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Abstract 

Time-frequency methods are widely used tools to diagnose planetary gearbox fault 

under non-stationary conditions. However, the existing time-frequency methods still have 

some problems, such as smearing effect and cross-term interference, and these problems 

limit the effectiveness of the existing time-frequency methods in planetary gearbox fault 

diagnosis under non-stationary conditions. 

To address the aforementioned problems, four time-frequency methods are proposed 

in this thesis. As nowadays a large portion of the industrial equipment is equipped with 

tachometers, the first three methods are for the cases that the shaft rotational speed is easily 

accessible and the last method is for the cases of shaft rotational speed is not easily 

accessible. The proposed methods are itemized as follows: 

(1) The velocity synchronous short-time Fourier transform (VSSTFT), which is a type 

of linear transform based on the domain mappings and short-time Fourier transform to 

address the smear effect of the existing linear transforms under known time-varying speed 

conditions; 

(2) The velocity synchrosqueezing transform (VST), which is a type of remapping 

method based on the domain mapping and synchrosqueezing transform to address the 

smear effect of existing remapping methods under known time-varying speed conditions; 

(3) The velocity synchronous bilinear distribution (VSBD), which is a type of bilinear 

distribution based on the generalized demodulation and Cohen’s class bilinear distribution 

to address the smear effect and cross-term interference of existing bilinear distributions 

under known time-varying speed conditions and 

(4) The velocity synchronous linear chirplet transform (VSLCT), which is a non-

parametric combined approach of linear transform and concentration-index-guided 

parameter determination to provide a smear-free and cross-term-free TFR under unknown 

time-varying speed conditions. 

In this work, simple algorithms are developed to avoid the signal resampling process 

required by the domain mappings or demodulations of the first three methods (i.e., the 

VSSTFT, VST and VSBD). They are designed to have different resolutions, readabilities, 
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noise tolerances and computational efficiencies. Therefore, they are capable to adapt 

different application conditions. The VSLCT, as a kind of linear transform, is designed for 

unknown rotational speed conditions. It utilizes a set of shaft-rotational-speed-synchronous 

bases to address the smear problem and it is capable to dynamically determine the signal 

processing parameters (i.e., window length and normalized angle) to provide a clear TFR 

with desirable time-frequency resolution in response to condition variations.  

All of the proposed methods in this work are smear-free and cross-term-free, the TFRs 

generated by the methods are clearer and more precise compared with the existing time-

frequency methods. The faults of planetary gearboxes, if any, can be diagnosed by 

identifying the fault-induced components from the obtained TFRs.  The four methods are 

all newly applied to fault diagnosis. The effectiveness of them has been validated using 

both simulated and experimental vibration signals of planetary gearboxes collected under 

non-stationary conditions. 
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 Introduction 

 Overview 

Planetary gearboxes are extensively used in industrial applications, such as wind 

turbines (Zimroz et al., 2011), helicopters (Samuel and Pines, 2005) and cranes (Assaad et 

al., 2014), because of their compact size and high torque-to-weight ratio. The planetary 

gearboxes are often operated in severe working conditions and undergo variable heavy 

loads, therefore they are vulnerable to fault development. The faults of a planetary gearbox 

could lead to run time breakdowns, production losses and even catastrophic accidents. 

Therefore condition monitoring and fault diagnosis are important for applications of 

planetary gearbox (Lei et al., 2014). 

The techniques of condition monitoring and fault diagnosis for rotational machinery 

have been widely developed. Various types of data have been analysed for fault diagnosis, 

including the vibration amplitude (Randall, 2011), acoustic emissions (Elforjani and Mba, 

2011), thermal image (Younus and Yang, 2012) and oil debris particles amount 

(Bozchalooi and Liang, 2010). Among them, vibration analysis is the most widely used 

method in real applications, as vibration is easy to be measured and it contains rich 

information related to machine health conditions.  

For a rotating machinery, bearings and gears are the most fault-prone parts due to the 

frequent metal-to-metal contact. Under a constant shaft speed condition, such faulty part 

will periodically contact other parts at fault characteristic frequency of that faulty part and 

generate some frequency components associated with that fault (McFadden, 1986; Wang 

et al., 2014). The frequency-domain methods diagnose faults by identifying such frequency 

components from the signal. To diagnose the planetary gearbox fault using frequency-

domain methods, understanding the spectral pattern of planetary gearbox vibration is a 

prerequisite. Feng and Zuo (2012) investigated the sideband structures of the faulty 

planetary gearbox vibrations  and provided models of the faulty planetary gearbox 

vibrations with sun, planet and ring gear faults. They found faulty gear would cause 

amplitude modulation and frequency modulation of meshing frequency and its harmonics, 

which in return generate some specific sidebands. Based on this vibration model, planetary 
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gear fault can be diagnosed by identifying the sidebands associated with fault from the 

spectrum (Feng and Liang, 2014a) or by identifying the frequency components associated 

with fault from the spectrum of the demodulated signal (Feng et al., 2012; Feng et al., 

2013b). 

Planetary gearbox often works under non-stationary conditions (non-stationary 

condition refers to a state that the external load and/or gearbox running speed varies over 

time), e.g., the planetary gearboxes of helicopters (Zhou et al., 2018) and wind turbines 

(He et al., 2018). The vibration signals collected under non-stationary conditions 

commonly contain more abundant fault symptoms, which cannot be found under stationary 

conditions (Li et al., 2005). Hence, fault diagnosis of planetary gearbox under non-

stationary conditions draws increasing attentions nowadays. Under non-stationary 

conditions, the vibration signal components are non-stationary (a non-stationary signal in 

this thesis denotes a signal containing components with time-varying frequencies and/or 

amplitudes).  

The time-frequency method is a good technique for processing non-stationary signals. 

It analyses signals in both time and frequency domains simultaneously (Feng et al., 2013a), 

thus it provides more information than the order-domain method, which only analyses 

signals in one domain. In the field of fault diagnosis of gearboxes, the time-frequency 

method commonly works by generating a time-frequency representation (TFR) of the 

collected vibration signal and the fault, if any, can be diagnosed by identifying the time-

varying sidebands and impulses caused by gear fault. To date, various time-frequency 

methods have been proposed. Linear transform, remapping method and bilinear 

distribution are three main families of widely used time-frequency methods.  

Linear transform is realized by calculating the inner product of the sliding-window-

covered signal and the transform basis (Feng et al., 2013a). The advantage of linear 

transform is that it is easy to be implemented and has good computational efficiency. 

However, Linear transforms are subject to the Heisenberg uncertainty principle, thus their 

time-frequency resolutions are limited (Hlawatsch and Boudreaux-Bartels, 1992), and the 

energy concentration of the linear transform is relatively low. The short-time Fourier 

transform (STFT), continuous wavelet transform (CWT) (Zheng et al., 2002) and chirplet 
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transforms (Mann and Haykin, 1995) are significant representations of linear transform 

family. One of their drawbacks is that they have TFR smear effects for analysing the 

vibration signals collected from rotational machinery under non-stationary conditions. To 

illustrate the smear effect, two example signals are introduced here. The first signal is 

stationary, with length 4 s and frequency 6 Hz, expressed by  

 1( ) sin 12πts t   (1-1) 

The second signal is a non-stationary signal with time-varying frequency. The signal length 

is also 4 s and expressed by    

 2 20
( ) sin 2π d

t

s t f        (1-2) 

where 

 2 =10-2tf t . (1-3) 

The frequency trajectory of the first signal is shown in Fig. 1-1(A) and the TFR obtained 

by the STFT is shown in Fig. 1-1 (B). It can be seen that the TFR clearly reveals the signal 

frequency. The frequency trajectory of the second signal is shown in Fig. 1-2(A) and the 

STFT result is shown in Fig. 1-2 (B). The smear effect can be easily seen in the result (i.e., 

the revealed signal energy is scattering compared with Fig. 1-1 (B)). 

 

Fig. 1-1. TFR of the signal s1: (A) True instantaneous frequency and (B) TFR obtained by the 

STFT 
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Fig. 1-2. TFR of the signal s2: (A) True instantaneous frequency and (B) TFR obtained by the 

STFT 

The remapping method is a kind of post-processing technique based on the linear 

transform. Two well-known examples of remapping method are the reassignment method 

(Auger and Flandrin, 1995) and synchrosqueezing transform (SST) (Daubechies et al., 

2011). The remapping methods firstly employ a linear transform (commonly the wavelet 

transform) to obtain an initial TFR and then remap the initial TFR data to new locations to 

obtain a TFR with better energy concentration and readability. However, such methods 

cannot completely solve the smear problem (Li and Liang, 2012b, a; Feng et al., 2015a) 

and the recent research showed the remapping methods cannot improve the time-frequency 

resolution (Iatsenko et al., 2015). 

Bilinear distribution is another kind of time-frequency method (Hlawatsch and 
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than linear  transform. However, bilinear distributions have smear effect for the frequency 

components that cannot be characterized by linear law (Boashash and Shea, 1994) and it 

has cross-term interference for multi-component signals. To illustrate the cross-term 

interference, a two-component signal is introduced here. This signal contains two linearly 

increasing frequency. The signal length is 3 s and expressed by    

   3 3 30 0
( ) sin 2π d sin 2π 2 d

t t
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where 

 3 =15t+60f t . (1-5) 

The frequency trajectory of the first signal is shown in Fig. 1-3(A) and the TFR 

obtained by the WVD is shown in Fig. 1-3(B). It can be seen that two signal components 

are clearly revealed. However, an additional component is also introduced and it does not 

have any physical meaning. This is the cross term and it interferes the interpretation of the 

TFR. To resolve the smear problem and cross-term interference, many methods have been 

proposed, for example, polynomial Wigner-Ville distribution  (Boashash and Shea, 1994) 

and Cohen class bilinear distributions (CCBD) (Cohen, 1989). However, none of them is 

able to resolve these two problems simultaneously.  

 

Fig. 1-3. TFR of the signal s3: (A) True instantaneous frequencies and (B) TFR obtained by the 

WVD 
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distribution is realized by applying an integral transform on a matrix that is much larger 

than the counterpart matrix of linear transform. Besides, the bilinear distribution spends 

additional time on supressing the cross terms, compared with linear transform and 

remapping method.  

Based on the above analysis, the features of these three types of time-frequency 

methods are summarized in Table 1-1. It can be seen that for the application of vibration 

analysis under non-stationary conditions, these three types of methods share the problem 

of smear effects. The bilinear distribution is the only type of methods having cross-term 

interference. The performances of these three types of methods are assessed from two 

aspects, time-frequency resolution and energy concentration. The linear transform 

performs badly in both aspects. The remapping method improves the readability of linear 

transform. The bilinear distribution has both good time-frequency resolution and good 

energy concentration inherently. Therefore, their performances can be ranked: bilinear 

distribution > remapping method > linear transform. Their rank in order of computational 

efficiency, on the contrary, is ordered as linear transform > remapping method > bilinear 

distribution. This shows that better performance requires longer computational time. Based 

on the above analysis, each type of time-frequency methods has its own advantages and 

disadvantages and different methods are suited to serving under different application 

environments (for example, online or offline). 

Table 1-1 Features of the time-frequency methods for analyzing non-stationary vibration signals 

Method name 
Linear 

transform 
Remapping 

method 
Bilinear 

distribution 

Drawback 

Smear effect Yes Yes Yes 

Cross-term  
interference 

No No Yes 

Performance 

Energy 
concentration 

Low High High 

Time-frequency 
resolution 

Low Low High 

Computational efficiency Fast Medium Slow 
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 Motivation and proposed study 

Based on the above analysis, the objectives of this thesis are to develop time-frequency 

methods to address the drawbacks of existing time-frequency methods mentioned above 

for fault diagnosis of planetary gearbox under non-stationary conditions. Nowadays, 

tachometers have been installed in a large portion of industrial planetary gearboxes to 

record the running speeds. In some situations, the running speed can also be easily 

estimated from the signal TFR obtained from the STFT. Such speed information has not 

been utilized yet by the existing time-frequency methods to address their drawbacks. 

Therefore, the first three objectives of this thesis are to address the drawbacks of existing 

linear transforms, remapping methods and bilinear distributions with the help of shaft 

rotational speed information. That is to develop 

1) a smear-free linear transform; 

2) a smear-free remapping method and 

3) a cross-term-free and smear-free bilinear distribution. 

Hence, three time-frequency methods, the velocity synchronous short-time Fourier 

transform (VSSTFT), velocity synchrosqueezing transform (VST) and velocity 

synchronous bilinear distribution (VSBD), are proposed. They employ domain mapping 

technique or demodulation technique according to the shaft rotational speed to address the 

drawbacks of existing linear transforms, remapping methods and bilinear distributions 

respectively. These methods have different resolution, readability, noise tolerance and 

computational efficiency, thus they can be selected by user according to the application 

environment and user needs.   

In industrial applications, there also some planetary gearboxes that do not have 

tachometer to record its running speed and the shaft speed may not be easily estimated 

from the STFT of the vibration signal due to the noise or smear effect of the STFT.. 

Therefore, the last objective of this thesis is to develop a cross-term-free and smear-free 

time-frequency method for fault diagnosis of planetary gearbox under non-stationary 

conditions without using shaft rotational speed and the corresponding developed method 

is named velocity synchronous linear chirplet transform (VSLCT).  
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The rest of the thesis is structured as follows. Chapter 2 gives a literature review of the 

planetary gearbox vibration models and existing signal processing techniques for planetary 

gearbox fault diagnosis.  The VSSTFT, VST, VSBD and VSLCT for planetary gearbox 

fault diagnosis under non-stationary conditions are presented in Chapter 3, 4, 5 and 6 

respectively. A comparison study about the four proposed methods are presented in 

Chapter 7. Conclusions and suggested future work are given in Chapter 8.  
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 Literature review  

In this chapter, the vibration models of planetary gearbox are reviewed first. Then the 

signal processing methods for fault diagnosis of planetary gearbox are summarized with 

reviews according to their categories, i.e., time-domain method, frequency-domain method, 

order-domain method and time-frequency method. 

 Planetary gearbox vibration models  

In order to detect and diagnose gear fault of planetary gearboxes from their vibration 

signals, it is important to know their vibration behaviours. For this purpose, researchers 

have constructed several vibration models of planetary gearboxes. 

To measure the planetary gearbox vibration signals, the sensor is often mounted on a 

fixed location of the gearbox housing. McFadden and Smith (1985) found that the 

spectrums of the vibration signals collected under such sensor setup have asymmetrical 

sidebands. To explain this phenomenon, they investigated the vibration of planetary 

gearbox and constructed a simple model. The sensor-perceived vibration was modelled as 

a summation of the sensor-perceived vibrations from all the planet gears. As the transfer 

paths between the vibration origins and the sensor are time-varying and the planet gears 

and carrier revolve with respect to the fixed sensor, the sensor-perceived vibration from 

individual gear was modelled as an amplitude modulation process. In this model, the 

meshing frequency and its harmonics act as the carrier frequencies, and carrier rotating 

frequency act as the modulating frequency. Based on this model, the asymmetry of 

sidebands was explained as the result of the phase difference of the individual vibrations 

from different planet gears. This work was later generalized by McNames (2001) using 

continuous-time Fourier series analysis. 

Chaari et al. (2006c) investigated the vibration of planetary gearbox with eccentricity 

or profile errors. They found such faults change the dynamic behaviour seriously and cause 

modulation of the gear meshing vibration, which generates sidebands around gear meshing 

frequency and its harmonics. They also found tooth cracks and pitting will cause reduction 

of gear stiffness and this leads to amplitude modulations of gear meshing vibration. Such 

modulation can be reflected by the high activity of sidebands in the spectrum (Chaari et al., 

2006a). 
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Inalpolat and Kahraman (2009) constructed an analytic model to explain the 

modulation sidebands of planetary gearbox. The model employed the geometry parameters 

of planetary gearbox, such as number of planets, the position angles (defined as the angles 

between the planet gears), and the reference planet gear and planet phasing relationships 

(defined by the position angles and the number of teeth of the gears). Based on that model, 

Inalpolat and Kahraman (2009) found the symmetric sidebands only occur when the planet 

gears are in-phase and equally spaced. They further extended this model by taking 

periodically time-varying gear mesh stiffness and the nonlinearities into consideration and 

applied the new model to predict modulation sidebands of planetary gearbox having 

manufacturing errors (Inalpolat and Kahraman, 2010).  

Mark and Hines (2009) developed a vibration model of planetary gearbox considering 

angular errors of planet-support angular locations, non-uniform planet gear loading and 

ring-gear manufacturing errors. This model was later extended by including the effects of 

planet-carrier torque modulations (Mark, 2009). 

Hong et al. (2014) presented vibration model of both healthy and faulty equally spaced 

planetary gearbox, considering both the gear meshes between the planets and the annulus 

as well as the meshes between the planets and the sun gear. Based on this model, the gear 

fault will cause specific sidebands around meshing frequency and its harmonics.  Feng and 

Zuo (2012) modeled the faulty planetary gearbox vibrations and summarised the symptoms 

of both local and distributed faults of sun, planet and ring gears and derived the equations 

for calculating the fault characteristic frequencies of planetary gearboxes. The sensor-

perceived vibration is modeled as a modulated signal with meshing frequency and its 

harmonics as carrier frequencies. This model is provided in Appendix A and employed in 

the simulation evaluation sections of this thesis.   

 Time-domain methods 

Time-domain methods directly process the signal in time domain for fault diagnosis. 

The main time-domain methods for condition monitoring and fault diagnosis of planetary 

gearbox include condition indicators based on statistical parameter, time synchronous 

averaging (TSA) and vibration separation.  
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The TSA method is a classic time-domain method of separating periodic signals from 

non-periodic noise. In practice it is implemented by averaging a series of signal segments 

that are synchronised with the rotation of the gear of interest (McFadden, 1987b, a, 1989). 

Based on the TSA, McFadden presented a vibration separation technique to isolate the 

tooth meshing vibration of individual planet gears and the sun gear (McFadden, 1991). The 

technique was further improved by using a Hanning window to suppress the sidelobe 

(McFadden, 1994). Yip (2011) applied health indicators and statistical control charts based 

on the TSA model to diagnose planetary gearboxes used in oil sands operations. Yu (2011) 

employed the wavelet transform to the residual signal of TSA signal to evaluate the 

planetary gear fault advancement quantitatively.  

Researchers proposed various time-domain fault indicators, for example, root mean 

square (RMS) (Rzeszucinski et al., 2012), kurtosis (Heng and Nor, 1998) and crest factor 

(Pachaud et al., 1997). In the presence of damage, the values of such indicators may change, 

thus the fault can be detected by comparing the current indicator value with the value in 

healthy condition. Zhao et al. (2013b) summarized 18 time-domain statistical indicators 

for fault detection of planetary gearbox. Keller and Grabill (2003) modified several 

standard time domain fault indicators, such as FM0 and FM4, for planetary gearbox carrier 

fault detection. Samuel and Pines (2003) calculated the prediction error of wavelet 

transform using the time domain lifting scheme and used the prediction error as a fault 

indicator of planetary gearbox. They later improved this method by introducing a time-

domain diagnostic metric based on the lifting prediction error vector (Samuel and Pines, 

2009). Lei et al. (2012) applied the RMS to the filtered signal instead of the original signal 

to exclude the interference components, such as meshing components and sideband 

components. Liu et al. (2014) developed a time-domain feature selection algorithm to 

determine fault-sensitive features and select them for fault level diagnosis of planetary 

gearboxes. Abouel-seoud (2017) tested various condition monitoring indicators for 

evaluating the fault severity of planetary gearbox via stationary vibration signal. These 

indicators include RMS, skewness, kurtosis, crest factor and higher order statistics indices. 

Among them, the RMS performs best for early fault detection. Liang et al. (2016) 

decomposed the signal into the vibration waveforms of each planet gears using windowing-

and-mapping method and found that the vibration waveform of faulty planet gear tooth has 
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relatively higher RMS value. Chen and Shao (2013) proposed a vibration mode of 

planetary gearbox and the simulation result showed that the crack growth caused 

significant change of crest factor. Lei et al. (2012) developed two novel statistical 

indicators for fault diagnosis of planetary gearbox, i.e., normalized summation of the 

positive amplitudes of the difference spectrum between the signal under analysis and the 

healthy signal, and RMS of the filtered signal. 

Though the above time domain methods can possibly diagnose planetary gearbox fault 

under a stationary condition, they are not suitable for analysing the planetary gearbox 

vibration signal collected under non-stationary conditions. The TSA and vibration 

separation assume the vibration signals are stationary. For these method, even small speed 

fluctuation would cause great loss of information in the averaged result. The time domain 

fault indicators are sensitive to shaft speed and load, and thus are only suitable for analysing 

stationary signals. Furthermore, to apply such methods to the signal collected under a non-

stationary condition, the reference indicator levels when the machine operate at the same 

non-stationary condition must be known in advance for comparison. However, such 

information is not always easily accessible. 

 Frequency-domain methods 

Frequency-domain analysis is a widely used approach in the field of fault diagnosis 

and condition monitoring of rotational machinery and it is commonly done by analysing 

the spectrum obtained using the Fourier transform. The frequency-domain methods for 

gearbox fault diagnosis are based on the fact that under a constant shaft speed, the gears 

with tooth fault will periodically contact other parts, thus generating some specific 

frequency components. As such, a fault may be detected by tracking the number and 

amplitude of such components, and fault location can be detected by identifying the 

features of the revealed frequency components (Randall, 1982; McFadden, 1986; Dalpiaz 

et al., 2000). 

In real applications of planetary gearbox fault diagnosis, the signals are usually pre-

processed before applying Fourier transform to extract frequency domain information. This 

is because a practical vibration signal commonly contains noise and interference of other 

mechanical components. Pre-processing techniques can strengthen such fault features and 



13 

supress the noise and interference to increase the accuracy of fault diagnosis.  For example, 

Mark et al. (2010) proposed a method to eliminate the effects of transducers and structural-

path-caused amplitude changes for early fault detection of a planetary ring gear. Liu et al. 

(2012) employed local mean decomposition to extract the gear fault frequency feature from 

vibration signals and diagnose a seeded crack fault in a wind turbine planetary gearbox. 

Feng and Liang (2014a) applied an iterative atomic decomposition approach to suppress 

background noise interferences before spectral analysis. Though the above methods 

successfully diagnose fault from planetary gearbox, they require the analyst to have a 

thorough knowledge about the spectral property of a planetary gearbox, because the 

vibration signal from a planetary gearbox has complex sidebands regardless whether it is 

in healthy or faulty conditions.  

Recently, Bartelmus et al. developed several frequency-based methods for planetary 

gearbox fault diagnosis under time-varying load working conditions (Bartelmus and 

Zimroz, 2009a, b; Bartelmus et al., 2010; Zimroz and Bartkowiak, 2013). They introduced 

an indicator that reflects the linear dependence between the meshing frequency amplitude 

and the operating condition (Bartelmus and Zimroz, 2009a) and found that planetary 

gearbox in a bad condition is more load-susceptible than a gearbox in a good condition 

(Bartelmus and Zimroz, 2009b). Bartelmus et al. (2010) introduced planetary gearbox 

vibration models under time-varying non-stationary load and adopted energy-based 

parameters for fault diagnosis. More recently, Zimroz and Bartkowiak (2013) suggested 

two multivariate methods, principal component analysis and canonical discriminant 

analysis for planetary gearbox condition monitoring under time-varying load conditions.  

As the gear faults may cause amplitude and frequency modulations and the modulating 

frequencies are related to the fault characteristic frequencies, it was proposed to analyse 

the demodulated signals instead of the raw vibration signal for planetary gearbox fault 

diagnosis (Feng et al., 2012; Feng et al., 2013b). As most demodulation techniques require 

the target signal to be a mono-component signal, it is suggested to decompose the signal 

into mono-components before demodulation. For example, Feng et al. (2012) employed 

the empirical mode decomposition  to decompose the signal into intrinsic mode functions, 

and then applied energy separation algorithm to estimate the amplitude envelope and 
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instantaneous frequency of the selected intrinsic mode function. The fault diagnosis of a 

wind turbine planetary gearbox can be accomplished by analysing the envelope spectrum 

and instantaneous frequency spectrum. Later, Feng et al. (2013b) proposed to use local 

mean decomposition to decompose the signal and applied it to diagnose pitting and wear 

fault of  a planetary gearbox. Recently, Feng et al. (2016b) proposed to use intrinsic time-

scale transform to decompose the signal and diagnose gear fault by analysing one of the 

obtained mono-component whose frequency is around meshing frequency or its harmonics. 

Wen et al. (2016) proposed to demodulate the signal by wavelet enveloping, then reduce 

the noise by manifold learning and finally diagnose gear fault by analysing the envelope 

spectrum for planetary gearbox. One difficulty of demodulation of planetary gearbox 

vibration is that the carrier frequency ( i.e., meshing frequency or its harmonics) may be 

weak because the sensor-perceived vibration is the combination of the vibrations from each 

planet gear and they may cancel out each other (McFadden and Smith, 1985).  

Most frequency-based methods assume that the rotating speed is constant or has 

limited speed fluctuation. Large speed variation will cause spectral smearing problem. As 

a result, those frequency-based tools are valid only under the condition that the rotational 

speed is constant or near constant. 

 Order-domain methods 

Most vibration signals collected from rotational machinery contain strong components 

that are synchronous with the shaft rotational speed. It is usually more effective to analyse 

the signal using orders (multiples of shaft rotational speed) than using absolute frequencies. 

The order domain methods can be classified into three main groups, i.e., Vold-Kalman 

filter based methods (Vold et al., 1997), computed order tracking (COT) methods (Fyfe 

and Munck, 1997) and transform based methods (Blough et al., 1997). 

The Vold-Kalman filter based methods separate the signal components using time-

varying Kalman filter and estimate the amplitudes of these components using demodulation 

techniques. The potential difficulties in the implementation of this method include its 

complexity in solving the complex structure and data equations of the Kalman filter. The 

family of the COT methods converts the time-domain signal into the stationary angular-

domain signal by resampling the vibration signal at a constant shaft angular increment and 
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then calculates the signal order spectrum by applying Fourier transform to the resampled 

signal. One disadvantage of COT is that it introduces interpolation errors into the result, as 

stated in the introduction chapter. The family of the transform based methods directly 

converts the signal from time domain into order domain, and thus it is simpler than the 

Vold-Kalman filter based methods and COT methods. The transform based methods do 

not resample the signal, so they avoid the interpolation errors of the COT methods. The 

first transform based method is probably the time variant discrete Fourier transform   

(Blough et al., 1997; Blough, 2003). Borghesani et al. (2014) improved this method by 

correcting the non-orthogonality problem of the kernels and the new method was named 

the velocity synchronous discrete Fourier transform (VSDFT). One difficulty of the above 

three types of methods is that they require an accurate tachometer to provide the 

information of shaft speed. The additional tachometer will increase the cost, cause possible 

problem of machine adjustment and may not be always technically feasible to mount on a 

less accessible location. To resolve these difficulties, it was proposed to extract shaft speed 

from the vibration signal firstly and then perform order-domain methods accordingly 

(Bonnardot et al., 2005; Combet and Gelman, 2007; Urbanek et al., 2013; Zhao et al., 2013a; 

Coats and Randall, 2014). The author of this thesis et al. proposed an order-domain method, 

named generalized velocity synchronous Fourier transform (GVSFT), for fault diagnosis 

of fixed-shaft gearbox under non-stationary conditions (Guan et al., 2018) and the scheme 

of this method is briefly given in Appendix C. 

There are limited researches on the order-domain methods for planetary gearbox 

condition monitoring and fault diagnosis. Villa et al. (2011) suggested performing the COT 

on the planetary gearbox vibration signal of wind turbine by employing some holes on 

rotor to measure shaft speed. However, this method is only applicable to the situation where 

such hardware is available. Combet and Zimroz (2009) estimated the speed fluctuation of 

planetary gearbox using the short-time scale transform and performed COT according to 

the estimated speed fluctuation to diagnose planetary gearbox with tooth wear. However, 

this method is not applicable when the speed fluctuations are strong. Popiołek and Pawlik 

(2016) generated the order spectrum by signal resampling and used Multilayer Perceptron 

Network to classify the fault type for fault diagnosis of planetary gearbox under time-

varying speed and load conditions. Feng et al. (2016a) suggested to generate order 
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spectrums of raw signal, amplitude-demodulated signal and frequency-demodulated signal 

for fault diagnosis using iterative generalized demodulation. This method first identifies 

the signal component from the TFR obtained by the STFT, then extracts them by iteratively 

applying generalized demodulation and generating the order spectrums by combining the 

Fourier spectrums of the extracted components. This method has component missing 

problem, because some components may be not detected in the TFR due to the limited 

resolution and smear effects of the STFT. He et al. (2016) proposed a method for order 

analysis of planetary gearbox vibration without tachometer. With this method, the meshing 

frequency is firstly estimated based on energy centrobaric correction and the first moment 

of TFR, then the signal is resampled according to obtained meshing frequency for order 

analysis.  

Though the methods mentioned above diagnosed gear faults of planetary gearboxes to 

some extent, the order-domain methods cannot provide any time-domain information. The 

peaks in the order spectrum can be roughly seen as the average amplitude of the 

corresponding harmonic. Under non-stationary conditions, some of the harmonics may 

only occur in a short time duration in comparison to the whole time span of the signal under 

analysis. The average amplitudes of such components are relatively low, thus they may be 

buried in the noise of order spectrum. In addition, these methods are realized by resampling 

the vibration signals of planetary gearboxes, thus they suffer from interpolation errors.  The 

above mentioned drawbacks limit the effectiveness of the order-domain methods. 

 Time–frequency methods 

Time-frequency methods analyse the signal in both time and frequency domain 

simultaneously and they are widely used in the field of non-stationary signal analysis. In 

the applications of fault diagnosis, these methods commonly firstly generate a time-

frequency representation (TFR) for the collected vibration signal and the fault, if any, can 

be diagnosed by identifying the time-frequency components related with fault or the 

spacing between the impulses induced by fault (Feng et al., 2013a). Three main types of 

time-frequency methods are linear transform, remapping method and bilinear distribution. 

They are reviewed in the forthcoming sections and other important time-frequency 

methods that do not belong to these three families are reviewed after these sections. 
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2.5.1 Linear transforms 

Linear transform is one big family of the time-frequency methods and it can be seen 

as a process to represent the signal using the weighted and phase-shifted bases of the 

transform employed. One of the linear transform advantages is good computational 

efficiency, because the linear transforms can be realized using simple and fast algorithms.  

One drawback of linear transform is that smearing effects occur on the signal 

components whose frequencies do not match the frequencies of the corresponding 

transform bases. The short-term Fourier transform (STFT) (Allen, 1977; Allen and Rabiner, 

1977) and continuous wavelet transform (CWT) (Daubechies, 1992) are two traditional 

linear transforms. The frequencies of their bases are fixed, thus their capabilities in 

analysing the signals with varying frequencies are limited. The TFRs of the non-stationary 

signals obtained by the STFT and CWT are commonly smeared due to this reason. The 

chirplet transform and its variants employ bases with time-varying frequencies, thus they 

are able to address the smear issues to some extent. Some examples are the chirplet 

transform (Mann and Haykin, 1995), polynomial chirplet transform (PCT), (Peng et al., 

2011; Yang et al., 2013), Spline-Kernelled Chirplet Transform (Yang et al., 2012b)and 

warblet transforms (Yang et al., 2012a). The drawbacks of these methods are that the chirp 

rates of their bases are identical, thus they can only address the smear issue of the 

component(s) whose chirp rate match the pre-set chirp rate of the transform. The non-

stationary vibration signals usually contain multiple components and their chirp rates are 

different. Thus the TFR obtained by the chirplet transforms can only eliminate the smear 

of one component but all the other components are still subjected to smearing effect.  

Another pitfall of linear transform is that its time-frequency resolution is limited due 

to the Heisenberg uncertainty principle (Hlawatsch and Boudreaux-Bartels, 1992). The 

increase of the resolution over one dimension (time or frequency) will cause the decrease 

of the resolution over another dimension (Gabor, 1947). The resolution is controlled by 

one parameter, the window length, which commonly must be provided by the user. Most 

of the existing linear transforms employ windows with time-invariant window lengths, thus 

the time resolution and frequency resolution of the resulted TFR are time-invariant. 

However, the features of the non-stationary signals are time-varying thus the existing linear 

transforms may lack the ability to provide a suitable time-frequency resolution. Some linear 
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transforms also involve other parameters, such as the bases-chirp-rates-related parameters 

of the linear chirplet transform and its variants. For the fault diagnosis applications, 

wrongly selected parameters may lead to inaccurate TFRs and incorrect diagnostic 

decisions. Therefore, the existing linear transforms require the user to have a good 

knowledge of the signal and the linear transform mechanism. The problems of smearing 

effect and parameter requirement limit the effectiveness of linear transform family. 

Some applications of linear transforms on the planetary gearbox condition monitoring 

and fault diagnosis are reviewed as follows. Samuel and Pines (1997) computed the mean 

square wavelet map using the harmonic wavelet transform algorithm to classify planet gear 

faults. Samuel and Pines (2000) separated the vibration signal into the vibrations of 

individual planet gears and diagnosed planet seeded fault by analysing the separated signal 

using the CWT. Saxena et al. (2005) applied the CWT to analyse vibration signal of a 

helicopter planetary gearbox and diagnosed a crack fault of carrier using a feature 

extraction technique based on wavelet domain. Zimroz et al. (2010) estimated the 

instantaneous shaft frequency of planetary gearbox from an average of the less-noisy 

meshing harmonics identified from signal TFR obtained by the STFT. Jiang et al. (2011) 

proposed a de-noising method based on adaptive Morlet wavelet transform and singular 

value decomposition, and then applied it to diagnose wind turbine planetary gearbox faults.  

2.5.2 Remapping methods 

The remapping method is a family of post-processing techniques based on the linear 

transforms, including the reassignment method (RM), (Auger and Flandrin, 1995; Chen 

and Feng, 2016b), synchrosqueezing method (SST) (Daubechies et al., 2011; Thakur and 

Wu, 2011) , synchroextracting method (SET) (Yu et al., 2017) and many variants of them. 

These methods firstly employ a classic linear transform (commonly the CWT) to obtain an 

initial TFR and then generate the final TFR by remapping the initial TFR data to new 

coordinates based on the phase of the initial TFR. In this way, the remapping method 

sharpens the ridges of the employed linear transform and provides a TFR with better energy 

concentration and readability. The SST may be the most widely used remapping method. 

However, research shows the SST still has smearing effects along time dimension for the 

components with time-varying frequencies, whereas it does not have smearing effect for 

the components with fixed frequencies (Li and Liang, 2012a, b). To resolve the smear 
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problem of the SST, Li and Liang (2012b) proposed a remapping method, named 

generalized synchrosqueezing transform (GST), based on the generalized demodulation 

(GD) and the SST. The GD is a technique to map one component of a signal into a 

component with the pre-set frequency with its original amplitude (Olhede and Walden, 

2005; Shi et al., 2016a; Shi et al., 2016b). The GST firstly employs the GD to map the 

component of interest into a component with fixed frequency, then apply the SST and 

finally restore the signal TFR based on the SST result. However, this method can only 

eliminate the smearing effect on the selected component and the smearing effects on other 

components still remain. A research conducted by Iatsenko et al. (2015) showed if the 

adjacent signal components cannot be separated by the linear transform employed by the 

remapping method, they cannot be separated after the post processing of the remapping 

method either. In other words, the remapping methods cannot improve the time-frequency 

resolution of the linear transform.  

The applications of remapping methods on the planetary gearbox fault diagnosis are 

limited, so the review is extended to the ones on the fault diagnosis of general gearboxes. 

Li and Liang (2012b) applied the GST to detect the fault of fixed-shaft gearbox by 

identifying the fault-induced sidebands of meshing frequency. Imaouchen et al. (2015) 

introduced a gear fault diagnosis method based on the SST and Lempel-Ziv complexity 

method. Chen and Feng (2016a) applied the reassigned method to reveal the fault-induced 

abnormal sidebands and impulses from planetary gearbox vibration signals collected from 

in situ wind turbine. Hu et al. (2018) employed higher-order SST to generate the signal 

TFR and identified the fault features from a planetary gearbox vibration signal via the 

multi-taper empirical wavelet transform algorithm. 

2.5.3 Bilinear distributions 

Bilinear distribution is another widely used family of time-frequency methods. The 

name of the bilinear distribution origins from that it employs the quadratic form of the 

signal in the formula. The Wigner-Ville distribution (WVD) may be the most basic version 

of all the bilinear transforms and it is formulated by the Fourier transform of the 

autocorrelation function of the signal with respect to the time delay (Hlawatsch, 1991; 

Pereira de Souza Neto et al., 2001). One of the advantages of the WVD is that it has better 
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time-frequency resolution inherently and can perfectly reveal the impulse, constant 

frequency and linear chirp.  

However, the WVD still has several drawbacks which limit its effectiveness. The first 

drawback is that it has smear effect on the components with non-linear frequencies. To 

address this issue, Boashash and Shea (1994) proposed the polynomial WVD, which uses 

a higher order kernel to supress the smear. However, this method requires that the signal 

must be finely sampled for interpolation and the signal frequency must be able to be well 

represented by a polynomial.  

The second drawback of the WVD is cross-term interference. To resolve this drawback, 

many methods were proposed, for example, the Affine class bilinear distributions and 

Cohen class bilinear distributions (CCBDs). The CCBDs may be the most widely used 

bilinear distributions with suppressed cross terms and they work by using a kernel in 

ambiguity domain to filter out the cross terms (Cohen, 1989), e.g., Choi-Williams 

distribution (Choi and Williams, 1989b) and  Zhao-Atlas-Marks distribution (ZAM) (Zhao 

et al., 1990; Rajagopalan et al., 2008; Climente-Alarcon et al., 2013). For most signals in 

general, in ambiguity domain, the unwanted cross terms are tend to be away from the origin, 

whereas the auto terms are tend to be close to the origin. More specifically, the auto terms 

of impulses, fixed frequencies and linear frequencies are located at Doppler frequency shift 

axis, delay axis and a straight line passing the origin respectively in ambiguity domain. 

Hence, a properly designed kernel function with passband around the origin may filter out 

the cross-terms. However, the reduced interference is at the cost of resolution and to select 

a suited kernel, one needs prior knowledge of the locations of the cross terms and auto 

terms in ambiguity plane. Such kernels commonly contain one or several parameters that 

need to be provided by the user, and unsuitable parameters may lead to an inaccurate TFR.  

The computational complexity of bilinear distribution is generally higher than their 

counterparts, thus most bilinear distributions are not suited for online applications. The 

drawbacks mentioned above limit the applications of bilinear distributions in the field of 

condition monitoring and fault diagnosis of planetary gearboxes.  

Some applications of bilinear distributions on fault diagnosis of planetary gearboxes 

are reviewed as follows. Meltzer and Ivanov (2003) applied the Choi–Williams distribution 
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with rotational-speed-adapted integral kernels to diagnose planetary gearbox fault of a 

passenger car. Chaari et al. (2006b) applied the WVD to analyze the simulated signals of 

planetary gearbox with tooth pitting and crack faults. Feng and Liang (2014b) employed 

the CCBD with the adaptive optimal kernel to diagnose gear faults of planetary gearboxes 

of a lab wind turbine and an in situ wind turbine.  

2.5.4 Other time-frequency methods 

The last three sections reviewed three big families of time-frequency families, however, 

there also exists some important time-frequency methods that do not belong to these three 

families. Such methods are review in this section.  

The decomposition-based methods may be the first ones worth mentioning. These 

methods are developed based on the feature that some time-frequency methods, such as the 

WVD, chirplet transforms and GST, generate more accurate TFRs for mono-component 

signals than for multi-component signals. In other words, they have mono-component 

requirement. The decomposition-based methods commonly consist of the following steps: 

1) signal decomposition, i.e., decomposing the signal into mono-component signals to 

fulfill the mono-component requirement of the desired time-frequency method, 2) 

individual TFRs calculation, i.e., constructing the TFR for each mono-component signal 

using the desired time-frequency method, and 3) TFR fusion, i.e., superposing the 

individual TFRs to obtain the final TFR. The Hilbert-Huang transform (Huang et al., 1998) 

may be one of the best known decomposition-based time-frequency methods. It uses 

empirical mode decomposition method to decompose the signal and employs the Hilbert 

transform to generate the individual TFRs. Some similar methods have also been proposed, 

such as the methods given in (Liu et al., 2017) and (Wang et al., 2009). However, such 

methods are not always reliable due to the possible mode mixing problem. This problem is 

commonly caused by the intermittences or the crossings of the frequency components in 

signals (Feng et al., 2013a).  This problem is shown as the phenomenon that the signal is 

decomposed into the components that are far different from the real signal components and 

this will lead to misinterpretation of the signal components. Another type of 

decomposition-based methods decompose the signal according to the signal TFR obtained 

by the STFT and the drawback of such methods are the possible component missing (Feng 

et al., 2015a; Feng et al., 2015b; Chen and Feng, 2016b; Feng et al., 2016c). This is because 
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some components may not be identified due to the poor resolution and smearing effect of 

the STFT.  

Another method worth mentioning is the general linear chirplet transform (GLCT) (Yu 

and Zhou, 2016). This method was designed to alleviate the smearing problem of the linear 

chirplet transform. It firstly generates several sub-TFRs using the linear chirplet transform 

with a series of chirp rates and then fuses the sub-TFRs into one TFR by selecting the 

maximum at each time-frequency point. However, this method still requires the user to 

provide window length. 

Some applications on the fault diagnosis of planetary gearbox using the time-frequency 

methods that do not belong to the three big families are reviewed as follows. Feng and his 

colleagues proposed several decomposition-based method to diagnose gear fault of 

planetary gearbox under non-stationary conditions in recent years (Feng et al., 2015a; Chen 

and Feng, 2016b; Feng and Chen, 2018). The differences of these methods are the tools 

employed in the decomposition and TFR calculation. The decomposition tool they 

employed includes iterative generalized demodulation  (Feng et al., 2015a; Chen and Feng, 

2016b), Vold-Kalman filter (Feng et al., 2015a) and adaptive iterative generalized 

demodulation (Feng and Chen, 2018). The methods used for TFR generation include the 

GST  (Feng et al., 2015a), reassignment method (Chen and Feng, 2016b), Higher order 

energy operator   (Feng et al., 2015a) and Hilbert transform (Feng and Chen, 2018). These 

methods were used to diagnose gear faults by identifying the fault-induced components 

from the obtained TFR. Guo et al. (2017) proposed a decomposition-based method using 

the local mean decomposition to decompose the signal and employing the SST to generate 

the TFR. This method was used to diagnose both gear faults and bearing faults of wind 

turbine planetary gearbox. However, these methods suffer either the possible component 

missing problem or the mode mixing problem, as mentioned above. 

 Summary and motivation 

The above review of the vibration models of planetary gearbox shows that gear faults 

cause frequency modulation and amplitude modulation with gear meshign frequency and 

its harmonics as carrier frequencies, hence fault can be diagnosed by identifying the 

corresponding sidebands phenomenon (e.g the frequency distance, amplitudes, 
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distributions, etc.).  The review of the time-domain methods and frequency-domain 

methods presents that these methods are based on the assumption of stationary signal and 

sensitive to speed change, thus they are not suitable for vibration signal analysis collected 

under non-stationary conditions. Order-domain methods and time-frequency methods are 

good tools to analyse such non-stationary signals. Time-frequency method provides the 

information of two domains (time and frequency), whereas the order-domain method is 

only able to provide the information of one domain (frequency), therefore the time-

frequency method has the potential to provide more precise and reliable diagnostic 

decisions. The literature review of time-frequency methods indicates that the three widely 

used kinds of time-frequency methods are linear transform, remapping method and bilinear 

distribution. Each kind of methods has its own advantages and disadvantages.  

It has been introduced in chapter 1 that the proposed VSSTFT, VST and VSBD belong 

to the families of linear transform, remapping method and bilinear distribution, respectively. 

These methods employ the shaft rotational speed to address some problems of the existing 

time-frequency methods in these three families. The shaft rotational speed can be obtained 

from the tachometer installed in the drive train or from the STFT of the collected vibration 

signal. The three big families of time-frequency methods share a similar problem, the smear 

effect. The STFT and SST may be the two most widely used methods in the linear 

transform family and remapping method family respectively. They do not have smear 

effects on the components with fixed frequencies, whereas they have smear effects on the 

components with time-varying frequencies. The researches on the order-domain methods 

showed that a non-stationary signal can be transferred to a stationary one via a mapping 

from time domain into angle domain and correspondingly, the shaft-speed-synchronous 

components will change from time-varying frequencies to fixed frequencies. Hence, this 

thesis employs the domain mapping technique to address the smear issues in the existing 

linear transforms and remapping methods and the corresponding proposed methods are the 

VSSTFT and VST respectively.  

The review of the bilinear distributions shows that they have smear effect on the 

components with non-linear frequencies. Hence, for bilinear distributions, one possible 

solution of addressing smear effect is changing the non-linear frequencies of the signal into 

linear frequencies before applying the bilinear distribution. The review also presents that 
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the unwanted cross terms are away from the origin in ambiguity domain and the auto terms 

of fixed frequencies and linear frequencies are located at delay axis and a straight line 

passing the origin in ambiguity domain. Hence one possible solution of addressing the 

cross-term interference is changing the components with time-varying frequencies into 

components with fixed frequencies and using a kernel function with passband around the 

delay axis in ambiguity domain. The above review shows the GD can demodulate one 

signal component from a time-varying frequency into the pre-set frequency. Hence, the GD 

has the potential to solve the problems of the existing bilinear distributions. Based on the 

above analysis, this thesis employs the GD to address the smear effect and cross-term 

interference problems of the existing bilinear distributions and the corresponding proposed 

method is named the VSBD. 

A non-parametric smear-free cross-term-free time-frequency method (i.e., VSLCT) is 

also developed for the cases that tachometer is not easily accessible and the signal STFT is 

not clear enough for speed estimation. The VSLCT uses the linear transform frame and 

hence it is inherently free from cross-term interference. The review of the linear transforms 

shows that the smear is caused by that the bases frequencies of the transform do not match 

the frequencies of the signal components. Hence, the VSLCT employs a set of linear 

chirplets that are synchronous with shaft rotational velocity to solve the smear problem of 

linear transform. The VSLCT contains two parameters, the window length and normalized 

angle. A concentration-index-guided approach is developed to automatically determine the 

two parameters, therefore the TFR can be obtained adaptively without human intervention.  
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  Velocity synchronous short-time Fourier transform 

(VSSTFT) 

 Motivation 

The signal collected from a planetary gearbox under non-stationary conditions is 

usually non-stationary. The STFT (Hlawatsch and Boudreaux-Bartels, 1992) is widely 

used for non-stationary vibration signal analysis and fault diagnosis of rotating machinery, 

as it is simple to implement and its computational load is relatively low. It generates clear 

TFRs for stationary signals. Taking a synthetic stationary signal containing two frequency 

components as an example, the signal trajectory is shown in Fig. 3-1(A) and the TFR 

obtained by the STFT is shown in Fig. 3-1(B). It can be seen that the TFR clearly reveals 

the two frequency components. However, the STFT has the problem of smear effects when 

processing non-stationary signals. In other words, the STFT has a stationarity requirement. 

The vibration signals from rotational machinery under non-stationary conditions 

commonly contain time-varying frequencies that are proportional with each other. The 

STFT commonly generates a smeared TFR for such signals. Taking a synthetic non-

stationary vibration as an example, its frequency trajectories are shown in Fig. 3-2(A) and 

the STFT is shown in Fig. 3-2 (B). It can be seen that the STFT cannot reveal the signal 

frequencies clearly due to the smear problem. Smear effects may mask the signal 

components related to fault and lead to incorrect diagnosis. If the smear effects can be 

avoided, the TFR and diagnosis result will be more accurate. To avoid the smear effect, it 

is crucial to convert the signal into a stationary one. Fortunately, the non-stationary 

vibration signal collected from rotational machinery can be transformed into a stationary 

angle-domain one by a mapping from time domain into angle (shaft rotational angle) 

domain (Fyfe and Munck, 1997). It should be noted that the angle-domain signal can also 

be seen as a ‘time-domain signal’ using the relative time instead of absolute time (second) 

as time base. For example, the angle-domain signal  anglex   can be interpreted as the 

vibration amplitude at the time when the shaft rotates φ radians. 
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Fig. 3-1. TFR of the synthetic stationary signal: (A) True instantaneous frequencies and (B) TFR 

obtained by the STFT 

 

Fig. 3-2. TFR of the synthetic non-stationary signal: (A) True instantaneous frequency and (B) 

TFR obtained by the STFT 

Based on the above analysis, a new time-frequency method, named velocity 

synchronous short-time Fourier transform (VSSTFT), is proposed to provide a smearing-

free TFR. With the proposed method, the signal is firstly mapped into stationary angular 

domain to obtain its stationary domain representation to satisfy the stationarity requirement 

of the STFT. Then the STFT is applied to the stationary angle-domain signal to obtain the 

signal TFR. It should be noted here as the STFT process the angle-domain signal (which 
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can also be seen as a time-domain signal using relative time as time base), this resulted 

TFR uses the relative time and relative frequency (multiples of shaft rotational frequency 

or simply orders) as the time and frequency bases respectively. This resulted ‘time-

frequency representation’ is termed angle-order representation (AOR) to distinguish from 

traditional TFR that uses absolute time (second) and frequency (Hz) as bases. Next, a time-

frequency-domain restoration is presented to obtain the signal TFR by another mapping 

from angle-order domain back to time-frequency domain. Finally, the fault can be 

diagnosed by identifying the signal components associated with the fault in the TFR. The 

proposed method is also able to provide desirable time-frequency resolution for the entire 

TFR of a non-stationary vibration signal. Furthermore, a new linear transform is also 

developed to realise the above procedures. In this way, the TFR can be obtained via the 

VSSTFT in one step for planetary gearbox fault diagnosis under non-stationary conditions.  

The rest of this chapter is structured as follows: Section 3.2 presents the proposed 

VSSTFT method. Sections 3.3 and 3.4 examine the effectiveness of the proposed method 

using simulation and experimental vibration signals respectively. The conclusions are 

drawn in Section 3.5. 

 Presentation of the VSSTFT 

3.2.1 Derivation of the VSSTFT 

The proposed VSSTFT can be derived in the following three steps. 

Step 1. Map the signal from time domain to angle domain 

The time-domain signal is firstly pre-processed by time-angle-domain mapping to get 

a stationary angle-domain signal. The accelerometer signal xtime(t) measures vibration 

amplitude over time t and is a time-domain signal. The instantaneous shaft rotational angle 

θ(t) presents the relationship between shaft angle φ and time t (Borghesani et al., 2014) and 

is expressed by 

 t  . (3-1) 

The function θ gives relationship between time and shaft angle and is named time-

angle relationship function. It can be calculated by integrating the shaft speed. The shaft 

speed can be obtained from tachometer signal or estimated from the TFR obtained by the 
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STFT (Urbanek et al., 2013). The time t can then be expressed as a function of shaft angle 

using the inverse function of θ, represented by 

 1
t   . (3-2) 

The time-domain signal xtime(t) can be mapped into angle domain by substituting Eq. 

(3-2) into time-domain signal xtime(t), expressed by 

    1
angle timex x   , (3-3) 

where xangle(φ) is an angle-domain signal. 

Step 2. Transform the signal from angle domain to angle-order domain using the 

STFT. 

The STFT is a simple method to determine the energy and phase information of a time-

domain signal over time and frequency. However, the STFT requires that the signal be 

stationary, otherwise the TFR obtained by the STFT will have smearing effects. To satisfy 

this requirement, we apply the STFT to the stationary signal in angle domain directly. It 

should be emphasized that, since the STFT is applied on the signal in angle domain rather 

than in time domain, the resulted energy-and-phase representation is over shaft angle and 

order (multiples of shaft rotational frequency), instead of absolute time and frequency. 

Therefore, the resulted energy-and-phase information obtained by the STFT of the mapped 

signal is named angle-order representation (AOR). The AOR is given by  

       AOR angle, exp j dX Ω x Ω      



   , (3-4) 

where     is the window function, normally a Gaussian function or a Hanning function, 

η is shaft angle and Ω is order. Since the angle-domain signal is stationary, the AOR can 

eliminate the smear problem present in the frequency-domain. 

Step 3. Map the energy-and-phase representation from angle-order domain to 

time-frequency domain. 

In the last step, we map the STFT result from the angle-order domain (η, Ω) to time-

frequency domain (τ,f) according to their relationship. For AOR angle η, it can be linked 

to TFR time τ by the function θ given by Eq. (3-1), represented by 
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    . (3-5) 

For order Ω, it denotes multiples of the shaft rotating frequency. The shaft rotating 

angle frequency can be represented as the derivative of shaft rotational phase θ(t). 

Therefore, the order Ω can be linked to frequency f  by the following equation  

 shaft

Ω=
f

f 
, (3-6) 

where fshaft(τ) is the instantaneous shaft rotational frequency at time τ and can be obtained 

by taking derivative of instantaneous shaft rotational phase θ(τ) over time and dividing the 

result by 2π, i.e.,  

   
shaft

'

2π
f

 
  , (3-7) 

where θ’(τ)=dθ(τ)/dτ and is the instantaneous shaft rotational angular frequency. 

Substituting Eq. (3-7) into Eq. (3-6) leads to a function that maps frequency to order. This 

function is denoted as g, expressed by 

   
2πΩ=g
'

f
f

 
 . (3-8) 

The function g gives relationship between frequency and order and is named 

frequency-order relationship function. 

The AOR XAOR(η, Ω) can be mapped into time-frequency domain using the time-angle 

relationship function θ and angle-order relationship function g, i.e. substituting Eq. (3-5) 

and Eq. (3-8) into the AOR XAOR(η, Ω). Then 

          TFR AOR AOR

2π
, ,g ,

'

f
X f X f X    

 
 

    
 

, (3-9) 

where XTFR(τ,f) is the time-frequency representation. 

With the three steps described above, the flowchart of the proposed VSSTFT method 

can now be presented in Fig. 3-3(A). As shown in the flowchart, the VSSTFT can be 

implemented in three steps, i.e., 1) mapping the non-stationary time-domain signal into 
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stationary angle domain, 2) applying the STFT to the angle-domain signal to obtain the 

AOR and 3) mapping the signal AOR into time-frequency domain to obtain the signal TFR.  

The proposed VSSTFT method can eliminate the smear effect. This is because Steps 1 

and 3 only change the domains, thus the smear effects are not involved in these two steps. 

Step 2 applies the STFT to the stationary angle-domain signal, thus the resulted energy-

and-phase representation does not have the smear effect. As none of the three steps of the 

proposed method has the smear problem, the resulting TFR should not be affected by 

smearing.  

To better understand the proposed VSSTFT, it is demonstrated step by step using the 

synthetic non-stationary signal presented in the last subsection. Fig. 3-4(A) shows the 

signal waveform and the unit is volt. After mapping from time domain into angle domain, 

the obtained angle-domain signal is shown in Fig. 3-4(B). It can be seen that the non-

periodic signal becomes periodic, i.e., a non-stationary signal becomes stationary. The 

AOR is then obtained by computing the STFT of the mapped signal as displayed in Fig. 

3-4(C). It can be found that the AOR reveals the two signal components clearly without 

smear problem. The TFR of the raw signal is finally restored by a mapping from angle-

order domain into time-frequency domain as shown in Fig. 3-4(D). It can be seen that the 

two signal constituents are clearly revealed without smearing artifact. Comparing with the 

TFR by the STFT (Fig. 3-2(B)) shows that the proposed VSSTFT outperforms the STFT 

in generating a smear-free TFR. 

Time-domain 
signal

Angle-domain 
signal

Angle-order 
representation

Time-frequency 
representation

Mapping MappingSTFT

Time-domain 
signal

Time-frequency 
representation

One-step implementation of VSSTFT

(A)

(B)

 

Fig. 3-3. Flowchart of the proposed VSSTFT method: (A) three-step implementation, and (B) 
one-step implementation 
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Fig. 3-4. Demonstration of the effectiveness of the proposed VSSTFT: (A) raw signal, (B) 
mapped stationary signal, (C) STFT of the mapped stationary signal, and (D) TFR obtained by 

TFR restoration 

3.2.2 Fast  implementation of the VSSTFT 

The proposed VSSTFT method involves twice domain mappings. In practice, the 

signal is discrete and domain mappings may require additional signal processing 

techniques such as signal resampling, which may increase the complexity of the proposed 

method. To simplify the proposed method, the one-step implementation of the proposed 

method is developed. With equations (3-4) and (3-9), the TFR is expressed by 

        TFR angle

2π
, exp d

'

j f
X f x

      
 





 
    

 
 . (3-10) 

Substituting Eq. (3-1) and operating a change of variables in the integration leads to 
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           
 

 
TFR angle

2π d
, exp d

' d

j f t t
X f x t t t

t

 
     

 




 
    

 
 . (3-11) 

As xangle(θ(t)) maps time t to vibration amplitude, it can be substituted for time-domain 

signal xtime(t). The TFR is then simplified as  

            
 TFR time

2π
, ' exp d

'

j f t
X f x t t t t


     

 




 
    

 
 , (3-12) 

where θ’(t)=dθ/dt. It can be seen that the smearing-free TFR can be obtained using the 

above linear transform in a single step. The flowchart of the one-step implementation of 

the proposed three-step method is shown in Fig. 3-3(B). It shows that the one-step 

implementation of the proposed method using Eq. (3-12) significantly simplify the 

previous three-step implementation. 

In real applications the VSSTFT must be implemented using digital signal processing 

techniques, the algorithm of the VSSTFT can be obtained by discretizing the above 

function, expressed by 

 

          
 

TFR

time
1

,

2π
' exp

'

N

n

X m n f

j n f k t
x k t k t k t m

m




    

 

 

  
         


. (3-13) 

It can be seen that the smearing-free TFR can be obtained in a single step.  

3.2.3 Time-frequency resolution of the VSSTFT 

Fine frequency resolution is important in fault identification and good time resolution 

is desirable to capture transient behavior. This subsection explains that the proposed 

VSSTFT method is capable of multiresolution analysis in response to the need in fault 

diagnosis or transience detection. 

The STFT is commonly used for processing time-domain signal and its time-frequency 

resolution is limited (Hlawatsch and Boudreaux-Bartels, 1992). Before applying the STFT 

to time-domain signal, the window function λ( ) must be specified by the user and its length 

is termed time window length. The STFT X(τ,f) of a time-domain signal x(t) localizes the 

signal with a constant-length time window centered at τ and a constant-length frequency 

window centered at f, and the product of the time window length and the frequency window 
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length are equal or greater than 1/2(Gabor, 1947). In the proposed method, the STFT is 

used to process the angle-domain signal, thus similarly the STFT X(ϕ,Ω) of the angle-

domain signal localizes the signal information using an angle window [ϕ-Δϕ/2, ϕ+Δϕ/2] 

and an order window [Ω-ΔΩ/2, Ω+ΔΩ/2], and the product of the angle window length and 

the order window length are equal or greater than 1/2, expressed by 

1

2
  , (3-14) 

where ΔΩ  is constant order window length  and Δϕ is constant angle window length and 

specified by the user.  

In this study, the order window length should be not greater than any one of fault 

characteristic orders of the faulty gears, expressed by 

 min fault characteristic orders , (3-15) 

where fault characteristic orders of the faulty gears are the proportionality constant of the 

corresponding fault characteristic frequencies and the rotational frequency of the reference 

shaft.  The reason is that at most one modulation order sideband should be covered in an 

order domain window after any shifting in the order domain and in this way the sidebands 

generated by faults will be separable and identifiable in order domain. Therefore, the 

constant angle window length Δϕ should be specified by the user such that  

 
1

2min fault characteristic orders
  . (3-16) 

We use symbols ϕw and Ωw to represent the angle and order covered by the window 

respectively and their ranges are respectively 

1 1
,

2 2
w           

, (3-17) 

1 1
,

2 2
w

        
. (3-18) 

Now we have a rectangular region covered by the angle-order window as shown in Fig. 

3-5.  This rectangle is called elementary tile of the angle-order plane. The whole angle-
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order plane can be divided into the elementary tiles by the STFT in a non-overlapping 

manner as shown in Fig. 3-6. 

 

Fig. 3-5. Arbitrary angle-order window at angle ϕ and order Ω 

 

Fig. 3-6. Angle-order tiling of the STFT 
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angle and order covered by the window can be related to time and frequency covered by 

the window, expressed by 

 1
w w   , (3-19) 

   w w1
w w

Ω '
Ω

2π
f g

   , (3-20) 

where τw and fw are the time and frequency covered by the window.  

The angle interval of the window can be mapped into time-frequency plane to obtain 

the time interval of the window. This is done by substituting equations (3-5) and (3-19) 

into Eq. (3-17) and replacing ϕw by τw on the left hand side of the equation, i.e. 

   1 1
w

1 1
,

2 2
                         

.
 (3-21) 

Similarly, the order interval of the window can be mapped into time-frequency plane 

to obtain the frequency interval of the window by substituting the equations (3-5), (3-6), 

(3-19) and (3-20) into Eq. (3-18) and replacing Ωw with fw on the left hand side of the 

equation. Hence  

 
 

   
 

 
w

' ' ' '
,

' 4π ' 4π
w w w wf f

f
       
   

  
   
  

.
 (3-22) 

Based on the above analysis, the VSSTFT XTFR(τ,f) localizes a time-domain signal 

xtime(t) with a time window    1 11 1
,

2 2
                       

 and a frequency window 

 
 

 
 ' '2π 1 2π 1

,
' 2 2π ' 2 2π

w wf f   
   

    
               

.  

The time window length and frequency window length of the window can be expressed 

as the endpoints difference of the time interval of the window and endpoints difference of 

the frequency interval of the window, expressed respectively by  

     1 11 1

2 2
                      

   
,
 (3-23) 

and 
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 (3-24) 

The time-frequency area covered by the window can be calculated by integrating the 

frequency window length over time:  
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 

,
 (3-25) 

where ΔATF and ΔAAO is the time-frequency area covered by the window and the angle-

order area covered by the window respectively. It can be seen that the time-frequency area 

covered by the window is constant and equal to the angle-order area covered by the window 

divided by 2π.  

The frequency window length Δf(τw) varies with time covered by the window τw. To 

better estimate the frequency resolution, we define the averaged frequency window length 

 f   as the constant time-frequency window area ΔATF divided by the time window 

length Δτ(τ), expressed as 

     
TFA

=
2π

f


   
 

 
 

.
 (3-26) 

In the above equation, Δϕ is the angle window length, and thus Δϕ/(2π) is the shaft 

revolution window length. Δτ(τ) is the angle window length, and hence Δϕ/(2πΔτ(τ)) can 

be seen as the averaged shaft rotational frequency within the window, given by 

   w
2π

f

 





.
 (3-27) 

The averaged frequency window length can then be simplified as 

     TF
w

A
=f f 

 


  


.
 (3-28) 
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According to Eq. (3-27), the time window length can be expressed as  

   w2πf
 



  .

 (3-29) 

By observing equations (3-28) and (3-29), it can be seen that the averaged shaft speed 

within the window  wf  is inversely proportional to time window length    and 

proportional to averaged frequency window length  f  . Therefore when the shaft speed 

is higher, the VSSTFT has worse frequency resolution and better time resolution; when the 

shaft speed is lower, the VSSTFT has better frequency resolution and worse time resolution.  

Now consider a vibration signal containing only shaft frequency and its harmonics. 

Assuming shaft speed increases linearly an arbitrary time-frequency window of the 

VSSTFT at time τ and frequency f  is shown in Fig. 3-7.  This window can be seen as the 

elementary tile of the time-frequency plane. The whole time-frequency plane can be 

divided into the elementary tiles by the VSSTFT in a non-overlapping manner as shown in 

Fig. 3-8 (blue dotted line). The ideal trajectories of the signal components along time (red 

solid line) are also shown in Fig. 3-8. It can be seen that within any time window interval, 

each of the trajectories of shaft frequency and its harmonics falls exactly into one non-

overlapping tile. This means that the smearing caused by frequency variation no longer 

manifests itself here. It can also be seen when the shaft speed is slower, the frequency 

components are squeezed and thus difficult to be discerned. In this case, the VSSTFT 

provides a better frequency resolution with reduced time resolution in order to better 

separate the components. On the other hand, when the shaft speed is faster, the components 

become more distant and it is easier to separate the components. In response to this, the 

VSSTFT provides a better time resolution than the STFT with reduced frequency 

resolution in order to better reveal the transit characteristics. This will be further illustrated 

using simulated signal in section 3.3. 
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Fig. 3-7. Arbitrary time-frequency window at time τ and frequency f  

 

Fig. 3-8. Time-frequency tiling of the VSSTFT 
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3.2.4 Comparison with other linear time-frequency transforms 

The STFT, CWT and chirplet transform are three linear transforms which are widely 

used in the time-frequency analysis of rotational machinery vibration signals under time-

varying speed conditions. The kernel frequencies of the STFT and CWT are time-variant, 

thus the frequency tailings are parallel to time axis. Within a certain time window interval, 

the trajectories of the shaft-speed-locked components may fall into multiple non-

overlapping tiles, thus causing smearing. Taking the signal used in the last subsection for 

an example again, the ideal trajectories of the signal components along time (red solid line) 

and the time-frequency tilling of the STFT (blue dotted line) are plotted together in Fig. 

3-9. As shown in the figure, any trajectory may cross the frequency tiles and within a 

certain time interval it may fall into multiple tiles, which leads to smearing. 

The chirplet transform involves the inner product between the signal and chirp basis 

functions, characterised by the time-invariant frequency changing rate (chirp rate). The 

chirplet transform thus represents a frequency-sheared tiling of the time–frequency plane. 

When the chirp rate of the chirplet transform matches the chirp rate of analyzed signal, a 

concentrated TFR could be obtained. Nevertheless, the vibration signal of rotational 

machinery under time-varying speed conditions may contain multiple harmonics whose 

frequency changing rates are different, thus it is impossible to choose one chirp rate that 

matches the multiple different changing rates of the components. However, in real 

applications, the chirp rate of the chirplet transform is commonly set at the chirp rate of a 

single component of interest. Thus only the smearing of a single component of interest will 

be eliminated, the smearing of all other components is left intact. For instance, consider 

the signal used in the last subsection. The chirp rate parameter is set as the chirp rate of 

shaft frequency, the ideal trajectories of the signal components along time (red solid line) 

and the non-overlapping tiles of the chirplet transform (blue dotted line) are shown together 

in Fig. 3-10. It can be seen that within a frequency band (e.g., the band bounded by the 3rd 

and 4th blue lines from the bottom of Fig. 3-10), the trajectory of shaft frequency (i.e., the 

first red solid line from bottom of the figure) falls exactly into one non-overlapping tile and 

this means that smearing does not occur on the shaft frequency component. However, the 

trajectories of shaft frequency harmonics (i.e., the other red solid lines above the first one) 

as well as meshing frequency can still cross the frequency tiles and fall into multiple non-
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overlapping tiles. This means that smearing still occurs on all other components whose 

chirp rates are different from the pre-set chirp rate of the chirplet transform. As such, the 

proposed method should outperform the chirplet transform because in the diagnosis of a 

planetary gearbox multiple frequency components such as meshing frequency and shaft 

frequency harmonics as well as gear fault characteristic frequency co-exist and they can all 

be made smear-free by the proposed method but not the chirplet transform. 

In addition, both the STFT and chirplet transform have fixed time and frequency 

resolution, which can be reflected by the identical shapes and “dimensions” of the time-

frequency tiles. The wavelet transform has different time-frequency resolution at different 

frequency regions of the TFR, however, the time-frequency resolution does not change 

with time. Under time-varying shaft speed conditions, the frequency “distances” of the 

shaft-speed-locked components are time-varying. When the distance is greater, the 

components are easier to be separated in the TFR and opposite is true when the distance is 

lower. Therefore, under time-varying shaft speed conditions, these three transforms, i.e., 

STFT, CWT and chirplet transform, with time-invariant resolution cannot provide 

desirable resolution for the entire signal.  

Compared with the above linear transforms, the proposed VSSTFT can provide a better 

time-resolution to separate all the time-frequency components without smearing effects 

caused by frequency variation. This will be shown with sample signals and then 

experimental signals. 



41 

 

Fig. 3-9. Time-frequency tiling of the STFT 

 

Fig. 3-10. Time-frequency tiling of the chirplet transform 
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     
   
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t t

t

x t f f

f t
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  

           

    

 


. (3-30) 

In the above model, the term   sunrot1 cos 2π df t t     corresponds to amplitude 

modulation caused by vibration transfer path and  sunrotf t  denotes sun gear rotational 

frequency. The term   sun1+cos 2π df t t     corresponds to amplitude modulation 

caused by sun gear fault and  sunf t  is sun gear fault characteristic frequency. The term 

 meshcos 2π df t t     corresponds to the vibration caused by gear meshing and  meshf t  

is the frequency of the gear meshing frequency. N(t) is an added Gaussian white noise. The 

initial phrases 0   . The relationship of gear meshing frequency, sun gear rotational 

frequency and sun gear fault characteristic frequency are set as

     sunrot sun mesh0.3 0.06f t f t f t  . The signal length is five seconds and the sampling 

rate is 240 Hz. To simulate the speed-varying state, we set the sun gear rotating frequency

   sunrot =3 1.2cos 2π 0.3f t t  . Based on this setup, the sun gear rotating frequency first 

decreases from 1.8 Hz to 4.2 Hz, and then increases to almost 6 Hz in five seconds. We 

tested the proposed VSSTFT method and several compared methods using this synthetic 

signal under different noise levels and the result shows that for this specific signal, under 

SNR 6 dB, the VSSTFT result is obviously clearer than other methods. Therefore, we set 

the signal SNR as 6 dB to show the advantage of the VSSTFT. The SNRs used in other 

chapters are also selected using such strategy.  

The waveform of the simulated signal and its frequency spectrum are presented in Fig. 

3-11(A) and (B). It can be seen that the frequency spectrum is smeared due to speed 

variation and it does not provide sufficient information regarding to the fault. The sun gear 

rotating frequency curve is shown in Fig. 3-11 (C). 

The simulated signal contains nine components with time-varying frequencies as 

shown in Fig. 3-12 (A). The TFR produced by the VSSTFT approach is shown in Fig. 3-12 

(B). It can be seen that the frequencies trajectory revealed by the VSSTFT are close to the 
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true frequency trajectories shown in Fig. 3-12 (A). The VSSTFT result reveals the nine 

time-frequency components. Among them, eight components are sidebands, which can be 

represented by fmesh ± nfsunrot ± mfsun. As they are related to sun gear fault, it is diagnosed 

that the gearbox has a sun gear fault.  

To further assess the performance of the proposed method, we then compare it with 

STFT and some advanced methods, with the results shown in Fig. 3-12 (C-F), respectively.  

The STFT can roughly show the frequency trends of the constituent components, as shown 

in Fig. 3-12(C). However, the sidebands cannot be recognized due to the smearing effect. 

The TFR in Fig. 3-12(D) obtained by the SET (Yu et al., 2017) shows a clearer structure 

of the constituent components than STFT. However, the TFR ridges does not match the 

true frequency trajectories of the signal. The GLCT (Yu and Zhou, 2016) result is presented 

in Fig. 3-12(E) and the meshing frequency is clearly revealed, however, none of the 

sidebands are revealed. The PCT (Peng et al., 2011) is method that uses signal frequency 

information to enhance the TFR. The TFR obtained by the PCT still suffers from smearing 

effect, as plotted in Fig. 3-12(F). Though the meshing frequency and a few sidebands are 

revealed, . Comparing Fig. 3-12(B) with Fig. 3-12(C-F) shows that the proposed VSSTFT 

performs better than the other tested methods. The above comparison shows that the 

proposed VSSTFT performs better than the other tested methods. The above comparison 

demonstrates that the VSSTFT is superior to the other compared methods in addressing the 

time–frequency smear issue and providing an accurate and clear TFR for fault diagnosis. 

 

Fig. 3-11. Simulated case: (A) vibration signal, (B) frequency spectrum of vibration signal and 
(C) sun gear rotational speed 
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Fig. 3-12. TFR of the synthetic signal obtained by (A) real instantaneous frequency, (B) VSSTFT, 
(C) STFT, (D) SET, (E) GLCT and (F) PCT 
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 Experimental tests 

3.4.1 Experimental setup 

In this section, we test the VSSTFT method on the experimental signals. The 

experimental signals are collected from a lab wind turbine drivetrain test rig. As shown in 

Fig. 3-13, the input shaft of the two-stage planetary gearbox is connected to a motor and 

the output shaft is connected a magnetic brake. In both stages, four planet gears are installed. 

In the test, the motor drives the planetary gearbox and the brake provides load. Two 

accelerometers are installed on the housing of the gearbox to collect the vibrations of the 

first stage and the second stage respectively. The tachometer measures the output speed of 

the planetary gearbox. 

To generate fault signals, two faulty sun gears are used: one with wear damage to be 

installed in first stage of the gearbox, and the other with a chipped tooth to be mounted in 

second stage of the gearbox as shown in Fig. 3-14 (A) and (B) respectively. Three tests are 

carried out: healthy sun gears (normal sun gears are used for the both stages of the planetary 

gearbox), sun gear wear (sun gear in stage one is worn and sun gear in stage two is healthy), 

sun gear chipping (sun gear in stage two has a chipped tooth but sun gear in stage one is 

normal).  

The sampling rate is set as 40 kHz. The load is set as 3.0 Nm. The motor rotational 

frequency fd rises approximately from 20 Hz to 35 Hz and then decreases to 20 Hz. The 

parameters of the planetary gearbox are listed in Table 3-1. According to these parameters, 

the planetary gearbox characteristic frequencies, including the rotational frequencies of the 

gears, the fault characteristic frequencies of the gears and the gear meshing frequency, are 

computed and shown in Table 3-2 (Feng and Zuo, 2012). For the purpose of convenience, 

we select motor rotational speed as reference shaft speed and it is obtained according to its 

relationship with the gearbox output speed (i.e., fcarrier2=(1/28) fd as listed in Table 3-2).   

Table 3-1 Configuration parameters of the gearbox 

Gear name Ring gear Planet gear Sun gear 

Number of gear teeth 
Stage 1 100 40 (4) 20 

Stage 2 100 36 (4) 28 

Note: the number of planet gears is given in the parenthesis 
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Table 3-2 Characteristic frequency of the planetary gearbox 

Characteristic frequency First stage Second stage 

Ring gear fault frequency  fring1=(1/6) fd fring2=(7/192) fd 

Planet gear fault frequency fplanet1=(5/12) fd fplanet2=(175/1728) fd 

Sun gear fault frequency fsun1=(5/6) fd  fsun2=(175/1344) fd  

Meshing frequency  fmesh1=(50/3) fd  fmesh2=(175/48) fd  

Sun gear rotational frequency fsunrot1= fd fsunrot2=(1/6) fd  

Carrier rotational frequency fcarrier1=(1/6) fd fcarrier2=(1/28) fd 

 

Motor

Planetary 
gearbox Brake

Accelerometers

Tachometer

Controller

 

Fig. 3-13.  Test rig and test setup 

  

Fig. 3-14. Sun gear: (A) with wear damage and (B) with chipping damage 

3.4.2 Healthy planetary gearbox  

Fig. 3-15(A-C) show the normal planetary gearbox vibration signal waveform, its 

frequency spectrum and the shaft speed profile. As the speed of the drive motor ranges 

between 23 Hz and 32 Hz, the meshing frequency of the planetary gearbox stage 1 is 

(B) (A) 
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between 383.33 Hz and 533.33 Hz. As the key task of planetary gearbox fault diagnosis is 

identifying the frequencies of the sidebands around the meshing frequency, the frequency 

band of TFR is set as 0-800 Hz which covers enough sideband frequencies of the meshing 

frequencies of the two stages. The Fourier spectrum of the signal, shown in Fig. 3-15(B), 

suffers from spectral smearing problem. Although some peaks appear in the spectrum, it is 

challenging to identify them under a time-varying running speed condition. Fig. 3-16 

shows the time-frequency distribution of the vibration signal of the healthy planetary 

gearbox obtained by the VSSTFT. As the VSSTFT is smearing-free, the components with 

time-varying frequency can be clearly revealed. As displayed in Fig. 3-16, the dominant 

frequencies are the first stage sun gear rotating frequency fsunrot1, its harmonics and the 

planetary gearbox first stage gear meshing frequency fmesh1, the difference between meshing 

frequency and first stage carrier rotational frequency fmesh1-fcarrier1,  the difference between 

meshing frequency and first stage sun gear rotational frequency fmesh1+fsunrot1. As the 

revealed sidebands do not correlate with the fault characteristic frequencies, the planetary 

gearbox is diagnosed as healthy.  

 

Fig. 3-15. Healthy planetary gearbox: (A) vibration signal, (B) Fourier spectrum of vibration 
signal, and (C) motor rotational speed 
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Fig. 3-16. TFR of the healthy planetary gearbox 

3.4.3 Detection of sun gear wear 

Now the proposed method is evaluated in diagnosing the sun gear wear fault. Fig. 

3-17(A-C) shows the vibration signal waveform and its Fourier spectrum, as well as the 

associated drive motor speed. Similar to the healthy planetary gearbox case, the motor also 

rotates between 23 Hz and 32 Hz, therefore we focus on the frequency band 0-800 Hz again. 

The proposed VSSTFT method is applied to attain the TFR shown in Fig. 3-18. Similar to 

the healthy planetary gearbox case, the meshing frequency of the planetary gearbox stage 

1 fmesh1, the motor rotating frequency fsunrot1, and its sidebands dominate the TFR. The 

sidebands fmesh1±8fcarrier1 are related with carrier rotation, thus do not provide information 

of fault. However, apart from them, several other strong sidebands also appear in the TFR. 

They are fmesh1-2fsun1, fmesh1±4fsun1, fmesh1+6fsun1 and fmesh1+2fsun1+2fsunrot1 and they are 

associated with the sun gear fault of the first stage of the planetary gearbox. These 

components have pronounced amplitudes, indicating that the planetary gearbox stage one 

has a sun gear fault. This result is consistent with the experimental setting of faulty sun 

gear. 
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Fig. 3-17. Planetary gearbox with sun gear wear fault in the first stage: (A) vibration signal, (B) 
Fourier spectrum of vibration signal and (C) motor rotational speed, 

 

Fig. 3-18. TFR of the planetary gearbox with sun gear wear fault in the first stage 
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frequency of planetary gearbox stage 2. To reveal the chipping fault, the VSSTFT method 

is once again applied to analyze the experimental data. The obtained TFR is shown in Fig. 

3-20.  The dominant components are the motor rotating frequency fsunrot1, the meshing 

frequency of the second stage fmesh2 and its sidebands. The revealed sidebands can be 

expressed as fmesh2+fsun2+fsunrot2, fmesh2+4fsun2+fsunrot2, fmesh2+8fsun2+fsunrot2 and fmesh2-4fsun2-

fsunrot2. These sidebands are associated with the sun gear fault of stage two. This is sign of 

a fault on the sun gear of stage two which is again consistent with the condition of the sun 

gear used in the experiment. 

 

Fig. 3-19. Planetary gearbox with sun gear chipping fault in the second stage: (A) vibration 
signal, (B) Fourier spectrum of vibration signal and (C) motor rotational speed 

 

Fig. 3-20. TFR of the planetary gearbox with sun gear chipping fault in the second stage 
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 Conclusions 

In this chapter, the VSSTFT method  for the fault diagnosis of planetary gearbox under 

non-stationary conditions is proposed. The VSSTFT has two advantages, 1) it is free of 

TFR smearing caused by time-varying running speed, thus the time-frequency components 

have concentrated ridges in the TFR and can be easily identified; 2) the window length is 

determined according to the gearbox configuration and the corresponding resolution of the 

VSSTFT varies with more suitable time-frequency resolution to better separate the TFR 

components. These advantages make the VSSTFT particularly suitable for analysing 

complex nonstationary vibration signals of planetary gearbox. We have validated the 

proposed VSSTFT method using both simulated and experimental signals. By applying the 

proposed VSSTFT, the time-frequency structures of planetary gearboxes vibration signals 

are clearly revealed in time-frequency plane and fault patterns are identified according to 

the revealed sidebands related to gear faults. The analyses demonstrate that the presented 

VSSTFT gives promising performances for the fault diagnosis of planetary gearbox under 

non-stationary conditions. 
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 Velocity synchrosqueezing transform (VST) 

 Motivation 

The VSSTFT method proposed in the last chapter is able to generate a smear-free TFR 

for fault diagnosis of planetary gearbox under non-stationary conditions, however, its 

readability is relatively low. Readability here denotes the ease with which a reader can 

distinguish individual components in the obtained TFR. The reason of low readability is 

because the linear transform has relatively low energy concentration. Readability is 

important for fault diagnosis, because the users may find more useful components from a 

sharpen TFR and they may miss important frequency components from a TFR with low 

energy concentration. 

The recently proposed SST (Daubechies et al., 2011) is able to sharpen the TFR 

obtained by the CWT (Daubechies, 1992), thus generating a more condensed TFR with 

better readability (Feng et al., 2015a). The CWT (Daubechies, 1992) reveals the signal 

time-frequency structure by decomposing the signal into a weighted sum of scaled mother 

wavelets. The frequency of the mother wavelet selected is usually time-invariant, thus the 

CWT lacks the adaptability to analyse nonstationary signals. This is reflected by the 

smearing effects in the scalogram of the nonstationary signal. The SST sharpens the 

scalogram along the frequency direction, thus achieving a better resolution and eliminating 

the smear in the frequency direction. However, the smear occurs in both the time and 

frequency directions, and therefore the synchrosqueezed TFR is still smeared in the time 

dimension for nonstationary signals (Li and Liang, 2012b, a; Feng et al., 2015a). 

In a running gearbox, the movements of gearbox parts, e.g., gear meshing, are 

synchronous with shaft rotational angle. Such movements usually generate strong vibration 

components, for example, gear meshing frequency, its harmonics and sidebands. These 

components are therefore synchronous with shaft rotational speed. Under a nonstationary 

condition, the shaft rotational speed is time-varying, therefore the frequencies of the signal 

components are also time-varying and the signal collected is nonstationary. For this reason, 

the SST result of the signal collected under nonstationary conditions remains smeared. The 

smearing effects can be illustrated by a simple example using a synthetic nonstationary 

vibration signal. This signal contains only the shaft rotational frequency and its second 



53 

harmonic. It is assumed that the signal is collected under a nonstationary condition and the 

shaft rotational frequency oscillates between 8 Hz and 18 Hz. This signal is defined by  

   1 shaft1 shaft10 0
( ) sin 2π d +sin 2π 2 d               0 t 1

t t

s t f f                 (4-1) 

where 

 shaft1 =13+5cos(2π )f t t  (4-2) 

The signal waveform, the true instantaneous frequencies of the two constituents of the 

nonstationary signal and the signal scalogram obtained by the CWT are shown in Fig. 

4-1(A-C) respectively. As shown in Fig. 4-1(C), the scalogram has serious smearing effects, 

the signal time-frequency structure is vague and the constituents cannot be uncovered. The 

smearing effect remains even after synchosqueezing as plotted in Fig. 4-1(D). It can be 

seen that the signal components are still difficult to discern due to the smearing effects.  

For comparison, we generate a synthetic stationary signal which also contains only the 

shaft rotational frequency and its second harmonic. Suppose this stationary signal is 

collected under a stationary condition and the shaft rotational frequency is 10 Hz for the 

whole time duration. This signal is also described by Eq.(4-1) with a fixed frequency 

shaft1=10f . (4-3) 

Fig. 4-2 (A-C) show the waveform of the synthetic stationary signal, its true 

instantaneous frequencies and its scalogram obtained by the CWT. From Fig. 4-2(C), it can 

be seen that the two components related to 10 Hz and 20 Hz can be roughly identified in 

the scalogram. It can be found that the components related to 20 Hz occupies a wider 

frequency region than the components associated to 10 Hz. This is because the CWT has 

lower frequency resolution in higher frequency region and higher frequency resolution in 

lower frequency region. To obtain a TFR with better readability, the SST is employed to 

sharpen Fig. 4-2 (C) and the sharpened result is shown in Fig. 4-2 (D). By comparing the 

true frequency trajectories (Fig. 4-2 (B)) and the signal TFR obtained by the SST (Fig. 4-2 

(D)), it can be seen that the SST clearly and accurately reveals the time-frequency structure 

of the stationary signal. Comparing the TFR of the synthetic nonstationary signal (Fig. 

4-1(D)) with the TFR of the synthetic stationary signal (Fig. 4-2 (D)) indicates that the SST 



54 

is able to generate smear-free TFR for a stationary signal but not for a nonstationary signal. 

This observation motivates us to map a nonstationary signal into a corresponding stationary 

signal to facilitate the SST.  

 

Fig. 4-1. The synthetic nonstationary signal: (A) waveform, (B) True instantaneous frequencies, 
(C) scalogram obtained by the CWT and (D) TFR obtained by the SST  

As most of the signal components are synchronous with shaft rotational speed, the 

nonstationary signal can be mapped into a stationary one by mapping from time domain to 

angular domain (i.e., the domain of shaft rotational angle) (Fyfe and Munck, 1997; 

Borghesani et al., 2014), thereby enabling the signal to fulfill the stationarity requirement 

by the SST for a smear-free TFR. Combining the SST with the mapping of the signal from 

time domain into angular domain will thus effectively address the smear issue of the SST 
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and yield a smear-free TFR with better readability for fault diagnosis of planetary gearbox 

under nonstationary conditions.  

 

Fig. 4-2. The synthetic stationary signal: (A) waveform, (B) true instantaneous frequencies, (C) 
scalogram obtained by the CWT, and (D) TFR obtained by the synchrosqueezing transform  

Based on the above analysis, the procedure of the proposed method is summarised as 

follows: 1) Map the raw vibration signal into angle domain to obtain a corresponding 

stationary signal; 2) Synchrosqueezing transform the resulting stationary signal and 3) 

Restore the signal TFR from the synchrosqueezed signal. The proposed method is named 

velocity synchrosqueezing transform (VST) because the SST is directly performed on the 

signal mapped according to the shaft velocity. It yields a much more concentrated TFR 

without unwanted smearing.  
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 Presentation of the VST 

4.2.1 Overview of the SST 

The SST (Daubechies et al., 2011) improves the TFR readability by relocating the 

scalogram obtained by the CWT of a signal of interest. The CWT (Daubechies, 1992) of a 

signal x(t) is given by  

   1/2, ds

t b
W a b a x t t

a






   
  ,

 (4-4) 

where the overhead bar denotes complex conjugate operation,  ψ(t) is a complex mother 

wavelet, a is scale and b is translational value. The wavelet ψ(t) can be expressed by 

     0expt t i t   , (4-5) 

where  t  is a window function centred at t=0 and ω0 is the centre frequency of the 

wavelet. The Fourier transform of ψ(t) is given by 

     0
ˆˆ *        , (4-6) 

where the hat operator represents Fourier transform operation, * means convolution and ξ 

is angular frequency. As  0    is concentrated at ω0 and  ̂   is spread around 0, the 

Fourier transform of the wavelet  ̂   will be spread around ω0. 

For a purely harmonic signal    cosx t A t , Eq. (4-4) can be rewritten as (based on 

the Plancherel's theorem (Plancherel and Leffler, 1910)) 

       

       

   

1/2

1/2

1/2

1 ˆˆ, exp d
2

ˆ exp d
4

ˆ exp
4

sW a b x a a ib

A
a a ib

A
a a ib

    


         


  












     





 .
 (4-7) 

As the Fourier transform of the wavelet  ̂   is spread around ω0, the wavelet 

transform Ws(a, b) will be spread around the horizontal line a=ω0/ω rather than being 

concentrated at that line. This means the resolution of the wavelet transform is limited. 
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However, the part  exp ib in Eq. (4-7) directly indicates the signal angular frequency ω, 

regardless of the value of scale a. Based on this characteristic, a candidate instantaneous 

angular frequency of the signal s for any (a, b) for which Ws(a,b)≠0 is introduced 

(Daubechies et al., 2011), expressed by 

      1
, , ,a b i W a b W a b

b


 
 


. (4-8) 

In order to improve the TFR readability, i.e., to make the TFR ridge more condensed, 

the TFR can be constructed by reallocating the contributions of the CWT result  ,sW a b

with candidate angular frequency ω into the location (ω,b) in the time-frequency plane. 

This reallocation operation generates the TFR by squeezing the CWT in time-scale plane 

to achieve a better resolution, and thus this method is termed SST. As the data is discrete 

in real applications, the wavelet transform Ws(a, b) is calculated  only at discrete values ak 

with Δa=ak-ak-1 and its SST Ts(ω,b) is computed by summing different contributions 

satisfying |ωl-ωs(ak,b)|≤Δω/2 at discrete values ωl with Δω=ωl-ωl-1 (Daubechies et al., 

2011): 

     
 

 
s

1 3/2

: , /2

, ,
k l k

l k k k
a a b

T b W a b a a
  

   

 

   . (4-9) 

4.2.2 The velocity synchrosqueezing transform (VST) 

Based on the analysis in subsection 4.1, the procedure of the proposed VST is detailed 

below. 

Step 1. Map the signal from time domain to angle domain to obtain a 

corresponding stationary signal. 

As discussed in chapter 2, a time-domain signal xtime(t) (i.e, a function relating time to 

vibration amplitude) can be mapped into angle domain based on Eq.(3-1). The obtained 

stationary angle-domain signal can then be expressed by 

    1
angle timex x   , (4-10) 

where xangle(φ) is an angle-domain signal and θ-1 is the inverse function of θ.  



58 

In this step, the function of angle-domain signal is obtained based on raw time-domain 

vibration signal xtime(t) and shaft rotational angle θ(t) using Eq. (4-10). In real world, the 

signal is discrete, thus signal mapping cannot be realised directly and has to be realised by 

using interpolation techniques (Fyfe and Munck, 1997). However, in the implementation 

of the proposed method, interpolation can be avoided by using the fast implementation 

algorithm detailed in subsection 4.2.3. 

Step 2. Synchrosqueezing transform the resulting signal. 

Though the SST is able to generate a high-resolution TFR, it requires the signal to be 

stationary. To satisfy this requirement, the SST is applied to the corresponding stationary 

angle-domain signal directly, i.e., to squeeze the CWT of the angle-domain signal. As the 

CWT processes angle-domain signal, the mother wavelet employed should be an angle-

domain wavelet. Also the scale and translational value of the CWT employed here should 

control the scaling and translation of the mother wavelet over shaft angle, rather than over 

time. Hence the scale and translational value here are represented using new symbols c and 

η respectively. The CWT of the angle-domain signal is expressed by  

   1/2
Scale-Angle angle, dW c a x

c

    




   
  . (4-11) 

Traditionally, the SST squeezes the CWT according to the candidate instantaneous 

frequency at any (a, b) on the time–scale plane (Eq. (4-8)). Similarly, in the proposed 

method, a candidate order at any (c, η) on the angle-scale plane is employed, expressed by 

      1

Scale-Angle Scale-angle Scale-Angle, , ,c i W c W c  


 
  


. (4-12) 

In the traditional SST, the squeezing is performed in time-frequency domain according 

to the candidate frequency to obtain signal TFR (Eq. (4-9)). Similarly in the proposed 

method, by squeezing the CWT of angle-domain signal according to the calculated 

candidate order, the energy distribution in the angle-scale plane is thus squeezed and 

converted to the angle-order plane, expressed by 

     
 

 
Scale-Angle

1 3/2
Angle-Order Scale-Angle

: , /2

, ,
k k

k k k
c c

T W c c c


  

 

    , (4-13) 
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where Ω is order. As TAngle-Order(η,Ω) is obtained by processing the stationary angle-domain 

signal using the SST, it should be smear-free and of high resolution.  

Step 3. Restore the TFR from the synchrosqueezed signal. 

The SST of the corresponding signal obtained in the last step expresses the signal 

energy over angle and order. The TFR should present the signal energy over time and 

frequency. Therefore the TFR can be obtained by mapping the SST result of the 

corresponding signal computed in step 2 from angle-order domain into time-frequency 

domain, i.e., by converting TAngle-Order(η,Ω) to TTime-Freq(τ,f) (where TTime-Freq(τ,f) is the signal 

TFR, τ and f represents time and frequency of the TFR respectively). As discussed in the 

chapter 2, the angle-order representation can be mapped into time-frequency domain using 

the relationship function Eqs. (3-5) and (3-8). The TFR can then be computed by mapping 

the XAOR(η, Ω) into time-frequency domain, i.e., substituting the relationship functions (Eq. 

(3-5) and Eq. (3-8)) into the SST of the corresponding signal TAngle-Order(η, Ω), expressed 

by  

      Time-Freq Angle-Order, ,g ,T f T f    . (4-14) 

In this step, the TFR is obtained via mapping. Similar to step 1, the realization of 

mapping requires interpolations. The interpolation can be avoided in the implementation 

of the proposed method which is detailed in subsection 4.2.3. 

The proposed method can generate a smear-free fine-resolution TFR. This is because 

a) Steps 1 and 3 only change the domains, which do not introduce smearing effects and do 

not alter resolution, and b) Step 2 applies the SST to the stationary angle-domain signal to 

improve the resolution without introducing smearing effects. Based on the analysis of the 

above three steps, the resulting TFR of the proposed VST method ought to be smear-free 

with improved resolution. 

To better understand the VST process, the three steps of the proposed VST method are 

summarised in a flowchart (Fig. 4-3). As shown in the flowchart, the corresponding 

stationary angle-domain is first obtained by mapping the vibration signal from time domain 

into angle domain, then the SST is applied to the corresponding signal, and finally TFR is 

restored from the SST result of the corresponding signal via another mapping from angle-



60 

order domain to time-frequency domain. To further facilitate the understanding of the 

proposed VST, it is demonstrated step by step using the synthetic nonstationary signal used 

in the subsection 4.1. This synthetic nonstationary signal is first mapped from time domain 

into angle domain and the obtained corresponding stationary angle-domain signal is shown 

in Fig. 4-4(A). It can be seen that the signal becomes stationary (this is reflected by the 

periodicity of the signal). The SST of the corresponding signal is then carried out and the 

result is displayed in Fig. 4-4 (B). It can be found that the synchrosqueezed signal is no 

longer smeared and the two horizontal components at first order and second order 

correspond to shaft rotational frequency and its second harmonic can be identified with 

high resolution. The TFR of the original synthetic signal is finally restored by a mapping 

from angle-order domain into time-frequency domain as shown in Fig. 4-4 (C). It can be 

seen that the signal constituents are clearly and accurately revealed without smearing effect. 

Comparing the TFR of the synthetic nonstationary signal obtained by the VST (Fig. 4-4 

(C)) and the TFR obtained by the SST (Fig. 4-1(D)) indicates that the proposed VST 

outperforms the SST in generating a smear-free TFR. 

 

Time-domain 
signal

Corresponding 
angle-domain signal

Synchrosqueezed singal
Time-frequency 
representation

Mapping MappingSynchrosqueezing 
transform

 

Fig. 4-3.  Flowchart of the VST method 
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Fig. 4-4. Demonstration of the proposed VST: (A) mapped stationary signal, (B) SST of the 
mapped stationary signal, and (C) TFR of the synthetic nonstationary signal obtained by the VST. 

4.2.3 Fast implementation of the VST 

One difficulty in the implementation of the VST is that the domain mappings involved 

in step 1 and step 3 may require signal resampling, as the signal is discrete in real 

applications (Fyfe and Munck, 1997). Signal resampling is commonly realised using 

interpolation techniques, which not only increase the complexity but also introduce 

interpolation errors, thus compromising the accuracy of the result. To mitigate this 

difficulty, the proposed method is simplified so that the smear-free high-resolution TFR 

can be obtained in a single step without resampling the signal. The simplification process 

is inspired by the derivation of the velocity synchronous discrete Fourier transform, which 
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paves a direct path from angle domain to order domain without resampling the signal 

(Borghesani et al., 2014). 

With equations (4-13) and (3-8), the TFR is expressed as 

     
    

    

 
Scale-Angle

Time-Freq Angle-Order

1 3/2
Scale-Angle

2π
: , /2

'

2π
, ,

'

,

k k

k k k

f
c c

f
T f X

W c c c

 
 

  
 

  

  

 
   

 

  
. (4-15) 

In the following derivations, the new symbols WScale-Time(ck,τ) and ΩScale-Time(ck,τ) are 

used to represent ΩScale-Angle(ck,θ(τ)) and WScale-Angle(ck,θ(τ)). The energy representation 

WScale-Time(ck,τ)  can be obtained by substituting equations  (4-10) and (3-5) into Eq. (4-11), 

i.e.,  

    

        

Scale-Time Scale-Angle

1/2
angle

, ,

d

k k

k

k

W c W c

t
c x t t

c

  

  
  







 
  

 


. (4-16) 

As xangle(θ(t)) maps time t to vibration amplitude, it can be substituted for time-domain 

signal xtime(t). WScale-Time(ck,τ)  is then given by 

         1/2
Scale-Time time, d

k k

k

t
W c c x t t

c

  
  





 
  

 
 . (4-17) 

Changing the domain of integration leads to  

         

       

1/2
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d
, d

d
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k

t t
W c c x t t

c t

t
c x t t t

c

   
 

  
 









 
  

 

 
  

 




. (4-18) 

The candidate order ΩScale-Time(ck, τ)  can be calculated using Eq. (4-12):
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. (4-19) 

Based on the above analysis, the algorithm for fast implementation of the proposed 

VST can be summarised below  

     
   

 
Scale-Time

1 3/2
Time-Freq Scale-Time

2π
: , /2

'

, ,

k k

k k k

f
a c

T f W c a c


 

  

  

   , (4-20) 

where 

         1

Scale-Time Scale-Time Scale-Time, , ' ,k k kc i W c W c    


 
  


, (4-21) 

and 

         1/2
Scale-Time time, ' d

k k

k

t
W c c x t t t

c

  
  





 
  

 
 . (4-22) 

The fast implementation simplifies the procedure from original three steps to only one 

step, which is important for on-line fault detection. 

 Simulation evaluations 

In this section, the VST method is evaluated using a numerically synthetic signal. The 

simulated vibration signal of a planetary gearbox with a faulty sun gear under a speed-

oscillating state is generated using the model given in Appendix A (Feng and Zuo, 2012). 

Without loss of generality, only the fundamental frequencies of the gear meshing frequency

 meshf t , sun gear rotating frequency  sunrotf t  and sun gear characteristic frequency 

 sunf t  are considered in the simulation. To mimic the background noise, a Gaussian white 

noise is added to generate a noisy signal with a signal-to-noise ratio (SNR) of 0 dB. The 

simulated signal is expressed below, 
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     
   

sunrot sun0 0

mesh0

( ) 1 cos 2π d 1+cos 2π d

          cos 2π d +N

t t

t

x t f f

f t
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  

           

    

 


 (4-23) 

where the initial phrases 0   and N(t) is noise. The signal lasts five seconds and is 

sampled at a rate of 2 kHz. The sun gear rotating frequency is set at 

 sunrot =3+0.9cos(0.6πt)f t  to simulate a scenario where the sun gear rotates at an 

oscillating frequency between 2.1 Hz and 3.9 Hz, The gear meshing frequency and the sun 

gear characteristic frequency are set at    mesh sunrot=50/3f t f t and    sun sunrot=10/3f t f t , 

respectively. Accordingly they oscillate between 35 Hz and 65 Hz and between 7 Hz and 

13 Hz respectively. Fig. 4-5 (A-C) show the waveform, the Fourier spectrum of the 

simulated signal and the rotational speed profile of the sun gear. Due to the time-varying 

rotational frequency, the Fourier spectrum suffers from smearing effect. It can be seen that 

the signal energy is distributed mostly between 0 to 100 Hz. However, the signal 

components are not clearly revealed and fault cannot be diagnosed from the Fourier 

spectrum. The simulated signal described by Equation (4-23) can be rewritten as the sum 

of harmonics of sun gear rotating frequency, given by 

   
9

1

( ) cos 2 d +Nn n

n

x t B k f t t t


       (4-24) 

where Bn=[0.25,0.5,0.25,0.5,1,0.5,0.25,0.5,0.25] and fn(t)=[fmesh-fsun-fsunrot, fmesh-fsun, fmesh-

fmesh+fsunrot, fmesh, fmesh+fsunrot, fmesh+fsun-fsunrot, fmesh+fsun, fmesh+fsun+fsunrot]. This means that the 

signal consists of nine time-varying frequency components, i.e, fn(t) (n=1,2, …, 9). Based 

on the sun gear rotational speed, the frequency trajectories of these nine frequency 

components are presented in Fig. 4-6(A). The VST is applied to analyse the simulated 

signal and the produced TFR is shown in Fig. 4-6 (B).Thanks to the fine time-frequency 

resolution and smearing-free properties of the VST, the signal components of interest are 

clearly uncovered. The revealed sideband components are associated with sun gear fault, 

indicating the gearbox has sun gear fault. This finding is consistent with the setups. 

A comparative study is also conducted here to evaluate the proposed VST method. The 

TFRs obtained by the short-time Fourier transform, Morlet CWT, SST and GST are shown 
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in Fig. 4-6 (C-F) respectively. As shown in Fig. 4-6 (C) and (D), the STFT and the CWT 

methods suffer from serious smearing, one can only roughly recognise the signal frequency 

trend but the signal components cannot be identified due to the smearing effects. The SST 

(Daubechies et al., 2011), shown in Fig. 4-6 (E), sharpens the CWT result, however, it still 

has time-frequency smear effects and does not uncover all the signal components. The GST 

(Li and Liang, 2012b) is performed according to the meshing frequency, which removes 

the smearing effect of meshing frequency component as displayed in Fig. 4-6 (F). However, 

it does not completely remove the smear effects of the sidebands of meshing frequency. As 

a result, the sidebands are not clearly discerned as the smear effects of the sidebands remain 

intact. Compared with them, the VST as shown in Fig. 4-6 (B) clearly reveals the signal 

components with high time-frequency resolution and the TFR components concentrate 

along their real frequencies without smear. The above analysis and comparison 

demonstrate the effectiveness of the VST method in addressing the smear and time-

frequency resolution issues caused by shaft speed variation.  

 

Fig. 4-5. Simulated case: (A) vibration signal, (B) frequency spectrum of vibration signal, and (C) 
motor speed 
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Fig. 4-6. TFR of synthetic signal: (A) real instantaneous frequencies, (B) VST, (C) SST, (D) 
CWT, (E) SST and (F) GST 
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 Experimental tests  

To examine the performance of the proposed VST method, tests were carried out on a 

wind turbine drivetrain test rig. The test rig includes an AC drive motor for powering the 

gearboxes, a two-stage fixed-shaft gearbox, a two-stage planetary gearbox and a magnetic 

brake for loading as shown in Fig. 4-7. The power transmission direction is AC motor → 

fixed-shaft gearbox → planetary gearbox → brake. The configurations of the two 

gearboxes are listed in Table 4-1.  

The tests are carried out for three conditions: worn sun gear, sun gear with a chipped 

tooth and healthy planetary gearbox. The pictures of the two damaged gears are displayed 

in Fig. 3-14. In the case of worn sun gear, a sun gear with wear on every tooth is installed 

in stage 1 of the planetary gearbox while all the other gears are healthy. In the test of sun 

gear chipping fault, a sun gear with chipped fault on one tooth is mounted in stage 2 of the 

planetary gearbox while all the other gears are healthy. In the healthy planetary gearbox 

test, all the gears employed are healthy. 

The experimental data are collected from accelerometers mounted on top of the casings 

of the planetary gearbox’s stage 1 and stage 2 at a sampling frequency of 20 kHz during a 

speed-varying process. The motor rotational frequency, measured using a tachometer, 

increases approximately from 40 Hz to 60 Hz then drops to 40 Hz. A load of 13.2 Nm is 

generated by the brake and is applied to stage 2 output shaft of the planetary gearbox. The 

characteristic frequencies of the planetary gearbox are calculated using the formulas given 

in (Feng and Zuo, 2012) according to the configuration of the two gearboxes. As the shaft 

speed is time-varying, the characteristic frequencies are represented as the multiples of the 

motor rotational frequency fd as listed in Table 4-2. 

Table 4-1 Configuration parameters of the gearboxes 

Gearbox Gear 
Number of gear teeth 

Stage 1 Stage 2 

Fixed shaft 
Drive 32 40 

Driven 80 72 

Planetary 

Sun 20 28 

Planet (planet gears number) 40(4) 36(4) 

Ring 100 100 
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Table 4-2 Characteristic frequency of the planetary gearbox 

Characteristic frequency First stage Second stage 

Ring gear fault frequency  fring1=(4/27) fd fring2=(7/216) fd 

Planet gear fault frequency fplanet1=(5/54) fd fplanet2=(175/7776) fd 

Sun gear fault frequency fsun1=(20/27) fd  fsun2=(175/1512) fd  

Meshing frequency  fmesh1=(100/27) fd  fmesh2=(175/216) fd  

Sun gear rotational frequency fsunrot1=(2/9) fd fsunrot2=(1/27) fd  

Carrier rotational frequency fcarrier1=(1/27) fd fcarrier2=(7/864) fd 

 

Motor

Fixed-shaft 
gearbox

Planetary 
gearbox

Brake

Accelerometers

Tachometer

 
Fig. 4-7.  Test rig and test setup 

4.4.1 Detection of sun gear wear 

This section demonstrates the effectiveness of the VST method in detecting planetary 

gearbox sun gear wear fault. The waveform, the signal Fourier spectrum and motor speed 

are plotted in Fig. 4-8(A-C). The speed of the drive motor increases from 40 Hz to 60 Hz 

and then drops back to 40 Hz as displayed in Fig. 4-8(C). According to the formula of 

calculating the meshing frequency of the planetary gearbox stage 1 (i.e., fmesh1=100/27 fd 

as shown in Table 4-2), the meshing frequency of the planetary gearbox stage 1 changes 

approximately between 148 Hz and 222 Hz. Therefore, the frequency band of interest is 

selected as 0-400 Hz, as this band convers enough possible sidebands of meshing frequency 

for fault diagnosis. Because of the time-varying speed, one cannot detect the fault feature 

from either the waveform or the Fourier spectrum. The VST is then applied to process the 
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vibration signal and the resulting TFR is shown in Fig. 4-9. The main dominant 

components are the motor rotating frequency fd and its harmonics. These components are 

produced by the motor revolution and do not provide any information of the condition of 

the planetary gearbox. Apart from motor frequency and its harmonics, meshing frequency 

of planetary gearbox stage 1 and its sidebands are also present in the TFR. The sideband 

components are the combinations of meshing frequency and sun gear fault characteristic 

frequency (fmesh1-2fsun1 and fmesh1+2fsun1), the combination of meshing frequency, sun gear 

fault characteristic frequency and sun gear rotating frequency (fmesh1-2fsun1-2fsunrot1). These 

sidebands have significant amplitudes and are related to sun gear fault characteristic 

frequency, indicating that stage 1 of the planetary gearbox has sun gear fault. This finding 

is in agreement with the sun gear condition. 

 

Fig. 4-8. Planetary gearbox with stage 1 sun gear wear fault: (A) vibration signal, (B) frequency 
spectrum of vibration signal and (C) motor speed.  
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Fig. 4-9. TFR of the vibration signal of stage 1 sun gear wear fault 

4.4.2 Detection of sun gear chipping 

In this section, the effectiveness of the VST is assessed in detecting sun gear chipping 

at stage 2 of the planetary gearbox. Fig. 4-10(A-C) present the vibration signal, its 

frequency spectrum and the drive motor speed. Similar to the sun gear wear case, the motor 

speed falls in the range between 40 Hz and 60 Hz as shown in Fig. 4-10(C). According to 

the relationship between the stage 2 meshing frequency of the planetary gearbox and the 

motor rotational frequency (i.e., fmesh2=(175/216) fd as shown in Table 4-2), the stage 2 

meshing frequency of the planetary gearbox changes between 32 Hz and 48 Hz. The 

frequency band of interest is then focused on the range between 0 Hz and 80 Hz to 

investigate the stage 2 sideband structures of the planetary gearbox for fault diagnosis. 

Though several peaks appear in the frequency spectrum (Fig. 4-10 (B)) of the raw vibration 

signal, it is difficult to identify them under a time-varying shaft speed condition. The signal 

TFR is then generated by applying the VST to uncover the signal structures as shown in 

Fig. 4-11. The dominant frequency is the motor rotating frequency fd, which is generated 

by the rotations of the drive motor. Besides motor rotating frequency, several other 
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components can also be clearly identified from the TFR, they are the sum of the meshing 

frequency, the third harmonic of sun gear fault characteristic frequency and the sun gear 

rotating frequency fmesh2+3fsun2+fsunrot2, the difference between the meshing frequency and 

the sun gear rotating frequency of stage fmesh2-fsunrot2, the sum of the meshing frequency and 

the sun gear rotating frequency of stage fmesh2+fsunrot2, and the difference between meshing 

frequency and the sum of the third harmonic of sun gear fault characteristic frequency and 

the second harmonic of sun gear rotating frequency fmesh2- (3fsun2+2fsunrot2). Based on these 

revealed sidebands associated with sun gear fault characteristic frequency, it can be 

concluded that the fault is located at the stage 2 sun gear of the planetary gearbox. This is 

in agreement again with the stage 2 sun gear condition. 

 

Fig. 4-10 Planetary gearbox with stage 2 sun gear chipping fault: (A) vibration signal, (B) 
frequency spectrum of vibration signal and (C) motor speed 
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Fig. 4-11 TFR of the vibration signal of stage 2 sun gear chipping fault 

4.4.3 Healthy planetary gearbox  

In this section, the experimental vibration data of the healthy planetary gearbox is used 

to show the results when the proposed VST method is used. The vibration waveform, the 

corresponding frequency spectrum and motor speed profile are, respectively, shown in Fig. 

4-12(A-C). Similar to the faulty planetary gearbox cases, the speed of the drive motor 

increases from 40 Hz to 60 Hz and then drops back to 40 Hz as shown in Fig. 4-12(C). 

Though the Fourier spectrum of the signal, shown in Fig. 4-12(B), contains some peaks, it 

is difficult to identify them under a time-varying speed condition. The VST is once again 

employed to process the signal, and the signal features are hence uncovered as shown in 

Fig. 4-13. The dominant frequencies are the planetary gearbox stage 1 gear meshing 

frequency fmesh1, the drive motor rotating frequency fd and its harmonics. No sidebands 

associated with planetary gearbox fault can be observed in the TFR. This suggests that the 

planetary gearbox is in a healthy condition.  
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The findings of the above three cases are expected and show that the VST is well suited 

to planetary gearbox diagnosis under nonstationary conditions.  

 

Fig. 4-12. Healthy planetary gearbox: (A) vibration signal, (B) frequency spectrum of vibration 
signal, and (C) motor speed 

 

Fig. 4-13. TFR of the healthy planetary gearbox vibration signal 
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the traditional SST by eliminating the smear effects of SST when processing the non-

stationary vibration signal of rotational machinery. It should be noted that though 

theoretically the VST works by two domain mappings and an application of SST to the 

angle-domain signal, the process can be substantially simplified as single step operation 

using the proposed fast implementation algorithm. Similar to the VSSTFT proposed in 

chapter 2, the VST is also smear-free and thus the signal components can be easily detected 

and identified. Compared with the VSSTFT, the VST leads to better time-frequency 

resolution to capture more details of signal structure. The performance of the VST has been 

compared with the traditional time-frequency analysis method using simulated data. The 

effectiveness of the VST method is further validated in diagnosing sun gear wear and 

chipped faults from the experimental data. 
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 Velocity synchronous bilinear distribution (VSBD) 

 Motivation 

The VSSTFT method and VST method proposed in the last two chapters are able to 

generate a smear-free TFR for fault diagnosis of planetary gearbox under non-stationary 

conditions. However, they have limited time-frequency resolution. This is because the 

linear transform is subject to the Heisenberg uncertainty principle (Hlawatsch and 

Boudreaux-Bartels, 1992) and the remapping method is based on linear transform result 

without improving its resolution (Iatsenko et al., 2015). Time-frequency resolution is 

important for fault diagnosis, as a good frequency resolution can facilitate the identification 

of the close-packed frequency components and fine time resolution can help uncover the 

transient impulses. These tightly packed components and transient impulses may contain 

rich information related to the faults of machinery.  

The bilinear distribution is a big family of time-frequency methods (Hlawatsch, 1991; 

Hlawatsch and Boudreaux-Bartels, 1992) and it features relatively better time-frequency 

resolution. The WVD may be the base of all the bilinear distributions. One of its advantages 

is that it can perfectly reveal the following types of components, impulse, constant 

frequency and linear chirp. However, it has smear effects for the components other than 

those three types of components. The polynomial Wigner-Ville distribution uses a higher 

order kernel to supress the smear effects (Boashash and Shea, 1994). However, this method 

requires that the signal must be finely sampled for interpolation and the signal frequency 

must be well represented by polynomials. Another main drawback of the WVD is that it 

has cross term interferences for multi-component signals. The Cohen’s class bilinear 

distribution (CCBD) may be the most widely used type of bilinear distributions.  It uses a 

kernel function in ambiguity domain to filter out the cross terms and commonly the auto 

terms of the impulses and constant frequencies can survive. However, other auto terms may 

be partly filtered out and this may cause the information loss and resolution reduction (Choi 

and Williams, 1989a; Cohen, 1989; Zhao et al., 1990; Baraniuk and Jones, 1993a; Jones 

and Baraniuk, 1995). This shows that the CCBD requires the signal harmonics to have 

constant frequencies. The above mentioned drawbacks limit the performance and 

effectiveness of bilinear distributions. 
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To resolve these drawbacks and provide a clear TFR for reliable planetary gearbox 

diagnosis, the Velocity synchronous bilinear distribution (VSBD) method is proposed in 

this chapter. The VSBD is based on the GD and CCBD. The GD is a technique that is able 

to map one harmonic component of a signal into a pre-set frequency (Olhede and Walden, 

2005). By applying the GDs with parameters specially designed according to the shaft 

speed, the possible signal components of the vibration signal can be mapped into constant 

frequencies in the demodulated signals. As the constant-frequency requirement of the 

CCBD is met, the mapped components can be conserved by the CCBD without time-

frequency reduction and information loss. Finally the obtained CCBDs of the demodulated 

signals are fused into a clear TFR with good time-frequency resolution for planetary 

gearbox fault diagnosis. 

 Presentation of the VSBD 

As the proposed VSBD is based on the CCBD and GD, they are briefly reviewed in 

section 5.2.1 and 5.2.2 respectively. 

5.2.1 Review of the Cohen class bilinear distributions  

The CCBDs are effective tools to obtain the time-frequency representation of a signal. 

The WVD may be the base of all the Cohen’s class distributions (Feng et al., 2013a). The 

WVD of an analytic signal x(t) is defined as applying Fourier transform to the auto-

correlation function of signal x(t) with respect to delay τ (Cohen, 1989), expressed by 

     , , exp 2π dW t f R t j f  



   (5-1) 

where t is time, f is frequency and the auto-correlation function R is represented by 

 ,
2 2

R t x t x t
          

   
 (5-2) 

where the overhead bar denotes complex conjugate operation and τ is time delay. The signal 

under analysis must be an analytic signal. For a real-valued signal, it can be transformed to 

an analytic one using the Hilbert transform. The WVD can be seen as a process that 

transforms the signal from time-domain into the time-frequency domain. 

We introduce three simple signals, i.e., the impulse signal, the analytic signal with 

constant frequency, and the analytic signal with linear frequency f0+ct (linear chirp signal). 
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Their representations are presented in Table 5-1. The autocorrelation function of these 

signals are represented by the following functions respectively  

 imp 0 0,
2 2

R t t t t t
             

   
, (5-3) 

   con 0 0 0, exp 2π exp 2π exp 2π
2 2

R t j f t j f t j f
                        

, (5-4) 

and 

 

  

2 2

linear 0 0

0

1 1
, exp 2π

2 2 2 2 2 2

exp 2π

R t j c t f t c t f t

j f ct

   

 

                                    
 

. (5-5) 

The WVDs of these signals are then calculated, represented by 

     

   

imp imp

0 0 0

, , exp 2π d

exp 2π d
2 2

W t f R t j f

t t t t j f t t

  

     









 

             
   




, (5-6) 

      

     

con con

0 0

, , , exp 2π d

exp 2π exp 2π d

W t t f R t j f

j f j f f f

   

   









 

   




, (5-7) 

and 

     

       
linear linear

0 0

, , exp 2π d

exp 2π exp 2π d

W t f R t j f

j f ct j f t f ct

  

   









 

     




. (5-8) 

Their auto-correlation functions and WVDs are also presented in Fig. 5-1. Based on 

the above result, we illustrate the WVDs of these three types of signal using three example 

signals as shown in Fig. 5-1(A-C). It can be seen that the WVD can effectively reveal the 

signal structure of these three types of signals. However, the WVD cannot reveal the signal 

with non-linear frequencies well. The WVD of a quadratic chirp (as an example of non-

linear chirp) is shown in Fig. 5-1(D), it can be seen that the WVD has smear problems and 

the signal frequency is not clearly revealed. 
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Table 5-1 Functions of the example signals 

 Impulse signal 
Constant 
frequency 

Linear frequency 

Signal  0t t    0exp 2πj f t    2
0exp 2π 0.5cj t f t  

Auto-
correlation 
function 

0 0
2 2

t t t t
           

   
  0exp 2πj f     0exp 2πj f ct   

WVD  0t t    0f f     0f f ct    

Ambiguity 
function 

   0exp 2πj t       0exp 2πj f       0exp 2πc j f     

 

Another drawback of the WVD is that it introduces cross-term interference for mono-

component signals. Considering a signal x(t) with two components x1(t)  and x2(t) , its WVD  

is given by 

   

       

1 2 1 2

1 2 1 2 2 1

, exp 2π d
2 2 2 2

, , , ,

x

x x x x x x

W t f x t x t x t x t j f

W t f W t f W t f W t f

     




                                   
   



 (5-9) 

It can be seen that the WVD of the signal x(t) = x1(t) + x2(t)  contains four terms. The 

terms  1 ,xW t f  and  2 ,xW t f   are called auto terms and they are the WVD of x1(t) and 

x2(t) respectively, and therefore the auto terms can reveal the signal frequency trajectories. 

However, the terms  1 2 ,x xW t f  and  2 1 ,x xW t f  are cross terms and interfere the 

interpretation of the WVD.  

To illustrate the auto terms and cross terms, we shows the WVD of four two-

component example signals. They are the signal containing two impulses, the signal 

containing two constant frequencies, the signal containing two linear chirps and the signal 

containing two quadratic chirps (as an representation of the signal containing two non-

linear chirps). Their WVDs are shown in Fig. 5-2(A-D) respectively. It can be seen the 

cross terms seriously interfere the WVD and they may be mistakenly identified as the 

signal component. 
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Fig. 5-1. WVDs of mono-component signals: (A) impulse, (B) constant frequency, (C) linear 
chirp and (D) quadratic chirp 

To address the cross-term interference issue, many methods have been proposed and 

the CCBD may be the mostly widely used one. The CCBD is expressed by 

        Cohen , , , exp 2π d dW t f A M j t f       
 

 
    (5-10) 

where η is the Doppler frequency shift (DFS),  M(τ,η) is a mask function in the delay-DFS 

domain and A(τ,η) is the signal ambiguity function, expressed by 

     , , exp 2π dA R t j t t   



   (5-11) 
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Fig. 5-2. WVDs of multi-component signals containing two: (A) impulses, (B) constant 
frequencies, (C) linear chirps and (D) quadratic chirps 

It can be observed that the ambiguity function is obtained as the Fourier transform of 

the auto-correlation function. The delay-DFS plane representations of the auto terms of the 

impulse component, constant-frequency component and linear–chirp component can be 

obtained as  

     

     

imp imp

0 0 0

, , exp 2π d

exp 2π d exp 2π
2 2

A R t j t t

t t t t j t t j t

   

      









 

             
   




, (5-12) 

     

       

con con

0 0

, , exp 2π d

exp 2π exp 2π d exp 2π

A R t j t t

j f j t t j f

   

    









 

  




, (5-13) 

and 
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     

        

linear linear

0 0

, , exp 2π d

exp 2π exp 2π d exp 2π

A R t j t t

j f ct j t t j f c

   

      









 

    




. (5-14) 

The above functions show that in the delay-DFS plane, the impulse component is at 

the DFS axis (τ=0), constant frequency is at the delay axis (η=0), and linear chirp is at a 

line passing the origin with incline slope c. These features can be reflected by the two-

component example signals represented in delay-DFS plane illustrated in Fig. 5-3(A-D) 

respectively. The locations of the auto terms of impulses, constant frequencies and linear 

chirps are expected as shown in Fig. 5-3(A-C). However, the locations of the auto terms 

and cross terms of non-linear chirps (using quadratic chirps as an example here) are 

difficult to expect as shown in Fig. 5-3(D). 

 

Fig. 5-3. Ambiguity function of multi-component signals: (A) impulse, (B) constant frequency, 
(C) linear chirp and (D) non-linear chirp 

The ambiguity function of these three types of signals are also presented in Table 5-1. 

It can be seen that the ambiguity functions of these three types of signals all pass the origin. 



82 

This means that the auto terms of impulse component, constant-frequency component and 

linear-frequency component all pass the origin. Therefore a low-pass two-dimensional 

mask function M(τ,η) can be designed and by multiplying the ambiguity function A(τ,η) 

with it, most information of the auto terms can be filtered. Finally this result is processed 

by the inverse Fourier transform with respect to the DFS η and the Fourier transform with 

respect to delay τ to obtain the representation in the time-frequency domain.  The CCBD 

of the four example signals are shown in Fig. 5-4. 

 

Fig. 5-4. CCBD of multi-component signals: (A) impulse, (B) constant frequency, (C) linear 
frequency and (D) non-linear frequency 

The CCBDs cannot conserve all the information of the auto terms. The passbands of 

mask functions of most CCBDs concentrate around the two axes, e.g., the Choi-Williams 

distribution mask function as shown in Fig. 5-5. From Fig. 5-5, it can be found that the 

ambiguity functions of impulse and constant frequency are located on the axes and hence 

the auto terms of them can be perfectly conserved. However, as the auto terms of other 



83 

types of components are not located on the axes, these components will suffer from 

information loss and poor time-frequency resolution. Most components of the vibration 

signals collected from a planetary gearbox under non-stationary conditions have time-

varying frequencies, not constant frequencies. Therefore, the CCBD is not suited to 

analysing such vibration signals.  

 

Fig. 5-5. Mask function of the Choi-Williams distribution 

 

5.2.2 Review of the generalized demodulation (GD) 

The GD defines a demodulation function according to a specified instantaneous phase. 

By multiplying the signal with it, the time-variant frequency of the interested component 

can be mapped into a constant one (Olhede and Walden, 2005). For an arbitrary mono-

component analytic signal with time varying frequency f(t) expressed by 

  mono ( ) Aexp 2πx t j f t dt



  . (5-15) 

It can be mapped into a constant target frequency ftarget with amplitude conserved using the 

following demodulator 

  target( ) exp 2π 2πp t j f t dt j f t



   . (5-16) 

This is because the demodulated signal is represented by 
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     
 

target

target

( ) ( ) ( ) Aexp 2π exp 2π 2π

A exp 2π constant

D
x t x t p t j f t dt j f t dt j f t

j f t

 

 
   

 

 
. (5-17) 

5.2.3 Derivation of the VSBD 

The vibration signal collected from a rotational machinery with time-varying rotational 

speed can be roughly modeled as a combination of waveforms with frequencies 

synchronizing with shaft rotational speed, given by 

    
K

vib
1

exp
k k

k

x t A j t


   , (5-18) 

where K is the number of components, Ωk is the order of the kth component, Ak is the 

amplitude of the kth component and θ(t) is the phase of shaft rotational frequency, 

represented by 

   shaft2π dt f t t



  . (5-19) 

where fshaft is the shaft rotational frequency. As the frequencies of the signal components 

are not constant, the current CCBDs cannot provide a good TFR. It has been shown that 

the constant frequency can be perfectly conserved by the CCBD in the subsection 5.2.1 

and the GD can map any signal component with time-varying frequency into a constant 

frequency. It is therefore proposed to process the signal using the GD before applying the 

CCBD. However, one difficulty is that the vibration signal is a multi-component signal, 

the demodulator can only be designed according to the frequency of one of the signal 

components. Such demodulator is able to map the selected component into constant 

frequency but cannot map other components into fixed frequencies. We select the lth 

component of vibration signal as the component to be mapped and the mapped signal can 

be shown as 

      
        
vib shaft shaft

1
target

shafttarget tar
2

get

( ) ( ) ( ) exp 2π d

exp 2π c exp 2π d

K

D k k l

k

K

l k k l

k

x t x t p t A j f t f t f t t

A j f t A j f t f t











    

     

 

 
 . 

 (5-20) 
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It be seen that the lth component is mapped into a component with frequency ftarget, but the 

kth (k≠l) component is mapped to the frequency    shaft targetk l f t f   , which is a time-

varying frequency.  

To solve this problem, an additional argument, order Ω, is introduced into the 

demodulator. In other words, countless demodulators can be constructed and each one is 

designed for one possible component. The demodulator is represented by 

      targetexp 2πp t j t j f t     . (5-21) 

The demodulated signals are represented by 

         vibD
x t x t p t  . (5-22) 

For any component with order Ω, we have a demodulated signal in which the component 

with order Ω is at target frequency. The ambiguity functions of the demodulated signals 

are then obtained by applying Fourier transform with respective to time t, i.e.,  

     , exp 2π d
2 2

D DD
A x t x t j t t

   


 

         
    . (5-23) 

As the frequency of the demodulated component is constant, this component is located 

at the delay axis in ambiguity plane based on the analysis in the subsection 5.2.1, and then 

a new kernel function with passband around delay axis is designed to filter the demodulated 

component, expressed by 

   2, expM      (5-24) 

After the filtering, the signals are transformed into time-frequency domain by applying 

inverse Fourier transform with respective to DFS η and Fourier transform with respective 

to delay τ, represented by 

            1 1, , , , exp 2π d exp 2π d
D

W t f A M j t j f       
 

  
     (5-25) 

As this time-frequency plane shows the demodulated signals, not the original signal, 

to avoid ambiguity, these TFRs are denoted as the demodulated TFRs and the frequency 

here is named demodulated frequency and denoted as f1 instead of f.  Here we have obtained 



86 

the TFRs of the demodulated signals and every demodulated signal only contains the 

mapped target frequency with the original amplitude, and so for the demodulated TFR 

WD(Ω)(t, f1), only the data at   

1 targetf f  (5-26) 

contains useful information. Then we merge these demodulated TFRs into one TFR 

containing all the information by combining data at 1 targetf f for each demodulated TFR 

WD(Ω)(t, f1) and the combined TFR is represented by WD(Ω)(t, ftarget). The TFR of the original 

signal can be restored from the combined TFR according to the relationship between order 

and frequency, i.e., order represents multiple of shaft rotational frequency, expressed by 

 shaft

f

f t
  , (5-27) 

therefore the restored TFR is  

 
 

 
shaft

target, ,
f

D
f t

W t f W t f 
  
 

 . (5-28) 

Here, we have restored the TFR of the original signal. This method is named velocity 

synchronous bilinear distribution (VSBD). To facilitate the understanding of the proposed 

method, the steps of the proposed VSBD method are presented in a flowchart as shown in 

Fig. 5-6, where F and F-1 denote Fourier transform and inverse Fourier transform 

respectively. 
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Fig. 5-6. Flowchart of the proposed VSBD method 

To facilitate the realization of the proposed VSBD method, the proposed method can 

be simplified as the following algorithms from the Eqs. (5-22 to 5-28) 

         ,
, , , exp 2π d dD f t

W t f A M j t      
 

 
   , (5-29) 

where 

         1 1, , ,
, exp 2π d

2 2D f t D f t D f t
A x t x t j t t

   




         
    , (5-30) 

   2, expM     , (5-31) 

       
 

1
1 1,

2π
exp

'D f t

j f t
x t x t

t




 
   

 
. (5-32) 

In the above simplified algorithms, the target frequency is set as 0 to reduce 

computational burden. In real applications, the shaft speed can be obtained by the 

tachometer/encoder installed on the gearbox shaft. If such tachometer is not accessible, the 

shaft speed can be estimated from the signal TFR obtained by the STFT (Combet and 

Zimroz, 2009; Peng et al., 2011; Urbanek et al., 2013).  

Demodulate by p(Ω)(t) 

Calculate auto-correlation function and Ft 

Filter M(η,τ) and Fη
-1Fτ 

Restore TFR using f1= ftarger and Ω=f/fshaft(t) 

xvib(t) 

xD(Ω) 

AD(Ω)(η,τ) 

W D(Ω)(t,f1) 

W(t,f) 
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The proposed VSBD method is tested on the signals containing two linear chirps and 

two quadratic chirps and the results are shown in Fig. 5-7(A) and (B). It can be seen that 

the VSBD reveals the signal time-frequency structure clearly with fine time-frequency 

resolution and without cross-term interference. 

 

Fig. 5-7. VSBD of the signal containing: (A) two linear chirps and (B) two quadratic chirps 

 Simulation evaluations 

5.3.1 Signal containing fault-induced harmonics  

In this section, the proposed method is tested on a synthetic vibration signal of 

planetary gearbox with a sun gear fault using the vibration model  provided in Appendix 

A (Feng and Zuo, 2012). This model is based on the amplitude and frequency modulation 

features of the vibration caused by gear fault and it assumes that the signal is collected 

under a fixed rotational speed. Under the non-stationary condition, the model must be 

adjusted. As in a non-stationary condition, the characteristic frequencies of the gearbox are 

time-varying, the fixed characteristic frequencies in the model should be replaced with the 

corresponding time-varying characteristic frequencies. Compared with the frequency 

modulation effect caused by shaft speed variation, the frequency modulation caused by 

gear fault is relatively weak, thus it is neglected here and only the amplitude modulation 

of the gear fault is considered. A Gaussian white noise is added to achieve a signal-to-noise 

ratio (SNR) of 5 dB to mimic the background noise. Based on the above analysis, the 

simulated signal is expressed below, 
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     
   

srot sun0 0

mesh0

( ) 1 cos 2π d 1+cos 2π d

          cos 2π d +N

t t

t

x t f f

f t

   

 

           

    

 


, (5-33) 

where N(t) is Gaussian white noise, fsrot is the sun gear rotational frequency, fmesh is the gear 

meshing frequency and fsun is the sun gear fault characteristic frequency. The signal-to-

noise ratio (SNR) of this signal is set as 3 dB (SNR is defined as the ratio of the root mean 

square of the pure desired signal and the noise signal N(t)).The relationship between these 

characteristic frequencies are set as fsrot =fmesh/10=fsun/3. The signal length is one second 

and the sampling rate is 512 Hz. The sun gear rotating frequency is set as

   srot =10 2sin 2πf t t . The signal waveform is shown in Fig. 5-8(A).  

Based on the convolution theory, the signal contains nine components, which can be 

represented by fmesh, fmesh± fsun, fmesh± fsrot, fmesh± fsun± fsrot, as shown in Fig. 5-8 (B). The 

VSBD is tested on the synthetic signal and the result is shown in Fig. 5-8 (C). Compared 

with the ideal time-frequency features of the synthetic signal shown in Fig. 5-8 (B), the 

VSBD clearly reveals all the nine signal components with good time-frequency resolution. 

Except the meshing frequency, all the other eight revealed frequency components are 

associated with sun gear fault, thus the gearbox is diagnosed as having a sun gear fault. 

This is consistent with the simulation setup, which validates the effectiveness of the VSBD. 

The same signal defined by Eq. (5-33) is then processed by the order-tracking method 

(Guan et al., 2018) for comparison and the obtained order spectrum is shown in Fig. 5-8 

(D). It can be seen that the order-tracking method also reveals the nine components of the 

signal. 

The VSBD is compared with some traditional time-frequency methods and advanced 

time-frequency methods, and the obtained TFRs are presented in Fig. 5-9. The STFT is 

shown in Fig. 5-9(A) and it can be seen that the sidebands are buried in strong smear 

background. The Choi-Williams distribution (CWD) (Choi and Williams, 1989b), as a 

representation of the CCBD, is shown in Fig. 5-9(B). It can be seen that the meshing 

frequency is recognized. However, the sidebands are not revealed and it introduces some 

unexpected impulses. The signal is then processed by two methods that utilize both 

vibration signal and speed information, the polynomial chirplet transform (PCT) (Peng et 
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al., 2011) and the generalized synchrosqueezing transform (GST) (Li and Liang, 2012b). 

The results are shown in Fig. 5-9(C) and (D), respectively. Though these two methods can 

discern the signal meshing frequency and part of sidebands, some sidebands are not 

revealed. Finally, two advanced methods, the GLCT (Yu and Zhou, 2016) and SET (Yu et 

al., 2017), are tested and the results are  presented in Fig. 5-9(E) and (F), respectively.  

The GLCT reveals the meshing frequency, but the sidebands are smeared. Similar to 

the GLCT, the SET is also only able to reveal the meshing frequency and introduces 

additional interferences to the TFR. By comparing these TFRs shown in Fig. 5-9 with the 

TFR obtained by the VSBD, it can be found that the VSBD is superior to them in generating 

a clear TFR with good time-frequency resolution. 

 

 

Fig. 5-8. Synthetic signal 1: (A) waveform and (B) ideal TFR, (C) VSBD result and (D) order 
spectrum 
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Fig. 5-9. TFRs of the synthetic signal 1 obtained by: (A) STFT, (B) CWD, (C) PCT, (D) GST, 
(E) GLCT and (F) SET 
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modeled as a set of impulses. The fault characteristic frequency of the faulty gear ffault is 

therefore the repetition frequency of fault-induced impulses. The synthetic signal 

containing fault-induced impulses is represented by 

   
K

mesh0
1

( ) A cos 2π d + ( - )+
t

k

k

x t f t t N t  


       (5-34) 

where A=0.1 is the amplitude of meshing frequency, δ is Dirac delta function. tk 

corresponds the time point when the impact occurs and N(t) represents Gaussian white 

noise. Under a time-varying speed condition, the time points when impulses occur tk can 

be determined by solving (assuming t0=0) 

 1

fault d 1
k

k

t t

t t
f t t




 . (5-35) 

It is assumed that the gearbox has a sun gear fault. The relationships between the 

characteristic frequencies are set as fsrot =6fmesh/100=6fsun/5. The SNR, signal length and 

sampling rate are set as 0 dB, 1 s and 512 Hz, respectively. Sun gear rotational frequency 

is set as fsrot(t)=3+6t2. Solving Eq (5-35) yields tk = [0.369, 0.633, 0.8262, 0.979]. The 

signal waveform and the time-frequency trajectories of the signal components are shown 

in Fig. 5-10 (A) and (B), respectively.  

The TFR obtained by the VSBD is presented in Fig. 5-10(C), which clearly and 

precisely reveals the meshing frequency and four fault-induced impulses. Each time 

interval between adjacent impulses corresponds to a complete cycle (2π radians of 

continuous phase) of fault characteristic frequency. Integrating the shaft rotational 

frequency in this interval leads to its continuous phase (in cycle) in this interval. The ratio 

of fault characteristic frequency and shaft rotational frequency can then be determined as 

the ratio of continuous phases of these two frequencies in the chosen interval, expressed 

by 

 
   

adj

fault fault

srot srot srot

1

d
T

f t p
n

f t p f t t
  


. (5-36) 

where Tadj denotes length of the time interval between the two chosen adjacent impulses,  

pfault and psrot represent the phases of fault characteristic frequency and sun gear rotational 
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frequency, respectively. The fault can then be diagnosed by comparing this ratio with the 

ratios of ideal fault characteristic frequencies and shaft rotational frequency. Using the time 

interval between the first impulse and second impulse as an example, the frequency ratio n 

is determined as  

 
 

0.633

srot0.369

1 1
0.8312

1.2021d
t

t

n
f t t





  


, (5-37) 

which is close to the ideal ratio of sun gear fault characteristic frequency and sun gear 

rotational frequency (i.e., fsun/fsrot=5/6.). This indicates that the sun gear has a fault, which 

is consistent with the simulation setup.  

In order to show the advantage of the VSBD, we consider a comparison study. Firstly, 

this signal is processed by the order-tracking method. The resulted order spectrum, as 

shown in Fig. 5-10  (D), does reveal the meshing frequency. However, it cannot reveal the 

fault-induced impulses. The same time-frequency methods that were used in the subsection 

5.3.1 are employed again to demonstrate the advantage of the VSBD and the results are 

shown in Fig. 5-11(A-F). The STFT (Fig. 5-11(A)) displays smear effects on the meshing 

frequency and cannot reveal the impulses. The CWD (Fig. 5-11(B)) is able to reveal the 

meshing frequency and impulses. However, the meshing frequency is clouded by serious 

smear effects. Though the PCT, GST, GLCT and SET, as shown in Fig. 5-11(C-F), are 

able to reveal the meshing frequency, they cannot reveal the impulses.  

The analyses in this section clearly show that in terms of revealing harmonics, the 

VSBD performance is similar to the order tracking, but better than other tested time-

frequency methods. In terms of revealing impulses, the VSBD outperforms the order 

tracking method and the tested time-frequency methods. 

It has been shown that the VSBD-based fault diagnosis relies on the detection of fault-

induced harmonics or impulses. Noise may influence the fault diagnosis in two ways, 1) 

noise may lead to unwanted and unexpected "ridges" in the TFR and such ridges may be 

misidentified as fault-induced signal components; and 2) noise may bury the true signal 

components in the TFR and make them undiscoverable. 
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The efficiency of the proposed VSBD is evaluated using the signal defined by Eq. 

(5-34). The characteristics of the used computer and software are provided as follows: 8 

GB DDR3 RAM, Intel® i7-3615QM 2.3GHz CPU, 256 GB flash storage and MATLAB® 

R2014a. The computational time of processing the signal used in this subsection is listed 

in Table 5-2. It can be found that the VSBD method is faster than the GLCT, but slower 

than other methods. However, the absolute computational time of the VSBD is reasonably 

short (only 2.11 s) and this may be acceptable for most applications. 

Table 5-2 Computational time 

Method VSBD STFT CWD PCT GST GLCT SET 

Time (s) 2.11 0.29 1.57 1.16 1.82 2.20 0.43 

 

Fig. 5-10. Synthetic signal 2: (A) waveform and (B) ideal TFR, (C) VSBD result and (D) order 
spectrum 
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Fig. 5-11. TFRs of the synthetic signal 2 obtained by: (A) STFT, (B) CWD, (C) PCT, (D) GST, 
(E) GLCT and (F) SET 

 Experimental evaluations 

In this section, the VSBD is evaluated on diagnosing sun gear fault of a planetary 
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output end of the planetary gearbox by the magnetic bake. Two accelerometers are 

mounted on the casings of the two stages of the gearbox to collect the vibration signals and 

a tachometer is installed at the output end of the system to measure the output speed of the 

planetary gearbox (i.e., the carrier rotational speed of the second stage). The configuration 

parameters of the planetary gearbox are listed in Table 5-3. The characteristic frequencies 

are calculated based on the planetary gearbox configuration using the formulas given in 

Appendix B (Feng and Zuo, 2012) and presented in Table 5-4. The characteristic 

frequencies are expressed as the multiples of the system output shaft rotational frequency, 

because they are time-varying. The meshing frequency corresponds to the gear-meshing 

vibration. The fault characteristic frequencies of the sun gear, planet gear and ring gear 

indicate the occurrence of the corresponding fault. The rotational frequencies of the carrier 

and sun gear correspond to the rotation of carrier and sun gear. In a common vibration 

signal of planetary gearbox, the meshing frequency acts as carrier frequency, and the 

rotational frequencies and the fault characteristic frequencies act as modulation frequencies.  

In the three tests, the motor speed approximately varies between 23 Hz and 32 Hz and 

the corresponding system output shaft rotational speed is between 0.8 Hz to 1.2 Hz. The 

load is set as 3.0 Nm. The sampling frequency is 40 kHz. In the first test, all the gears are 

healthy. In the second test, the sun gear in the first stage is a gear with wear fault and all 

the other gears are healthy. In the third test, the sun gear in the second stage is a gear with 

chipping fault and all the other gears are healthy. The photos of the two fault sun gears are 

presented in Fig. 3-14(A) and (B) respectively. 

Table 5-3 Configuration parameters of the gearboxes 

Gear Number of gear teeth 

Stage 1 Stage 2 

Sun 20 28 

Planet 40(4) 36(4) 

Ring 100 100 

Note: the number of planet gears is presented in the parenthesis 
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Fig. 5-12. Test rig 

Table 5-4 Characteristic frequency of the planetary gearbox 

Frequency Stage 1 Stage 2 

Sun gear fault fsun1=(70/3)fout fsun2=(175/48)fout 

Planet gear fault fplanet1=(35/3)fout fplanet2=(1225/432)fout 

Ring gear fault fring1=(14/3)fout fring2=(49/48)fout 

Carrier rotating fcrot1=(14/3)fout fcrot2=fout 

Sun gear rotating fsunrot1=28fout fsunrot2=(14/3)fout 

Meshing fmesh1=(1400/3)fout fmesh2=(1225/12)fout 

 

5.4.1 Healthy planetary gearbox 

The vibration signal of the healthy planetary gearbox, its frequency spectrum and the 

gearbox output speed are shown in Fig. 5-13(A), (B) and (C) respectively. It can be found 

the output speed fluctuates approximately between 0.8 Hz and 1.2 Hz. The corresponding 

meshing frequencies of the first stage and the second stage are thus between 373.33 and 

560 Hz, and between 81.67 Hz and 122.5 Hz respectively according to their relationships 

with the output speed (i.e., ( fmesh1=(1400/3)fout and fmesh2=(1225/12) fout) as listed in Table 

6-4). As the fault features are mostly contained in the sidebands of meshing frequencies, 

the frequency band of interest is selected as from 0 Hz to 800 Hz, which is sufficient to 

cover the possible sidebands of the meshing frequencies of both stages. The proposed 

VSBD is then applied on the data and the obtained TFR is presented in Fig. 5-14. According 
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to the relationship between the motor speed and the characteristic frequencies of the 

gearbox listed in Table 6-4, the signal components in the TFR can be revealed. They are 

rotational frequency of the first stage sun gear fsrot1, the meshing frequency of the first stage 

fmesh1, two sidebands of first stage meshing frequency fmesh1+fsrot1 and fmesh1-fcrot1. It can be 

seen that some of the frequency components only occur in a short duration, this is because 

in a nonstationary condition, the amplitudes of the signal components are also time-varying. 

These components either relates to the rotation of the planetary gearbox components or the 

meshing of the gears and no frequency component relating to the gear faults is uncovered, 

therefore the gearbox is diagnosed as healthy. 

This signal is then processed by the PCT, GST, GLCT and SET for comparison. The 

obtained TFRs are shown in Fig. 5-15(A), (B), (C) and (D), respectively. It can be seen 

that these methods can barely uncover the meshing frequency of the first stage but the 

sidebands are not clearly revealed. 

 

Fig. 5-13. Healthy gearbox test: (A) vibration signal waveform, (B) Fourier spectrum and (C) 
output shaft rotational speed 
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Fig. 5-14. VSBD of the signal of the healthy gearbox test 

 

Fig. 5-15. TFRs of the signal from the healthy gearbox obtained by: (A) PCT, (B) GST, (C) 
GLCT and (D) SET 
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5.4.2 Sun gear wear fault detection 

In this subsection, the VSBD is tested on the signal collected from the planetary 

gearbox with sun gear wear fault on stage 1. The vibration signal and the corresponding 

Fourier spectrum are shown is Fig. 5-16(A) and (B) respectively. As plotted in Fig. 5-16(C), 

the gearbox output velocity is again between 0.8 Hz to 1.2 Hz, thus the frequency band of 

interest is also chosen as from 0 Hz to 800 Hz. The signal is then processed by the VSBD 

and the resulting TFR is present in Fig. 5-17. Many signal components are revealed. Some 

of them are caused by the rotation of the gearbox components and the meshing of the gears, 

and thus they do not indicate a faulty condition, including the gear rotational frequency of 

the first stage sun gear fsrot1, the meshing frequency of the first stage fmesh1 and the sidebands 

related to sun gear rotational frequency fmesh1±nfsrot1. Apart from them, the sidebands related 

to the fault characteristic frequency of the first stage are also dominant and they are 

fmesh1±nfsun1 and fmesh1+2fsun1+2fsrot1, indicating a faulty condition of the first stage sun gear. 

This signal is then processed by the PCT, GST, GLCT and SET again for comparison 

purpose. The generated TFRs are displayed in Fig. 5-18(A), (B), (C) and (D), respectively. 

It can be seen that these methods can barely reveal the meshing frequency of the first stage 

but the sidebands are not clearly identified. 

 

Fig. 5-16. Sun gear wear fault test: (A) vibration signal waveform, (B) Fourier spectrum and (C) 
output shaft rotational speed 
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Fig. 5-17. VSBD of the signal of the sun gear wear fault test 

 

Fig. 5-18.TFRs of the signal of sun gear wear fault obtained by: (A) PCT, (B) GST, (C) GLCT 
and (D) SET 
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5.4.3 Sun gear chipping fault detection 

In this section, we evaluate the VSBD in diagnosing the chipping fault of the second 

stage sun gear. The vibration signal, its Fourier spectrum and the gearbox output speed are 

presented in Fig. 5-19 (A), (B) and (C) respectively. The motor speed is also approximately 

between 23 and 32 Hz. Accordingly the meshing frequency of the second stage is between 

83.9 Hz and 116.7 Hz. The frequency band of interest is thus selected as [0, 200 Hz] to 

investigate the sidebands of the second stage meshing frequency. The VSBD result is 

shown in Fig. 5-20 and it can be found that several dominant components related to sun 

gear fault are revealed and represented by fmesh2±nfsun2±fsrot2. These components are related 

to the second stage sun gear fault, indicating that the second stage has a sun gear fault.  

Again, we process the signal of chipping fault using the PCT, GST, GLCT and SET 

and the obtained TFRs are presented in Fig. 5-21(A), (B), (C) and (D), respectively. It can 

be seen that these methods can only reveal the sun gear rotational frequency. However, 

they cannot recognize the meshing frequency of the second stage and its sidebands. 

The three tests have demonstrated that the proposed VSBD is effective in providing a 

clear TFR with good time-frequency resolution and diagnosing local and distributed fault 

gear faults of planetary gearbox. The comparisons with the other methods show that the 

VSBD is superior to them in revealing the time-frequency components from planetary 

gearbox vibration signals.   

 

Fig. 5-19. Sun gear chipping fault test: (A) vibration signal waveform, (B) Fourier spectrum and 
(C) output shaft rotational speed 
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Fig. 5-20. VSBD of the signal of the sun gear chipping fault test 

 

Fig. 5-21: TFRs of the signal of sun gear chipping fault obtained by: (A) PCT, (B) GST, (C) 
GLCT and (D) SET 
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 Conclusions 

In this chapter, a bilinear distribution named the VSBD for planetary gearbox fault 

diagnosis has been presented. This method is based on the GD and CCBD and a simple 

algorithm is also developed to realize the proposed method. Compared with the existing 

time-frequency methods, the main advantages of the proposed VSBD include: a) it is free 

from the interference caused by cross terms and the smear effect caused by the time-varying 

frequency components, and b) it has better time-frequency resolution. The effectiveness of 

the VSBD has been demonstrated in analyzing both simulation and experimental vibration 

signals under non-stationary conditions. 
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 Velocity synchronous linear chirplet transform (VSLCT) 

 Introduction 

Though the VSSTFT, VST and VSBD proposed in the last three chapters are able to 

generate a smear-free TFR for fault diagnosis of planetary gearbox under non-stationary 

conditions, they still require the shaft speed information. The shaft speed can be calculated 

from the tachometer or estimated from the TFR obtained by the STFT of the vibration 

signal. However, under some certain conditions, the tachometer is not easily accessible and 

the STFT is not clear enough for shaft speed estimation due to noise and smearing effect. 

To resolve this problem, the VSLCT method is proposed in this chapter. It employs a set 

of linear chirplets that are synchronous with shaft rotational velocity to solve the smear 

problem. It also employs a window with time-varying window length to provide more 

desirable time-frequency resolution. The parameters of the VSLCT can be adaptively 

determined from the signal without user intervention. On the other hand, as the proposed 

VSLCT employs a non-orthogonal kernel and a window with time-varying window length, 

it is beyond the definition of traditional linear transform and thus the definition of linear 

transform is extended before proposing the VSLCT.  

 Presentation of the VSLCT 

6.2.1 Review of the traditional linear transform 

The traditional linear transform for time-frequency analysis is reviewed in this 

subsection. The wavelet transform is excluded in this review, as it commonly analyses the 

signal in time-scale plane, not the traditional time-frequency plane and it is rarely used in 

the time-frequency analysis of non-stationary vibration signal of rotational machinery. 

The linear transform of a signal x(t) is defined as the following integral transform 

         win ,
, d

t

t
X x t P t t   




  , (6-1) 

where τ and v denote time and frequency respectively, xwin(τ)(t) represents the windowed 

signal,    ,
P t   represents the linear transform kernel and the overhead bar denotes 

complex conjugation. The windowed signal xwin(τ)(t) is expressed by 

         win ana w
x t x t t    , (6-2) 
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where λ(w)(t) denotes the window function centered at time t=0 with window length w>0 

and its role is to truncate the analytic signal xana(t). The analytic signal is obtained from the 

real-valued signal using the Hilbert transform (Peng et al., 2011), expressed by 

      anax t x t jH x t  , (6-3) 

where H denotes the Hilbert transform. The reason of using analytic signal rather the real-

valued signal is to avoid the interference of negative frequency. The expression of Gaussian 

window is given below as an example of the window function: 

   

2

w

1 1 w w
exp , ,

2 2 22π

w w
0, , ,

2 2

t
t

t

t



                   
               

, (6-4) 

where σ is the coefficient of the Gaussian window. 

The linear transform kernel    ,
P t  must form complete orthonormal sets for square-

integrable functions L2 over both time t and frequency v (Baraniuk and Jones, 1993b), 

expressed by 

         , ,
d

n m

t

m n
t

P t P t t      



   (6-5) 

and 

         , ,
dn m m nP t P t t t



   
 




  , (6-6) 

where δ is the Dirac delta function.  

P(τ,ν)(t) must form a set of complex waves with unit amplitude as bases (i.e., elements 

of a basis), expressed by 

        , basis ,
exp 2π dP t j f t t   




  , (6-7) 

where fbasis(τ,ν)(t) represents the frequencies of the bases. The bases must have localised 

energy around time τ and frequency ν, therefore fbasis(τ,ν)(t) is equal to ν at time t=τ, 

expressed by 
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   basis ,
f     . (6-8) 

The windowed signal xwin(τ)(t) can be recovered by an inverse linear transform 

(Baraniuk and Jones, 1993b), expressed by 

         win ,
, dx t X P t



  
  




  . (6-9) 

The linear transform and the inverse linear transform form a linear transform pair. The 

definitions of the linear transform pair (Eq. (6-1) and Eq. (6-9)) show that the windowed 

signal xwin(τ)(t) and the linear transform result X(τ,υ) are reversible and this is proved below. 
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         

,

win , ,

win , ,

win win

, d

d d

d d
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X P t
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 (6-10) 

       

          

          
     

win ,

, ,

, ,

d

, d d

, d d

, d ,

n

n

m n
n

n

m n
n

n

n

t

t

t

m m
t

t

n m
t

m m n m n

x t P t t

X P t P t t

X P t P t t

X X

  
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

  (6-11) 

The proof utilizes the orthogonality of the linear transform kernel    ,
P t  . The 

reversibility means that the windowed signal xwin(τ)(t) can be formed by the combination of 

the weighted bases, where the weights are represented by the linear transform result X(τ,ν) 

and the bases are formed by P(τ,ν)(t). As the bases represented by P(τ,ν)(t) also have localised 

energy around time τ and frequency ν, the linear transform result X(τ,ν) represents the 

weights of the bases having localized energy at time τ and frequency ν. For this reason, the 

TFR can be obtained by presenting the absolute value of the linear transform result X(τ,ν) 

in time-frequency plane.  
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To facilitate the understanding of the mechanism of the linear transform, we give two 

illustrations using two traditional linear transforms, the STFT and the chirplet transform. 

A synthetic vibration signal is introduced. This signal is named example signal and is used 

for illustrations in this section and next section. This signal is assumed to be collected from 

rotational machinery under non-stationary condition and it contains two frequency 

components, the shaft rotational frequency and the 1.8 multiples of shaft rotational 

frequency. The phases of the two components are neglected and the signal length is 6 s. 

This example signal is expressed by 

       1 shaft shaft0 0
sin 2π d sin 1.8 2π d

t t

x t f f       , (6-12) 

where fshaft() is the synthetic shaft rotational frequency, expressed by  

    2

shaft 14exp 0.7 1.15 3f t t    . (6-13) 

The signal waveform is plotted in Fig. 6-1(A). The frequency trajectories of the signal 

components are plotted in Fig. 6-1(B), it can be seen that the signal contains two 

components. The lower component is shaft rotational frequency which rises from 8 Hz to 

17 Hz then drops to 3 Hz and the upper component is the 1.8 multiples of the shaft 

rotational frequency.  

The STFT is expressed by 

       STFT win
, exp 2π d

t

t
X x t j t t  




  . (6-14) 

By observing the STFT expression, the basis frequency is expressed by  

   
 

STFT-basis ,

d 2π
2πd

t
f t

t
 


  . (6-15) 

From the above equation, it can be seen that the STFT bases have time-invariant 

frequencies. The frequencies of the STFT bases of the example signal defined by Eq. (6-15) 

are plotted in Fig. 6-2(A), it can be seen that the time-invariant frequencies of the bases do 

not match the time-varying frequencies of the signal components in 0-3 s, however, they 

approximately match each other in 3-6s. The TFR obtained by the STFT with 1.5 s 
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Gaussian window is shown in Fig. 6-2(B). It can be seen that this TFR has smear problem 

in 0-3 s and has better energy concentration in 3-6 s. The above analysis shows that the 

degree of TFR energy concentration depends on the frequency matching degree of the 

bases and the signal components. 

The function of the chirplet transform is represented by 

       2

CT win, exp 2π d
2

t

t

c
X x t j t t t   





       
  

 . (6-16) 

Using a similar procedure of the STFT case, the frequencies of the chirplet transform 

bases are obtained as 

   
 

   

2

CT-basis ,

c
d 2π

2
c c c

d

t t

f t t t
t

 

 
   

              . (6-17) 

It can be seen the basis representation is a linear function of time t with a fixed positive 

slope c. We set the incline slope as 10. The frequencies of the chirplet transform bases are 

plotted in Fig. 6-3(A). It can be seen the positive slopes of the frequencies of the bases are 

fixed and thus the bases cannot completely match the frequencies of the signal components 

with time-varying inclined angles. The bases approximately match the lower component 

in 0-1 s and match the upper component in 0-1.5 s, but they do not match each other 

elsewhere. This means only the lower component in 0-1 s and the upper component in 0-

1.5 s have relatively better energy concentration. The TFR obtained by the chirplet 

transform shown in Fig. 6-3 (B) confirms this expectation. This validates that the degree 

of TFR energy concentration depends on the frequency matching degree of the bases and 

the signal components. 



110 

 

Fig. 6-1. The example signal: (A) waveform, and (B) frequency trajectories 

 

Fig. 6-2.  Illustration of the STFT: (A) frequencies of the bases, and (B) the TFR obtained with 
window length 1.5 s 

 

Fig. 6-3. Illustration of the chirplet transform: (A) frequencies of the bases, and (B) the TFR 
obtained with window length 1.5 s 
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6.2.2 Extension of the linear transform  

It has been shown in the last subsection that the linear transforms have smear problems 

in analysing the non-stationary vibration signals because the frequencies of the bases do 

not match the frequencies of the non-stationary vibration signal components. To address 

the issue of the smear problem, the bases of the linear transform must match the frequencies 

of the non-stationary vibration signal components. As most of the vibration signal 

components are proportional to shaft rotational velocity, the linear transform bases must 

be synchronous with shaft rotational velocity. However, this cannot be achieved, because 

such bases are not pairwise orthogonal (this will be proved in the next subsection), and thus 

do not meet the linear transform requirement. The requirement of orthogonality is because 

the linear transform kernel    ,
P t   is the complex conjugate of the inverse linear transform 

P(τ,ν)(t). However, we find that it is not necessary because if we change the linear transform 

kernel    ,
P t   to an arbitrary kernel in all the equations of linear transform, these equations 

still hold.  

The time-frequency resolution is controlled by the window length. Traditional linear 

transforms use a window with time-variant length thus their time-frequency resolutions are 

time-variant. They lack the adaptability in analysing the non-stationary signal whose 

features change over time. For non-stationary signals, the most suitable time-frequency 

resolution may vary over time. A time-varying resolution requires a window function with 

time-varying window length. We find such window is also tenable because if we replace 

the fixed window length w with a time-varying window length function w(τ), all the 

equations of linear transform still hold.  

Based on the above analysis, to solve the smear problem and make the time-frequency 

resolution more suitable, the definition of the linear transform should be extended. The 

extension of the linear transform definition is detailed and proved below.  

Considering an arbitrary linear transform kernel represented by symbol    ,
Q t  , which 

may or may not equal    ,
P t  , the linear transform can be redefined as  

         win ,
, d

t

t
X x t Q t t   




  . (6-18) 
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A window with time-varying length w(τ), represented by λ(w(τ))(t), is introduced here 

and such a window can be obtained by replacing the fixed window length w with the time-

varying length w(τ) in the traditional window function.  The time-varying Gaussian 

window is given below as an example: 

    

   

   

2
1 1

exp , ,
2 2 22π

0, , ,
2 2

w

w wt
t

t
w w

t



 



 

                  
   

       
   

. (6-19) 

Under the new definition, the analytic signal is truncated by a window with time-

varying length, expressed by 

          win ana w
x t x t t    . (6-20) 

There is no change in the inverse linear transform (Eq. (6-9)) and the energy 

localisation requirements (Eq. (6-7) and Eq. (6-8)). With the extended definition of the 

linear transform,    ,
P t   should be replaced with    ,

Q t  in the functions of requirements 

of orthogonality (Eq. (6-5) and Eq. (6-6)), expressed by 

         , ,
d

n m

t

m n
t

Q t P t t      



   (6-21) 

and 

         , ,
dn m m nQ t P t t t



   
 




  . (6-22) 

The key of the mechanism of the linear transform is that the windowed signal xwin(τ)(t) 

and the linear transform result X(τ,ν) are reversible via the linear transform pair. Under the 

new definition, the reversibility still holds and the proof is given as follows: 
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     

            

            
         

,

win , ,

win , ,

win win

, d

d d

d d

d

m

t

n n n m
t

t

m n m n
t

t

m m n m n
t

X P t

x t Q t t P t

x t Q t P t t

x t t t t x t



 



    



    

 

  











 

 

 

 









  



 

 



 (6-23) 

and 

       

          

          
     

win ,

, ,

, ,

d

, d d

, d d

, d ,

n

n
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n
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n

n

t

t

t

m m
t

t

m m
t

m m n m n

x t Q t t

X P t Q t t

X Q t P t t

X X

  



   



   





  

  

       





 

 

 

 









  



 

 



. (6-24) 

According to the proofs given above, the extended definition of linear transform, 

which allows non-orthogonal bases and time-varying window length, is tenable.  The 

traditional linear transform definition can be seen as the extended linear transform with 

additional restrictions Q(τ,ν)(t)=P(τ,ν)(t) and w(τ)=w. It should be emphasized that in both the 

traditional definition and the extended definition, the bases are formed by P(τ,ν)(t) and the 

difference is that in the traditional definition, the linear transform kernel is represented by 

   ,
P t   , whereas in the extended definition, the linear transform kernel is represented by 

   ,
Q t  . 

The requirement of the traditional linear transform (Eq. (6-5) and Eq. (6-6)) is that the 

bases generated by P(τ,ν)(t)  must be strictly pairwise orthogonal over both time t and 

frequency v. By contrast, the extended linear transform does not require the bases to be 

orthogonal, instead, the requirement (Eq. (6-21) and Eq. (6-22)) becomes that the vector 

generated by    , m
P t   must be orthogonal with the vector generated by    , n

Q t   and the 

vector generated by    , mP t   must be orthogonal with the vector generated by    , nQ t  , 

where m≠n. The requirement of the traditional linear transform can be seen as the 
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combination of the requirement of the extended linear transform with the additional 

requirement Q(τ,ν)(t)=P(τ,ν)(t). This shows that the requirement of the extended linear 

transform is less strict than that of the traditional one. The extended linear transform no 

longer requires orthogonal bases and this may make the bases that are synchronous with 

shaft rotational frequency possible. The extended linear transform also has the potential to 

provide more suitable time-frequency resolution as the window length can be time-varying. 

6.2.3 Derivation of the VSLCT 

Based on the analysis in the subsection 6.2.2, in order to have a clear TFR without 

smear effect, the frequencies of the linear transform bases must match the frequencies of 

the vibration signal components. The linear transform with such bases is proposed in this 

subsection. The employed bases are linear chirplets which are synchronous with shaft 

rotational velocity. For this reason, the proposed transform is named velocity synchronous 

linear chirplet transform (VSLCT). The design of the VSLCT is detailed below. 

For the vibration signal collected from rotational machinery under non-stationary 

conditions, most of the signal frequency components are proportional to shaft rotational 

frequency. In order to resolve the smear problem, the frequencies of the VSLCT bases must 

match the frequencies of the vibration signal components, therefore they must be 

proportional to shaft rotational frequency, expressed by 

       shaftVSLCT-basis , ,
f t k f t    , (6-25) 

where fVSLCT-basis(t)>0 represents the frequencies of the VSLCT bases, fshaft(t)>0 is the shaft 

rotational frequency  and k(τ,ν)>0 is the proportional ratio. One requirement of the linear 

transform is that the frequencies of the bases must be equal to ν at time t=τ (Eq. (6-8)), 

therefore 

       shaftVSLCT-basis , ,
f k f       . (6-26) 

The frequencies of the bases are the multiples of the shaft rotational frequency. In a 

short time window, the shaft rotational frequency can be assumed linear, and thus the bases 

can be simplified as a set of linear chirplets. The linear approximation of shaft rotational 

frequency within the short time window around time τ can be obtained using the Taylor 

series method, represented by 
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      '
shaft shaft shaftf t f f t     , (6-27) 

where '
shaftf  is the derivative of the shaft rotational frequency and expressed as 

   shaft'
shaft

d

d

f t
f t

t
 . (6-28) 

However, the farther away from t=τ, the worse the approximation will be. Thus the 

window length cannot be very long. A loose limit of the window length is that the 

approximated frequency inside the window must be greater than zero, as negative 

frequency does not exist in the real signal collected. Since the approximated shaft rotational 

frequency is linear, if it is positive at both ends of the window, it is positive in the whole 

window interval, expressed by 

       

     

'
shaft shaft shaft

'
shaft shaft

2 2

0
2

w w
f f f

w
f f

 
    


 

   
       

   

  

. (6-29) 

By analysing the above inequality under two conditions that  '
shaft 0f    and  

 '
shaft 0f     respectively, the above inequality can be further simplified as 

   
 

shaft

'
shaft

2 f
w

f





 . (6-30) 

The above inequality is named the parameter limit of the VSLCT. 

Solving the Eqs. (6-25 - 6-27), the frequencies of the bases are given by 

       
 

 
 

 
 

' ' '
shaft shaft shaft

VSLCT-basis ,

shaft shaft shaft

1
f f f

f t t t
f f f

 

  
    

  
 

       
 

. 

 

(6-31)

 

Using the same example signal for illustration, the frequencies of the bases generated 

by Eq. (6-31) are plotted in Fig. 6-4(A) with the frequencies of the signal components. It 

can be seen that the frequencies of the bases around the signal components approximately 

match the frequency trajectories of the signal components in the whole time span. From 

Eq. (6-31), it can be found that    '
shaft shaft/f f   is a function of the shaft rotational 
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frequency fshaft(t)  and this function controls the inclined slopes of the frequencies of the 

bases. In real applications, the shaft rotational frequency fshaft(t) may not be easily 

accessible and in such conditions, the shaft rotational frequency fshaft(t) has to be 

approximated from the vibration signal. A method determining the parameters of the 

VSLCT from the vibration signal is proposed in the next section and this method requires 

the to-be-determined parameter bounded. However, the shaft rotational frequency fshaft(t)  

is not bounded, and hence it cannot be determined using this method. It is therefore 

recommended to transfer the function    '
shaft shaft/f f   to a function of a bounded 

parameter. Assuming the TFR is displayed as a square image and the range of time and 

frequency are [0, T] and [0, V] respectively, the incline angle of the basis at frequency ν= 

V/2 is selected as the bounded parameter. It is named normalized angle, represented by α(τ) 

and its range is (-π/2, π/2). The normalized angles at some fixed time points are shown in 

Fig. 6-4(B) and marked by the arrows. The relationship between    '
shaft shaft/f f    and the 

normalized angle α(τ) is represented by  

 
 

 '
shaft

shaft

2tan

T

f

f

  


 . (6-32) 

The normalized angle calculated from the shaft rotational frequency of the example 

signal using the above function is plotted in Fig. 6-4(C). It should be noted that the 

normalized angle can be positive or negative. As the incline angles of the frequencies of 

the bases are proportional to each other, they can be expressed as the multiples of the 

normalized angle.  

The VSLCT basis frequency function (Eq. (6-31)) and the parameter limit (Eq. (6-30)) 

are then transferred to normalized-angle forms, expressed by 

   
   VSLCT-basis ,

2 tan
1

T
f t t 

 
 
 

   
 

 (6-33) 

and 

   
T

tan
w 

 
 . (6-34) 
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The representation of the bases PVSLCT(t) is then calculated using Eq. (6-7), expressed 

by 

        
         

VSLCT , VSLCT-basis ,

2

,

exp 2π d

tan
exp 2π exp

T

P t j f t t

j t t j r t

   

  

 
  






  
        


, (6-35) 

where 

    
   2

,

tan
2π

T
r t t t  

 


 
   

 
. (6-36) 

The set of bases formed by PVSLCT(τ,ν)(t) are not always orthogonal and this can be 

proved by a special counter example. Assuming τ=1,ν1=1, ν2=2 and fshaft(t)=t, the function 

of the orthogonality requirement over time (Eq. (6-6)) is given as 

   

  

2 2

2

1 1
exp 2π2 0 exp 2π1 0 d

1 1

exp 2π d

t

t

t

t

j t t j t t t

j t t t









                
      

 




 (6-37) 

It can be seen the above function becomes an integral of a complex linear chirp signal 

over time and such integral gives a non-null result (Borghesani et al., 2014). This means 

the bases are not always orthogonal. Thanks to the extension of the linear transform, the 

set of bases formed by PVSLCT(τ,ν)(t) are not required to be orthogonal. Instead, the bases 

representation PVSLCT(τ,ν)(t) must meet the substitute requirements (Eq. (6-21) and Eq. 

(6-22)), represented by 

         VSLCT , VSLCT ,
d

n m

t

n m
t

P t Q t t      



  , (6-38) 

and 

         VSLCT , VSLCT ,
dn m n mP t Q t t t t



   





  . (6-39) 

The solution of the above two functions is  

              '

VSLCT , , ,
expQ t r t j r t        , (6-40) 
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where 

      
     '

shaft ,

d tan
2π 1

d T

r t
f r t t
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 
 

 
    

 
. (6-41) 

The proof that Eq. (6-40) is the solution of Eq. (6-38) is given by 

       
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, (6-42) 

where u=r(τ,α(τ))(t). The proof that Eq. (6-40) is the solution of Eq. (6-39) is given by 
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The above proofs use two properties of the Dirac delta function (Dirac, 1958). They 

are the scaling of the Dirac delta function expressed by 

   t
at

a


   (6-44) 

and the composition of the Dirac delta function with a function expressed by 

    
 

0

0'

t t
g t

g t





 , (6-45) 
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where g is a continuously differentiable function, g’ is the derivative of g and t0 is the root 

of g(t)=0.  

As the VSLCT linear transform kernel    VSLCT ,
Q t   is solved, the VSLCT can be 

obtained and its expression is 

                 
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,  

 (6-46) 

where the window length w(τ) and normalized angle α(τ) must meet the parameter limit, 

which is rewritten below 

   
T

tan
w 

 
 . (6-47) 

The TFR can then be obtained by plotting the absolute value of the VSLCT result in 

time-frequency plane, represented by 

             TF , VSLCT ,
, ,

w w
R X         . (6-48) 

The VSLCT is also tested on the example signal and the resulted TFR is shown in Fig. 

6-4(D). Compared with the TFR generated by the STFT (Fig. 6-2(B)) and the chirplet 

transform (Fig. 6-3 (B)), the proposed VSLCT performs much better in energy 

concentration and has avoided the smear effect. Some ‘lobes’ can be seen in the TFR beside 

the signal components around 1 s and the ‘lobes’ can be alleviated by using a suitable time-

varying window length and its specification is detailed in the next section. 
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Fig. 6-4. Illustration of the VSLCT using the example signal: (A) VSLCT bases and (B) 
normalized angles of the bases, (C) normalized angle calculated and (D) TFR obtained by the 

VSLCT with window length 1.5 s 

 Dynamic determination of the two parameters 

To effectively implement the VSLCT, two time-varying parameters, i.e., window 

length and normalized angle have to be determined properly. In this section, the method of 

determining these two parameters from vibration signal is proposed. 

6.3.1 Dynamic determination of window length  

According to the Heisenberg uncertainty principle, the time resolution and frequency 

resolution of the linear transform are limited and controlled by the window length (Gabor, 

1947). A longer window length leads to better time resolution and worse frequency 

resolution, and a shorter window length leads to worse time resolution and better frequency 

resolution. In other words, the TFR value at a time-frequency point (τ, ν) represents the 

average energy magnitude of a time-frequency region around (τ, ν) instead of the true 

energy magnitude of the signal at (τ, ν).  Such regions can be seen as tiles in the time-

frequency plane and the TFR can be roughly represented as a tessellation formed by the 
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non-overlapping tiles (Baraniuk and Jones, 1992a, b, 1993b; Mann and Haykin, 1995). In 

the following, we firstly show the effect of window length using two TFRs with two 

different fixed window lengths and then illustrate how to determine the best time-varying 

window length in the condition that the shaft rotational frequency is known. 

The example signal is used here for illustrations. A 3 s window and a 1 s window are 

used to show the effects of window length. The TFR tilling of the VSLCT with window 

length 3 s is shown in Fig. 6-5(A). The energies of the signal components fall to the tiles 

that the frequency trajectories of the signal components cover and such tiles are marked 

grey. The less grey area means the better energy concentration. In Fig. 6-5(A), there is 

obvious scattering energy in 0-3 s. This is because the VSLCT assumes the frequencies of 

the signal components are linear inside the window whereas in this case the window length 

is too long and the frequencies of the signal components in 0-3 s are strongly non-linear. 

In 3-6 s, two grey areas can be seen and each area represents one of the signal components. 

The two grey areas are separated by a blank area and thus the two signal components can 

be easily detected. This shows the energy concentration is relatively better in 3-6 s. The 

corresponding TFR generated with 3 s window is displayed in Fig. 6-5 (B) and it confirms 

our analysis. The scattering energy in 0-3 s is reflected by the ‘lobes’ beside the two signal 

frequency components and the signal components in 3-6 s are energy-concentrated.   

A shorter 1 s window is then used for comparison and the corresponding TFR tiling is 

shown in Fig. 6-5 (C).  Compared with the tiles of the 3 s window case, the tiles of the 1 s 

window case are longer over frequency direction and narrower over time direction, this is 

because a shorter window leads to worse frequency resolution and better time resolution. 

It can be seen that the energy concentration is better in 0-3 s, this is because the frequencies 

of the signal components limited by the shorter window in 0-3 s are approximately linear, 

which meets the linear assumption of the VSLCT. However, the energy concentration is 

worse in 3-6 s and this is due to the worse frequency resolution caused by the shorter 

window length. In 3-6 s, the areas of the two components mix with each other and it is 

difficult to detect the two individual components. The corresponding TFR obtained using 

1 s window is shown in Fig. 6-5 (D) to verify the analysis. It can be seen that in 0-3 s, the 

unwanted lobes almost disappear and the two components are energy-concentrated, 
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however, in 3-6 s, the two components are energy-scattering and it is difficult to separate 

and detect them.  

 

Fig. 6-5. The window length effect on the VSLCT: (A) tiling using 3 s window, (B)TFR using 3 s 
window, (C) tiling using 1 s window and (D)TFR uisng 1 s window 

The above analysis shows a fixed window length may not provide good concentration 

for the whole TFR, and thus the VSLCT requires time-varying window length. 

In order to determine the best window length, it is important to know how TFR varies 

continuously with window length. By continuously varying the window length, applying 

the VSLCT and calculating the absolute value, we obtain a window-length-varying TFR 

which can be named time-frequency-window-length representation (TFWR), represented 
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         TFW VSLCT ,
, , ,

w
R w X       . (6-49) 

The TFWR can be illustrated as the TFRs with a series of window lengths in the time-

frequency-window-length coordinate system as shown Fig. 6-6(A).  From another 

perspective, it can also be illustrated as frequency-window-length representations (FWRs) 

at a series of time points as displayed in Fig. 6-6(B). As the FWR can be seen as a 

combination of spectrums with a series of window lengths, the best window length at a 

time point can be obtained by checking the energy-concentration degree of the 

corresponding FWR. 

The FWR at time point 1.5 s is extracted from the FWRs and shown in Fig. 6-7(A). 

The null area in the figure is because the window length in this area do not satisfy the 

parameter limit (Eq.(6-47)).  Null areas will also occur in other figures in this section. From 

Fig. 6-7(A), it can be seen that the energy concentration is best with window length 1.1 s. 

The spectrums have low frequency resolution with window lengths shorter than 1.1 s and 

we cannot even separate and detect the two signal components. As window length increases 

from 1.1 s, the ‘lobe’ interferences become stronger and energy concentration deteriorates. 

Based on the above analysis, an intermediate window length about 1.1 s is the best for the 

spectrum at time point 1.5 s.  

 

Fig. 6-6. TFWR shown as: (A)TFRs with a series of window lengths and (B) FWRs at a series of 
time points 

However, manually examining the energy-concentration degree of every FWR is too 

cumbersome. In order to determine the window length automatically, an index reflecting 

the degree of energy concentration of spectrum is required and this index is named 

(B) (A) 
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concentration index. As the VSLCT is realized using digital signal processing techniques, 

the spectrum is composed of a set of elements with each element representing the amplitude 

of the corresponding frequency component. The spectrum elements are all above zero and 

the elements that are far greater than zero can be considered as extreme values. The 

spectrum having more elements with extreme values means the spectrum is energy-

scattering, and thus it should lead to a concentration index with lower value. The spectrum 

having fewer elements with extreme values means that the spectrum is energy-concentrated, 

thus should lead to a higher concentration index value.  

The energy concentration degree can be reflected by the sharpness of the spectrum. 

Many statistical index for measuring the sharpness of data have been proposed and kurtosis 

is one of the most widely used. The kurtosis is defined as the fourth central moment (central 

moment denotes the moment about mean) divided by the square of the second central 

moment. It outputs higher value for the set with fewer extreme values and lower value for 

the set with more extreme values. This is consistent with the objective of the concentration 

index. However, the definitions of extreme values in the concentration index and the 

kurtosis are different. The kurtosis considers the elements that are far greater or far smaller 

than the mean as the elements having extreme values and this is reflected by that the 

kurtosis is a function of the central moment. For this reason the kurtosis cannot be 

employed directly as concentration index and it should be changed. As their difference is 

that they measure the extreme degree of the elements with respective to mean and zero 

respectively, the concentration index can be defined as a raw-moment-versioned (raw 

moment denotes moment about zero) kurtosis with respective to frequency v. Based on the 

above analysis, the concentration index of an arbitrary spectrum R(v) is defined as  

     
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, (6-50) 

where E() denotes the average operation and V is the right frequency bound of the TFR. 

The concentration index based approach is tested on the FWR of the example signal 

at time instant of 1.5 s (Fig. 6-7(A)) and the result is plotted in Fig. 6-7(B). The 

concentration index reaches maximum of 10.32 when the window length is 1.1 s, which is 
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consistent with the analysis. Thus the argument of maximum, 1.1 s, is taken as the optimal 

window length of the spectrum at time instant 1.5 s. By successively determining the best 

fixed window lengths for each time point using the above concentration-index-based 

method, a series of optimal time-varying window lengths can be obtained for the entire 

time period over which the data are collected. This is done by obtaining the argument of 

maximum of the concentration index of the TFWR as the optimal time-varying window 

length for each time point τ, expressed by 

        TFW
ˆ argmax , ,

w

w C R w    , (6-51) 

where  ŵ   denotes the optimal time-varying window length for time point τ. 

 

Fig. 6-7. Illustration of determining window length at a time point: (A) FWR at 1.5 s and (B) the 
corresponding concentration index  

The dynamic determination of optimal window length is illustrated using the example 

signal. The concentration index of its TFWR is calculated and shown in Fig.6-8(A). The 

argument of maximum is extracted from the concentration index as the optimal window 

length as plotted in Fig.6-8(B) for each time point. It can be seen that in time period 0-3 s 

the calculated optimal window lengths are short, between 1 s and 2 s, and in time period of 

3-6 s the obtained optimal window lengths become longer, ranging between 1.5 s and 5 s. 

This is consistent with the previous analysis in this subsection. The effect of the obtained 

time-varying optimal window lengths can be roughly illustrated using the TFR tiling shown 

in Fig.6-8(C). It can be seen in 0-3 s, a shorter window length fulfils the linear requirement 

of the VSLCT thus there is less leakage in 0-3 s. The signal components are roughly linear 
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and close to each other in 3-6 s, a longer window about 3 s provides good frequency 

resolution, therefore the two components can be separated and easily detected. The VSLCT 

is then applied with the obtained time-varying window lengths and the resulted TFR is 

shown in Fig.6-8(D). The time-varying time-frequency resolution is reflected by the fact 

that the components are thicker in 0-3 s and thinner in 3-6 s. Compared with the TFRs 

obtained by the VSLCT using fixed window length (Fig. 6-4(D), Fig. 6-5(B) and Fig. 

6-5(D)), the TFR using time-varying window length has better energy concentration, the 

smear effect in 0-3 s is greatly avoided and the adjacent components are well separated in 

time period of 3-6 s. 

 

Fig.6-8. Illustration of dynamic determination of optimal time windows: (A)concentration index 
of time-frequency-window-length representation, (B) optimal window lengths determined based 
on the maximum concentration index, (C)Time-frequency tiling corresponding to the calculated 

optimal window lengths, and (D)TFR obtained using the optimized window lengths 
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6.3.2 Dynamic determination of normalized angle  

The normalized angle can be calculated using the shaft rotational frequency collected 

from the tachometer. In the condition that the tachometer is not available, the normalized 

angle has to be approximated from the vibration signal and this is detailed in this subsection. 

Similar to the last subsection, we firstly show the effect of normalized angle using two 

TFRs with two different fixed normalized angles and then illustrate how to determine the 

time-varying normalized angle under the condition that the window length is known. 

The example signal is employed again for illustration and the window length for each 

time point is set at the value determined in the last subsection. The normalized angle is 

firstly set as 0.6 rad and the corresponding tiling is shown in Fig. 6-9(A). The signal 

components can be separated by a blank zone in the time period of 0-1 s. However, in the 

time period of 1-6 s, the two frequency components are segmented by many tiles and each 

tile extracts part of the energy, which means the energies of the components leak to a wide 

frequency region. The corresponding TFR is shown Fig. 6-9(B) and it can be seen that the 

signal components are energy-concentrated in the first 1 s and there are obvious smear 

effects in 1-6 s, which supports the analysis of the tiling. The reason is that the tested 

normalized angle 0.6 rad is close to the true normalized angles only in the first 1 s but far 

from the true normalized angles from 1 s to 6 s (The true normalized angle can be found in 

Fig. 6-4(C)).   

The normalized angle is then set as 0 rad for comparison and the corresponding tiling 

is shown in Fig. 6-9(C). It can be seen that the signal components are separated by a blank 

zone in 1-2 s and in 3-6 s and there are obvious energy leakages in the rest of the time 

periods. Leakage here means that the revealed signal energy is scattering in a wide region. 

The reason is that the pre-set inclined angle 0 rad is close to the true normalized angles in 

1-2 s and in 3-6 s but it deviates from the true normalized angles in the rest of time periods. 

The corresponding TFR, shown in Fig. 6-9(D), confirms the above analysis and it can be 

seen that the two signal components have relatively good energy concentration in 1-2 s and 

3-6 s. 

Based on the above analysis, a normalized angle that is close to the true normalized 

angle leads to an energy-concentration spectrum, whereas a normalized angle that is far 

from the true normalized angle leads to an energy-scattering spectrum. This characteristic 
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is similar to window length, thus the normalized angle can also be determined using the 

concentration-index-based method proposed in the last subsection.  

Similar to the case of the window length determination, here we introduce the time-

frequency-normalized-angle representation (TFNR) and it is obtained by continuously 

varying the normalized angle, applying the VSLCT and calculating the absolute value. The 

TFNR is represented by 

         TFN VSLCT ,
, , ,

w w
R X        (6-52) 

 

Fig. 6-9. Illustrations of normalized angle effect: (A) tiliing with normalized angle 0.6 rad, (B) 
TFR with normalized angle 0.6 rad, (C) tiliing with normalized angle 0 rad, (D) TFR with 

normalized angle 0 rad 
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The TFNR can be seen as a normalized-angle-varying TFR and illustrated as TFRs 

with a series of window lengths as shown in Fig.6-10(A), or from another perspective, 

illustrated as frequency-normalized-angle representations (FNRs) at a series of time points 

as shown in Fig.6-10(B). The FNR represents the spectrums at a time point with a series 

of normalized angles, thus the normalized angle at a time point can be approximated by 

checking the energy-concentration degree of the corresponding FNR. 

 

Fig.6-10. TFNR shown as: (A) TFRs with a series of normalized angles and (B) FNRs at a series 
of time points 

The FNR at time point 0.5 s is extracted and shown in Fig. 6-11(A). It can be seen that 

the spectrum of the FNR with normalized angle around 1.1 rad leads to the highest energy 

concentration index, 12.69. As the normalized angle deviates, either increases or decreases 

from 1.1 rad, the energy concentration becomes worse. The concentration index of the 

FWR at 0.5 s, as shown in Fig. 6-11(B), reaches maximum at 1.1 rad and it declines as the 

normalized angle decreases or increases from 1.1 rad. The argument of maximum of the 

FRW at 0.5 s, 1.1 rad, is close to the true normalized angle at 0.5 s (shown in Fig. 6-4(C)). 

This shows that the concentration index can reveal the degree of energy concentration of a 

spectrum for the approximation of normalized angle. Extending this method to the whole 

time span, the best time-varying window length can be obtained. This is achieved by 

obtaining the argument of the maximum of the concentration index of the TFNR as the 

estimated normalized angle, expressed by 

        TFN
ˆ argmax , ,

w
C R 


      (6-53) 
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where  ̂   denotes the approximated time-varying normalized angle. 

We illustrate the procedure of dynamic determination of the time-varying normalized 

angle using the example signal again. The concentration index of the TFWR is determined 

and shown in Fig. 6-12(A). The argument of maximum is extracted and determined as the 

time-varying normalized angle for every time point as plotted in Fig. 6-12(B). The true 

normalized angle is also plotted for comparison and it can be seen the calculated 

normalized angles are close to the real ones. This validates the effectiveness of the energy 

concentration-index-guided method. 

 

Fig. 6-11. Illustration of determining normalized angle at 1 s: (A) Frequency-normalized-angle 
representation, and (B) the concentration index  

 

Fig. 6-12. Illustration of dynamic determination of normalized angles: (A) concentration index of 
the TFNR, and (B) normalized angle estimated from the concentration index 
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6.3.3 Simultaneous determination of window length and normalized angle 

The VSLCT requires two time-varying parameters, the window length w(τ) and the 

normalized angle α(τ). We have shown how to determine either of them assuming the other 

one is known already. Under certain circumstances, neither of the two may be available 

and both must be determined from the vibration signal simultaneously. As the TFR with 

best concentration is obtained by applying the VSLCT with the best window length and 

the right normalized angle, these two parameters can also be determined using the 

concentration-index-based method proposed. That is, firstly determine the time-frequency-

window-length-normalized-angle representation (TFWNR) via the VSLCT, then evaluate 

its concentration index and finally simultaneously obtain the corresponding arguments of 

maximum of the concentration index as the optimal values of the two parameters.  

This method is detailed step by step as follows: 

The TFWNR is firstly generated via the VSLCT, represented by  

     TFWN VSLCT ,
, , , ,

w
R w X       (6-54) 

The corresponding concentration index of the TFWNR is calculated, expressed by 

     
  

 

 

V
4

4
TFWN0TFWN

TFWN 22 2
V

2TFWN
TFWN0

1
, , , d, , , V, , ,

, , , 1
, , , d

V

R wE R w
K R w

E R w
R w

     
  

  
   

 
 
 
 




 (6-55) 

The best window length and normalized angle for each time point are simultaneously 

obtained by evaluating the corresponding arguments of maximum of the concentration 

index, expressed by 

     TFWN
ˆ argmax , , ,

w

w C R w     (6-56) 

and 

     TFWN
ˆ argmax , , ,C R w


      (6-57) 

Finally the TFR with best concentration is obtained by applying the VSLCT with the 

determined window length and normalized angle, expressed by 
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             ˆ ˆˆ ˆTF , VSLCT ,
, ,

w w
R X          (6-58) 

This concentration-index-guided approach is tested on the example signal and the 

determined parameters are plotted in Fig. 6-13. The determined window length is shorter 

in 0-3 s and longer in 3-6 s as shown in Fig. 6-13(a), which is consistent with the previous 

analysis of window length. The determined normalized angle is close to the real normalized 

angle as shown in Fig. 6-13(B). The robustness of this concentration-index-guided 

approach to noise is also tested here. The absolute errors of the determined parameters, 

expressed as percentages of the full length of the range of the corresponding parameter (i.e., 

6 s for window length and π for normalized angle), under different SNRs are plotted in Fig. 

6-14. It can be seen this approach has good accuracy (error < 3%) for SNR ≥ 0 dB and fair 

accuracy (error < 10%) for SNR between -3 dB and 0 dB, showing that the proposed 

approach is robust to noise. 

 

Fig. 6-13. Determined optimal parameters: (a) window length and (b) normalized angle 

 

Fig. 6-14. Error of the determined parameters under different SNR levels 

 Simulation evaluations 
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evaluated using one mono-component frequency-modulated signal and one general multi-

component non-stationary vibration signal.  

6.4.1 Mono-component signal 

A synthetic mono-component frequency-modulated signal is introduced in this 

subsection, represented as 

    mono 10
( ) sin 2π d

t

x t f n t    (6-59) 

where n(t) is Gaussian white noise and the signal frequency f1() is expressed as 

  3 20.675 0.975 +11.5 +15f t t t t   . (6-60) 

The signal to noise ratio (SNR) is set as 0 dB. The signal length is 4 s and the sampling 

rate is 100 Hz. The signal waveform and its frequency trajectory are shown in Fig. 6-15(a) 

and (b), respectively. The proposed VSLCT method is then applied to reveal the signal 

time-frequency structure and the resulted TFR is shown in Fig. 6-16 (a). Compared with 

the true signal trajectory, the VSLCT clearly reveals the signal time-frequency structure. 

 
Fig. 6-15. Synthetic mono-component signal: (a) waveform and (b) frequency trajectory 

To evaluate the performance of the proposed VSLCT method, a comparison study is 

carried out. Some traditional methods and advanced methods are employed. They are the 

the STFT (Allen, 1977), ZAM (Zhao et al., 1990), PCT (Peng et al., 2011), GLCT (Yu and 

Zhou, 2016), SET (Yu et al., 2017), RM (Auger and Flandrin, 1995), and SST (Daubechies 

et al., 2011) . Their results are shown in Fig. 6-16(b-h). Some of the compared methods 

require the user to provide window lengths and they are all set as 0.7 s. The STFT suffers 

from smear effect and only a coarse time frequency trend can be revealed as shown in Fig. 

6-16(b). As a representation of the advanced bilinear distribution, the ZAM is employed 

and the result is presented in Fig. 6-16(C). It can be seen that the ZAM cannot reveal the 
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signal frequency in the first second. The PCT and GLCT are employed as representations 

of advanced linear transform. Their results are shown in Fig. 6-16(d) and (e) respectively. 

The PCT has less smear effect than the STFT, however, its energy concentration is still 

worse than the VSLCT. As shown in Fig. 6-16(e), the GLCT reveals the signal frequency 

trajectory but the TFR has high background noise and it has bad energy concentration in 

the first second. The SET, RM and SST are utilized as representations of advanced TFR-

data-remapping method and their results are shown in Fig. 6-16(f-h) respectively. It can be 

seen these three methods successfully detect the signal component but the revealed 

frequency trajectories either break or are not clear in the first second. 

To quantitatively evaluate the noise robustness of the VSLCT on the mono-component 

signal, the frequency estimation error is employed as an indicator. The frequency is firstly 

estimated as the arguments of maxima of the corresponding TFR. The estimation errors are 

then calculated as a percentage of the true signal frequency and it is plotted in Fig. 6-17. It 

can be seen as the SNR rises, the error generally shows a decreasing trend. For most 

applications, if the error of estimation is greater than 10%, the estimated frequency is too 

inaccurate and it can be considered that the frequency is not detected. Therefore, we 

consider 10% as the error threshold for frequency detection. From Fig. 6-17, it can be seen 

that for the signal with SNR ≤ -5 dB, the errors of all the methods are above 10%, thus it 

is considered that no method can detect the frequency of the signal with SNR ≤ -5 dB. For 

this reason, it is meaningless to discuss which method performs relatively better below the 

SNR -5 dB. For SNR ≥ -5 dB, the errors of the VSLCT are lower than 10%. For the signals 

with SNR between -5 dB and 3 dB, the VSLCT has the best performance among all the 

methods. For SNR ≥ 3 dB, the error of the VSLCT is below 1% and the VSLCT 

performance is either better than the other methods or comparable to them. The above 

analysis indicates that the VSLCT is generally robust to noise compared with the other 

methods in analyzing the mono-component signal. 
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Fig. 6-16.  TFRs of the mono-component signal using: (a) VSLCT, (b) STFT, (c) ZAM, (d) PCT, 

(e) GLCT, (f) SET, (g) RM and (h) SST 
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 Fig. 6-17. Frequency estimation errors of the mono-component signals 

The efficiency of a time-frequency method is important for online applications, thus 

the efficiency of the VSLCT is evaluated. The configuration of the computer used is given 

as follows: Intel® i7-3615QM 2.3 GHz CPU, 8 GB DDR3 RAM, 256 GB flash storage. 

The software used is MATLAB® R2014a. The computational time in processing this 

mono-component synthetic signal is listed in Table 6-1. It can be seen that the VSLCT is 

faster than the PCT, GLCT and RM, but slower than other methods. The STFT is the fastest 

method and the computational time of the VSLCT is about four times of that of the STFT 

method. Nevertheless, the absolute time is not long (only 0.651 s) and this should be 

acceptable for most applications. 

Table 6-1 Computational time 

Method VSLCT STFT ZAM PCT 

Time (s) 0.651 0.153 0.577 0.764 

Method GLCT SET RM SST 

Time (s) 0.799 0.163 0.974 0.171 

6.4.2 Multi-component vibration signal 

In this subsection, we test the proposed VSLCT on the synthetic multi-component 

vibration signal. This signal employs the shaft rotational frequency of the example signal 

and contains three frequency components, which are the shaft rotational frequency, its 1.8 

multiples and 2.6 multiples. This synthetic multi-component vibration signal is represented 

by  

      
3

3 shaft0
1

sin 2π d
t

n

n

x t k f n t 


    , (6-61) 
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where k1=1, k2=1.8 and k3=2.6. The SNR is 1 dB and the sampling rate is 100 Hz.The signal 

waveform is potted in Fig. 6-18(a) and the ideal frequency trajectories of the signal 

components are shown in Fig. 6-18(b). 

 
Fig. 6-18. Synthetic multi-component signal: (a) waveform and (b) frequency trajectories 

The VSLCT result is shown in Fig. 6-19(a). By comparing with the ideal frequency 

trajectories of the signal components, it can be found the VSLCT precisely reveal the 

frequencies of the three signal components. The VSLCT is then compared with the same 

methods that are employed in the last subsection and the results are shown in Fig. 6-19(b-

h). The window lengths are set as 1 s for the methods requiring windows. The STFT, shown 

in Fig. 6-19 (b), only reveals a smeared signal frequency trend. The ZAM, as presented in 

Fig. 6-19(c), reveals the signal components in the last three seconds. However, it cannot 

uncover the signal components in the first three seconds due to cross-term interference. 

The PCT result is shown in Fig. 6-19(d) and it can be seen that the resulted TFR still suffers 

from smear effect. The TFR obtained by the GLCT, as shown in Fig. 6-19(e), clearly 

uncovers the signal frequencies, but the signal components are not well separated in 3-6 s. 

The SET roughly reveals the signal frequency trajectory trend as shown in Fig. 6-19(f), 

however, the signal frequency trajectories are broken. The RM and the SST, as shown in 

Fig. 6-19(g) and (h) respectively, only reveal a blur frequency trend. 

 

0 1 2 3 4 5 6
-6

-4

-2

0

2

4

6

Time(s)

A
m

pl
it

ud
e

0 1 2 3 4 5 6
0

10

20

30

40

50

Time(s)

F
re

qu
en

cy
(H

z)

(a) (b)



138 

 

Fig. 6-19. TFRs of the multi-component signal using: (a) VSLCT, (b) STFT, (c) ZAM, (d) PCT, 
(e) GLCT, (f) SET, (g) RM and (h) SST 

Similar to the last subsection, we quantitatively evaluate the noise robustness of the 

VSLCT in analyzing the multi-component signal using the frequency estimation error as 
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error is defined as the average of the frequency estimation errors of the three components. 
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maxima of the corresponding TFR restricted in a local region around the corresponding 

frequency component. The average estimation error is represented by 

     
3 6

(est )0
1

1 1
/ d

3 6
i i i

i

e f f f



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




   . (6-62) 

where  (est)if   denotes the estimated frequency of the ith component, expressed by   

    
    
    
    

(est )

shaft shaft

shaft shaft

shaft shaft

argmax , ,

for 1, 0.6 ,1.4 ,

for 2, 1.4 , 2.2 ,

for 3, 2.2 ,3 .

i
v

f X

i v f f

i v f f

i v f f

  

 

 

 



 

 

 

 (6-63) 

Using this method, the average frequency estimation errors are plotted in Fig. 6-20. 

Similar to the robustness analysis on the mono-component signal, the estimation error 10% 

is again used as the threshold for frequency detection. Below the SNR -8 dB, the estimation 

errors of all the methods are greater than that threshold and therefore we neglect the 

discussion about the performances of the tested methods below that SNR. For SNR ≥ -8 

dB, the error of the VSLCT is lower than all the compared methods, showing that the 

VSLCT is more robust to noise than the other methods in analyzing the multi-components 

signals. 

 

Fig. 6-20. Frequency estimation errors of the multi-component signals 
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 Experimental tests 

In this section, the effectiveness of the VSLCT is demonstrated in diagnosing planetary 

gearbox fault using a wind turbine drivetrain test rig.  

6.5.1 Experimental setup 

The wind turbine drivetrain test rig includes an AC drive motor for powering the 

gearboxes, a two-stage fixed-shaft gearbox, a two-stage planetary gearbox and a magnetic 

brake for loading as shown in Fig. 4-7. The configuration parameters of the fixed-shaft 

gearbox and planetary gearbox are listed in Table 6-2 and Table 6-3 respectively. 

To simulate gear faults, two faulty sun gears are used: one with wear damage on every 

tooth to be mounted in stage 1 of the planetary gearbox, and the other with a chipped tooth 

to be installed in stage 2 of the planetary gearbox as shown in Fig. 3-14(A) and (B) 

respectively. Three tests are carried out: healthy sun gears (normal sun gears are used for 

the both stages of the planetary gearbox), sun gear wear (stage 1 sun gear is worn and stage 

2 sun gear is healthy), sun gear chipping (stage 2 sun gear has a chipped tooth but stage 1 

sun gear is normal).  

The experimental data are collected from accelerometers mounted on top of the casings 

of the planetary gearbox’s first stage and second stage at a sampling frequency of 20 kHz. 

To validate the proposed method in diagnosing wind turbine planetary gearbox fault from 

non-stationary signals, the vibration signals are collected during a speed-varying process. 

The motor rotational frequency increases approximately from 40 Hz to 60 Hz and then 

drops to 40 Hz. Accordingly, the rotating speed of the blades increases from 0.324 Hz to 

0.486 Hz and then drops to 0.324 Hz. This should cover much of rotational speed range of 

wind turbine blades. A load of 13.2 Nm is generated by a magnetic brake and is applied to 

the output shaft of the planetary gearbox’s second stage. The rotational speed is measured 

by a tachometer mounted on the shaft connected to the motor. The characteristic 

frequencies of the planetary gearbox are calculated according to the configuration of both 

the fixed shaft and planetary gearboxes using the formulas given in Appendix B (Feng and 

Zuo, 2012) as listed in Table 6-4. As the running speed is time-varying, the characteristic 

frequencies are represented as the multiples of the instantaneous rotational frequency of 

the drive motor fd. 



141 

Table 6-2 Configuration parameters of the fixed-shaft gearbox 

Gear Drive Driven 

Number of gear teeth 
Stage 1 32 80 

Stage 2 40 72 

Table 6-3 Configuration parameters of the planetary gearbox 

Gear Ring gear Planet gear Sun gear 

Number of gear teeth 
Stage 1 100 40 (4) 20 

Stage 2 100 36 (4) 28 

Note: the number of planet gears is indicated in the parenthesis 

Table 6-4 Characteristic frequency of the planetary gearbox 

Frequency Stage 1 Stage 2 

Sun gear fault sun1 d(20 / 27)f f  sun2 d(175 /1512)f f  

Planet gear fault planet1 d(5 / 54)f f  planet2 d(175 / 7776)f f  

Ring gear fault ring1 d(4 / 27)f f  ring2 d(7 / 216)f f  

Carrier rotating carrier1 d(1/ 27)f f  carrier2 d(7 / 864)f f  

Sun gear rotating sunrot1 d(2 / 9)f f  sunrot2 d(1/ 27)f f  

Meshing mesh1 d(100 / 27)f f  mesh2 d(175 / 216)f f  

6.5.2 Healthy planetary gearbox  

Fig. 6-21(A-C) show the normal planetary gearbox vibration signal waveform, its 

frequency spectrum and the shaft speed profile. In the speed profile, it can be seen that the 

speed of the drive motor increases from 40 Hz to 60 Hz and then drops to 40 Hz. According 

to the relationships of the meshing frequencies between the two stages of the planetary 

gearbox and motor rotational frequency (i.e., mesh1 d(100 / 27)f f  and 

mesh2 d(175 / 216)f f  as shown in Table 6-4), the meshing frequency of the planetary 

gearbox stage 1 increases approximately from 148 Hz to 222 Hz and then drops to 148 Hz. 

The meshing frequency of the planetary gearbox stage 2 increases approximately from 32 

Hz to 48 Hz and then drops to 32 Hz. As the key task of planetary gearbox fault diagnosis 

is identifying the frequencies of the sidebands around the meshing frequency (Feng and 

Liang, 2014b; Feng et al., 2015a; Feng et al., 2016c), the focus should be on the frequency 

band 0-400 Hz which covers enough sideband frequencies of the meshing frequencies of 
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the two stages. The Fourier spectrum of the signal, shown in Fig. 6-21(B), suffers from 

spectral smearing problem. Although some peaks appear in the spectrum, it is challenging 

to identify them under a time-varying running speed condition. Fig. 6-22 shows the time-

frequency distribution of the vibration signal of the healthy planetary gearbox obtained by 

the VSLCT. As the VSLCT is smearing-free, the components with time-varying frequency 

can be clearly revealed. The characteristic frequencies are calculated according to the 

characteristic frequency table (Table 6-4) and motor speed. With the characteristic 

frequencies calculated, the time-frequency components can be identified. As displayed in 

Fig. 6-23, the dominant frequencies are the drive motor rotating frequency fd, its harmonics 

and the planetary gearbox stage 1 gear meshing frequency fmesh1. No matter the gearbox is 

healthy or faulty, the drive motor will rotate and gears will mesh thus generating the 

meshing frequency, motor rating frequency and its harmonics, therefore these components 

do not indicate a faulty condition.  

 

Fig. 6-21. Healthy planetary gearbox: (A) vibration signal, (B) frequency spectrum of vibration 
signal and (C) motor speed 
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Fig. 6-22. TFR of the healthy planetary gearbox vibration signal 

6.5.3 Detection of sun gear wear 
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1 fmesh1+2fsun1, and the difference between the meshing frequency and the sum of the second 

harmonic of the sun gear fault characteristic frequency and the second harmonic of the sun 

gear rotating frequency fmesh1-(2fsun1+2fsunrot1). The revealed sidebands are all associated 

with the sun gear fault of planetary gearbox stage 1 and have pronounced amplitudes, 

indicating that the planetary gearbox stage 1 has a sun gear fault. This result is consistent 

with the experimental setting of faulty sun gear. 

 

Fig. 6-23. Planetary gearbox with stage 1 sun gear wear fault: (A) vibration signal, (B) frequency 
spectrum of vibration signal and (C) motor speed 

 

Fig. 6-24. TFR of the vibration signal of stage 1 sun gear wear fault 
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6.5.4 Detection of sun gear chipping 

This subsection demonstrates the effectiveness of the VSLCT method in detecting sun 

gear chipping at the planetary gearbox stage 2. The associated vibration signal and its 

Fourier spectrum, as well as the drive motor speed are presented in Fig. 6-25(A-C), 

respectively. From Fig. 6-25(C), it can be seen that the motor speed increases 

approximately from 40 Hz to 60 Hz and then drops to 40 Hz again. According to the 

relationship between the meshing frequency of the planetary gearbox stage 2 and the motor 

rotational frequency (i.e., mesh2 d(175 / 216)f f  as shown in Table 6-4), the meshing 

frequency of the planetary gearbox stage 2 increases approximately from 32 Hz to 48 Hz 

and then drops to 32 Hz. Accordingly the frequency band of interest is 0-80 Hz, which 

covers enough possible sidebands frequencies of meshing frequency of planetary gearbox 

stage 2. The signal spectrum (Fig. 6-25(B)) does not provide sufficient information related 

to the chipping fault. To reveal the chipping fault, the VSSTFT method is once again 

applied to analyze the experimental data. The obtained TFR is shown in Fig. 6-26, where 

the main component is the motor rotating frequency fd, which is generated by the rotations 

of the drive motor, thus does not provide any information related to the fault. However, 

there are still some other dominant components including the difference between the 

meshing frequency and the sun gear rotating frequency of stage fmesh2-fsunrot2, the sum of the 

meshing frequency and the sum of the third harmonic of sun gear fault characteristic 

frequency and the sun gear rotating frequency fmesh2+3fsun2+fsunrot2 and the difference 

between meshing frequency and the sum of the third harmonic of sun gear fault 

characteristic frequency and the second harmonic of sun gear rotating frequency fmesh2- 

(3fsun2+2fsunrot2). They are associated with the sun gear fault characteristic frequency of 

stage 2. This is sign of a fault on the sun gear of stage 2 which is again consistent with the 

condition of the stage 2 sun gear used in the experiment. 

The findings of the above three cases are expected and show that the VSLCT method 

can be used to detect gear fault of planetary gearbox effectively in a time-varying speed 

condition. 
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Fig. 6-25. Planetary gearbox with stage 2 sun gear chipping fault: (A) vibration signal, (B) 
frequency spectrum of vibration signal and (C) motor speed 

 

 

Fig. 6-26. TFR of the vibration signal of stage 2 sun gear chipping fault 
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In this chapter, a new linear transform named VSLCT has been proposed for fault 

diagnosis of planetary gearboxes under non-stationary conditions. The linear transform 
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0 7 14 21 28
-1

-0.5

0

0.5

1

Time (s)

A
m

p
li

tu
de

 (
V

)

0 20 40 60 80
0

0.005

0.01

0.015

0.02

Freqency (Hz)

A
m

p
li

tu
de

 (
V

)

0 7 14 21 28
35

40

45

50

55

60

65

Time (s)

F
re

q
en

cy
 (

H
z)

(A) (B) (C)

Time (s)

F
re

q
u
en

cy
 (

H
z)

 

 

f
d

f
mesh2

f
mesh2

-3f
sun2

-2f
sunrot2

f
mesh2

+f
sunrot2

f
mesh2

-f
sunrot2

f
mesh2

+3f
sun2

+f
sunrot2

0 4 8 12 16 20 24 28
0

10

20

30

40

50

60

70

80

 

 

 

 

 

 



147 

and this new definition may also prompt the design of other linear transforms for other 

applications. The VSLCT employs a set of non-orthogonal bases whose frequencies are 

synchronous with shaft rotational velocity, thus the obtained TFR is free from smear 

problem. The window length of the VSLCT is time-varying to provide more suitable time-

varying time-frequency resolution. An energy-concentration-index guided algorithm is 

also developed to dynamically calculate the two key parameters of the VSLCT in response 

the changing condition. Therefore, the VSLCT does not require the user to provide any 

parameter, hence eliminating the expertise-demanding, time-consuming, and yet error-

prone human intervention. The effectiveness of the VSLCT method has been validated 

using both synthetic signals and experiment vibration signals of planetary gearbox 

collected under non-stationary conditions. 
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 Comparisons of the proposed methods 

In this chapter, the comparisons of the proposed methods will be carried out using 

simulated signals, followed by discussions.

The simulated signals are generated using the vibration model provided in Appendix 

A (Feng and Zuo, 2012). Assuming the gearbox has a sun gear fault. The simulated signal 

is expressed by 

     
   

sunrot sun

mesh

( ) 1 cos 2π d 1+A cos 2π d

          cos 2π d +N

x t f t t f t t

f t t t

        

   

 


, (7-1) 

where N(t) is Gaussian white noise, fsrot is the sun gear rotational frequency, fmesh is the gear 

meshing frequency and fsun is the sun gear fault characteristic frequency. The relationship 

between these characteristic frequencies are set as fsunrot =fmesh/10=fsun/3. The signal length 

is two seconds. To simulate the speed-varying state, we set the sun gear rotating frequency 

as    sunrot =10 2sin 2πf t t .  

First of all, the TFR qualities of the proposed methods under different SNR levels are 

evaluated. Sixteen signals are generated with different levels of noise with 400 Hz 

sampling rate. The SNRs are set as integer numbers with unit dB between -10 and 5. 

Generally, a fault is considered as detected if the sidebands associated with fault 

characteristic frequency are observed in the TFR. The number of signal components 

detected can be considered as a good indicator of the fault detection capability of one 

method. For any component fany, it is said the component is detected, if   any ,X f t t  is 

the local maximum along the frequency direction over more than half of the time period. 

Based on the convolution theory, each simulated signal contains nine components. The 

number of signal components detected by the proposed methods are shown in Fig. 7-1(A). 

It can be found that according to the number of components detected by the four proposed 

methods, they can be roughly ordered as ‘VSBD > VST > VSSTFT > VSLCT’, under most 

SNRs. 
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Some fault diagnosis applications commonly require a method to have good 

computational efficiency, for example, online monitoring applications. The computational 

effciency is thus an important aspect for evaluating the proposed methods. Eighteen 

discrete signals with different lengths are generated here and their lengths are represented 

by n. Their lengths are set as 200 points, 250 points, 300 points, …, 1050 points. The 

proposed methods are used to generate a TFR with n by n pixies. The running time of the 

proposed method are shown in Fig. 7-1(B). It can be seen that the cost time by the proposed 

methods can be ordered as VSBD > VSLCT > VST > VSSTFT, thus for the computational 

efficiency, the performances of the proposed methods can be ordered as VSSTFT > VST > 

VSLCT > VSBD. 

It should also be mentioned here that the VSSTFT, VST and VSBD require shaft speed 

information and the VSLCT does require such information. Based on the above analysis, 

the capabilities of the proposed methods can be summarised in Table 7-1. It can be seen 

that though the VSLCT has relatively low rank of component detection capability, it is the 

only one that does not require the users to provide shaft speed. Therefore, under the 

condition that the shaft speed can be neither measured nor estimated from the STFT of the 

collected vibration signal, the VSLCT is the only choice from the proposed methods.  

Under the condition that the shaft speed can be obtained, the VSSTFT, VST and VSBD 

are given more priority than the VSLCT, because they perform better than the VSLCT in 

detecting the signal components with known shaft speed. In terms of component detection 

capability, the performance order is that VSBD > VST > VSSTFT. However, in terms of 

computational efficiency, the performance order is, on the contrary, VSLCT > VST > 

VSSTFT. This indicates that better TFR quality requires higher computational complexity. 

Therefore, the VSSTFT, VST and VSBD can be selected based on the application 

environment. For example, for online monitoring which requires quicker response, the 

VSSTFT or VST is more desirable. For the high noise applications, the VSBD or VST 

should be given more priority.  
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Fig. 7-1. Evaluation of the proposed methods: (A) The number of detected signal components by 
the methods and (B) Time spent of the methods 

Table 7-1 Evaluations of the proposed methods 

Capability VSSTFT VST VSBD VSLCT 

Shaft speed requirement Yes Yes Yes No 

Component detection 
capability rank 

3 2 1 4 

Computational efficiency rank 1 2 4 3 
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 Conclusions and future work 

 Conclusions 

The planetary gearbox often works under non-stationary conditions and the collected 

vibration signals are non-stationary. Time-frequency methods are effective methods to 

characterise such non-stationary signals for fault diagnosis, however, current time-

frequency methods still have problems of smearing effects and/or cross-term interferences. 

In this study, four new time-frequency methods are proposed to address these problems for 

planetary gearbox fault diagnosis under non-stationary conditions. The work accomplished 

in this thesis is summarized as follows. 

(1) Velocity synchronous short-time Fourier transform (VSSTFT) 

The VSSTFT is proposed in chapter 3 and it belongs to the linear transform family. It 

can be realized via a one-step integral transform and has good computational efficiency. It 

addresses the smear problem of linear transform. Its time-frequency resolution varies with 

time-varying shaft speed to provide a desirable balance between time resolution and 

frequency resolution for the entire signal.  However, the VSSTFT is a type of linear 

transform and it is subjected to Heisenberg uncertainty principle (Hlawatsch and 

Boudreaux-Bartels, 1992), thus its time-frequency resolution is still limited. 

(2) Velocity synchrosqueezing transform (VST) 

The VST, proposed in chapter 4, is a type of time-frequency method based on the TFR 

data remapping. It has better energy concentration and better readability than the VSSTFT. 

Similar to the VSSTFT, the VST is also a smear-free time-frequency method. An algorithm 

for fast implementation of the VST is also developed so that it can be realised in one step 

without resampling the signal. Compared with the VSSTFT, the disadvantage of the VST 

is that it has relatively higher computational complexity than the VSSTFT.  

(3) Velocity synchronous bilinear distribution (VSBD) 

The VSBD, introduced in chapter 5, is based on the bilinear distribution frame, thus its 

time-frequency resolution is inherently higher than the VSSTFT and VST. This method 

addresses the smear effect of current bilinear distributions in analysing the signals 

containing nonlinear frequencies. Current bilinear transforms still suffer from the cross-
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term interference or the time-frequency resolution reduction caused by eliminating the 

cross terms. The proposed VSBD employs a GD-based approach to filter out these cross 

terms without harming the auto terms, therefore the high time-frequency resolution 

survives and the obtained TFR does not have cross-term interference. The disadvantage of 

the VSBD is that it has higher computational complexity than the VST and VSSTFT.  

(4) Velocity synchronous linear chirplet transform (VSLCT) 

The VSSTFT, VST and VSBD require the user to provide shaft speed and the shaft 

speed may be not easily accessible under some conditions. To mitigate this drawback, in 

chapter 6, a new method named VSLCT is proposed. The VSLCT employs a set of linear 

chirplets whose frequencies are synchronous with shaft rotational velocity as bases in order 

to reduce the smearing effects. A concentration-index-guided approach is also developed 

to dynamically determine the two parameters of the VSLCT. Compared with the exsiting 

time-frequency methods, the advantages of the VSLCT are, A) it is smear-free, B) it is non-

parametric and C) shaft speed is not required.  

Four new time-frequency methods are developed and applied for fault diagnosis of 

planetary gearbox. All the proposed methods have been validated using simulated and 

experimental planetary gearbox vibration signals. By applying these methods, the signal 

structures are clearly revealed in the time-frequency representations and faults are 

diagnosed by detecting and identifying the sideband components associated with fault.  The 

proposed methods have been compared with the state-of-art methods (for example, (Yu 

and Zhou, 2016; Yu et al., 2017)). The comparisons show the proposed methods are 

superior to these compared methods in revealing the signal structure of the non-stationary 

vibration signals collected from planetary gearboxes. The experimental tests have shown 

the effectiveness of the proposed methods in diagnosing faults of planetary gearboxes 

under non-stationary conditions. 

 Future work 

Partially motivated by the limitations mentioned above, the following research 

directions are recommended to be further investigated.  

(1) A method generating high-quality TFR with low computational complexity 
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In chapter 3-5, three methods are proposed, however, these methods provide the TFR 

with better quality at the cost of computational complexity. It is suggested to propose a 

method that is able to generate a high-quality TFR with relatively low computational 

complexity. 

(2) Extending the research to the fault diagnosis of planetary gearbox bearing under 

non-stationary conditions  

Bearings are important parts in planetary gearboxes. To date, the research on fault 

diagnosis of planetary gearbox bearing is still limited. It is suggested to extend the methods 

proposed in this thesis to the fault diagnosis of planetary gearbox bearing under non-

stationary conditions. 

(3) A method evaluating the fault severity from the TFR 

The proposed methods can generate clear TFR for fault diagnosis, however, fault 

severity cannot be revealed from the TFR. It is suggested to propose a method that is able 

to evaluate the severity of the fault from the signal TFR. 

(4) A method generating high-resolution TFR without shaft speed information 

The proposed VSBD method requires shaft speed information and it can generate a 

high-resolution TFR. The proposed VSLCT method does not require shaft speed 

information and it can generate a TFR with relatively low resolution. It will be interesting 

to explore whether these two methods can be combined such that a high-resolution TFR 

can be generated without running speed information. 
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Appendices 

A Vibration model of planetary gearbox having gear faults 

The vibration model of faulty planetary gearbox (Feng and Zuo, 2012) is reviewed and 

summarized here.  

For planetary gearbox, the vibration induced by the gear having a local fault can be 

modeled as a process of amplitude modulation and frequency modulation with the gear 

meshing frequency or its harmonics as the carrier frequency (Feng and Zuo, 2012). This 

vibration propagates from its origin into the sensor through solid mechanical components. 

Based on the above analysis, the sensor perceived vibration can be expressed as  

          mesh
1

cos 2 d
K

k k k

k

x t h t a t k f t t b t 


     (1-1) 

where t is time, ak(t) is amplitude modulation function, bk(t) is frequency modulation 

function, h(t) is the transfer path effect, fmesh(t) is gear meshing frequency and θ is initial 

phase. 

The amplitude and frequency modulations are periodic with the fault characteristic 

frequency of the faulty gear. Thus the amplitude modulation function and frequency 

modulation functions can each be expressed as a Fourier series with the fault characteristic 

frequency of the faulty gear as the fundamental frequency, expressed by 

Amplitude modulation:     fault
1

1 A cos 2π d
N

k kn kn

n

a t n f t t 


      (1-2) 

Frequency modulation:     fault
1

cos 2π d
L

k kl kl

l

b t B l f t t 


     (1-3) 

where ffault(t) is characteristic frequency of the faulty gear, ϕ and φ are initial phases.  

As the vibration sensor is usually mounted at a fixed location on the ring gear, the 

transfer path between senor and the faulty gear is time-varying as the gears rotate in the 

cases of sun gear fault and planet gear fault. In these two cases, the transfer path effect on 

the vibration can be modelled as a hanning function (Inalpolat and Kahraman, 2009; 

Inalpolat and Kahraman, 2010). 
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In the case of sun gear damage, the fault characteristic frequency is the sun gear fault 

characteristic frequency, and the transfer path effect is a hanning function with sun gear 

rotating frequency, expressed by 

   fault sunf t f t  (1-4) 

    sunrot1 cos 2 dh t f t t    (1-5) 

where fsun is sun gear fault characteristic frequency and fsunrot is sun gear rotational 

frequency. 

In the case of planet gear damage, the fault characteristic frequency is the planet gear 

fault characteristic frequency with carrier rotating frequency, expressed by 

   fault planetf t f t  (1-6) 

    carrier1 cos 2 dh t f t t    (1-7) 

where fplanet is planet gear fault characteristic frequency and fcarrier is carrier rotational 

frequency. 

In the case of ring gear damage, the fault characteristic frequency is the ring gear fault 

characteristic frequency and the transfer path is a scale effect, expressed by 

   fault ringf t f t  (1-8) 

  constanth t   (1-9) 

where fring is ring gear fault characteristic frequency 
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B Formulas for calculating characteristic frequencies of planetary 

gearbox 

The characteristic frequencies of both fixed-shaft gearbox and planetary gearbox are 

shaft-speed-locked and proportional to each other. They can be calculated based on the gearbox 

geometry and any known characteristic frequency. Using the input gear rotational 

frequency as a base, the formulas for calculating the characteristic frequencies of the fixed-

shaft gearbox are summarized below(McFadden, 1986, 1988): 

Gear meshing frequency of fixed-shaft gearbox:    meshf input inputf t Z f t    (2-1) 

Output gear rotational frequency:    input

output input

output

Z

Z
f t f t  (2-2) 

where Zinput and Zoutput are the numbers of input gear teeth and output gear teeth, 

respectively.   

For the planetary case, using the carrier rotational frequency as a base, the formulas 

for calculating the characteristic frequencies of the planetary gearbox are summarized 

below(Feng and Zuo, 2012):  

Gear meshing frequency of planetary gearbox:    meshp ring carrierZf t f t  (2-3) 

Sun gear rotational frequency:    ring

sunrot carrier

sun

Z
(1 )

Z
f t f t   (2-4) 

Sun gear fault characteristic frequency:    p ring

sun carrier

sun

N Z

Z
f t f t  (2-5) 

Planet gear fault characteristic frequency:    ring

planet carrier

planet

2Z

Z
f t f t  (2-6) 

Ring gear fault characteristic frequency:    ring p carrierNf t f t  (2-7) 

where Np is the number of planet gears, Zsun, Zplanet and Zring are the numbers of sun gear 

teeth, planet gear teeth and ring gear teeth, respectively.    
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C Generalized velocity synchronous Fourier transform 

The generalized velocity synchronous Fourier transform proposed by the author of this 

thesis el al. for fault diagnosis of fixed-shaft gearboxes under non-stationary conditions is 

briefly reviewed as follows (Guan et al., 2018). 

This method firstly employs the GD approach (Olhede and Walden, 2005) to extract a 

component whose frequency is proportional to the instantaneous shaft rotational frequency 

from the vibration signal, followed by demodulating the extracted component to recover 

the instantaneous shaft rotational phase. With such information the order spectrum can be 

directly obtained via the velocity synchronous discrete Fourier transform (VSDFT) 

(Borghesani et al., 2014) and finally the gear fault, if any, can be diagnosed by order 

spectrum analysis.  

The vibration signal acquired from a gearbox is mainly composed of the meshing 

components, its harmonics components and sidebands components. The instantaneous 

frequencies of these components are all synchronized thus proportional to the instantaneous 

shaft rotational frequency (ISRF). The multi-components vibration signal x(t) can be 

represented as 

     
K K

1 1

( ) cos 2 dk k k k

k k

x t x t A t f t t 



 

         (3-1) 

where K is the number of the components, Ak(t) is the real-valued instantaneous amplitude 

envelope, θk is the initial phase of the kth component and fk(t) is the instantaneous 

frequency (IF) of the kth component. Assuming the phase shifting of the signal components 

introduced by the transmission path effect is negligible, the IF components can be seen as 

proportional to the ISRF with a ratio pk, expressed by 

   shaftk kf t p f t  (3-2) 

where fshaft(t) is the ISRF. 

The procedure to transform the signal to order domain using the proposed GVSFT 

method is summarized as follows. 

Step. 1. Estimate the IF of the component of interest. As discussed previously, in order 

to perform GD, the estimated IF of a certain component is required. Here we assume that 
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the IF of the component of interest is  Îf t , where I (1≤I≤K) is the ordinal number of the 

component of interest. The IF of the component of interest can be roughly estimated based 

on the ridges of the time-frequency representation (TFR) obtained by the short-time Fourier 

transform (STFT) (Feng et al., 2011; Urbanek et al., 2013; Wang et al., 2014). The STFT 

of the signal is represented by 

         w
, exp 2π d

t

t
X t f x t j f    




   , (3-3) 

where w is window length, τ and f denote time and frequency respectively. Restricted by 

the frame of linear transform, the STFT has limited time-frequency resolution. To have a 

better frequency resolution, the window length should be relatively long (Iatsenko et al., 

2015). However, as the STFT employs a set of bases with fixed frequencies and the signal 

frequencies are time-varying, the STFT will have smear effects and for a long window, the 

Taylor reminder will be large, which may lead to large error of the TFR(Yu and Zhou, 

2016). Therefore, one needs to take a tradeoff between accuracy and resolution. It is 

suggested to firstly set a relatively short window. If the strong components cannot be 

detected from the TFR, then we increase the window length until the TFR is clear enough 

for coarse frequency estimation. The component of interest can be extracted from the TFR 

using a local maxima search algorithm (Urbanek et al., 2013), represented by 

   ˆ Argmax , , for I t
f

f t x t f f f   , (3-4) 

    ˆ ˆd , d
t I I

f f t f t         , (3-5) 

where δ is the given frequency tolerance for maxima detection. For t=0, fmax should be 

given by the user. It should be noted that the STFT has limited time-frequency resolution, 

and thus the accuracy of the estimated IF is low. To improve the accuracy, the IF estimation 

will be refined by the GD subsequently as provided in steps. 2-6. 

Step. 2. Create the analytic form y(t) of the signal using the Hilbert transform. The 

Hilbert transform of the signal can be approximated by the corresponding quadrature part 

(Feldman, 1997), expressed by 
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     
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H t A t f t t

t

   


 
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where H(t) is the Hilbert transform of x(t). The analytic signal is then expressed as 

        exp 2 dk ky t x t iH t i f t t 




        (3-7) 

Step. 3. Construct the GD function according to the preliminary estimated 

instantaneous frequency  Î
f t  and the target frequency f0. Since the resolutions of the 

signal and the preliminary estimated instantaneous frequency  Î
f t are different, the 

resolution of  Î
f t  is firstly improved by polynomial fitting (because the resolution of 

 Î
f t  is lower). The GD function is expressed by 

  0
ˆ( ) exp 2 dIv t i f t f t t





     . (3-8) 

Forward map the analytic signal y(t) to the new signal y(t) by multiplying the GD 

mapping function v(t), resulting a forward mapped signal  

            0
1

ˆexp 2π d d
K

k k I k

k

z t y t v t A t i f t t f t t f t i
 

 


          . (3-9) 

 For this forward mapped signal, the IF of the kth component is     0
ˆ

k I
f t f t f   . It 

means that all the components’ IFs are respectively mapped to the new frequencies 

equaling to their original frequencies fk(t) plus the IF of GD function     0
ˆ

v I
f t f t f   . 

Specially, the component’s IF of interest is thus       0 0
ˆ

I I I
f t f t f t f f    , showing 

that the time-varying frequency of the interested component is mapped to a new frequency 

which is almost constant and will not likely overlap other components’ frequency bands. 

It can be seen the frequency of the forward mapped signal is around f0. To avoid the 

interferences of negative frequencies and frequency aliasing, the frequency of the forward 

mapped signal should be in range (0, fs/2), where fs is the sampling frequency. For this 

reason, setting the target frequency f0 in the range (fs/8, 3fs/8) is suggested. 
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Step. 4. Separate the component zI(t) by filtering the forward mapped signal z(t). The 

center frequency of filter is equal to the target frequency 0f  and the bandwidth is equal to 

the minimum frequency difference between the IF of its adjacent components. The filter 

signal  I
z t  is expressed by 

        0
ˆexp i2π d dI I I I Iz t A t f t t f t t f t i

 

 

        . (3-10)  

One can see that this resulted component zI(t) is a mono-component and only contains 

the forward mapped component of interest. 

Step. 5. Recover the component of interest by multiplying the filtered component zI(t)  

by a reverse mapping GD function   1
0

ˆ( ) exp 2 dIv t i f t f t t




      , expressed by 

     

         
 

1

0 0
ˆ ˆexp i2 d d exp 2 d

( )exp i2 d

I I

I I I I I

I I I

y t z t v t

A t f t t f t t f t i i f t t f t

A t f t t i

  

 



  

  







             

    

  


 (3-11) 

which is still analytic. In this step, multiplying the reverse of the same GD function as used 

in step (3) is equivalent to recovering the original IF of the component of interest. As the 

recovered signal contains only one component, it satisfies the mono-component 

requirement by demodulation.  

Step. 6. Demodulate the recovered mono-component signal to obtain the instantaneous 

phase and frequency of the component of interest, expressed by 

   
 

real
unwrap arctan

imag

I

I

I

y t
t

y t


      
    

 (3-12) 

where real[yI(t)] and imag[yI(t)] denote the real and imaginary parts of yI(t) respectively, 

and unwrap denotes the phase unwrapping operation. 
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The instantaneous shaft rotational phase (ISRP) is obtained by normalizing the phase 

of the component of interest, expressed by 

   
shaft

I

I

t
t

p


  , (3-13) 

where pI is the ratio of the IF of the component of interest to the ISRF. 

The instantaneous shaft angular frequency (ISAF) is obtained by taking derivative of 

the ISRP, which can be written as 

   shaft
shaft

d

d

t
t

t


  . (3-14) 

As in this step, the ISAF is obtained by demodulation, thus it does not have resolution 

problem of the STFT. In this way, the estimated frequency is refined.  

Step. 7. Apply the VSDFT to obtain the order spectrum X(Ω) for fault diagnosis 

according to the ISRP θshaft(t) and the ISAF ωshaft(t), expressed by 

       shaft shaft-
= exp dX Ω x t t iΩ t t 




   . (3-15) 

Now as the order spectrum X(Ω) is obtained, we can diagnose which gear has fault (if 

any) by matching the spectral peaks with the theoretical sidebands orders associated with 

faults. Two positions of fault are considered, i.e., on the pinion or on the larger gear. As 

the faults cause modulations with the rotational frequency and its harmonics as modulating 

frequencies, and meshing frequency and its harmonics as carrier frequencies. The 

theoretical sidebands orders can be expressed as mom±nor, where om denotes meshing order, 

or denotes rotational order of the faulty gear, m and n are positive integers. To facilitate the 

understanding of the proposed method, the steps of the proposed GVSFT method are 

presented in a flowchart as shown in Fig. C-1. 
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Fig. C-1. Flowchart of the proposed GVSFT approach  

  

Calculate GD mapping vector v(t)  

Estimate the IF of the component 

of interest   and select target 

frequency f0 

ISRP θshaft(t)  and ISAF ωshaft(t)  

Order spectrum X(Ω)   

 Original signal x(t) 

Analytical signal y(t)=x(t)+iH(x(t))  

Forward mapped signal z(t)=y(t)v(t) 

Forward mapped component of interest zI(t) 

Component of interest yI(t)=zI(t)v-1(t) 

 Fault position 

Search TFR ridge  

Filter around f0 

Demodulate and normalize 

Implement the VSDFT 

Multiply y(t) by v(t)    

Analyze Spectrum  

Multiply zI(t) by v-1(t) 
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