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Abstract. High-resolution γ-ray spectroscopy (GRS) measurements resolve spectral

shapes of Doppler-broadened γ-rays. We calculate weight functions describing velocity-

space sensitivities of any two-step reaction GRS measurements in magnetized plasmas

using the resonant nuclear reaction 9Be(α, nγ)12C as an example. The energy-

dependent cross sections of this reaction suggest that GRS is sensitive to alpha particles

above about 1.7 MeV and highly sensitive to alpha particles at the resonance energies

of the reaction. Here we demonstrate that high-resolution two-step reaction GRS

measurements are not only selective in energy but also in pitch angle. They can be

highly sensitive in particular pitch angle ranges and completely insensitive in others.

Moreover, GRS weight functions allow rapid calculation of γ-ray energy spectra from

fast-ion distribution functions, additionally revealing how many photons any given

alpha-particle velocity-space region contributes to the measurements in each γ-ray

energy bin.

1. Introduction

Gamma-ray spectroscopy (GRS) is an essential diagnostic to study fast ions in fusion

plasmas [1, 2]. Early GRS measurements in tokamaks have been made at Doublet-

III [3], TFTR [4], JET [5–13] and JT-60U [14, 15]. More recently, high-resolution GRS

measurements have been made at JET [16–21] and ASDEX Upgrade [22] thanks to the

development of new detectors [18, 23]. GRS is particularly well-suited for large, hot

‡ See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference

2014, Saint Petersburg, Russia
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devices such as JET [5–13, 16–21], ITER [24] or DEMO [25] since high temperatures

enhance fusion reaction rates and hence γ-ray fluxes [1, 2].

Many nuclear reactions in hot fusion plasmas lead to γ-ray emission [1,2]. At JET,

several species including alpha particles, helium-3, deuterium or hydrogen have been

measured using GRS [5–13,16–21]. These fast ions are generated in fusion reactions, by

ion cyclotron resonance heating (ICRH) or by neutral beam injection (NBI) [7]. γ-rays

are emitted when fast ions react with bulk plasma ions or with low-mass impurities such

as lithium, beryllium, boron, carbon or oxygen [7]. Fast alpha particles are of particular

interest as they are produced at an energy of 3.5 MeV in the most important fusion

reaction T(D,n)α, which will release most of the fusion power in future burning plasmas.

Fast alpha particles can undergo resonant nuclear reactions with low-mass impurities

allowing GRS measurements with high signal-to-noise ratio [26]. Here we consider the

reaction 9Be(α, nγ)12C [8, 27], which has been proposed for studies of alpha particles

in ITER where beryllium is the first-wall material. This reaction has regularly been

studied at JET [7–10, 12, 16, 17, 19, 21] and has become all the more important at JET

since the installation of the ITER-like beryllium wall [28, 29]. The reaction happens in

two steps. 1) An alpha particle and 9Be react to form excited 12C∗ and a neutron. 2)

The excited 12C∗ rapidly decays to ground-state 12C emitting a γ-photon:

α +9 Be → 12C∗ + n, (1)
12C∗ → 12C + γ. (2)

The energy release of the reaction is Q = 5.70 MeV of which Eγ0 = 4.44 MeV is required

to populate the excited state 12C∗. This is also the rest frame energy of the γ-photon

that is emitted when 12C∗ decays to the ground state. The remaining Q∗ = 1.26 MeV

becomes kinetic energy of the reaction products 12C∗ and the neutron in addition to the

initial kinetic energies of the fast alpha and the thermal 9Be. γ-photons are Doppler-

shifted due to the velocity component uC of the 12C∗ nucleus along the line-of-sight of

the detector. The Doppler-shifted energy Eγ of the detected γ-photon is

Eγ = Eγ0

(

1 +
uC

c

)

(3)

where c is the speed of light and uC/c is typically on the order of 1%.

Each nuclear reaction emitting γ-rays forms a peak in the measured energy spectra.

Such peaks are hence broadened by the Doppler shift according to equation 3. Recently,

it has become possible to measure the spectral shapes of such peaks using high-resolution

γ-ray spectrometers [2, 16–21]. Here we study sensitivities of such high-resolution GRS

measurements to 2D fast-ion distribution functions typical for hot, magnetized plasmas.

It is known from the energy dependence of the reaction cross sections (figure 1) that

GRS measurements are highly sensitive to alpha particles near the resonance energies

of the reaction at 1.9 MeV, 2.6 MeV, 4.0 MeV, 4.5 MeV, 5.0 MeV, 5.3 MeV and 5.75

MeV [30]. As the energies of thermal 9Be impurities are negligible compared with the

alpha particle energies, resonance peaks appear as semi-circular ridges in figure 1. The

sensitivity to alpha particles with energies below 1.7 MeV is poor. (At 1.7 MeV the
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Figure 1. Reaction cross sections [millibarn] of the 9Be(α,nγ)12C reaction as a

function of (v‖, v⊥) of the alpha particle for energies up to 6 MeV corresponding

to a velocity magnitude v = 17 × 106 m/s. The resonances appear at v =

(9.5, 11.1, 13.8, 14.7, 15.5, 15.9, 16.6) × 106 m/s. Below the resonance at 1.9 MeV

(v = 9× 106 m/s) the cross sections become very small, and hence GRS is insensitive

to particles populating the inner white region.

sensitivity is about 10% of the sensitivity at the resonance maximum at 1.9 MeV). In this

paper we show that the energies of the measured γ-photons from a particular reaction

indicate not only the energies of the alpha particles but also their pitches. The pitch

is defined as p = v‖/v where v‖ is the velocity component parallel to the magnetic field

and v is the velocity magnitude. Energy and momentum conservation imply, together

with the reaction cross sections, the existence of regions in 2D velocity space to which

a measurement in a given energy range of the γ-photon is sensitive as well as regions to

which the measurement is completely insensitive.

Such 2D velocity-space sensitivities of two-step reaction GRS measurements are

described by weight functions analogous to those of fast-ion Dα (FIDA) [31, 32],

collective Thomson scattering (CTS) [32,33] and neutron emission spectrometry (NES)

measurements [34, 35]. Our final goal is to infer 2D fast-ion velocity distribution

functions by tomographic inversion using weight functions as we present here for GRS

[33, 36, 37]. Whereas full tomographic inversion of GRS measurements cannot yet be

achieved, the general method has been demonstrated using FIDA measurements at

ASDEX Upgrade in MHD quiescent plasmas [37,38] and in plasmas with sawteeth [39].

A comparison of the tomographic inversion before and after a sawtooth crash showed a

strong dependence of the fast-ion redistribution on pitch. Whereas these measurements

relied on FIDA, all available fast-ion diagnostics can in principle be combined, provided

their weight functions are known [40]. Here we focus on three other useful applications

of weight functions. First, weight functions provide significant insight into the velocity-

space sensitivity of the diagnostic. They separate observable velocity-space regions from

unobservable regions [31–35, 41–62]. Second, they reveal the velocity-space origin of a

measurement for a given 2D fast-ion velocity distribution function [31–35,41,56–61,63].

Third, they allow rapid calculation of synthetic measurements [32–35]. The formalism
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we present here allows these applications for two-step reaction GRS measurements.

In section 2 we show how to calculate GRS weight functions numerically using the

GENESIS code as forward model [20,64]. We present numerically calculated GRS weight

functions to show the velocity-space observation regions typical for high-resolution GRS

measurments at JET in section 3. To gain insight into the numerically calculated GRS

weight functions, we consider the kinematics of the 9Be(α, nγ)12C reaction based on

energy and momentum conservation in section 4, which allows us to construct a tractable

simplified model showing observable regions in section 5. We compare analytical and

numerical approaches in section 6. In section 7 we study the dependence of the GRS

velocity-space sensitivities on key parameters. We calculate GRS measurements using

weight functions in section 8 and show where in velocity space the measurements

originate from for typical JET parameters. We discuss the potential application of

GRS weight functions in future burning plasmas in section 9 and conclude in section 10.

2. Numeric computation of GRS weight functions

Weight functions, w, relate 2D fast-ion distribution functions, f , to measurements, s,

according to [31–35, 41]

s(Eγ,1, Eγ,2, φ) =

∫

vol

∫ ∞

0

∫ ∞

−∞

w(Eγ,1, Eγ,2, φ, v‖, v⊥,x)f(v‖, v⊥,x)dv‖dv⊥dx. (4)

For GRS measurements, s(Eγ,1, Eγ,2, φ) is the detection rate of γ-rays [photons/s] in

the energy range Eγ,1 < Eγ < Eγ,2 with a viewing angle φ between the line-of-sight

of the GRS diagnostic and the magnetic field. (v‖, v⊥) are the velocities parallel and

perpendicular to the magnetic field, respectively, and x describes the spatial coordinates.

We use 2D (v‖, v⊥)-coordinates rather than the equivalent and more widespread (energy,

pitch)-coordinates for example used in the TRANSP code as our expressions are simpler

in (v‖, v⊥)-coordinates. The fast-ion velocity distribution function f is a 2D function

due to rotational symmetry of the full 3D fast-ion velocity distribution function. It is

obtained by transforming to cylindrical coordinates and integrating over the ignorable

gyroangle Γ: f 2D = 2πv⊥f
3D. In cylindrical coordinates v‖ can be negative or positive

whereas v⊥ is always positive. The units of f in equation 4 are [s2/m5] due to

multiplication of f 3D with the Jacobian v⊥. The units of GRS weight functions are

thus [photons / (α-particle × s)].

Weight functions of any fast-ion diagnostic can be found numerically using a forward

model that can predict a measurement for an arbitrary fast-ion distribution function.

In this numerical approach we calculate energy spectra of γ-rays emitted due to a small

collection of Nf fast alpha particles whose velocities (v‖, v⊥) are varied to scan the area

of interest in velocity space. This formalism is analogous to numeric computation of

weight functions for FIDA [31, 38], CTS [33] and NES [34, 35]. This collection of fast

ions at phase-space position (x0, v‖0, v⊥0) has a fast-ion distribution function fδ of the

form

fδ(v‖, v⊥,x) = Nfδ(v‖ − v‖0)δ(v⊥ − v⊥0)δ(x− x0). (5)
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Substitution into equation 4 and integration gives the amplitude of the weight function

at phase-space position (x0, v‖0, v⊥0):

w(Eγ,1, Eγ,2, φ, v‖0, v⊥0,x0) =
sδ(Eγ,1, Eγ,2, φ)

Nf
. (6)

GRS weight functions show the incident rate of γ-photons between two γ-ray energies

viewed at angle φ per alpha particle at phase-space position (x0, v‖0, v⊥0).

3. Observable regions of GRS measurements at JET

In this section we calculate GRS weight functions by the numerical approach given

in equation 6 using the GENESIS code. Figures 2 and 3 show weight functions for

observation angles of respectively φ = 90◦ and φ = 30◦ at Doppler shifts typical for high-

resolution GRS measurements at JET. The coloured regions are observable whereas the

white regions are unobservable. The amplitude shows the sensitivity of the measurement

in [photons/(α-particle × s)]. GRS measurements are indeed insensitive to energies

below about 1.7 MeV and are most sensitive to alpha particles with energies at the

resonance energies. These features are inherited from the cross sections of the reaction

shown in figure 1. However, the weight functions reveal that GRS measurements are

also highly selective in pitch.

For an observation angle of φ = 90◦ and large Doppler shifts (∆Eγ = Eγ − Eγ0 &

45 keV), GRS measurements are completely insensitive to ions with pitches ∼ ±1. The

unobservable regions become larger for larger Doppler shifts such that for very large

Doppler shifts (∆Eγ ∼ 90 keV), the measurements are only sensitive to pitches around

zero. We will show in the following sections that the energy and momentum equations

cannot be obeyed in the unobservable regions between 1.7 MeV and 6 MeV. Hence

γ-photons with the given Doppler shifts cannot originate from these regions. For a

Doppler shift of ∆Eγ ∼ 30 keV, the sensitivity of GRS measurements depends only

weakly on the pitch. For low Doppler shifts (∆Eγ . 15 keV), the measurements are

most sensitive to particles with pitches close to ±1 on all resonances. We will explain

this perhaps surprising result as a consequence of energy and momentum conservation

as well as the projection of vc onto the line-of-sight in section 7. The redshifted side is

identical to the blueshifted side at the same Doppler shift magnitude (figure 2 (a) and

(c)) corresponding to the expectation to observe spectra that are symmetric about the

peak energy.

We illustrate typical velocity-space observation regions of the other high-resolution

γ-ray spectrometer at an observation angle φ = 30◦ and various Doppler shifts in

figure 3. For any Doppler shift there are pitch ranges that are completely unobservable

at φ = 30◦. As for φ = 90◦ the unobservable regions grow with the Doppler shift.

The observable regions are now biased towards either positive or negative pitches. The

blueshifted side (∆Eγ > 0) is most sensitive to co-going particles for large Doppler shifts

(∆Eγ & 30 keV). For very large Doppler shifts (∆Eγ & 75 keV) the measurement is

not sensitive to particles with negative pitches at all. The redshifted side is always a
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Figure 2. Full GRS weight functions w [photons / (α-particle × s)] for φ = 90◦ and

various Doppler-shifted energies ∆Eγ of the γ-photons. The γ-ray energy bin width

is Eγ,1 − Eγ,2 = 1 keV. We assume nBe = 1018 m−3. Note that the colour scale is

different in each plot.
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Figure 3. Full GRS weight functions w [photons / (α-particle × s)] for φ = 30◦ and

various Doppler-shifted energies ∆Eγ of the γ-photons. The γ-ray energy bin width

is Eγ,1 − Eγ,2 = 1 keV. We assume nBe = 1018 m−3. Note that the colour scale is

different in each plot.
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mirror image of the blueshifted side at the same Doppler shift magnitude (figure 3 (a)

and (c)). For low Doppler shifts (∆Eγ . 15 keV), the measurements are most sensitive

to trapped particles with pitches close to zero. This again perhaps surprising result will

also be explained in section 7.

Thus we find that firstly GRS measurements are highly selective in pitch depending

on the observation angle and the Doppler shift. Secondly, the pitch selectivity for both

view changes depending on the Doppler shift. The latter is perhaps a surprising result

that we will study using an analytic approach in the following sections.

4. Kinematics of the 9Be(α, nγ)12C reaction

The numeric computations of GRS weight functions is the most accurate way to

characterize the velocity-space sensitivity of GRS measurements as the numeric GRS

weight functions account for all physics modelled in the GENESIS code including the

anisotropic differential cross sections of the 9Be(α, nγ)12C reaction [65]. However, the

numeric approach provides limited insight and, for example, does not explain why large

pitch ranges are not observable. In the following sections we seek to gain insight into

the velocity-space sensitivity of GRS measurements by constructing a simplified model

of GRS weight functions based on the kinematics of the 9Be(α, nγ)12C reaction. The

gyro-angle Γ of the alpha particle at the time of the reaction influences the measurable

Doppler-shifted energy Eγ of a γ-photon emitted by 12C∗ due to conservation of energy

and momentum. Motion of the alpha towards the detector tends to lead to blueshift

whereas motion of the alpha away from the detector tends to lead to redshift. Here we

establish this functional dependence. Eγ depends linearly on the line-of-sight velocity

uC of the carbon nucleus according to equation 3. uC in turn can be related to the

gyro-angle Γ of the alpha particle by energy and momentum conservation.

Figure 4. Sketch of the geometric relation between the magnetic field, the line-of-

sight (LOS) and the velocities of the 12C∗ nucleus, vC , and the alpha particle, vα. The

respective line-of-sight velocities are uc and uα. The dashed lines are perpendicular to

the line-of-sight. The angles φ, β, ζ are defined as φ = ∠(v̂LOS,B), β = ∠(v̂LOS ,vC)

and ζ = ∠(v̂⊥α,LOS , v̂⊥C,LOS).
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Our formalism is analogous to that for neutron emission spectrometry (NES) [35].

However, two nuisance parameters appear as the reaction kinematics in two-step reaction

GRS is less constrained than in NES which relies on one-step reactions. In one-step

reaction NES we know the energy as well as the momentum of the neutrons produced in

the reaction since only neutrons moving along the line-of-sight towards the detector are

measured. In two-step reaction GRS measurements we neither know the energy nor the

momentum of the 12C∗ produced in the reaction, but we know its velocity component uC

along the line-of-sight of the γ-ray detector as we know the energy of the γ-photon. The

other two directions are described by the unknown angles β and ζ . These angles and

the velocities and line-of-sight velocities of the 12C∗ and of the alpha particle relative to

the line-of-sight and the local magnetic field are sketched in figure 4.

We neglect the gyro-motion of the 12C∗ as it decays after much shorter time than

the cyclotron period. The decay time can be estimated from the intrinsic half-width of

the 4.44 MeV level, ∆Eγ0 = 5.4 meV, to ~/∆Eγ0 ∼ 61 fs [66] where ~ is the reduced

Planck constant. The cyclotron period of fully ionized 12C∗ is about 60 ns for a magnetic

field of 2.2 T, i.e. ∼ 106 times larger. In our simplified model, we further neglect the

energy and momentum of the thermal 9Be impurities compared with the energy and

momentum of the alpha particle. For a beryllium temperature of ∼ 10 keV and an

alpha particle energy of 2 MeV, the alpha-to-beryllium energy ratio is ∼ 200 and the

momentum ratio is ∼ 10. The GENESIS code accounts for the non-zero energy and

momentum of beryllium. A calculation showed that non-zero beryllium temperatures

blur the GRS weight functions somewhat but preserve their large-scale features. We do

not show these temperature effects for brevity.

Hence the energy and momentum conservation equations for the first step

(equation 1) of the two-step reaction become, respectively,

1

2
mαv

2

α +Q∗ =
1

2
mCv

2

C +
1

2
mnv

2

n, (7)

mαvα = mCvC +mnvn (8)

where subscripts α, C and n refer to the alpha particle, the 12C and the neutron,

respectively. We solve equation 8 for vn and eliminate v2n from the energy equation:

1

2
mαv

2

α +Q∗ =
1

2
mCv

2

C +
1

2mn

(m2

αv
2

α +m2

Cv
2

C − 2mαmCvα · vC). (9)

When equation 9 is solved for vα, the solution may not conserve momentum but instead

comply with mαvα = mCvC − mnvn rather than the correct momentum equation.

This is checked for and excluded below. The dot product vα · vC in equation 9 is

calculated by introducing the line-of-sight velocities. The line-of-sight velocity uC of
12C can at once be calculated from the measured energies Eγ in high-resolution GRS

according to equation 3. The line-of-sight velocity uα of the alpha leaves a signature in

the γ-ray spectra through the momentum and the energy equations whereas its velocity

perpendicular to the line-of-sight enters through the energy equation only. Motivated by

this observation, we split the velocity vectors of the 12C and the alpha into components
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parallel and perpendicular to the line-of-sight,

vα = uαv̂LOS +
√

v2α − u2
αv̂⊥α,LOS, (10)

vC = uCv̂LOS +
√

v2C − u2

Cv̂⊥C,LOS (11)

where v̂LOS is the unit vector along the line-of-sight towards the detector and v̂⊥α,LOS

and v̂⊥C,LOS are unit vectors of the velocity components of the alpha particle and the

carbon nucleus perpendicular to the line-of-sight, respectively. The line-of-sight velocity

uC and the total velocity vC can be related according to

uC = vC cos β (12)

where β ∈ [0, π] is the angle between v̂C and v̂LOS as sketched in figure 4. β is a

random variable with a probability distribution which we will sample by Monte Carlo

simulations. As vC is the magnitude of vC , uC and cos β have the same sign.

The dot product in equation 9 becomes

vα · vC = uαuC + cos ζ
√

(v2α − u2
α)(v

2

C − u2

C) (13)

where ζ ∈ [0, 2π] is the angle between v̂⊥α,LOS and v̂⊥C,LOS as sketched in figure 4. ζ is,

as β, a random variable with a probability distribution which we sample by Monte Carlo

simulation. For the special cases that vα or vC has no velocity component perpendicular

to the line-of-sight, the dot product becomes

vα · vC = uαuC (14)

as u2

α = v2α or u2

C = v2C . Then ζ is not defined, and the simplified dot product

must be used. This simplified dot product appears for NES weight functions because

detectable neutrons always move along the line-of-sight [35]. Substituting equation 13

into equation 9 we get

1

2
(mα −

m2

α

mn
)v2α +Q∗ =

1

2
(mC +

m2

C

mn
)v2C

−
mαmC

mn

(

uαuC + cos ζ
√

(v2α − u2
α)(v

2

C − u2

C)
)

. (15)

We eliminate vC for β 6= π/2:

1

2
(mα −

m2

α

mn
)v2α +Q∗ =

1

2
(mC +

m2

C

mn
)

u2

C

cos2 β

−
mαmC

mn

(

uαuC + cos ζ
√

(v2α − u2
α)(u

2

C/ cos
2 β − u2

C)
)

. (16)

For β = π/2, uC = 0 according to equation 12. The measured Doppler shift is zero

for particles moving perpendicular to the line-of-sight. To simplify the algebra, we take

mα = 4mn and mC = 12mn. Using 1/ cos2 β − 1 = tan2 β we find

Q∗

6mn

− v2α − 13
u2

C

cos2 β
+ 8

(

uαuC + cos ζ
√

(v2α − u2
α)u

2

C tan2 β
)

= 0. (17)

vα and uα are given by

v2α = v2‖ + v2⊥ (18)
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and [33]

uα = v‖ cosφ+ v⊥ sinφ cos Γ (19)

where φ is the angle between the line-of-sight and the magnetic field at the position we

consider as sketched in figure 4. Γ is the gyro-angle. Substitution gives

Q∗

6mn

− v2‖ − v2⊥ − 13
u2

C

cos2 β
+ 8(v‖ cosφ+ v⊥ sinφ cos Γ)uC

+8 cos ζ
√

(v2‖ + v2⊥ − (v‖ cos φ+ v⊥ sin φ cos Γ)2)u2

C tan2 β = 0. (20)

This is an implicit functional relationship between the gyro-angle Γ of the alpha particle

and the measurable uC showing that the measurable energy Eγ depends on the gyro-

angle Γ of the alpha particle for each point in 2D velocity space.

5. Analytic model of GRS probability functions

Equation 20 contains the gyroangle Γ which can take any value in [0, 2π]. The probability

distribution is uniform to a good approximation:

pdfΓ =
1

2π
. (21)

The relation between the measurable uC and the gyroangle Γ of the alpha particle in

equation 20 then allows us to calculate the probability that a detected γ-photon lies

in a given energy range between Eγ,1 and Eγ,2 as we will show in this section. As this

probability is a function of the observation angle φ and the position in velocity space,

it is written as prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) where the conditioning symbol ’|’

means ’given’. The probability function is related to the weight function by a detection

rate function R(v‖, v⊥,x) defined as the detection rate of photons per alpha particle

per second irrespective of the γ-ray energy in units [photons / (α-particle × s)]. The

weight function w is obtained if we multiply the total detection rate per ion R with the

probability that the detected γ-photon is in a particular energy range:

w(Eγ,1, Eγ,2, φ, v‖, v⊥,x) = R(v‖, v⊥,x)× prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥). (22)

This relation has similarly been introduced to normalize FIDA and NES weight

functions [32, 35]. R(v‖, v⊥,x) hence has the same units as weight functions whereas

the probabilities functions are dimensionless numbers between 0 and 1. R(v‖, v⊥,x)

depends on the production rate of γ-photons per alpha particle, on how many of the

produced γ-photons reach the detector, and on how efficiently the γ-photons at the

detector are detected. Energy and momentum conservation determine the boundaries

of the probability functions prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) in (v‖, v⊥)-space and hence

ultimately the boundaries of weight functions separating the observable regions from the

unobservable regions. The amplitudes of the probability functions and the full weight

functions also depend on the reaction cross sections.

We compute R(v‖, v⊥,x) using the GENESIS code by allowing all possible Eγ :

R(v‖0, v⊥0,x0) =
sδ(Eγ,1 = 0, Eγ,2 → ∞, φ)

Nf
. (23)
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An example of a numerically calculated rate function for the 9Be(α, nγ)12C reaction

is shown in figure 5. The rate function is, as the cross sections, symmetric in pitch angle.

The numbers of detectable γ-photons per ion are enhanced at the resonances.
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0
2
4
6
8

10
12
14
16
18

v  [106 m/s]
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Figure 5. Rate function R [photons/(α-particle × s)] showing the number of

detectable γ-photons per alpha particle at φ = 90◦ as a function of alpha particle

velocities. The photons can have any energy. We assume nBe = 1018 m−3. The

resonances appear at v = (9.5, 11.1, 13.8, 14.7, 15.5, 15.9, 16.6)× 106 m/s.

In the following we calculate probability functions introduced in equation 22 using

equation 20. The angles β and ζ are random variables for which probability distribution

functions pdf(β, ζ |v‖, v⊥, φ) can be computed numerically using the GENESIS code. The

probability function prob(Eγ,1 < Eγ < Eγ,2|v‖, v⊥, φ) can be calculated by transforming

to probabilities in uC according to

prob(Eγ,1 < Eγ < Eγ,2|v‖, v⊥, φ)

= prob(uC,1 < uC < uC,2|v‖, v⊥, φ)

=

∫ uC,2

uC,1

pdf(uC|v‖, v⊥, φ)duC

=

∫

β,ζ

∫ uC,2

uC,1

pdf(uC |v‖, v⊥, φ, β, ζ)pdf(β, ζ |v‖, v⊥, φ)duCdβdζ (24)

The integration limits in uC can be directly calculated from equation 3 for the

energy range of interest. The probability density function pdf(uC|v‖, v⊥, φ, β, ζ) can

be calculated by solving equation 20 for uC and then by sampling from the uniform

probability density function in gyro-angle Γ (equation 21).

To solve for uC, we pull the always positive product uC tan β in equation 17 in front

of the square root:

Q∗

6mn

− v2α − 13
u2

C

cos2 β
+ 8

(

uαuC + uC tan β
√

v2α − u2
α cos ζ

)

= 0. (25)

The solutions of the quadratic equation in uC are

uC =
4

13
cos β

(

uα cos β + sin β cos ζ
√

v2α − u2
α

)
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±

√

cos2 β

13

(

16

13

(

uα cos β + sin β cos ζ
√

v2α − u2
α

)2

+
Q∗

6mn
− v2α

)

. (26)

A second option to calculate prob(Eγ,1 < Eγ < Eγ,2|v‖, v⊥, φ) is to transform the

problem from uC-space to Γ-space according to

pdf(uC|v‖, v⊥, φ, β, ζ) = pdfΓ

∣

∣

∣

∣

dΓ

duC

∣

∣

∣

∣

(27)

which has the advantage that the integration of the constant pdfΓ is straightforward.

Hence the probability function can alternatively be calculated according to

prob(Eγ,1 < Eγ < Eγ,2|v‖, v⊥, φ)

=

∫

β,ζ

∑

i

∣

∣

∣

∣

∣

∫

Γ2,i

Γ1,i

pdfΓpdf(β, ζ |v‖, v⊥, φ)dΓ

∣

∣

∣

∣

∣

dβdζ

=

∫

β,ζ

pdf(β, ζ |v‖, v⊥, φ)
∑

i

∣

∣

∣

∣

∣

∫

Γ2,i

Γ1,i

pdfΓdΓ

∣

∣

∣

∣

∣

dβdζ. (28)

The integration limits in Γ must still be calculated. There are zero to four possible

ranges in Γ corresponding to the range in uC as we will show next. These are indicated

as a sum over the index i in equation 28. As these ranges in Γ do not overlap, we sum

over the mutually exclusive probabilities. We take the absolute value of the integral

in Γ as the integral represents a probability and hence must be positive while we have

Γ1,i > Γ2,i for at least one interval, if there is a solution. In the last step we have used

that pdf(β, ζ |v‖, v⊥, φ) does not depend on Γ. We can now evaluate the integral in Γ:

prob(Eγ,1 < Eγ < Eγ,2|v‖, v⊥, φ)

=

∫

β,ζ

pdf(β, ζ |v‖, v⊥, φ)
∑

i

∣

∣

∣

∣

Γ2,i − Γ1,i

2π

∣

∣

∣

∣

dβdζ (29)

To find the integration limits in Γ in equations 28 and 29, we isolate the square root in

equation 17 and square:
(

Q∗

6mn
− v2α − 13

u2

C

cos2 β

)2

+ 16uC

(

Q∗

6mn
− v2α − 13

u2

C

cos2 β

)

uα + 64u2

Cu
2

α

= 64u2

C tan2 β cos2 ζ
(

v2α − u2

α

)

. (30)

The solutions in uα are for uC

(

cos2 β + sin2 β cos2 ζ
)

6= 0

uα =
13u2

C + cos2 β
(

v2α − Q∗

6mn

)

8uC

(

cos2 β + sin2 β cos2 ζ
)

±

√

√

√

√

√

√

√

sin2 β cos2 ζ

(

64u2

Cv
2
α cos

2 β
(

cos2 β + sin2 β cos2 ζ
)

−
(

cos2 β
(

Q∗

6mn
− v2α

)

− 13u2

C

)2
)

64u2

C cos2 β
(

cos2 β + sin2 β cos2 ζ
)2

.

(31)
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Γ is then found from uα by

Γ = arccos
uα − v‖ cosφ

v⊥ sinφ
. (32)

A second pair of solutions for Γ ∈ [π, 2π] is given by

Γ′ = 2π − Γ (33)

as cos(2π − Γ) = cos Γ and the arccosine function is defined in [0, π] whereas Γ ∈

[0, 2π]. This is the functional dependence between Γ and uC required to transform the

integration limits. However, taking the square again introduces a spurious solution, i.e.

a solution of the squared equation 30 but not of the original non-squared equation 17,

which we check for and exclude below.

We note that our solution for Γ is valid for not completely parallel observation

(sinφ 6= 0), velocity-space positions not exactly on the v‖-axis (v⊥ 6= 0), non-zero

Doppler-shifts (uC 6= 0, cos β 6= 0), and particles not moving exactly parallel to the

line-of-sight (u2

α 6= v2α and u2

C 6= v2C). The special cases not fulfilling these conditions

could be treated individually, but we omit these special cases for brevity.

6. Comparison of analytically and numerically calculated GRS probability

functions for given (β, ζ)

In this section we compare probability functions for given (β, ζ) as computed by the

analytical and the numerical approaches. Equation 28 shows that the full probability

function prob(Eγ,1 < Eγ < Eγ,2|v‖, v⊥, φ) requires knowledge of the probability density

function pdf(β, ζ |v‖, v⊥, φ). Nevertheless, equation 20 allows analytic computation of

probability functions for given (β, ζ),

prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥, β, ζ) =
∑

i

∣

∣

∣

∣

Γ2,i − Γ1,i

2π

∣

∣

∣

∣

(34)

which must be integrated over (β, ζ) to obtain the full probability function:

prob(Eγ,1 < Eγ < Eγ,2|v‖, v⊥, φ)

=

∫

β,ζ

pdf(β, ζ |v‖, v⊥, φ)prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥, β, ζ)dβdζ (35)

Both probability functions can be calculated with the numerical approach. The full

probability function can be calculated from the numerically calculated quantities w and

R according to

prob(Eγ,1 < Eγ < Eγ,2|φ, v‖0, v⊥0,x0) =
w(Eγ,1, Eγ,2, φ, v‖0, v⊥0,x0)

R(v‖0, v⊥0,x0)
. (36)

The probability prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥, β, ζ) can also be calculated using the

numerical approach by allowing only the given (β, ζ)-pair:

prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥, β, ζ) =
w(Eγ,1, Eγ,2, φ, v‖, v⊥,x, β, ζ)

R(v‖, v⊥,x, β, ζ)

=
s(Eγ,1, Eγ,2, φ, β, ζ)

NfR(v‖, v⊥,x, β, ζ)
. (37)
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As pdf(β, ζ |v‖, v⊥, φ) is not known analytically, it is best to compare analytic and

the numerical approach at given (β, ζ). The probability functions prob(Eγ,1 < Eγ <

Eγ,2|φ, v‖, v⊥, β, ζ) may be regarded as basic building blocks of full probability functions

prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥). As probability functions based on equation 20 neglect

the momentum and energy of the thermal beryllium impurity, we also neglect these in

the numeric computation by setting the beryllium temperature to zero. A comparison

of the analytical and numerical probability functions for given (β, ζ) is presented in

figure 6. The amplitudes are the probabilities of detected γ-photons to be within the

given energy range. The analytical and the numerical approaches find the complex shape

of this probability function in very good agreement. The amplitudes of the analytical

and numerical probability functions are slightly different because (β, ζ) are not given

in exact values but rather in a small ranges due to the finite numerical resolution. We

have calculated the probability functions up to energies of 6 MeV corresponding to

17× 106 m/s as larger energies are usually not of interest. We have used this particular

pair of (β, ζ) as this probability function has a particularly complex shape. The simpler

shapes of probability functions for other (β, ζ) pairs computed with the numerical and

the analytical approaches are similarly in very good agreement.

(a) Analytic
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(b) Numeric

Figure 6. prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥, β, ζ) for Eγ = 15 keV, Eγ2−Eγ1 = 1 keV,

φ = 30◦, β = 70◦ and ζ = 10◦ as computed by the analytic and numerical approaches.

7. Parametric studies of the velocity-space sensitivity of GRS

In this section we study the velocity-space sensitivity of GRS measurements using

simplified analytic expressions as shown in section 5. First we show examples of

probability functions for fixed values of β and ζ . We will further present a simplified

model for a full probability function by assuming a uniform probability distribution of

(β, ζ).

Figure 7 shows the impact of the observation angle φ and the Doppler-shifted energy

of the γ-rays for β = ∠(v̂LOS,vC) = 10◦ and ζ = ∠(v̂⊥α,LOS, v̂⊥C,LOS) = 0◦. Typical

observation angles for the two high-resolution GRS diagnostics at JET are φ = 90◦ and
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(d) φ = 60◦,∆Eγ = 15 keV
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(e) φ = 60◦,∆Eγ = 30 keV
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(f) φ = 60◦,∆Eγ = 60 keV
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(g) φ = 30◦,∆Eγ = 15 keV
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(h) φ = 30◦,∆Eγ = 30 keV
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(i) φ = 30◦,∆Eγ = 60 keV
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(j) φ = 30◦,∆Eγ = −15 keV
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(k) φ = 30◦,∆Eγ = −30 keV
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(l) φ = 30◦,∆Eγ = −60 keV

Figure 7. prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥, β, ζ) for various projection angles

φ = (30◦, 60◦, 90◦) and Doppler shifts ∆Eγ = (−15, 15, 30, 60) keV in base ten

logarithm, see subfigure captions. Eγ2 − Eγ1 = 1.5 keV and ζ = 0◦ are kept fixed.

The angle between v̂LOS and vC is set to β = 10◦ for blueshift (∆Eγ > 0) and to the

supplementary angle β = 170◦ for redshift (∆Eγ < 0). The probability functions for

redshift and blueshift with the same magnitude are mirror images about v‖ = 0.

φ = 30◦. The Doppler shifts of the γ-rays are varied from ∆Eγ = −15 keV to ∆Eγ =

60 keV corresponding to projected velocities of the 12C from uC = −106 m/s to uC =

4× 106 m/s (equation 3). These values are also typical for GRS measurements at JET.

Blueshifted γ-rays have positive ∆Eγ whereas redshifted γ-rays have negative ∆Eγ . The

forms and positions of these probability functions prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥, β, ζ)

are highly dependent on the Doppler-shifted energies and the observation angles. The

amplitudes of prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥, β, ζ) are large near their boundaries.

This is also observed for CTS, FIDA, and NES weight functions for the typical spectral

resolution of the measurements and is explained by the projection of the circular gyro-
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motion onto the line-of-sight which leads to high probabilities to observe velocities near

the extremal values [32, 33, 35]. We further note the appearance of a low sensitivity

region at a particular alpha particle energy in each probability function which does

not occur for FIDA, CTS or NES weight functions. For φ = 90◦ (figures 7(a)-(c)) the

probability functions are mirror symmetric about v‖ = 0 since v‖ appears only as the

squared quantity v2‖ in equation 20 whereas the linear terms in v‖ vanish. The larger

∆Eγ is (or equivalently the larger uC is), the larger the observable area covered by the

probability functions is in alpha velocity space and the larger the velocities are. For the

oblique line-of-sight with respect to the magnetic field at φ = 60◦ (figures 7(d)-(f)), a bias

towards positive v‖ for blueshifted Eγ is introduced into the probability functions. This

bias comes from the terms v‖ cos φ in equation 20. It becomes even stronger for φ = 30◦

(figures 7(g)-(i)). These biases for oblique lines-of-sight occur for any β and ζ and hence

leave a signature in the full GRS weight functions and make GRS measurements with

oblique lines-of-sight selective in pitch towards either co-going or counter-going alpha

particles. Lastly, we find that the observation regions for given β and ζ and redshift are

mirror images of those for corresponding blueshifts (figures 7(j)-(l)) as also follows from

equation 20. Similarly, observation regions for fixed β and ζ for an observation angle

φ′ = 180◦ − φ are mirror images to those at φ at the same Doppler shift.

In the following we calculate a simplified model of full probability functions

prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) assuming that all angles β and ζ are equally likely.

Then the pdf(β, ζ |v‖, v⊥, φ) is uniform. Our results show that salient features of the GRS

weight functions in figure 2 are reflected in similar features of either the rate function R

in figure 5 or the corresponding probability function. The elevated sensitivity of weight

functions at the resonances is inherited from the rate functions. In contrast, the pitch

selectivity is inherited from the probability functions prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥).

In figure 8 we show a simplified model of the full probability function prob(Eγ,1 <

Eγ < Eγ,2|φ, v‖, v⊥) for a perpendicular observation angle φ = 90◦ assuming uniform

probability densities in (β, ζ). The Doppler shifts are varied from 15 keV to 75 keV. The

boundaries of the simplified probability functions are identical with the boundaries of

full probability functions computed with the GENESIS code whereas the amplitudes

may be different for probability densities in (β, ζ) accounting for anisotropic cross

sections. The probability functions reveal completely unobservable regions as well as

local maxima with elevated sensitivity. The local maxima in the probability functions

make the GRS measurements highly sensitive in particular pitch ranges whereas areas

with no solution of energy and momentum equations make the GRS measurements

completely insensitive in other pitch ranges. We note that the probability functions

prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) presented here assume uniform probability densities in

β and ζ in the allowed regions whereas in section 3 we fully accounted for the anisotropic

differential cross sections.

For ∆Eγ = 15 keV the entire velocity space is observable. The strong upper local

maximum would suggest strong sensitivity for pitches near zero, but this maximum

lies below the energy of the first resonance and is hence in a region producing few
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Figure 8. prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) assuming uniform probability densities

in (β, ζ) for φ = 90◦ and various Doppler shifts ∆Eγ = (15, 30, 45, 60, 75) keV in base

ten logarithm. Eγ2 −Eγ1 = 1.5 keV is kept fixed. Note that we choose different scales

for each plot.
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Figure 9. prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) assuming uniform probability densities in

(β, ζ) for φ = 30◦ and various Doppler shifts ∆Eγ = (15, 30, 45, 60, 75) keV in base 10

logarithm. Eγ2−Eγ1 = 1.5 keV is kept fixed. We assume uniform probability densities

in (β, ζ). Note that choose different scales for each plot.

detectable γ-rays. For alpha particle energies larger than 1.9 MeV we find that the

GRS measurements should be most sensitive to co-going and counter-going particles

(low v⊥) rather than trapped particles. This perhaps surprising result was also found by

calculating full GRS weight functions in section 3. For larger Doppler shifts, completely

unobservable regions appear at low v⊥ (corresponding to pitches ∼ ±1). In these regions

energy and momentum conservation do not allow the emission of γ-photons with these
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Doppler shifts. The sizes of these unobservable regions increase with the Doppler shift

consistent with the corresponding weight functions. Further, there are particular regions

with very large probabilities. We find two local maxima whose distances to the origin

also increase with the Doppler shift. For ∆Eγ ∼ 30 keV the upper maximum lies in the

region with significant γ-photon production whereas the lower maximum is still below

the first resonance at 1.9 MeV. For ∆Eγ ∼ 45 keV the upper and lower local maxima

at pitches around zero cover several resonances making the GRS measurements highly

sensitive for pitches around zero. For ∆Eγ ∼ 60 keV the lower local maximum is in

the region with significant γ-photon production. The elevated detection probabilities

make GRS spectrometers observing at φ = 90◦ for Doppler shifts of about 45 keV or

larger particularly sensitive to ions with pitches close to zero and rather insensitive or

completely insensitive to ions with pitch close to ±1. We stress that the most sensitive

pitch range thus strongly depends on the Doppler shift.

We illustrate typical velocity-space observation regions of the other high-resolution

γ-ray spectrometer at an observation angle φ = 30◦ and various Doppler shifts in figure 9.

Completely unobservable regions appear even at small Doppler shifts (∆Eγ ∼ 15 keV).

These blueshifted γ-photons cannot be produced due to alpha particles with p ∼ −1

and very high energy alpha particles with p ∼ 1. Two local maxima with elevated

detection probabilities again appear that are biased towards positive v‖ for blueshift

and φ = 30◦. Further we find elevated probabilities for pitches near zero explaining why

the weight functions for low Doppler shift and φ = 30◦ are actually most sensitive to

trapped particles. For Doppler shifts of ∆Eγ & 30 keV, the probability functions show

the expected bias. The blueshifted side is most sensitive to co-going particles. For large

Doppler shifts the measurement is not sensitive to counter-going particles at all. The

probabilities are also rather small for trapped alpha particles. As already mentioned

GRS weight functions for redshifts are mirror images of those with the corresponding

blueshift.

8. Applications of GRS weight functions for a slowing-down distribution

Traditionally high resolution GRS spectra are calculated by computationally demanding

Monte Carlo simulation using the GENESIS code. GRS spectra can also be calculated

using weight functions. In this approach weight functions are calculated for each

Doppler-shifted energy bin. Once the weight functions are known, the spectra can

be rapidly calculated by matrix multiplication for any f . The matrix multiplication

method is significantly faster than the Monte Carlo simulation [32,33,35]. This becomes

very advantageous if spectra for many distributions functions are to be calculated. We

illustrate the two approaches to calculate spectra for an alpha particle slowing down

distribution. This distribution is illustrated in figure 10 as a slice of a 3D function

[s3/m6] and as 2D function with no implied third direction [s2/m5]. The slowing down
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distribution is given by

f 3D(v‖, v⊥) =
τs

(v2‖ + v2⊥)
3/2 + v3c

∫ ∞

0

ṽ2S(ṽ)dṽ (38)

where τs is the slowing-down time, vc is the critical velocity and S is the alpha particle

source spectrum, which we calculated using a Monte Carlo approach.
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Figure 10. Alpha particle slowing-down distribution represented (left) as a slice of a

3D function [s3/m6] and (right) as 2D function [s2/m5]. We assume nα = 1018 m−3,

ne = 1020 m−3, nD = nT = ne/2 and TD = TT = Te = 20 keV. The velocity

distribution function f2D from f3D by transforming to cylindrical coordinates and

integrating over the by assumption ignorable gyroangle Γ, f2D = 2πv⊥f
3D.

Figure 11. Energy spectrum for the Eγ0 = 4.44 MeV level for the alpha particle

slowing-down distribution from figure 10 as calculated using Monte Carlo simulations

(MC) and by weight functions (WF). The spectrum shows the number of detected

γ-photons per second [photons /s] in small energy bins of widths Eγ,2 −Eγ,1 = 1 keV.

We assume emission from a point source in position space.

Figure 11 demonstrates that spectra calculated using weight functions and using

the Monte Carlo approach agree within the Monte Carlo noise level. This verifies that

the GRS weight functions are in agreement with the traditional Monte Carlo simulation.

The weight function method additionally shows the alpha particle velocity space origin

of the signal in a particular γ-photon energy bin. This is shown by the product of

the particular weight function for this γ-photon energy bin and the fast-ion velocity

distribution function w× f at that point. Figures 12 and 13 illustrate these regions for

φ = 90◦ and φ = 30◦ for a few Doppler-shifted energies, respectively. For the adopted

slowing-down distribution, most γ-photons with Doppler shifts below . 60 keV are
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Figure 12. The products w× f of the functions shown in figures 2 and 10b illustrate

how many γ-photons detected at each Doppler shift ∆Eγ were produced resolved in

2D velocity-space for this slowing-down distribution function. The units are [photons

× s / m5]. The γ-ray energy bin width is Eγ,1 − Eγ,2 = 1 keV, and the observation

angle is φ = 90◦. We assume nBe = 1018 m−3 and TBe = 0 keV.
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Figure 13. The products w× f of the functions shown in figures 3 and 10b illustrate

how many γ-photons detected at each Doppler shift ∆Eγ were produced resolved in

2D velocity-space for this slowing-down distribution function. The units are [photons

× s / m5]. The γ-ray energy bin width is Eγ,1 − Eγ,2 = 1 keV, and the observation

angle is φ = 30◦. We assume nBe = 1018 m−3 and TBe = 0 keV.
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produced near the 1.9 MeV resonance. Most γ-photons with Doppler shifts larger than

60 keV are produced near the 4 MeV resonance as energy and momentum conservation

do not permit the production of γ at the 1.9 MeV resonance. We further find the strong

pitch dependence inherited from the corresponding weight functions.

9. Discussion

Weight functions are widely used to interpret FIDA and CTS measurements [31–35,

41–61]. Recently, NES weight functions have been derived and applied to interpret

measurements with the time-of-flight neutron spectrometer TOFOR at JET [34, 35].

GRS weight functions should likewise prove useful for GRS measurements at JET.

Alpha particles accelerated to high energies by ICRH likely have pitches quite close to

zero and can hence be measured well using the detector with the perpendicular line-of-

sight (φ = 90◦) at large Doppler shifts. However, alpha particles generated in burning

plasma in the upcoming DT campaign at JET should be quite evenly distributed in

pitch. GRS weight functions show that measurements at φ = 90◦ and large Doppler

shifts will preferentially detect trapped fast particles with low pitches (p ∼ 0) whereas

measurements at φ = 30◦ and large Doppler shifts will preferentially detect co- and

counter-going fast particles on the blue- and redshifted sides of the peak, respectively.

Weight functions are further used to measure 2D fast-ion distribution functions

by tomographic inversion. This was demonstrated for FIDA measurements at ASDEX

Upgrade in NBI heated MHD quiescent discharges as well as discharges with sawtooth

activity. JET has two high-resolution γ-ray spectrometers as well as two high-

resolution neutron emission spectrometers. These diagnostics could be combined to

measure 2D fast-ion distribution functions in JET discharges. This could provide

direct measurements of 2D velocity distribution functions of fast ions in the MeV range

generated by ICRH or even of an alpha distribution function in burning plasma in the

upcoming DT campaign at JET. However, this is beyond the scope of this paper. We

must still investigate if the signal-to-noise ratio is high enough for tomographic inversion.

Further, GRS and NES measurements have no spatial resolution along their lines-of-

sight, and hence measurements in small spatial volumes as for FIDA are not possible

with this diagnostic set. At JET the tomographic inversion would determine a spatial

average of the 2D velocity distribution function in the plasma core assuming most fusion

products are formed there.

GRS weight functions could also prove useful for tomographic inversion at ASDEX

Upgrade [67, 68] where up to six FIDA views [39, 55, 61], two CTS views [54, 62, 69–73],

one NES view [74,75], one GRS view [22], one neutral particle analyzer as well as three

FILD diagnostics [76, 77] provide excellent fast-ion velocity-space coverage. Here the

GRS weight functions enable us to use GRS together with the other diagnostics to

measure 2D fast-ion distribution functions.

Lastly, our formalism will show the velocity-space sensitivity of GRS measurements

on ITER [24] and DEMO [25] and fusion reactors beyond. ITER will also be equipped
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with NES [78] and CTS [79–81] diagnostics, and diagnostics based on charge-exchange

reactions will also likely give valuable information about fast ions [82]. GRS weight

functions should make it possible to measure 2D fast-ion velocity distribution functions

on ITER in combination with the other fast-ion diagnostics.

10. Conclusions

Here we calculated weight functions revealing velocity-space sensitivities of GRS

measurements. GRS weight functions show how many γ-photons can be detected per

ion and hence which velocity-space regions are observable and which are unobservable.

Given a simulated fast-ion distribution function, GRS weight functions allow rapid

calculation of γ-ray spectra additionally showing how many γ-rays are produced for each

alpha particle velocity. We focussed on the 9Be(α,nγ)12C reaction, but our formalism

is valid for any two-step reaction producing γ-rays.

It is known that GRS measurements of the 9Be(α,nγ)12C reaction are highly

sensitive to alpha particles with energies near the resonance energies of the reaction.

Here we demonstrate that the GRS measurements are also highly selective in pitch

depending on the orientation of the line-of-sight and the Doppler-shifted energy. The

pitch selectivity originates from the conservation of energy and momentum and the

Doppler shift condition as we demonstrate by constructing a tractable simplified model.

The two high-resolution γ-ray spectrometers at JET have a perpendicular (φ = 90◦)

and an oblique line-of-sight (φ = 30◦) with respect to the central magnetic field,

respectively. GRS measurements with perpendicular lines-of-sight are highly sensitive

to ions with pitches close to zero for large Doppler shifts. Perhaps surprisingly, for small

Doppler shifts they are most sensitive to ions with pitch close to ±1. On the contrary,

for the oblique lines-of-sight the blueshifted side of the spectrum is sensitive to co-going

ions and the redshifted to counter-going ions for large Doppler shifts. At very large

Doppler shifts, these measurements are completely insensitive not only to ions passing

in the opposite direction but even to ions with pitches near zero. For smaller Doppler

shifts the measurements are biased in the same sense but still sensitive to both sides of

the spectrum. Again perhaps surprisingly, measurements for the oblique line-of-sight at

small Doppler shifts are most sensitive to particles with pitches around zero.

The energy selectivity and pitch selectivity make GRS measurements highly

sensitive in rather small regions in velocity space. This selectivity in 2D velocity

space suggests that GRS measurements could be highly valuable in measurements of

2D velocity distribution functions by tomographic inversion.
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