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JLBSTRACT

We consider quasi-linear velocity space diffusion for waves of

any oscillation branch propagating at an arbitrary angle to a uniform

magnetic field in a spatially uniform plasma. The space-averaged

distribution function is assumed to ohange slowly compared to a

gyroperiod and characteristic times of the wave motion. We neglect

non-linear mode coupling. An. H-like theorem shows that both resonant

and non-resonant quasi-linear diffusion forces the particle distri-

butions towards marginal stability. Creation of the marginally stable

state in the presence of a sufficiently broad wave speotrum in general

involves diffusing particles to infinite energies, and so the

marginally stable plateau is not accessible physically, except in

special cases.

Resonant particles with velocities much larger than typical

phase velocities in the exoited spectrum are scattered primarily in

pitch angle about the magnetic field. Only particles with velocities

the order of the wave phase velocities or less are scattered in

energy at a rate oomparable with their pitch angle scattering rate.
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TELOCITY SPACE DIFFUSION FROM WEAK PLASMA TUHBOLENCE IK A MAGNETIC
FIELD

1. INTRODUCTION

The theory of weak plasma turbulence has reoently undergone

considerable development ~ . Much of this extensive development

clarified the formal nature of the theory. The present paper makes

no contribution to the basic understanding of quasi-linear theory, but

attempts to draw general conclusions assuming the correctness of the

present theoretical approach with the aim of possibly being useful in

the interpretation of experimental phenomena. Therefore, we remove

some restrictions which were unimportant in investigations of the formal

structure of weak turbulence theory but which greatly simplified the

algebraio manipulations. These restrictions involve mainly the nature

of the waves considered, and are not basio mathematical restrictions

inherent in the weak turbulence approximation.

One such limitation was the usual but by no means universal

consideration of turbulence only in electrostatic wave modes. Because

of the very low particle energy densities (relative to magnetio)

commonly encountered in laboratory devioes, electrostatic waves may

play the dominant role in the laboratory. However, the investigations

of the Earth's immediate environment in space using artificial Earth

satellites have created a new class of plasma observations in which

electromagnetic waves such as whistlers and ion cyclotron waves most

certainly play a role. Thus we consider electromagnetic as well as

electrostatic wave turbulenoe.

In addition, special propagation directions, in general parallel

to the magnetic field, were usually ohosen for.analytic simplicity.

Clearly, waves propagating at an angle to the magnetic field will be

present in actual experiments. The removal of the above two

restrictions are the basic effects we investigate.

The basic plasma is assumed non—relativistic, oollisionless,

infinite and spatially uniform in the absence of wave excitation, and

immersed in a static magnetio field of constant magnitude with no

curvature. We do not restrict the excitation spectrum, exoept to

require that wave amplitudes be small. However, we investigate only

the form of the lowest order turbulent velooity diffusion, disregarding
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•fehe direct non-linear ooupling fe«tw«en wavaa. This nay enter asaen-

tially into the determination of the speotrum, and, as previous work '•^

indicates, it can "be very important for how the system develops and

finally is stabilized.

There are physical systems for which non-linear mode couplings

can be neglected. For instanoe, oonveotively unstable waves may
propagate out of finite systems before mode-mode couplings can get

effeotive. This is the case for the whistler turbulence in the magneto-

sphere • Another example is provided "by situations where resonant

mode ooupling vanishes as in the case of Alfven waves propagating

parallel to the external magnetic field. The diffusion equation derived

here will adequately describe the evolution of the distribution function

when the excitation speotrum is known. This corresponds to a complete

solution of the problem, if the motion of the waves oan be described

in linear approximation; otherwise it forms one part of a more complex

picture.

In order to derive the quasi-linear-diffusion equation (Section

2), it is necessary to assume that the distribution function averaged

over space changes slowly in the time scales associated with the

motion of the waves. For magnetic fields so strong that the gyration

frequencies of the particles are larger than the frequencies and

growth rates of the waves, this implies that there is no strong

dependence of the averaged distribution function on the azimuth of

velocity around the magnetic field. Only this oaBe will be considered

in the sequel. It comprises, on the one hand, all situations in

whioh the speotrum of the excited modes is likewise approximately

axially symmetric. On the other hand, it also contains cases of

strongly anisotropio spectra, provided that the time variation of the

averaged distribution is small during one particle gyration. This

requirement is similar to that used in Chew-Goldberger-Low theory.

We leave the diffusion equation in terms of the polarizations

of the waves in the exoited spectrum. Finding the appropriate

expression for a given turbulent mode requires a solution of the linear

dispersion relation to find the polarizations. However, the general

diffusion equation for arbitrary polarizations is remarkably simple.

In particular, the strings of Bessel functions, whioh usually plague

the analysis for waves propagating at an angle to the magnetio field,
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have "been reduced to a positive definite form.

Interestingly enough, this apparently undiscriminating approach

leads to several interesting conclusions, which are, albeit of a

qualitative nature, quite general because both the diffusion operator

and the diffusion coefficient, when expressed in terms of the electric

field polarization amplitudes,do have simple forms. In Section 3, we

use an H-theorem to demonstrate that unstable plasma waves force the

particles' velooity distributions to a marginally stable state. Since

we do not specify the magnitude of the growth rate, • -

this is true for both resonant and non-resonant instabilities.

In Section 4» we discuss the resonant limit, where the growth

rates are all taken small. Here the diffusion is even simpler, being

characterized by a single velocity space operator, for a given wave

number, throughout velocity space. The characteristics of this"

operator are just the orbits of single partioles interacting with

single waves. Qualitative arguments based on our knowledge of these

characteristics suggest that reconstruction of the particles' initial

velooity distributions in the form of a "plateau'jj ordinarily requires

that partioles diffuse from finite to infinite velocities, and that the

rigorous plateau defined by the E-theorera is therefore not physically

accessible, except in special ciroumstances.

In Section 5» WQ investigate the conditions under which an

arbitrary turbulent wave spectrum scatters partioles in pitch angle

relative to the magnetic field and when it scatters partioles in energy.

Particles with velocities much larger than typical phase velocities in

the excited spectrum are scattered primarily in pitch angles, whereas

only particles with velocities of the order of phase wave velocities or

less are energized at the same rate they are scattered in pitch angle.

We also suggest that quasi-plateaus, characterized by slow diffusion

rates, may exist.

Beoause it is difficult to draw rigorous conclusions at this

level of generality, many of our. results are qualitative. However, we

hope these may serve as a guideline for future more specifio theoretical

work and, possibly, for the interpretation of experiments.
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2. DERIVATION OF THE QUASI-LINEAR DIFFUSION EQUATION

We outline only briefly the relatively standard derivation of

the quasi-linear diffusion equation. The Vlasov equations describe

the evolution of the one-partiole distributions f'fciV.i) for a two-

oomponent plasma of electrons and singly charged ions, denoted by - and

+, respectively:

*i[l*r»sl-2f* - o . (2a)

X and V denote configuration and velocity space coordinates, respec-

tively, and t the time, e is the elementary charge, M^ the mass either

of ions ( + ) or electrons ( — ), and G the speed of light. £(.&;*)

and o ( * >^' are the electric and magnetio field vectors. Maxwell's

equations using the current and electric charge moments of the particle

velocity distributions as source terms complete the set of equations.

The generalization to a plasma consisting of more than two components

or with multiply charged ions is straightforward.

Quasi-linear theory separates £', E • and ;B into space indepen-

dent components and small, rapidly fluctuating parts due to waves.

Denoting the fluctuating components of the distribution function by 6 1 "

with Id'xof" *0 and Fourier-analysing in space, we obtain

and analogously,

(2.2b)

a-is explicitly defined by J?im —: j d3 X f " (x , V } i) where V

is the volume of integration. The plasma under consideration is

infinite, spatially homogeneous in the absenoe of wave excitation, and

immersed in a uniform statio magnetic field 6O aligned along the Z -

azis of a Cartesian coordinate system* There is no statio eleotrio
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fiald. The oonditlon that th« time d«pend«no« of f , £ and 8 split

up into a rapid variation due to waves, and a slow variation due to the

reaction of the wave distribution back on the space-averaged velocity-

distribution is that all wave amplitudes remain small.

We first discuss the linear fast time scale properties of of^ ,

depending upon the instantaneous value of cpC.Vj't) * and then derive the

quasi-linear diffusion equation for the slow evolution of <x~ . It is

convenient to transform to cylindrical coordinate systems in velocity

and wave number space, UBing the magnetio field direction as the axisi

(2.3)

Since there are only two basic directions for the linear wave problem,

those of the static magnetio field, 5 O£ 2 »
 an(^ of ^e wave veotor, k ,

the dispersion properties must be independent of V • However, due, for

instance, to unsymmetrio initial conditions or wave sources, the wave

distribution may be unsymmetrically distributed about the magnetic field

direction.

Because the fast oscillation frequencies can be of the order of

the gyro-frequencies, it is useful to express the wave electromagnetio

field component perpendicular to Bo in terms of complex polarization

vectors denoting right and left-handed rotation ("*-# X) about B,,, and

of plane components parallel ( H ) to B, » since in the limit of

parallel wave propagation the linear eigenmodes involve pure right-hand,

left-hand, or parallel components alonet

£



Jl <

We daflne fefc and tk ao that th«y r«ap«otivaly reproaant 1aft-

hand and right-hand components, for positive real part of the frequency.
If -the real part of the frequency ia negative, the polarization

properties are reversed. Beoause of the axial symmetry of the wave

properties, €jt and t K can "be simply rotated "by the angle Y and the

"basic eigenvector £. for a single wave (Kj.jkn)Y) has the form

(2'5)

In this way the eigenvectors and dispersion relation for Y ^ 0 can "be

obtained direotly from the two-dimensional oase, "y= 0 » usually treated.

The Vlasov equation (2.1), after Fourier analysis and transform-

: ,ation to cylindrical velocity and wave number space coordinate systems,

may be symbolically written as follows*

Ml *» (V **

where Lr s11^ ̂ w denote the operators

(2.7)

i^t = i e 8o/^+^- is "the gyrofrequenoy for eaoh species. Note that

.& + contains the sign of the charge.

The convolution term in (2.6), whioh has been explicitly sym-

metrized, is formally second order in the wave amplitude and represents

non-linear mode-mode couplings, which will be negleoted in this

analysis. We solve now for the linear waves on the fast time scale

by treating o- as constant in time, a procedure formally identical to

that in ordinary linear theory. Then d/dt may be replaced
*

where "Vk is the complex wave frequency, V k » W * •*• t-V̂  , and o>k and
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are "both r e a l . | ~ becomes, to lowest order
IS

cos

with

The relation between V* and k must be found from the linear

dispersion relation for the wave mode of interest. The condition that

all physical quantities be real will then lead to the relation V* r *V_

Inverting (2.6), we find, to lowest order,

(2.9)

where (L~. ) is easily found from the second form of Eq. (2.8).

Vfc is supposed to have at least a small positive imaginary part which

ensures the convergence of (L £ y ) f and causal solutions of the

linearized Vlasov equation. This means that only unstable (Vk > 0 )

modes are explicitly considered, though damped modes could be inoluded

by proper analytic continuation of the results for Yfc < 0• (See also

I.B. BEENSTEIff AHD F. ENGELMAM ). The BeBsel function identity

further simplifies (L K v ) to
K v

(2.11)
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J is an ordinary Bessel function of integral order, with argument
n

V V
,.••4—* . Henceforth the arguments vill be suppressed; which, particle

species is "being referred to will usually "be clear from the context.

Using Faraday's Law to express wave magnetic fields in terms

of wave eleotric fields, and considering only the fast time scale,

where t)ydt —=? -i-V^ , we arrive at the following form for P~

A .

Pi SJ
(2.12)

* ^
 v

< . -IB:
 %I ^

where we. have abbreviated the following differential velocity space

operators

* v v«
(2.13)

Hotice that H is a gradient in pitch angle relative to the raagnetio

field. Thus, we have solved for ofw in terms of Q , and the wave

polarizations. ITow, we find an expression for the rate of change of

a- . Writing the space-averaged Vlasov equation, and introducing

Fourier transforms, one has
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(2.U)

of ~Kwhere we have substituted the linear expression for of ~K in the

convolution term.

Observe the formal similarity "between Eq. (2.14) above and those

for the distribution functions in the so-called Chew-Goldberger-Low, or

small Larmor radius approximation1 . I n that theory, all changes are

considered small over space scales comparable with particle Larmor

radii or time scales comparable with typical gyroperiods. Therefore,

the Larmor radius and gyroperiod are convenient small expansion para-

meters. The Larmor orbiting of particles about the magnetic field is

so rapid that all inhomogeneities in the ^-distribution of particleB

smooth out on the macroscopic scales, and the distribution functions

are independent of 6 to lowest order. Here the actual distribution

may have rapid variations, due to the waves. However, the space-

averaged distribution functions a 1 have been assumed to be effectively

constant over times of the order of gyroperiods and characteristic wave

periods in acoordanoe with the assumed low excitation of waves. Conse-

quently, for consistency, the 6 dependence of a- must also be weak and

it is reasonable to look for an expansion of Or in powers of I/J^,Or

, r
Substituting Eq. (2.15) into Eq. (2.14) and using the assumption that

the wave background creates only a slow time variation in o ~ , we find

to lowest order

-*. ±
= 0 . (2.16)
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Thue the lowest order spatially averaged distribution function

is independent of Larmor phase ^ . Basically, a particle has time to

make many gyro-orbits about the magnetio field "before it diffuses a

significant amount. By the same reasoning, even if the turbulent

interaction between waves and particles were limited to a given

localized region of (f> and Y> , all particles would gyrate many times

through the turbulent interaction region and the turbulence would

therefore affect particles with all values of <fi almost equally. Thus

the corresponding diffusion is two-dimenfeional, since Oqo~/d<(> is

always zero. The condition that the expansion (2.15) be valid here is

that the mean diffusion time for all particles be long relative to

the particles1 gyroperiods. Hence, in this case the theory is useful

in practice only if there are no waves with growth rates much larger

than the gyrofrequency, since these reach large amplitudes, causing a

considerable ^-dependent diffusion, before the particles have a

chance to complete one gyro-orbit. On the other hand, when the

excited wave spectrum iB axially symmetric, the diffusion is two-

dimensional in any case and thus preserves an initial axial symmetry

of Q,- for all times.
Jo

The time dependence of Q* is still undetermined by Eq. (2.16)

and we must go to next order to find the variations in o^ due to the

wave excitation:

The physioal requirement that all a^ be periodio in <f> , so

that averaging from 0 iff 23T. in </> annihilates the unwanted higher order

term, leads to the following Larmor-phase-averaged equation:

air

•a

Henceforth, we work only with the lowest order ^-independent part of

the distribution, and therefore drop the 0 subscript notation. Then

tSf̂  simplifies considerably; from Bq.s. (2.9), (2.11) and (2.12) we

find

- 11 -



(2.19)

Here c „ ̂  *s *^e following composition of wave fields and Beasel
functions:

^ ~ " ~ (2.20)

f

and \C~\r is the following operator:

^ n»« av(1

where in the second form we have explicitly separated terms with and

without the resonance factor X —tti7*+»

Noting that in cylxndrioal coordinates -k = ( kX/- ki{,
^and that wave fields are real, so that E u = E L and B v = B L. •

we find A

.K C

(2.22)

Using these relat ions and V_K * -V K f ^Q find f_"Jc " ( ' -*k / as well

as 6f_~k =. ( i f + k ) an<i ( D l . ^ ^ (^fk)* s o •tlia'* ^ h e quasi-linear

diffusion term in Eq. (2.18) is pure r e a l . Since Eq. (2.18) involves

an average from O£tra,% in the Larmor phase >̂ , the terms i %/dfi in P_"k

may be integrated "by parts} th i s i s equivalent to replacing e l /f

by + e l
T and I y^y by 0. The modified operator Q _k resul t ing

from these replacements i s

- 12 -
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(2.23)

where all quantities on the r.h.s. above refer to +k_. Since the

integral f e 1 ^ ' " 1 ^ ^ = z'JT only if w - m and zero otherwise,

the double sum of Bessel functions reduces to a single sum and Eq. (2,18)

becomes

In vector notation this may be written as

(2.25)

with the diffusion tensor JD" defined by

- 13 -'



(2.26)

where

(2.27)

Here e ^ is the -unit vector in the direction of vx . In deducing

the preceding results, we noted that the first and the second term in

Bq.. (2,18), after summing over J< and K , are real and, hence, equal. If

the wave distribution is independent of the k-space azimuth Y >

Eqs. (2.24) and (2.25) may be obtained alternatively by summing over

V t since the integral on the r.h.s. of Eq.. (2.14) depends only on

the combination $-¥• "When turbulenoe in more than one branch of

osoillations is excited, the diffusion equation will be a sum of

terms of the above form, one for each branch, since different branches

are uncorrelated in lowest order.

To find specific information about diffusion rates, the above

formal diffusion equation must be coupled with the solution of the

linear dispersion relation, which, for a specific branch of waves,

relates the wave polarization components to one another. In several

particularly simple circumstances, the wave polarizations are a priori

loiown. For instance, for a distribution of waves all with kx- 0,

the eigenmodes are pure right-or left-hand or pure longitudinal,

corresponding to excitation in the whistler, ion cyclotron-Alfven and

electrostatic branches. The previously obtained results of VEDEUOV et

al.;
6 GHAUG and PEARLSTEIff.l6 " ,ENGSL ,17 KEUlffiL and PBTSCHEK,14

(18 }
DRUMMOKlA ' and others for these modes may be easily obtained.

Similarly, the polarizations in the low @ purely longitudinal

approximation are known in advance, and the diffusion equation follows

- 14 -



immediately. With E R =E R Jl and
k

(2,a,

for the eleotroetatic energy denaity asaooiated with the mode k , one
obtains

-.]
(2.29)

p

f i

in the vector notation of Eq. (2.25) this may he expressed by a
diffusion tensor

'* /iH ^ — " & & (2 2,0)

with

In Bqs. (2.29) and (2.30) the factor i[v£ - k,,VM - U.5LJ. ]~
1 may be

replaced by its real part Yjc / C(^w " ̂ 11X1)* •* Y k ] » since the

contribution from the imaginary part vanishes.

However, in general, the solution of the dispersion relation

is quite difficult, since it is a determinant each of whose elements

is a transcendental function. Meaningful approximations are often

crucial to this procedure. The above unapproximated but formal

diffusion equation (2.24) allows soma conclusions to be drawn indepen-

dent of the particular mode of excitation and approximation scheme.
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3. QJJASI H-THBOHEM

To investigate stabilization of growing modes for a two-

dimensional velocity distribution in the framework of quasi-linear

theory we first define the positive definite functional Hj

H- iZ (fv(j*)\ (,.0

dH/at , upon integration by parts and using Eqs. (2.21) and (2.24), is

'- U

dt

'(3.2.)

where v ., is

' ' (3.3)

Since H is positive definite and AWJ&t negative definite, H decreases

monotonically with time to an asymptotic steady limit. This is given

by a zero of dH|<tt .lit is clear that the zeros of dn dt correspond

to a marginally stable state for" all the waves. Suppose V k were

positive in a certain domain of |c-space, but dH/cffc"=tO . Then', since

a summation of positive definite terms,

H 11* ^ o (3.4)

identically in v for all t and within the X-^domain considered.

It may easily be seen that the perturbed distribution functions

Mfc (v) would then be identically zero also, and we reach the contra-

dictory conolusion that no waves are ezoited in the above domain.

Therefore, the asymptotic state must be one of marginal stability to

all waves*

- 16 -



Notioo that In tho above argunont, tfct limit "Y^-• ° wan nctt
taken first. Therefore, there is no distinction between non-resonant

adiabatio diffusion and the resonant diffusion of those particles which

satisfy toK - kttv/,, - flJl,. = 0 . Therefore, as well as quasi-linear
stabilization of resonant particle instabilities, the oase ordinarily

treated in the literature, there is stabilization of non-resonant

instabilities, with any ratio of V^ joyw , provided that the quasi-

linear assumptions are satisfied. Thus many weakly growing fluid-type

instabilities will saturate in the non-linear regime. The extension to

spatially inbornogeneous plasmas iB particularly interesting for these

waves.

An example of quasi-linear stabilization of non-resonant

instabilities, oonoeming magnetohydrodynamio waves being unstable by
19

the firehose mechanism, has been discussed by SHAPIRO and SCHSVCHEUKO

Here, even though Y K > 0 and W * s 0 , quasi-linear theory applies

if yj. (£ l̂ t vW (where V ^ is a typical thermal velooity) and

leads"to stabilization of firehose unstable Alfven waves.

Sinoe the growth rateB of all unstable waves decrease monoton-

ioally to zero, the final asymptotioally Bteady state may be treated in

the resonant diffusion limit where Yk -*t 0*1" * Therefore, we devote

our attention to resonant diffusion in the remainder of this paper.

4. LIMIT OF HE SONANT DIFFUSION

In this section we perform the limit Y* -* ° first, and then

discuss the development of the quasi-linear plateau. In this limit,

Eq. (2.24) beoomes

fL* L . ** Ttt ̂  ̂
(t.l)

where the Bessel function-polarization composition v*n 1, iB defined

in Eq. (3.3). In deriving (4.1)» we notedfin the limit Y* -> O^the

second terra fe ** - fi of fir w (see Eq. 2.21)) will be non-zero only

if there are zero frequency osoillationa excited. These we rule out on

- 17 -



physical grounda* Thus V *

The above resonant diffusion Eq. (4.1) is easier to interpret

than the non-resonant form (2.24). The function -&^ % may be thought

of as weighting the strength of the wave-partiole ooupling in various

velooity space regions} however, the kinematios of the wave-particle

scattering, described by the operator &-k . are now independent of the

wave properties.

In the resonant limit, the vectors Q. n ^ entering into the

diffusion dyadio reduoe to

S-* • Kg. ̂ (4.2)

If we complete Eq. (4*1) by the first-order terms of the expan

sion of I f V K - K^V,, - tt^2t"|"
1 in powers of Y ^ , we may derive a

necessary condition for the resonant approximation to be valid. This

reads

h- VI Z

u

where the modulus is meant only with respeot to the sign of the

different tensor components. Eq. (4.3) may be taken as a requirement

on the smallnese of Y^ or on the smoothness of the fluctuation speotrum

as a function of Ic,, .

The growth rate in the resonant limit also involves only the

weighting function v1^ ̂  and the operator G-R f and so the oorres-

pondence with the quasi-linear diffusion equation is olearj

2
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where w ^ s K^.7rNe*9/Mt)
 JS ̂ he plasma frequency for each speoies,

and W \c is "the energy, electromagnetic plus kinetic, of the given wave

mode*

In the resonant limit, the H-theorem becomea

(+.5)

In the following, we discuss the nature of the asymptotically-

steady, marginally stable state. In particular, we investigate the

conditions under which a situation is possible, whereby a steady non-

zero wave excitation and steady particle distribution? co-existj such

a state will be referred to as a "plateau". A plateau will not exist,

of course, if there is insufficient "free" energy contained in the

initially unstable distribution to reconstruct, via quasi-linear

diffusion, the velocity distribution in such a way that a broad

spectrum of waves becomes marginally stable without causing particle

diffusion. In particular, a plateau will not be possible if particles

can increase their energy by diffusion without limit. In these cases,

the particles will diffuse part way towards a plateau, and then the

wave energy will die out. We investigate here the conditions for

which a plateau is possible in principle, in other words, when only a

finite energy is required for reconstruction of the partiole distri-

butions.

For resonant diffusion, a sufficient but not necessary oondition

that A H/dtr "be zero is

for both particle speoies, for all resonances >v, , and all wave numbers

k in the excited spectrum. A trivial solution, v£ir * 0 t corresponds

to the absence of wave ezoitation to drive diffusion. For steady

partiole distributions to co-exist with non-zero wave energy, a

sufficient condition is

- 19 -



for all regions of velocity apace where the diffusion coefficient is

non-zero. Let vis consider the satisfaction of this condition for one

value of ĵ  and discuss the extension to all )$, afterwards* Eq. (4*7)

will be satisfied if a* is oonstant along the characteristics of CrK .

These single-wave characteristics are given by

(v... a, J - constant (4«8)

and are curves of constant particle energy measured in the coordinate

system moving with the parallel component of the wave phase velocity,

i.e., circles displaced away from the origin along the v,, axis by

A simple physical argument suggests that a single particle

interacting with a single wave is constrained to move on such a

characteristic surface. If a partiole interacting with a fluctuation

quantum in the turbulent background gains energy A E from the wave,

the wave loses energy A E = -^<^k • Similarly, the gain in parallel

energy is AE » M + Vh kv,, = -+i k,, V(1 . Noting that A E = Mt (vj. Av x+ *H ̂

and taking the ratio AE/A^u = ̂ /k,,v« we find that Vi A vx +(vu- w K / I O &"»
 s °-

This integrates to Vj_ + (V,, - W^k,,) - constant. Thus, the particle

is physically constrained to move in the direction of the single-wave

characterist iot

Were it not for the delta-function.seleotion rule, corresponding

to the limitation to resonant wave-partiole interactions, a given

particle would interact with all waves in the excited spectrum; Eq..(4-7)

would then be a necessary as well as a sufficient condition for the

existence of a plateau. However, only statements following from the

properties of the single-wave characteristics can be made with any

generality, sinoe the introduction of the resonance seleotion rule

inevitably involves the dispersion relation, and. the ohoioe of a

particular branch of osoillations. However, it seems physically
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reasonable that many oonolusions based on the interactions of particles

with an arbitrary oomponent of the excited wave speotruin will also be

true when the interactions are restricted to the resonant subset.

If only a single wave vector V were excited, the single wave

characteristics would be a set of concentric circles in the Vj. >v«

plane with their centers displaced by the given to^/k,, along the V,,

axis. Since a given partiole could not change surfaces, it could not

reach infinite velocities through diffusion. However, quasi-linear

theory does not apply to a single wave mode, and so we must consider

broader wave spectra. As the spread in W k / k n increases due to the

broadening wave spectrum, the characteristic circles no longer are

concentric, since their centers cover a finite piece of the v,, axis.

Moreover, the characteristic surfaces for different k intersect. As

the speotrum becomes even broader, the angle of intersection between

characteristics becomes large, and the condition that <X~ be constant

along all single-wave characteristics is difficult to satisfy, except

for the completely flat distribution <J~fv*» V,,)- constant, which is

unphysical. (Other special solutions may exist as well in any particular

case.) In addition, a particle can now find a path to infinite

velocities consisting of intersecting pieces of single-wave character-

istics. Thus, the sufficient condition (4.6) appears difficult to

satisfy.

However, the delta funotion selection rule can restrict the

diffusion to a finite part of velocity space in certain cases. For

instance, at the Landau resonance, we must have vn =• CO* / k,, ,

independent of the particular mode of excitation, so that the partioles

are constrained to move on surfaces of constant VJL . Thus, Landau

diffusion involves only the parallel velooity component v u . If Ifhen

the range of w ^ /k u in the excited spectrum is finite, ranging

from I W j c / k J ^ K / k t , |N< |Ufe/ k»L w where »min" and

"max" denote minimum and maximum, respectively, a particle can only

increase its |Vn | up to l^k/^t *h*x by Landau diffusion. Thus,

a partiole originally at finite energies cannot diffuse to infinite

energies by Landau resonance diffusion alone. In the "infinite"

magnetic field oase, where 3 0
 i s s o large that we can neglect all

cyclotron partioles, there is only one-dimensional Landau diffusion
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for which a plateau exists (cf. Fig. l ) .

Unlike the Landau resonance, the resonance characteristics for

the cyclotron harmonic resonances require knowledge of the dispersion

relation, and so no completely general statements oan "be made, life

construct the equation for the resonant diffusion characteristics

"by substituting in Or. for tOt,/kHV from the resonance conditions

where k,, is related to V,, , kx . and M through the subsidiary condition

In general, this subsidiary condition is quite complex.

A necessary and sufficient condition for the existence of a

steady plateau with finite wave energy is that wherever

»̂i k ^{^k ~ W„ V,, -n^t)^fO> <\~ ^ e constant along all resonance

characteristics (4.9). If no point of the domain where the diffusion

coefficient is non-zero can he connected without leaving the diffusion

domain to the point v-cO by a sequence of intersecting pieces of

resonance characteristics as defined by (4.9)» then the reconstructed

plateau distribution has finite energy and is therefore physically

possible„

Notice that the diffusion coefficient, for a given V,, , is

non-zero for all Vt . Similarly, when Wx ̂  0 , there are many cyclotron

resonances which cover muoh of Vw space, even to large velocities,

with a non-zero diffusion coefficient. Therefore, it is not possible

that the non-zero diffusion coefficient covers only a small region of

velocity spaces

In certain circumstances reconstruction of the cyclotron

resonance distribution will not require infinite energy. For instance,

for an excited spectrum of electromagnetic waves with \cL=0 , the

subsidiary condition uniquely relates k Hto V,, , sinoe then there is

only one resonance with non-zero weighting, the V\ « + 1 cyclotron

harmonic depending upon whether the pure left- or pure right-hand mode

- 22 -



i s exc i ted , and since the dependence upon Wt ig f ixed . There i s no

problem of overlap of resonances with d i f f e r e n t tt. . VEDE1TOV e t al.>

AEDRONOV and TRAKHTEITGERTS, KETOJEL and PETSCHSK, ROWLANDS e t
22

al. and others have considered this problem. The resonance

diffusion is restricted to two-dimensional nested surfaces in velocity

space since the resonance oondition excludes all wave-particle inter-

actions which could spread the particles out over a volume.

If for the excited waves, the dependence of (O^,^ on !<„ can

be neglected, then the subsidiary equation (4^10) is decoupled from

the resonance characteristic equation (4.9)» which may be solved

explicitly, yielding

/ -vt SI + \ 2 * *
( = J V, '+ YL -constant . (4.11)

For X\\ 0 and jCo^ j <jui£j.| the above resonance characteristics

are all closed. Notice that when lÂ k̂ /l̂ -̂ jj « 1 * these are very

close to surfaces of constant particle energy.

In general, however, the particles are not restricted to closed

nested surfaces, because there is ordinarily a distribution of kx for

a given lcM in the excited spectrum; moreover, one particle can interact

simultaneously with different cyclotron harmonics TV if the excited

speotrum is broad enough. In general, each point in velocity space

will have an intersection of more than one resonance characteristic.

In physical terms, a given particle may be scattered in more than one

direction in velocity space since it resonates with more than one wave

component. Then a volume, rather than a surface, is accessible to that

partiole.

Since we do not pretend to solve simultaneously the equations.

for the time development of the wave and particle distributions, we

cannot guarantee that a broad, initially disordered wave distribution

will never develop towards a state where the resonance characteristics

are closed and do not cross. However, this seems very unlikely. For

we can guarantee that there is always a combination of single-wave

diffusion paths, defined by Eq. (4«8)» whioh permits partiolee to

diffuse to infinite velocities, Then, since resonance diffusion occurs
on some subset of the single wave paths, a wave distribution of finite

width will, in general, also allow cyclotron partioles access to
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infinity using resonant paths. On these grounds, it is highly probable

that rigorous plateaux in general do not exist. However, this does

not exclude the existence of "quasi-plateaux" whose diffusion in

velooity space is extremely slow, and whioh take for all physically

praotioal purposes the role of a plateau.

5. QUALITATIVE NATURE OF QUASI-LINEAR DIFFUSION

The existenoe of a mathematically rigorous, unique plateau is

less important than some insight into how quasi-linear diffusion

modifies the particles' distribution functions. Since the modification

is always in the direction of the plateau, the discussion of the

previous section was useful in this respect, even if the question of

the existence of a mathematically rigorous plateau is academic.

We again assume that for the excited modes ItAc/k,. \ 4> COk/k.

and that J^t/k», | ̂  iB not too close to J0k/knj ̂  . The nature

of resonant Landau diffusion was already discussed in the previous

Section 4» There it was shown that v,,-diffusion of particles beyond

was not possible, due to Landau-resonant waves.k l >, |^k/k»
When V,, j » 16Ĵ  /k.l| ^ ^ , diffusion for that particle can only

occur at a cyclotron resonance. Here we demonstrate that when the

speed V - (^ "I" V,, ) » l^k/^nl to** > cyclotron resonance diffusion

is primarily in pitch angle. This may be seen from (4»8) where for

very large partiole speeds, all the single-wave characteristics converge

to a surface of approximately oonstant energy. It is also dear that

the angles at whioh single-wave characteristics cross become smaller

at large speeds.

From the arguments immediately following Eq. (4.8), we may

roughly estimate the small changes in pitch angle Act and particle

energy ZlE resulting from an interaction between a given particle and

an arbitrary component of the wave spectrum. Here o( = tan Vj/vi(

E = z M (vj. f VH ) • F° r a turbulent spectrum with j (Oj, I « j SI

the moduli of all cyclotron resonance velocities are larger than



and we have

M -
Then, constructing "the phenomenologioal diffusion coefficients

and £>*- (^t{{l&t) , where At is the "duration"

of the interaction, we may compare the time 1^ to diffuse a radian in

pitch angle to the time T^ to random walk an energy Ej

»
(5.2)

1 nee these arguments are true for all single-wave charaoter-

istice, they also hold for the resonance characteristics. This may be

seen from the expression for the angle 5 between a resonance character

istic and the surfaoes of constant energy, which follows from Eq.. (̂ ..5)

V, r . (5-3)

Vhen \/t -> oo ? tw^ Similarly, particles with | V u j —* oo

must resonate with waves j tOk /Koi + I —> 0 BO that again tan o~» 0

(even when V,,/^ s: 1 ).

Some care is necessary if there are cyolotron resonances with

very small | V „ | , which happens when there are frequencies close to a

cyclotron harmonic, CJjf ~ h & + • This is the case for the low-density

limit of the loss-cone instability of POHF and ROSEKBLUTH . Then,

neglecting terms of order (JK ~~ ttJb. , the resonance characteristic

equation reduces to

<1V.. K,,Vq

and we have

£OA\,O 9 .... 4 ^

Vj.. KA4 • (5.5)



Thus, when vM « 0 and | ^jui^ | ^ » l ( t o * £ —* 0 • P o r

less than |wk ^k^ j ^ ^ the scat ter ing i s primarily in the v^

variable , while for Vk muoh larger than jW^/ l t , i t i s

muoh

primarily in v,v and consequently, for these small V,, , in pitch angle.

Summing up, the larger the partiole energy relative to

in* the more important is pitch angle scattering

relative to energy scattering. In this region of velocity space, wave-

particle scattering is approximately elastic. At smaller energies

vi + vu .$ ît / ̂ n I rv\ ' diffusion makes particles adjust their

energy and pitch angle equally rapidly. Here scattering is inelastic.

Of course, the absolute diffusion rates depend strongly upon the

characteristics of the spectrum excited.

For those spatially finite plasmas for which pitch angle soatter-

ing implies a loss of particles from the system, the maximum particle

energy accessible to a two-dimensional turbulent acceleration process

is roughly z n 4 f^t/k ) sinoe higher energy cyclotron particles
— \ a. I i\ 'vitĉ jf

do not have time to gain appreciable energy before they are scattered

from the system. Landau particles ordinarily only increase their

energy by this amount at most. This theorem has immediate applications

to laboratory mirror maohines and the Earth's Van Allen Belts. It

suggests that a correlation may exist between the |^Jc/k^ ^ and

the highest energy particles observed.

While a rigorous plateau seems difficult to achieve, a "quasi-

plateau" oharaoterized by weak diffusion may be possible in rather

general conditions. The previous arguments lead to the following

picture for a possible quasi-plateau. For small energies as defined

above, the plateau distribution will be an almost oonstant function

of either v,, or of both vt and v,, , depending on whether only Landau,

or cyolotron, or mixed Landau-cyolotron diffusion occurs. For larger

energies, one expects an almost isotropic pitch angle distribution,

accompanied by some flattening in the energy distribution. For the

large Bo case, where the cyclotron particles have extremely large

energies, the Landau particles approach among themselves a plateau of

finite energy (of. Fig. l), leaving at best only a slow oyolotron



energy diffusion. Another possibility is where the initial growth

rate is sufficiently strongly peaked as a function of k that the maximum

growth rate component dominates throughout the reconstruction of the

distribution functions. Sinoe the spectrum is narrow, characteristic

orossing will not be a great problem in this case.

It should be emphasized that, if any, only quasi-plateaux are

observable experimentally since ordinarily there are finite time scales

associated with sinks and sources of particles and waves. In addition,

when the diffusion and growth rates are sufficiently slow, the non-

linear mode-mode couplings neglected here may give comparable effects.

The above arguments permit an understanding of how the transition

ocours between the "infinite" magnetic field limit, where there is

only one-dimensional Landau diffusion leading to plateau formation in

t as shown in Fig. 1, and the regime &i -£• 0 , treated by ESRTTSTEIH1

13 ; ' "

and ENGEXMANN for electrostatic waves, where no plateau is

possible. As 6&decreases, the oyolotron resonance regions move to

smaller velocities* If the spectrum is broad enough, they may overlap

with each other and with the n = 0 Landau resonance region. Thus,

crossing of characteristics appears in velocity spaoe regions where

there is an appreciable number of particles. Particles of finite energy

then begin to leak towards infinite energies. As long as they are only

weakly accessible to infinity, a quasi-plateau may be possible (of.

Fig. 2). A significant change ocours, however, when the magnetic field

decreases enough to allow many different resonant regions to overlap

(of* Fig. 3), leading to crossing of characteristics at large angle.

In the limit treated by BERlfSTEIH and MGSIMAN2T the cyclotron resonances,

of course, are no longer significant; instead k ̂  enters into the

resonance condition and a plateau requires

r O . •• (5.6)

for all V and k in the excited spectrum. Hence, for a sufficiently

broad wave spectrum, the wave characteristics cross at rather large

angles and the particles are fairly accessible to infinity, so that even

a quasi-plateau becomes unlikely. An example of this type is visualized

in Fig. 4.
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FIGUEE CAPTIONS

Pig. 1 Dependence of the distribution function g on v,, in a plateau

state for the "infinite" magnetic field limitj within the

Landau resonance region, (k>k;/lO mi* < VM < (^/k,,)^^ t

associated with the spectrum of modes k excited for large

times, g( V,,) is flat', cyclotron resonances lie on the far

tail of g(vu ). It has been assumed that ~bzl and t^M- are

continuous so that no discontinuity of g can occur.

Pig. 2 Schematioal plot of the level lines of g(Vu, Y j in the case

of a quasi-plateau for strong magnetic fields g is indepen-

dent of v,t in the Landau resonance region

which does not overlap with cyclotron resonant regions

iB

isotropio. Only the lowest resonances t\ » ± ̂  are shown

explicitly. The level lines are approximately equal to

many-wave diffusion characteristics within the resonant

regions.

Pig. 3 Schematical representation of intersecting diffusion

characteristics for moderate magnetic field suoh that over-

lapping between the Landau reaonanoe region and the first

cyclotron resonance region occurs. In the oyolotron resonanoe

region two different families of characteristics associated

with different Ir̂  are shown.

Pig. 4 The resonance region and diffusion characteristics for

vanishing external magnetio field (cf.ref.13)* The horizontal

straight lines correspond to diffusion characteristics

associated with k^" Oj they intersect at large angles with

a family of characteristics corresponding to fairly

large 0
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