering into the

diffusion dyadic reduce to

t 4
Gony "9"« K, &(‘i{- ) €y, +Va ez] (4.2)
wl‘ K. ~ "L ~ .

L

*

If we complete BEq. (4.1) by the first-order terms of the expan-
gsion of t'.[\)K -k V- n_Q*J'i in powers of Y , we may derive a
necessary condition for the resonant approximation to be valid. This

reads

l\‘\n -P a’K. XS E /3|<|| (9“15 ,q‘“ng)

A Vary® ..\Z, n

wh{ - KW -hn3
' (4.3)

| -
wrlw (2T Gl
N A

v
1 STk (C")K "’Ku " "nﬂi){
where the modulus is meant only with respect to the aign of the
different tensor components. Eq. (4.3) may be taken as a requirement
on the smallness of Y or on the smoothness of the fluctuation spectrum

as a function of k, .

The growth rate in the resonant 11mit also involves only the

20"

weighting function '9' iy and the operator G- -y and 80 the corres=-

pondence with the quasgi-linear diffusion equat,io_n is olear:
o0 oo -

Ty~ T |2 DG L | vidw | dw s(aesnile)

" (4.4)
ls‘f,g’z Ge
. \"rr: k |

0 e
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%,
where w” :((WFNe”)/Mf) 15 the plasma frequency for eaoh species,
and 13 is the energy, electromagnetioc plus kinetic, of the given wave
mode,

In the resonant limit, the H-theorem beoomes

A

(&)= tin L e E 8 AF | S (- kvumna)(6g) ¢

Ve *.- er)
(4.5)

In the following, we discuss the nature of the agymptotically
steady, marginally stable staite. In partioular, we investigate the
conditions under which a situation is possible, whereby a steady non-
zero wave excitation and steady particle distributions co-exist; such
a state will be referred to as a "plateau". A plateau will not exist,
of course, if there is insufficient "free" energy contained in the
initially unstable distribution to reconstruct, via quasi-linear
diffusion, the velocity distribution in such a way that a broad
spectrum of waves becomes marginally stable without causing particle
diffusion. In particular, a plateau will not be possible if particles
can increase their energy by diffusion withouf limit., TIn these cases,
the particles will diffuse part way towards a prlatean, and then the
wave energy will die out. We inveatigate here the conditions for
which a plateau is possible in principle, in other words, when only a

finite energy is required for reconstruction of the particle distri-

butions.

For resonant diffusion, a suffiocient but not necessary condition
that d“/dt be zero is
{%i (} t T 7
wk T G =0 | (4.6)
for both particle species, for all resonances7hf, and all wave numbers
E in the excited spectrum. A trivial soluiion, 6Ht£ = 0 , ocorresponds
to the absence of wave oxcitation to drive diffusion. For gteady

particle distributions to co-exist with non-zero wave energy, &
sufficient condition is | |
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W A W oaT 1
. Guf* (__E,_v..)j_ +V-L-a-3’. =0 (4.7)

for all regions of velocity space where the diffusion coefficient is

non-zero, Let us consider the satisfaction of this condition for one
value of k and discuss the extension to all k afterwards, Eq. (4.7)
will be satisfied if g‘-' is constant along the characteristiocs of 27£.

These single-wave characteristics are given by

Z
Vi = wf V, '
( ‘ —K_ ) MERC = constant (4.8)
A1}

and are curves of constant particle energy measured in the coordinate
syetem moving with the parallel component of the wave phase velocity,

i.e., circles digplaced away from the origin along the v, axis by
w!_(u/ku .

A simple physical argument suggests that a single particle
interacting with a single wave is constrained to move on such a
characteristic surface. If a partiole interacting with a fluctuation
quantum in the turbulent background gains energy AE from the wave,
the wave loses energy AE = —twﬁ . Similarly, the gain in parallel
~tk, Vs . Noting that AE = Mp (v, Av,+vaDVa)

energy is AE = M, v, Dw
and taking the ratio ﬂE/bEu = wk/k..v.. we find that VL Av, +(V,- wk/k“)ﬂv,,—

This integrates to V,_ (Vu wk/ku) = gonstant. Thus, the particle
is physically conastrained to move in the direction of the single-wave

characteristioc,

Were it not for the delta-function. seleotion rule, corresponding
to the limitation to resonant wave-particle interactions, a given
particle would interact with all waves in the excited spectrum; Eq.(4.7)
would then be a necessary as well as a sufficient condition for the
existenoe of a plateau. However, only statements following from the
propertiea of the single-wave characteristics can be made with any
generality, since the introduction of the resonance selection Tule
inevitably involves the dispersion relation, and the ochoice of a

particular branch of osocillations. However, it seems physically
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reasonable that many oonclusions based on the interactions of particles
with an arbitrary ocomponenit of the excited wave spectrum will also be

true when the interactions are restriocted to the resonant subset.

If only a single wave wvecior k were exoited, the single wave
characteristics would be a set of concentric circles in the vi ,Vw
plane with their centers displaced by the given c.ok/k.. along the Vi,
axis. Since a given particle could not change sur;aoes, it could not
reach infinite velocities through diffusion., However, guasi~linear
theory does not apply to a2 gingle wave mode, and so0 we must consider
broader wave spectra. As the spread in w!&/k“ increages due to the
broadening wave spectrum, the characteristic cireles no longer are
concenti'ic, gince their centers cover a finite piece of the v, axis.
Morsover, the characteristic surfaces for different k intersect. As
the specirum becomes even broader, the angle of intersection bétween
characteristics becomes large, and the condition that gtbe constant
along all single-wave characteristics is difficult to satisfy, except
for the compleiely flat distribution ﬂt(v_,_, Va)a constant, which is
unphysical., (Other special solutions may exist as well in any particular
case,) In addition, a particle can now find a path to infinite
velocities consisting of interisecting pieces of single-wave character-
igtics., Thus, the sufficient condition (4.6) appears difficult to
satisfy. '

However, the delta function selection rule can restrict the
diffusion to a finite part of velocity space in cert_ain cases. For
inatance, at the lLandau resonance, we must have v = OJEII(,. '
independent of the particular mode of excitation, so that the particles
are constrained to move on surfaces of constant v, . Thus, Landau
diffusion involves only the Darallel velocity component v, . If then

the range of /k“ in the sxcited sp,ectrdm is finite, ranging
from le‘,/k-'lm‘n & Imk /k“ l < l“-‘k/k," |”m wheére "min' and
"max" denote minimum and maximum, respectively, a particle can only
increase its [Vul wup to Iwg/k,"l o by Landau diffusion. Thus,
a particle originally at finite energies cannot diffuse to infinite
energies by Landau resonance diffusion alone. In the "infinite”

magnetic field case, where 30 is 8o large that we ¢an neglect all

cyclotron perticles; there is only one-dimensional landau diffusion

-
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for which a plateau exists (cf. Fig. 1).

Unlike the Landau resonance, the rescnance characteristicsfor
the cyclotron harmonic resonances require kmowledge of the 'dispersion
relation, and go no completely general gtatements can be made. We
construct the equation for the resonant diffusion characteristics

by substituting in GK for wk/k“ from the rescnance condition:

v, Ve We-n{ly

9
AV* v“ nn* (4 )

where Kk, is related to V,, k_,_ . and N through the subsidiary condition

Kh (K-I-,V..,\’tb: w K-L, Kll "V‘ni
v (]

L

(4.10)

In general, this subsidiary condition is quite complex.

A neceesary and sufficient condition for the existenée of a
steady plateau with finite wave energy is that wherever
3:’;5 6(&)5 -k, v. -an)ﬂe 0, ﬂt be constant along all resonance
characteristics {4.9). If no point of the domain where the diffusioen
coefficient is non-zero can be connected withou'.t leaving the diffusion
domain to the point v=od by a sequence of intersecting pieces of
resonance characteristios as defined by (4.9), then the reconstructed
plateau distribution has finite energy and is therefore physically

possible,

Notice that the diffusion coefficient, for a given V, , is
non~zerc for all Vv, . Similarly, when k_,_ﬂe 0, there aré many cyclotron
resonances which cover much of V, space, even ilo large velocities,
with a non-zero diffusion coefficient., Therefore, it is not possible
that the non-zero diffusion coefficient covers only a small region of

veloclity space.

In ceritain circumstances reconstruction of the cyclotron
reosonance distribution will not require infinite energy. For instance,
for an excited spectrum of slectromagnetic waves with k_L=0 y the
subsidiary condition umiquely relates k, to V, , sinoce tﬂen there is
only one resonance with non-zero weighting, the n= + 1 ocyclotron
harmonic depending upon whether the pure left- or pure riglit-ha.nd moda

- 22 -



is excited, and since the dependence upon k, ie fixed. There ia no

problem of overlap of resonances with different W . VEDENOV et al.-,6
21
ANDRONOV and TRAKHTENGERTS, KENNEL and PETSCHEK,14 ROWLANDS et
2
al, 2 . and others have considered this problem. Ths resonance

diffusion is resiricted to two-dimensional nested surfaces in velocity
space since the resonance condition excludes all wave-particle inter-

actions which could spread the particles out over a volume.

If for the excited waves, the dependence of Wi, k, on k. can
be neglected, then the subsidiary equation (4.10) is decoupled from
the resonance characteristic equation (4.9), which may be solved

explicitly, yielding

mle - 2 ,*
( = ) V, '+ Vi = constant . (4.11)
For n¥ 0 and 1635_! (lTISZt I the above resonance characteristics
are all closed., Notice that when l_GJk‘_ /n .QJ « 1 s these are very

olose to surfaces of conastant particle energy.

In general, however, the particles are not restricted to closed
nested surfaces, because there is ordinarily a distribution of k. for
a given k, in the exciteﬁ gpecirum; moreover, one particle can interact
simultaneously with different cyclotron harmonics Y. if the excited
speotrum is broad enough. In general, each point in veloocity space
will have an inferseétion of more than one resonance characteristic.

In physical termm, a given partiocle ﬁay be mcattered in more than one
direction in velooity space since it resonates with more than one wave
component. Then a volume, rather than a surface, is acoessible to that

particle,

Since we do not pretend to solve eimultaneously the equations.
for the time development of the wave and particle distributions, we
cannot guarantee that a broad, initially diaordered wave distribution
will never develop towards a state where the resonance characteristics
are closed gnd do not cross. However, this seems very unlikely. For
we can guarantee that there is always a combinétion of single~wave
diffusion paths, defined by Eq. (4.8), whioh permits partioles to
diffuse to infinits velooitiem, Then, since rescnance diffusion oocurs
on some subset of the single wave paths, a wave distribution of finite

width will, in gemeral, also allow cyclotron partiocles access to
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infinity using resonant paths. On these grounds, it is highly probable
trat rigorous platsauxin general do not exist. However, this does
not exclude the existence of "gquasi-plateaux" whose diffusion in
velooity space is extremely slow, and which take for all physically
practical purposes the role of a plateau.

5. QUALITATIVE NATURE OF QUASI~-LINEAR DIFFUSION

The eximtence of a mathematically rigorous, uniqué plateau is
less important than some insight into how quasi-linear diffusion
modifies the particles' distribution functions. Since the modification
is always in the direction of the plateau, the disoussion of the
previous section was useful in this respect, even if {the question of

the existence of a mathematically rigorous plateau is academic.

We again assume that for the excited modes st/k“l X Iwk/k“

max

end that ]wk/ku Imiu is not too cloge to Iw.‘ﬁ/k“l max ¢ The nature

of resonant Landau diffusion was already discussed in the previous

Section 4. There it was shown that WV,~diffusion of particles beyond

IV\\‘ ) Iw},/k" X

When |V,. | p>3 \Uk/k“ W
occeur at a cyolotron resonance, Here we demonstrate that when the

was not possible, due to Landau-~resonant waves.

’ diffusion for that particle can only

speed V = (V, -{‘-\/“‘)'ii » | “)k/knl max ,  Oyolotron resonance diffusion
is primarily in pitch angie. This may be seen from (4.8) where for
very large partiole speeds, all the single—wave characteristics converge
to a surface of approximately oonstant energy. It is also clear that
the angles at which single-wave characterisgtiecs cToss become smaller

at large speeds.

From the arguments immediately following Eq. (4.8), we may
roughly estimate the small changes in piich ang-le-AcL and particle
energy AE resulting from an interaction between a given particle and
an arbitrary component of the wave aspectrum. Here of = tan? v,/v. and

L]

€ - 'th (V: + V: ) » For a turbulent spectrum with 't)k I « ,ﬂ:l

the moduli of all cyclotron resonance velocities are larger than




st/k“ l'W( and we have

Ivu Vi I

, ]Ao(l‘ . (5.1)

an*

lAE
h.ﬁ..

va + v*
Then. construoting {the phenomenclogical diffusion coefficients

Dg‘““ (AE)z/(lbt) and Dd'*' (A"‘\L/(lﬂ-t) s where At is the "duration"

of the interaction, we may oompére the time 1; to diffuse a radian in
pitch angle to the time TE to random walk an energy E:

L
Te (2"\51:) » 1 (5.2)

Ta, Wy,

‘nce these arguments are true for all single-wave character~
istica, they also hold for the resonance characteristics. This may be
soen from the expression for the angle 8 between a resonance cha.racter-
istioc and the surfaces of oonstant energy, which follows from Eq. (4. 9)

wx/
2 X9

taw § v Mo
vV, RV . (5.3)
SVpi- Wi
(3)r2= 50,
When V; <> oo, t{an | Similarly, particles withlv," , - o0

must resonate w::.th waves |wk /h.Q. I-—> 0 so that again ban &> 0
(even when V,,/v,_ = 1 ) ‘

Some care ie necessary if there are cycloiron resonances with

very small lv,, l s which happens when there are frequencies close to a
cyclotron harmonic, C-Jk ~ hR o« This is the case for the low-density
limit of the loss-cone mstability of POST and ROSENBLU‘I'E 23 + Then,
neglecting terms of order &, ~— nﬂ, 4 ¢ the resonance characteristic
equation reduces to - o . '

dve  Kow

dU_L . wﬁ (5-4)

and we have

) _'E:_\_/} . (5.5)
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Thus, when v, = 0 and lk“/wkl v, W1, tamd — ¢ + For v much
o

less than lo)k /k.l ,nw.
variable, while for Vv, much larger than |wk/k

the moattering is primarily in the v
N
primarily in v, and consequently, for these small Vv, , in pitch angle.

Summing up, the larger the particle energy relative to

U VAN

relative to energy scattering. 1In this region of velocity space, wave-

4"' LR SRS ] \1'»‘ l:"‘-’}"
2 PV )
MoK y the more important is pitch angle scattering

particle scdttering is approximately elastic. At smaller energies

™ (X
vwrv, & th/k“ , moep ¢ diffusion makes particles adjust their

energy and pitch angié equally rapidly. Here scattering is inelastic.
Of course, the absolute diffusion rates depend strongly upon the

characteristics of the spectrum excited,

For those spatially finite plasmas for which piteh angle socatter-
ing implies a loss of particles from the system, the maximum particle
energy accessible to a two-dimensional turbulent acceleration process
is roughly "iML (&)E/kn );M since higher eﬁergy cyclotron particles
do not have time to gain appreciable energy before they are scattered
from the system. Landau particles ordinarily only inorease their
energy by this amount at most. This theorem has immediate applications
to laboratory mirror ﬁachines and the BEarth's Van Allen Belts,., It
suggests that a correlation may exist between the |w!5/k‘ | Ve and
the highest energy particles observed.

While a rigorous plateau seems diffiocult to achieve, a "quasi-
plateau" characterized by weak diffusion may be possible in rather
general conditions. The previous arguments lead to the following
picture for a possible quasi-plateau. For small energies as defined
above, the plateasu distribution will be an almost constant function
of either wv, or of both V, and Vv, , depending on whether only Landau,
or cyclotron, or mixed Landau-cyclotron diffusion oﬁcurs, For larger
energies, one expects an almost isotropic pitéh.angle distribution,
accompanied by some flattening in the energy distribution. For the
largﬁ‘ B° oase, where the cyclotron particles have extremely large
energies, the Landau particlesa@@roach among themselves a plateau of
finite energy (of. Fig. 1), leaving at best only a slow cyclotron

- 20 -
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energy diffusion. Another possibility is where the initial growth

rate ig sufficiently strongly peaked am a function of E that the maximum
growth rate component dominates throughout the reconstruction of the
distribution functions. Since the spectrum is narrow, characteristic
crossing will not be a great problem in this case.

It should be emphasized that, if any, only quasi-plateaux are
observable experimentally since ordinarily there are finite time scales

associated with sinks and sources of particles and waves. In addition,
when the diffusion and growth rates are sufficiently slow, the non

linear mode~mode couplings neglected here may give comparable effects.

The above arguments permit an understanding of how the transition
ocours between the "iﬁfiniteﬂ magnetic field limit, where there is
only one-dimengional Landau diffusion leading to plateau formation in
g as shown in Fig. 1, and the Tregime 521_—5 0, treated by BERNSTEIN
and ENGELMANN 13
possible. As Bodeoreaaes, the oyolotron resonance regions move to

for electrostatic waves, where no plateau is

smaller velocities. If the spectrum is broad enough, they may overlap
with each other and with the n =0 Landau resonance region. Thus,
crosging of characteristice appears in velocity space regions where
there is an appreciable number of particles. Particles of finite energy
then begin to leak towards infinite energies. As long as they are only
weakly accessible to infinity, a quasi-plateau may be possible {cof.

Fig. 2). A significant change ocours, however, when the magnetic field
decreases eonough to allow many different resonant regions to overlap
(cefs Pige 3), leading to crossing of characteristios at large angle.

In the limit treated by BERNSTEIN and ENGEIMANN the cyclotron resonanoces,
of course,'are no longer sighificant; ingtead k'L entexrs into the

resonance condition and a plateau requires

9t . ¢ S - .
!5‘.__;_ 5_(‘*’5- §'¥)=0_ - (5.6)
oV
-” :

for all Y and b in the excited specirum. Hence, for a suffiecisntly
broad wave spectrum, the wave characteristics oross at Tather large
angles and the particles are fairly acceasible to infinity, so that even
a quagi-plateau becomes unlikely. An example of this type is visualiged
in Fig. 4.
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FIGURE CAPTIONS

Fig. 1 ' Dependence of thé digtribution function g on v, in a plateau
state for the "infinite" magnetic field limit: within the
Landau resonance region, (&)K/k..) min <V, £ (co_,s/k") PR
associated with the spectrum of modes k excited for large
times, g(v;) is flat, cyclotron resonances lie on the far

tail of g(v, ). It has been agsumed that D,, and ‘33 are

L}
ocontinuous so that no discontinuity of g can occur.

Fig. 2 Schematiocal plot of the level lines of g(v,, V,) in the case
of a quasi-plateau for strong magnetic field: g is indepen-
dent of v, in the Landau rescnance region ({*).'S. /k“) m:“(v“ < (‘*’r; /
which does not overlap with cyclotron resonant regions

@w5+nﬂ)/k,,)w { Vi < ((cok + n.ﬂ..)/k“ mox WhETE g is
iéotropio. Only the lowest resonances R = % 1 are showm
explicitly. The level lines are approximately equal to
nany-wave diffusion ocharaoteristics within the resonant

regions.

Fig. 3 Schematical"répreaentation of intergecting diffusion
characteristics for moderate magnetic field such that over-
lapping between the Landau resonance region and the first
cyclotron resonance region ococurs, In the cyclotron resonance
region two different families of characteristics associated

with different k; are showm.,

Fig, 4 The resonance region and diffusion characteristics for
vaniahing externai:magnetio field (ef.ref.13). The horizontal
straight lines correspond to diffusion characteristics
associated with kz; 03 they intersect at large angles with
a family of characteristics correspoziding to fairly

large &)k/k . ‘
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