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Abstract

Data discrepancy between preclinical and clinical datasets poses a major challenge for
accurate drug response prediction based on gene expression data. Different methods of
transfer learning have been proposed to address this data discrepancy. These methods
generally use cell lines as source domains and patients, patient-derived xenografts, or other
cell lines as target domains. However, they assume that they have access to the target
domain during training or fine-tuning and they can only take labeled source domains as
input. The former is a strong assumption that is not satisfied during deployment of these
models in the clinic. The latter means these methods rely on labeled source domains which
are of limited size. To avoid these assumptions, we formulate drug response prediction as
an out-of-distribution generalization problem which does not assume that the target
domain is accessible during training. Moreover, to exploit unlabeled source domain data,
which tends to be much more plentiful than labeled data, we adopt a semi-supervised
approach. We propose Velodrome, a semi-supervised method of out-of-distribution
generalization that takes labeled and unlabeled data from different resources as input and
makes generalizable predictions. Velodrome achieves this goal by introducing an objective
function that combines a supervised loss for accurate prediction, an alignment loss for
generalization, and a consistency loss to incorporate unlabeled samples. Our experimental
results demonstrate that Velodrome outperforms state-of-the-art pharmacogenomics and
transfer learning baselines on cell lines, patient-derived xenografts, and patients and
therefore, may guide precision oncology more accurately.
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Introduction

The goal of drug response prediction based on the genomic profile of a patient (also known
as pharmacogenomics) -- a crucial task of precision oncology -- is to utilize the omics
features of a patient to predict response to a given drug (Garraway, Verweij, and Ballman
2013; Cronin et al. 2018; Marquart, Chen, and Prasad 2018; Pal et al. 2019). Unfortunately,
patient datasets with drug response are often small or not publicly available which
motivated the creation of large-scale preclinical resources such as patient-derived
xenografts (PDX) (Gao et al. 2015) or cancer cell lines (Garnett et al. 2012; Barretina et al.
2012; Basu et al. 2013; Seashore-Ludlow et al. 2015; Klijn et al. 2015; Iorio et al. 2016;
Haverty et al. 2016) as proxies for patients.
Although preclinical datasets are viable proxies for patients, they differ in important ways
from patients due to basic biological differences such as the lack of tumor
microenvironment/the immune system (Mourragui et al. 2019; Sharifi-Noghabi et al. 2020)
-- even two preclinical datasets may have discrepancies with each other (Haibe-Kains et al.
2013; Safikhani et al. 2016; Haverty et al. 2016; Mpindi et al. 2016; Geeleher et al. 2016).

Transfer learning has emerged as a machine learning paradigm for such scenarios (Pan and
Yang 2010; Neyshabur, Sedghi, and Zhang 2020), where we have access to different datasets
from multiple resources (known as source domains) and want to make predictions for a
dataset of interest (known as target domain) and it has been employed in different
problems (Taroni et al. 2019; Raghu et al. 2019; Holmberg et al. 2020; Hu et al. 2020).
Various methods of transfer learning have been proposed in the context of drug response
prediction. These methods either address these discrepancies implicitly (Sharifi-Noghabi et
al. 2019; Snow et al. 2020; Kuenzi et al. 2020), or explicitly which means they assume that
the model has access to the desired labeled or unlabeled target domain during training
(Sharifi-Noghabi et al. 2020; Mourragui et al. 2019, 2020; Ma et al. 2021; Zhu et al. 2020;
Warren et al. 2020; Peres da Silva, Suphavilai, and Nagarajan 2021).

However, in the real-world we do not have access to the target domain(s) during training
the model on the source domain, e.g., we do not know future patients that may walk into a
clinic. Nevertheless, the trained model should generalize to the target domain and be able
to make predictions for samples encountered during the deployment time. Since generating
large high-quality labeled preclinical datasets is an expensive and time-consuming process
and we do not know response to a given drug in the target domain (e.g., future patients),
there is a need for a computational method that takes not only labeled but also unlabeled
source domain data as input and learns a representation that generalizes to a future target
domain. This problem is known as out-of-distribution generalization or domain
generalization, where the target domain is not accessible during training (Gulrajani and
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Lopez-Paz 2020; J. Wang et al. 2021; Zhou et al. 2021). Out-of-distribution generalization is
particularly important for biomedical applications (Zhang et al. 2021).
There are two main approaches to out-of-distribution generalization: 1) generalizing via
learning domain-invariant features (J. Wang et al. 2021), and 2) generalizing via learning
hypothesis-invariant features (Zhao et al. 2020; Z. Wang, Loog, and van Gemert 2021). In
the first approach, the goal is to map the input domains to a shared feature space in which
the features of all domains are aligned, i.e. look similar to each other. However, forcing
different domains to have very similar features is not always feasible because different
domains may have unique characteristics, and completely aligning them ignores these
unique characteristics. The second approach does not align the features but rather the
predictions across domains. The idea is that if the extracted features of input domains are
similar enough for an accurate predictor to make similar predictions, forcing the features to
be more similar is not required anymore. We note that there is no existing method for
out-of-distribution generalization, for either of the two approaches, that can exploit both
labeled and unlabeled source domains.

In this paper, we propose Velodrome, a deep neural network method that combines the two
above approaches and exploits both labeled and unlabeled samples. Velodrome takes gene
expression from cell line (labeled) and patient (unlabeled) datasets as input domains and
predicts the drug response (measured as area above dose-response curve, AAC) via a
shared (between cell lines and patients) feature extractor and domain-specific predictors.
The feature extractor and the predictors are trained using a novel loss function with three
components: 1) a standard supervised loss to make the features predictive of drug
response, 2) a consistency loss to exploit unlabeled samples in learning the feature
representation, and 3) an alignment loss to make the features generalizable. We designed
the loss function to balance between learning domain-invariant and hypothesis-invariant
features. To the best of our knowledge, Velodrome is the first method for semi-supervised
out-of-distribution generalization from labeled cell lines and unlabeled patients to different
preclinical and clinical datasets.
We evaluated the performance of Velodrome and state-of-the-art methods of supervised
out-of-distribution generalization, domain adaptation, and semi-supervised learning in
terms of a diverse range of metrics including Pearson and Spearman correlation, the Area
Under the Receiver Operating Characteristic curve (AUROC), and the Area Under the
Precision-Recall curve (AUPR). We observed that Velodrome achieved substantially better
performance across different clinical and preclinical pharmacogenomics datasets for
multiple drugs, demonstrating the potential of semi-supervised out-of-distribution
generalization for drug response prediction, a crucial task of precision oncology. Moreover,
we showed that the responses predicted by Velodrome for TCGA patients (unlabeled, i.e.
without drug response) with prostate and kidney cancers had statistically significant
associations with the expression values of the target genes of the studied drugs. This shows
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that Velodrome captures biological aspects of drug response. Finally, although Velodrome
was trained only on solid tissue types, we showed that it made accurate predictions for cell
lines originating from non-solid tissue types, showcasing the out-of-distribution
capabilities of the Velodrome model.

Results

Datasets. We employed the following resources throughout this paper:

1. Patients without drug response: more than 3,000 samples obtained from TCGA
(Cancer Genome Atlas Research Network et al. 2013) breast (TCGA-BRCA), lung
(TCGA-LUAD), pancreatic (TCGA-PAAD), kidney (TCGA-KIRC), and prostate
(TCGA-PRAD) cohorts with RNA-seq data.

2. Cell lines with drug response: The Cancer Therapeutics Response Portal (CTRPv2)
(Basu et al. 2013; Seashore-Ludlow et al. 2015), The Genomics of Drug Sensitivity in
Cancer (GDSCv2) (Garnett et al. 2012; Iorio et al. 2016), and The Genentech Cell Line
Screening Initiative (gCSI) (Haverty et al. 2016; Klijn et al. 2015) pan-cancer
datasets with a total of more than 2000 samples with RNA-seq data and AAC as the
measure of the drug response across 11 drugs (in common for the three datasets).
We focused on the following drugs for this paper: Erlotinib, Docetaxel, Paclitaxel,
and Gemcitabine.

3. PDX samples with drug response: PDX Encyclopedia (PDXE) dataset (Gao et al.
2015) is a collection of more than 300 PDX samples with RNA-seq data screened
with 34 drugs. We use the reported measure of response in RECIST (Schwartz et al.
2016) for Gemcitabine, Erlotinib, and Paclitaxel obtained from supplementary
material of (Gao et al. 2015).

4. Patients with drug response: 2 cancer-specific datasets with microarray data and
RECIST as the measure of drug response for Docetaxel (Hatzis et al. 2011), Paclitaxel
(Hatzis et al. 2011), and Erlotinib (Byers et al. 2013). Plus, a pan-cancer dataset
obtained from TCGA patients treated with Gemcitabine (Ding, Zu, and Gu 2016). We
use clinical annotations of the drug response for some patients which were obtained
from supplementary material of (Ding, Zu, and Gu 2016).

Table S1 presents characteristics of these datasets and indicates whether they were used as
source domain for training or target domain for test.

Velodrome Overview. The proposed Velodrome method takes gene expression and AAC of
cell line datasets (CTRPv2 and GDSCv2) as well as gene expression of patients without drug
response (TCGA dataset) and learns a predictive and generalizable representation. To
achieve this, Velodrome employs a shared feature extractor, which takes the gene
expression of CTRPv2 and GDSCv2 samples and maps them to a shared feature space, and
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domain-specific predictors (e.g. one for CTRPv2 and one for GDSCv2), which take the
feature representation of the gene expression and predict the drug response.
The parameters are optimized using a novel objective function consisting of three loss
components. 1) a standard supervised loss to make the representation predictive of drug
response, 2) a consistency loss to exploit unlabeled samples in learning the representation,
and 3) an alignment loss to make the representation generalizable.
The idea of the standard supervised loss is to make the representation predictive of the
drug response via a mean squared loss.
To incorporate unlabeled patient samples, we add a consistency loss. The idea is to first
extract features from patient samples using the feature extractor and then assign
pseudo-labels to them by utilizing the predictors associated with CTRPv2 and GDSCv2. The
consistency loss takes the pseudo-labels (i.e., predictions) from the predictors and
regularizes the parameters of the feature extractor and the predictors by the distance𝑙2
between the predictions of CTRPv2 predictor and those of the GDSCv2 predictor.
Finally, to make the feature representation generalizable, we add an alignment loss that
regularizes the parameters of the feature extractor. This alignment loss takes the extracted
features of any two input domains (eg., CTRPv2 and TCGA or CTRPv2 and GDSCv2) and
minimizes the difference between the covariance matrices of those domains.
Figure 1 illustrates the schematic overview of the Velodrome method.

Evaluation. Drug response prediction using multiple labeled and unlabeled domains can be
viewed in three approaches: 1) under the assumption that there is no data discrepancy, it
can be viewed as a semi-supervised learning problem, 2) under the assumption that
unlabeled patient samples are proxies to future patients, it can be viewed as an
unsupervised domain adaptation problem, and 3) under the assumption that a
generalizable representation can be obtained via only labeled domains, it can be viewed as
a supervised domain generalization problem. It is important to note that the main
contribution of the Velodrome method is that it is the first semi-supervised domain
generalization method for drug response prediction.
To evaluate the performance of Velodrome, we compared it against the state-of-the-art
methods of each approach. For the first approach, we compared Velodrome to Mean
Teacher (Tarvainen and Valpola 2017) which is the state-of-the-art deep neural network for
semi-supervised learning (Yang and Xu 2020). For The second approach, we compared
Velodrome to PRECISE as a non-deep learning method based on subspace alignment and
(Saito et al. 2018) as a deep learning method based on adversarial domain adaptation via
disagreement between predictors. Finally, for the third approach, we compared Velodrome
to Ridge-ERM (Ridge Regression) as a non-deep learning baseline and DeepAll-ERM as a
deep learning baseline. Both of them are categorized as methods of Empirical Risk
Minimization (ERM). ERM methods achieve state-of-the-art performance for
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out-of-distribution generalization. They are trained in a supervised fashion by merging all
available labeled input domains.

Figure 1 The schematic overview of the Velodrome method with three source domains (two labeled
and one unlabeled). A) At training time, the feature extractor receives data from different source domains
and extracts high-level abstract features. The extracted features of each labeled domain (cell line dataset) are
input to the corresponding domain-specific predictor. Predictions are used to optimize the parameters of the
predictors and the feature extractor via a standard supervised loss function. The extracted features of the
unlabeled domain (patient dataset) are input to both predictors, and the predictions are used to optimize the
parameters of predictors and the feature extractor via a consistency loss function. The extracted features of all
source domains are used to optimize the parameters of the feature extractor via an alignment loss function.
B) At test time, the trained Velodrome model receives samples from different target domains, extracts features
and makes predictions using the trained predictors. The predictions are then averaged to generate the final
predictions for each sample.
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Figure 2 Comparison of Velodrome and state-of-the-art of drug response prediction methods on cell lines in
terms of Pearson and Spearman correlations (A), PDX models in terms of the Area Under the Receiver
Operating Characteristic curve (AUROC) and the Area Under the Precision-Recall curve (AUPR) (B), and
patients in terms of AUROC and AUPR (C). On average std over the studied drugs (D), Velodrome has the±
best or the second best performance on cell lines, PDX models, and patients compared to the baselines.

Velodrome makes accurate predictions for cell lines. To investigate the generalization
of Velodrome to other cell line datasets, we employed the gCSI dataset as the target domain
and reported the performance of Velodrome and the baselines in terms of the Pearson and
the Spearman correlation on this dataset. On average std over all drugs, DeepAll-ERM±
achieved the best performance ( for Pearson correlation coefficient and0. 52 ± 0. 09

for Spearman correlation coefficient - Figure 2D). Velodrome achieved the0. 48 ± 0. 09
second best performance ( for Pearson correlation coefficient and0. 48 ± 0. 09

for Spearman correlation coefficient - Figure 2A and D). Ridge-ERM (0. 45 ± 0. 07
- Figure 2A and D) and Mean Teacher ( - Figure 2A and D) had the0. 46 ± 0. 07 0. 43 ± 0. 07

third best performance in terms of Pearson and Spearman correlation, respectively. These
results indicate that although Velodrome is not the best performing model, it is fairly
competitive on cell lines and generalizes well (Figure 2A).

Velodrome makes accurate predictions for PDXs samples. To investigate generalization
of Velodrome to PDX samples, we employed the PDXE dataset as the target domain and
reported the performance of Velodrome and the baselines discussed above in terms of the
AUROC and the AUPR. On average std over all drugs,, Velodrome achieved the best±
performance compared to the baselines (for in AUROC and in0. 69 ± 0. 21 0. 43 ± 0. 26
AUPR-Figure 2B and D). PRECISE obtained the second best performance in terms of AUROC
( - Figure 2B and D) and DeepAll-ERM in terms of AUPR ( - Figure0. 67 ± 0. 14 0. 42 ± 0. 23
2B and D). Similarly, DeepAll had the third best performance in terms of AUROC (

-Figure 2B and D) and PRECISE had the third best performance in terms of0. 63 ± 0. 19
AUPR ( -Figure 2B and D). These results indicate that utilizing both labeled0. 41 ± 0. 24
and unlabeled samples from cell lines and patients improves drug response prediction on
PDX samples.

Velodrome makes accurate predictions for patients. To investigate the generalization of
Velodrome to patient samples, we employed the patient datasets obtained from clinical
trials as target domains and reported the performance of Velodrome and the baselines
discussed above in terms of AUROC and AUPR. On average std over all drugs,, Velodrome±
achieved the best performance compared to the baselines and significantly outperformed
them ( in AUROC and in AUPR-Figure 2C-D). Mean Teacher0. 64 ± 0. 11 0. 77 ± 0. 19
obtained the second best performance ( in AUROC and in0. 59 ± 0. 21 0. 69 ± 0. 23
AUPR-Figure 2C-D) and PRECISE had the third best performance ( in AUROC0. 54 ± 0. 1
and in AUPR-Figure 2C-D). Interestingly, these three top-performing methods0. 68 ± 0. 18

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.05.25.445658doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445658
http://creativecommons.org/licenses/by-nc/4.0/


take for inputs both labelled and unlabeled samples, in contrast to other baselines
considering only labeled samples. These results indicate that incorporating unlabeled
patient data along with labeled data significantly improves the generalization performance
on patients. However, the results also demonstrate the advantage of learning features that
are domain-invariant and hypothesis-invariant for out-of-distribution generalization,
because the PRECISE method only ensures a domain-invariant representation.

Velodrome outperforms the baselines over multiple independent runs. To maximize
the reproducibility, we utilized a fixed random seed for all methods (Velodrome and the
baselines) and found the best settings for the hyper-parameters of each method with that
seed. To investigate the performance of the best trained Velodrome model for each drug
and those of the baselines, we re-trained all of the models from scratch using the same
settings with 10 different random seeds and reported mean std for each method (Figure±
3A) over all runs and studies drugs. Although we observed that the average performance
(over the studied drugs) of all methods decreased, Velodrome still achieved the best
performance on patients in terms of both AUROC and AUPR, and also the best performance
in terms of both Pearson and Spearman correlation on cell lines. PRECISE and DeepAll-ERM
obtained the best performance on PDX samples in terms of AUROC and AUPR, respectively
(the performance of these two methods tied on AUPR). Velodrome had the third best
performance in terms of AUROC and AUPR on PDX samples. Overall, these results indicate
that Velodrome is more accurate and competitive compared to baselines particularly on
patients and cell lines.

The complete version of Velodrome demonstrates the best performance. We
performed an ablation study to investigate the impact of the different loss components of
Velodrome separately. We studied three scenarios as follows: “Velodrome w/o A” represents
a version of Velodrome without the alignment loss component, which means the neural
network only uses supervised and semi-supervised losses. “Velodrome w/o C” represents a
version of Velodrome without the consistency loss, which means the neural network only
considers the supervised loss and the alignment loss. Finally, “Velodrome w/o AC”
represents a version of Velodrome without both the alignment and the consistency loss,
which means the neural network employed only has a standard supervised loss. Our results
on patients demonstrate that on average std (over all drugs for 10 independent runs), the±
complete version of Velodrome outperforms its variants which indicates the added value of
both alignment and consistency losses (Figure 3-B). Interestingly, removing the consistency
loss from the objective function had the biggest impact on the Velodrome performance on
patients. This may suggest that hypothesis alignment plays a more critical role than feature
alignment for out-of-distribution generalization, which is compatible with recent
observations in computer vision applications (Zhao et al. 2020).
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Figure 3 (A) Comparison of the average std performance of the Velodrome and the state-of-the-art of drug±
response prediction methods over 10 independent runs for the studied drugs. (B) An ablation study of the

Velodrome performance on patients (average std).±
Velodrome generalizes to well-represented tissue types. To evaluate the performance
of Velodrome on patients, we followed the experimental design of previous
pharmacogenomics methods and designed an association study based on the known
associated target genes for the investigated drugs (Geeleher, Cox, and Huang 2014;
Mourragui et al. 2019; Sharifi-Noghabi et al. 2019, 2020). In this analysis, we employed the
TCGA Kidney cancer cohort (TCGA-KIRC) as a tissue type well represented in our cell line
datasets. In GDSCv2 and CTRPv2 combined, more than 3.3% of the samples originated from
this tissue type (Figure S1).
We trained Velodrome models for each drug (Docetaxel, Erlotinib, Paclitaxel, and
Gemcitabine) and applied them to the gene expression data of the patients of this cohort to
predict their response. Then, we fit a linear regression model to the level of expression of

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.05.25.445658doi: bioRxiv preprint 

https://paperpile.com/c/9y8SHw/nt01+lA9bd+SeqLS+MdKLD
https://paperpile.com/c/9y8SHw/nt01+lA9bd+SeqLS+MdKLD
https://doi.org/10.1101/2021.05.25.445658
http://creativecommons.org/licenses/by-nc/4.0/


the known target genes of these drugs and the responses predicted by Velodrome. Based on
the corrected p-values (two-tailed t-test) obtained from this multiple linear regression
using the bonferroni correction method, there are a number of statistically significant
associations between the target genes of the studied drugs and the responses predicted by

Velodrome. For Docetaxel, MAP2 had a statistically significant association . For(𝑃 < 10−6)
Erlotinib, EGFR and ERBB2 had statistically significant associations (both ). For𝑃 < 10−6
Paclitaxel BCL2 and MAP2 had significant associations (both ). Finally, for𝑃 < 10−6
Gemcitabine, CMPK1 demonstrated a significant association . These results(𝑃 < 10−6)
suggest that the responses predicted by Velodrome are not random but capture biological
aspects of the drug response.

Velodrome generalizes to under-represented tissue types. To further evaluate the
performance of Velodrome, we performed a similar association study on the prostate
cancer cohort in TCGA (TCGA-PRAD). We chose prostate because unlike kidney, prostate is
a tissue type under-represented in our cell line datasets (only 0.3% of the samples
originated from this tissue).
Similar to TCGA-KIRC, the Velodrome predictions for TCGA-PRAD patients demonstrated
significant associations with known target genes of the studied drugs. For Docetaxel, MAP2

showed a statistically significant association ( . For Erlotinib, both EGFR and𝑃 < 10−6)
ERBB2 showed statistically significant associations (both ). For Paclitaxel, BCL2𝑃 < 10−6

and MAP2 had significant associations. Finally, for(𝑃 = 8 × 10−6) (𝑃 = 10−4)
Gemcitabine, CMPK1 demonstrated significant association . These results(𝑃 < 10−6)
confirm again that the responses predicted by Velodrome are not random and they capture
biological aspects of the drug response even for a tissue under-represented in the source
domain.

Velodrome generalizes to new tissue types. Finally, we trained Velodrome and the
baselines only on samples (cell lines and patients) that originated from solid tissue types
because non-solid tissues such as haematopoietic and lymphoid have different molecular
and pharmacological profiles compared to solid ones (Noghabi et al. 2021). Therefore, we
wanted to examine the out-of-distribution capability of the Velodrome models on these
tissue types that were completely absent during training. For that, we tested the trained
Velodrome models for the studied drugs on samples originated from non-solid tissues in
the gCSI cell line dataset and evaluated the performance in terms of Pearson correlation
between the predictions and the actual AAC values and reported two-tailed p-value as well.
For Erlotinib and Gemcitabine, Velodrome demonstrated significant correlations of 0.4

and 0.39 , respectively. For Docetaxel and Paclitaxel,(𝑃 = 5 × 10−3) (𝑃 = 4 × 10−3)
11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.05.25.445658doi: bioRxiv preprint 

https://paperpile.com/c/9y8SHw/0xD8
https://doi.org/10.1101/2021.05.25.445658
http://creativecommons.org/licenses/by-nc/4.0/


Velodrome did not make accurate predictions and had poor correlations of -0.07 and -0.02,
respectively (both ).𝑃 > 0. 05
As a baseline to compare the Velodrome performance on non-solid tissues, we trained a
Ridge Regression model on samples originated from non-solid tissues in CTRPv2 and
GDSCv2 datasets and tested this predictor on non-solid samples of gCSI dataset. Therefore,
we built a predictor specifically for non-solid samples and the performance of this model
should act as an upper bound for the Velodrome. Similar to the Velodrome results, this

predictor also achieved significant correlations of 0.34 and 0.39(𝑃 = 10−2)
for Erlotinib and Gemcitabine and negative correlations of -0.11(𝑃 = 5 × 10−3)

and -0.4 for Docetaxel and Paclitaxel, respectively. These(𝑃 > 0. 05) (𝑃 = 4 × 10−3)
results suggest that Velodrome is as accurate (and even more accurate in the case of
Erlotinib) as a non-solid predictor on these tissues even though it did not utilize them
during training. The poor/negative correlation for Docetaxel and Paclitaxel may be dataset
specific, particularly in the case of Paclitaxel where the non-solid predictor had a significant
negative correlation, and requires further study.

Discussion

From the biological point of view, we found interesting connections between the known
target genes of the studied drugs and the TCGA cohorts that we investigated (TCGA-PRAD
and TCGA-KIRC). For example, BCL2 has known connections to prostate cancer progression
(Chaudhary, Abel, and Lalani 1999; Catz and Johnson 2003) and survival (Renner et al.
2017). More importantly, the expression of BCL2 may have an antiapoptotic activity against
androgen which is a key player in prostate cancer (Chaudhary, Abel, and Lalani 1999).
Similarly, BCL2 can also act as an oncoprotein in kidney cancer (Paraf et al. 1995) and
therapeutics roles (Adams and Cory 2007; Delbridge et al. 2016).
As another example, Microtubule-Associated Proteins including MAP2 have also been
associated with different cancers including prostate (Bhat and Setaluri 2007) and kidney
cancers (He et al. 2020). Moreover, Microtubule-targeting chemotherapy agents, Docetaxel
and Paclitaxel, have been used in combination with anti-androgen therapeutics to increase
the survival rate in prostate cancer patients (Martin, Kamelgarn, and Kyprianou 2014).
Prostate cancer progression and lethal outcome have been associated with metabolic
signaling pathways and CMPK1 (it mediates the mechanism of action for Gemcitabine) was
shown to be highly expressed in prostate cancer patients (Kelly et al. 2016). A combination
of Gemcitabine and other chemotherapy agents has shown to be effective for a subtype of
kidney cancer (Numakura et al. 2014). Finally, EGFR and ERBB2 have been associated with
different cancer types including prostate (El Sheikh et al. 2004; Pignon et al. 2009) and
kidney (Reid et al. 2007) and they both showed therapeutic opportunities and increase in
survival (Gordon et al. 2009).
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From the computational point of view, it has been shown that methods of empirical risk
minimization (ERM) are highly competitive for supervised domain generalization
(Gulrajani and Lopez-Paz 2020). Therefore, it was also expected to see a competitive
performance for a semi-supervised method (Mean Teacher) for the semi-supervised
domain generalization setting. Moreover, Velodrome, PRECISE, and Mean Teacher were
designed to take both labeled and unlabeled samples and, therefore, were expected to
achieve better performance on patients than DeepAll-ERM and Ridge-ERM. On the other
hand, these two methods achieved better performance on cell lines which makes sense
since they were trained on cell lines.
We considered only TCGA-BRCA, TCGA-PAAD, and TCGA-LUAD for training, because these
tissue types were well-represented in our cell line datasets (Figure S1) and because the
four studied drugs were treatment options for these cell lines. This selection increases the
relevancy of labeled (cell lines) and unlabeled (TCGA patients) data. Relevancy has been
shown to improve semi-supervised learning performance even when both labeled and
unlabeled datasets are imbalanced (Yang and Xu 2020), which is the case for drug response
prediction.
Although methods of adversarial domain adaptation have shown great performance in
different applications, especially computer vision (Ganin and Lempitsky 2015; Tzeng et al.
2017; Chen et al. 2017), we did not consider them as baselines because they were clearly
outperformed by PRECISE (which we do use as baseline) in a recent study (Sharifi-Noghabi
et al. 2020).
Although gene expression data has been shown many times to be the most effective
genomic data type for drug response prediction (Iorio et al. 2016; Costello et al. 2014), in
principle Velodrome can be extended to incorporate other omics data types. Especially
promising are proteomics data (Ali et al. 2018) and germline variants (Menden et al. 2018),
due to their predictive power. The advantage of proteomics is that it is closer to the
phenotype and gene expression and protein abundance can be quite discordant. Velodrome
can also be extended to incorporate additional information about the drug, such as the
chemical representation, to improve the performance (Jiang et al. 2020). Finally, we did not
discuss the explainability of the Velodrome model, but we note that the feature extractor of
Velodrome can be replaced by a knowledge-based network (Snow et al. 2020) to offer
explainability and transparency (Yu et al. 2018). A major limitation of our work is the
output space discrepancy between cell lines, PDX samples, and patients, because on cell
lines the drug response is measured based on the concentration of the drug but on PDX
samples and patients the response is measured based on the change in the tumor volume
after treatment. A recent method adjusts for this output space discrepancy and improves
the prediction performance (Sharifi-Noghabi et al. 2020), but this method requires access
to the target domain during training which violates the assumption of out-of-distribution
generalization. In this work, we used AAC as the measure of drug response in cell line
datasets and treated it as a score for making predictions for patients and PDX samples.
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However, measuring AAC is dependent on the tested concentration range which generally
differs between different pharmacogenomics studies. Recent efforts have demonstrated
that adjusting concentration ranges across different datasets improves the prediction
performance (Pozdeyev et al. 2016; Xia et al. 2021), however, we did not consider this
adjustment because it reduces the sample size substantially.

Conclusion

In this paper, we proposed Velodrome, a transfer learning method for drug response
prediction based on gene expression data. Velodrome is the first semi-supervised method
of out-of-distribution generalization. We trained Velodrome on cell line datasets with drug
response (measured in AAC) and patient datasets without drug response (i.e., unlabelled
data) as source domains and successfully validated it on different target domains such as
cell lines, PDX samples, and patient data across three chemotherapy agents and one
targeted therapeutic. Our results suggest that Velodrome outperforms state-of-the-art
methods of drug response prediction and transfer learning in terms of Pearson and
Spearman correlations (on cell lines) and in terms of AUROC and AUPR (on PDX samples
and patients). Moreover, we analyzed the biological significance of the predictions made by
Velodrome and provided substantial evidence that these predictions have statistically
significant associations with the expression level of numerous known target genes of the
studied drugs in a tissue well-represented in our source domains, i.e. kidney cancer, and a
tissue under-represented in our source domains, i.e. prostate cancer. Finally, we also
demonstrated that Velodrome generalizes to new tissue types that were completely absent
in the source domains. All these results demonstrate the superior out-of-distribution
generalization capability of the Velodrome model and suggest that Velodrome may guide
pharmacogenomics and precision oncology more accurately.

Methods

Data Preprocessing

We obtained all cell line datasets from the ORCESTRA platform (Mammoliti et al. 2020)
which stores pharmacogenomics datasets in PharmacoSet (PSet) R objects. Samples with
missing values were removed from both the gene expression and drug response data. The
cell line datasets were generated via the same drug screening assay (CellTiter Glo)
preprocessed using the PharmacoGx package version 2.0.5 (Smirnov et al. 2016) and are
also comparable in terms of gene expression data which was preprocessed via
Kallisto_0.46.1 (Bray et al. 2016). We also removed all the cell lines originating from
non-solid tissue types from the cell line datasets.

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.05.25.445658doi: bioRxiv preprint 

https://paperpile.com/c/9y8SHw/tKF4+sg9K
https://paperpile.com/c/9y8SHw/b0Dqs
https://paperpile.com/c/9y8SHw/MpZjV
https://paperpile.com/c/9y8SHw/OV0bt
https://doi.org/10.1101/2021.05.25.445658
http://creativecommons.org/licenses/by-nc/4.0/


We obtained the TCGA dataset via the Firehose (http://gdac.broadinstitute.org/)
28.01.2016. Expression values were converted to Transcripts Per Million (TPM) and
log2-transformed. The PDX and clinical trial datasets were preprocessed similar to the
approach described in (Sharifi-Noghabi et al. 2019). For Docetaxel and Paclitaxel patient
data, the accession code is GSE25065 and for Erlotinib, the accession code is GSE33072.
For all of the employed datasets, all gene names were mapped to Entrez gene ids and the
expression data were obtained before treatment and the response outcome after treatment.
We reduced the number of genes to 2128 genes obtained from (Manica et al. 2019). After
the preprocessing, all of the available datasets for each drug had the same number of genes
(Table S1).

The Velodrome Method

We propose Velodrome, a method of drug response prediction using labeled and unlabeled
source domains to build a predictive model that generalizes to unseen domains. To achieve
this goal, Velodrome requires three different characteristics: 1) being predictive of drug
response, 2) being generalizable to unseen domains, and 3) achieving these goals by taking
both labeled and unlabeled data. We designed the objective function of Velodrome to meet
these requirements by combining three loss functions: 1) a standard supervised loss based
on labeled data to ensure that the model is predictive, 2) an alignment loss to ensure that
the model has generalization capabilities, and 3) a consistency loss that exploits the
unlabeled data.

Problem Definition: Following the notation of (Pan and Yang 2010), a domain is defined𝐷
by a raw input space X , a probability distribution and a corresponding dataset𝑝(𝑋)

with X. A task is associated with and is𝑋 = {𝑥1, 𝑥2,..., 𝑥𝑛} 𝑥𝑖 ∈ Ƭ = {𝑌, ℱ(.)} 𝐷 = {𝑋, 𝑝(𝑋)}
defined by a label space Y and a predictive function which is learned from training𝑌 ∈ ℱ(.)
data X Y. In our case, Y , which makes drug response prediction a(𝑋, 𝑌) ∈ × ∈ [0, 1]
regression problem.

Given multiple labeled and unlabeled source domains denoted by and𝐷𝐿 = {𝐷𝑖𝑙}𝑖=1𝑛𝑙

the goal is to learn the predictive function which is implemented through𝐷𝑈 = {𝐷𝑗𝑢}𝑗=1𝑛𝑢 , ℱ(.)
a neural network. consists of a shared (across all source domains) feature extractorℱ(.)

parameterized by which maps to latent features and domain-specific𝐹θ(𝑋) θ, 𝑋 𝑍,
predictors parametrized by , which takes (the extracted features of ) as input and𝐺ϕ𝑖

𝑖 ϕ𝑖 𝑍𝑖 𝐷𝑖
makes predictions (of the drug response) for this source domain. and are being𝑌𝑖 θ {ϕ𝑖 }𝑖=1𝑛𝑙  
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optimized using an objective function

with a supervised loss𝐽(𝐷𝐿, 𝐷𝑈 , θ, {ϕ𝑖 }𝑖=1𝑛𝑙 ) = 𝑙(𝐷𝐿, θ, {ϕ𝑖 }𝑖=1𝑛𝑙 ) + Ω(𝐷𝐿, 𝐷𝑈, θ, {ϕ𝑖 }𝑖=1𝑛𝑙 ), 𝑙(.)
and some regularization terms .Ω(.)
In drug response prediction, we have access to labeled source domains such as cell line
datasets and unlabeled source domains such as cancer patients in TCGA . The goal is to
learn a model that makes accurate predictions on patients, PDXes, or other cell lines as
target domains that it may see during deployment. This is similar to out-of-distribution
generalization (also known as domain generalization), where the goal is to optimize

parameters of the model ( and ) in order to make the model generalizable andθ {ϕ𝑖 }𝑖=1𝑛𝑙
predictive of unseen domains. Out-of-distribution generalization assumes that there exists

a d-dimensional latent feature space that is invariant, predictive, and generalizable𝑍 ∈ 𝑅𝑑
to seen and unseen domains on this given space.

Shared feature extractor: To map the raw input gene expression data to the latent space,
Velodrome utilizes a feature extractor which is shared across all labeled and unlabeled
source domains: 𝑍𝑖𝑗 = 𝐹θ(𝑋𝑖𝑗),𝑗 ∈ {𝑙, 𝑢},𝑖 ∈ 𝐷𝑖𝑗,
where, denotes the features extracted by the feature extractor from , the samples𝑍𝑖𝑗 𝐹θ(.) 𝑋𝑖𝑗
obtained from the i-th domain of type j (labeled or unlabeled). These extracted (latent)
features will be provided as input to the domain-specific predictors.

Domain-specific predictors: To make predictions for the samples in the source domains,
Velodrome utilizes domain-specific predictors, meaning the number of domain-specific𝑛𝑙
predictors that Velodrome utilizes is the same as the number of labeled source domains.
These predictors are formulated as follows:𝑌𝑖𝑙 = 𝐺ϕ𝑖

𝑙 (𝑍𝑖𝑙),
where, denotes the predictions for the i-th labeled source domain obtained from𝑌𝑖𝑙
predictor associated with the i-th labeled source domain and parameterized by .𝐺ϕ𝑖

𝑙 (.) ϕ𝑖
These predictions will be utilized to optimize the parameters of the feature extractor and
the i-th predictor.

Supervised loss: To make the extracted latent features predictive of the drug response,
Velodrome utilizes a standard supervised loss as follows:
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𝑙(𝐷𝑙, θ, {ϕ𝑖 }𝑖=1𝑛𝑙 ) = 1𝑛𝑙 𝑖=1
𝑛𝑙∑ ||𝑌𝑖𝑙 − 𝑌𝑖𝑙||2

2,
where, denotes a standard supervised loss function in the form of the mean squared𝑙(.)
error (MSE). It is important to note that the parameters of the feature extractor are
optimized by the total supervised loss but the parameters of the i-th predictor are
optimized only by the supervised loss on predictions of the i-th predictor.

Alignment loss: Optimizing the parameters of the Velodrome model using only the
supervised loss is likely to lead to overfitting to the labeled source domains. Therefore, we
need an additional loss function to avoid overfitting to the source domains and to make the
latent representation generalizable to unseen domains. To achieve this, Velodrome utilizes
the CORAL loss function that regularizes the covariance matrices across input domains and
has demonstrated state-of-the-art performance for learning invariant representations in
computer vision applications (Sun and Saenko 2016; Gulrajani and Lopez-Paz 2020). The
CORAL loss is defined as follows:𝐶𝑂𝑅𝐴𝐿(𝐷𝐿, 𝐷𝑈, θ, {ϕ𝑖 }𝑖=1𝑛𝑙 ) = 𝑗=1

𝑛𝑙∑ 𝑖=1
𝑛𝑢∑ ||𝐶(𝑍𝑗𝑙) − 𝐶(𝑍𝑖𝑢)||𝐹2,

where, C(.) is the covariance operator which receives the extracted features of a source
domain and returns the covariance matrix of those features as follows:𝐶(𝑍) = 1𝑛 𝑖=1

𝑛∑ (𝑍𝑖 − 𝑍𝑖)(𝑍𝑖 − 𝑍𝑖)𝑇,
where, n is the number of samples and denotes the mean vector. Regularizing the𝑍
covariance matrices across source domains ensures learning invariant feature vectors.
It is important to note that the objective function of Velodrome requires a combination of
supervised and alignment loss because optimizing only the alignment loss is likely to lead
to a trivial “zero” solution where all domains are mapped to the same point (Sun and
Saenko 2016).

Consistency loss: Aligning the extracted features of the different domains imposes a strict
constraint on learning an invariant latent representation because it disregards the unique
domain-specific aspects of different source domains. To alleviate this, Velodrome utilizes a
consistency loss to ensure that it learns a hypothesis invariant representation, i.e.
predictions across source domains are similar when using different predictors. For

example, if we have two predictors and , we want them to generate similar𝐺ϕ𝑖
𝑙 𝐺ϕ𝑗

𝑙
predictions for the same unlabeled source domain. This consistency loss is defined as
follows:
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𝐶𝑂𝑁(𝐷𝑢, θ, {ϕ𝑖 }𝑖=1𝑛𝑙 ) = ||𝐺ϕ𝑖
𝑙 (𝑍𝑢) − 𝐺ϕ𝐽

𝑙 (𝑍𝑢)||2
2,

where, are extracted features for samples in a given unlabeled source domain and MSE is𝑍𝑢
the mean squared error.

Objective function: Putting all of the loss functions together, the objective function of
Velodrome is as follows:

).𝐽(𝐷𝐿, 𝐷𝑈 , θ, {ϕ𝑖 }𝑖=1𝑛𝑙 ) = 𝑙(𝐷𝐿, θ, {ϕ𝑖 }𝑖=1𝑛𝑙 ) + λ1𝐶𝑂𝑅𝐴𝐿(𝐷𝐿, 𝐷𝑈, θ, {ϕ𝑖 }𝑖=1𝑛𝑙 ) + λ2𝐶𝑂𝑁(𝐷𝑈, θ, {ϕ𝑖 }𝑖=1𝑛𝑙
where, and denote the regularization coefficients for the coral loss andλ1 λ2 = 1 − λ1
consistency loss, respectively. Therefore, the function that we defined in the problemΩ(.)
definition is given by . and control balancing betweenΩ(.) = λ1𝐶𝑂𝑅𝐴𝐿(.) + λ2𝐶𝑂𝑁(.) λ1 λ2
learning a domain-invariant representation and learning a hypothesis-invariant
representation because the alignment loss ensures learning a domain-invariant
representation, while the consistency loss ensures learning a hypothesis-invariant
representation. The training steps of the Velodrome method are presented in Algorithm 1.

Algorithm 1: Velodrome

Input: Gene expression and AAC of multiple cell line datasets, gene expression of patients
Output: trained feature extractor and predictors of drug response

While the stopping condition is not reached:
While the stopping condition is not reached:

Sample a mini-batch from each cell line dataset
Update feature extractor and predictors using supervised loss

Sample a mini-batch from the patient dataset
Sample a mini-batch from each cell line dataset
Calculate the supervised loss
Calculate the the covariance matrices and then  alignment loss
Calculate the consistency loss
Update feature extractor and predictors using all losses

Velodrome at test time: For a target sample Velodrome makes prediction as follows:𝑥𝑡,𝑦𝑡 = 𝑖∑ 𝑤𝑖𝐺ϕ𝑖(𝐹θ(𝑥𝑡)),
where, denotes the average supervised loss for the predictions of normalized via a𝑤𝑖 𝐺ϕ𝑖,
softmax function such that This means the final prediction will be a result of a𝑖∑ 𝑤𝑖 = 1.
weighted average of all predictors, and more accurate predictors will have higher weights.

18

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.05.25.445658doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445658
http://creativecommons.org/licenses/by-nc/4.0/


Implementation Detail

Hyper-parameters: We considered a wide range of values for each hyper-parameter of the
Velodrome model and optimized these values via a random search separately for each drug.
The sets of values considered are as follows:𝐸𝑝𝑜𝑐ℎ = [10,  50,  100,  200],  𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 (𝐿𝑅) = [0. 0001,  0. 001,  0. 01,  0. 0005,  0. 005,  0. 05]𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐷𝑅) = [0. 1,  0. 3,  0. 5,  0. 8]𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑒𝑐𝑎𝑦 (𝑊𝐷) = [0. 001,  0. 0001,  0. 01,  0. 05,  0. 005,  0. 0005]λ1 = [1,  0. 1,  0. 2,  0. 3,  0. 4,  0. 5,  0. 01,  0. 05,  0. 001,  0. 005,  0. 0001,  0. 0005]𝑀𝑖𝑛𝑖 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 (𝑀𝐵) = [17,  33,  65,  129]
We considered separate learning rates and weight decays for the feature extractor and each
predictor, but they all used the same sets of possible values.
We split the labeled cell line datasets (CTRPv2 and GDSCv2) into train and validation and
considered 90% for train and 10% for validation. We merged the train splits into one
training dataset and similarly, merged the validation splits into one validation set and used
the merged validation set to optimize the values of these hyper-parameters.

Velodrome architecture: We followed previous works and designed predefined
architectures (denoted by HD) for Velodrome (Noghabi et al. 2021; Sakellaropoulos et al.
2019). For the feature extractor, the first architecture has two hidden layers with the size

, the second one has two layers with the size , the third one has three512 × 128 256 × 256
hidden layers with the size and the last architecture has four hidden128 × 128 × 128
layers with the size . We considered a batch normalization layer64 × 64 × 64 × 64
followed by an activation function (which we considered the Relu, the Tanh, and Sigmoid
functions) as well as a dropout after the activation function for each hidden layer. The
predictors have only one layer where HD denotes the size of the last layer in the𝐻𝐷 × 1,
feature extractor. The final hyper-parameter and architecture of Velodrome for the studied
drugs are as follows:
Drug: Epoch, MB, DR, WD1, WD2, WD3, HD, LR1, LR2, LR3, λ1,λ2
Docetaxel: 10, 65, 0.1, 0.05, 0.0005, 0.0001, 3, 0.001, 0.005, 0.0005, 0.2, 0.8
Gemcitabine: 10, 17, 0.1, 0.0001, 0.005, 0.01, 2, 0.01, 0.005, 0.05, 0.005, 0.99
Erlotinib: 50, 129, 0.1, 0.05, 0.005, 0.0005, 2, 0.001, 0.01, 0.001, 0.01, 0.99
Paclitaxel: 50, 129, 0.1, 0.005, 0.05, 0.005, 2, 0.05, 0.0005, 0.0001, 0.3, 0.7
WD1, WD2, and WD3 refers to the values we used for the feature extractor, predictor 1, and
predictor 2, respectively (similar for LR1, LR2, and LR3).
For re-running and the ablation study of the trained models, we considered these random
values for the random seed:𝑆𝑒𝑒𝑑 = [1,  21,  42,  84,  168,  336,  672,  1344,  2688,  5376].
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We used 42 for the majority of the analyses in the paper (because it’s the answer to life, the
universe and everything!).
We used the same ranges for all of the baseline methods whenever using those values was
applicable. For DeepAll-ERM and Ridge-ERM we used the existing implementations here:
(https://github.com/bhklab/PGx_Guidelines), for PRECISE, we used the existing
implementations here: (https://github.com/NKI-CCB/PRECISE). For Mean Teacher, we
adopted an existing implementation for computer vision and modified it for this problem
here: (https://github.com/CuriousAI/mean-teacher).
All of the deep neural network implementations were in the PyTorch framework and we
employed the Adagrad optimizer to optimize the parameters of Velodrome as well as the
baselines wherever applicable.

Performance evaluation: We employed the Scikit-learn and Scipy Python packages for the
evaluation purposes. To be more specific, we utilized scikit-learn to calculate the AUROC
and AUPR (for PDX samples and Patients) and we utilized the Scipy to calculate Pearson
and Spearman correlations (for cell lines). For the association study, we utilized
statsmodels.api Python package to fit the multiple linear regression and obtain the P-values
and we obtained the list of known associated target genes for each drug by querying the
PharmacoDB resource (Smirnov et al. 2018).

Data and Code Availability

All the final preprocessed data employed in this paper are publicly available here:
https://zenodo.org/record/4793442#.YK1HVqhKiUk

All the codes, model objects, and supplementary material to run and reproduce our
experimental results are publicly available here:
https://github.com/hosseinshn/Velodrome

We also provided a conda environment to ensure version compatibility for future users.

Acknowledgement

We would like to thank Hossein Asghari (Ocean Genomics) and Shuman Peng (Simon Fraser
University) for their support. We also would like to thank the Vancouver Prostate Centre
and Compute Canada (West Grid) for providing the computational resources for this
research.

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.05.25.445658doi: bioRxiv preprint 

https://github.com/bhklab/PGx_Guidelines
https://github.com/NKI-CCB/PRECISE
https://github.com/CuriousAI/mean-teacher
https://paperpile.com/c/9y8SHw/pnOF
https://zenodo.org/record/4793442#.YK1HVqhKiUk
https://github.com/hosseinshn/Velodrome
https://doi.org/10.1101/2021.05.25.445658
http://creativecommons.org/licenses/by-nc/4.0/


Funding

This work was supported by a Discovery Grant from the National Science and Engineering
Research Council of Canada (to M.E.), Canada Foundation for Innovation (33440 to C.C.C.),
The Canadian Institutes of Health Research (PJT-153073 to C.C.C.), Terry Fox Foundation
(201012TFF to C.C.C.), and The Terry Fox New Frontiers Program Project Grants (1062 to
C.C.C.).

Authors’ contributions

Study concept and design: H.S-N., M.E.
Deep learning design, implementations, and analysis: H.S-N.
Data preprocessing, analysis, and interpretation: H.S-N., O.Z.
Experiments: H.S-N., P.AH.
Analysis and interpretation of results: H.S-N., P.AH., O.Z.
Supervision: C.C.C., M.E.

Conflict of Interest

None declared.

References

Adams, J. M., and S. Cory. 2007. “The Bcl-2 Apoptotic Switch in Cancer Development and Therapy.” Oncogene
26 (9): 1324–37.

Ali, Mehreen, Suleiman A. Khan, Krister Wennerberg, and Tero Aittokallio. 2018. “Global Proteomics Profiling
Improves Drug Sensitivity Prediction: Results from a Multi-Omics, Pan-Cancer Modeling Approach.”
Bioinformatics 34 (8): 1353–62.

Barretina, Jordi, Giordano Caponigro, Nicolas Stransky, Kavitha Venkatesan, Adam A. Margolin, Sungjoon Kim,
Christopher J. Wilson, et al. 2012. “The Cancer Cell Line Encyclopedia Enables Predictive Modelling of
Anticancer Drug Sensitivity.” Nature 483 (7391): 603–7.

Basu, Amrita, Nicole E. Bodycombe, Jaime H. Cheah, Edmund V. Price, Ke Liu, Giannina I. Schaefer, Richard Y.
Ebright, et al. 2013. “An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies
Targeted by Small Molecules.” Cell 154 (5): 1151–61.

Bhat, Kumar M. R., and Vijayasaradhi Setaluri. 2007. “Microtubule-Associated Proteins as Targets in Cancer
Chemotherapy.” Clinical Cancer Research: An Official Journal of the American Association for Cancer
Research 13 (10): 2849–54.

Bray, Nicolas L., Harold Pimentel, Páll Melsted, and Lior Pachter. 2016. “Erratum: Near-Optimal Probabilistic
RNA-Seq Quantification.” Nature Biotechnology 34 (8): 888.

Byers, Lauren Averett, Lixia Diao, Jing Wang, Pierre Saintigny, Luc Girard, Michael Peyton, Li Shen, et al. 2013.
“An Epithelial--Mesenchymal Transition Gene Signature Predicts Resistance to EGFR and PI3K Inhibitors
and Identifies Axl as a Therapeutic Target for Overcoming EGFR Inhibitor Resistance.” Clinical Cancer
Research: An Official Journal of the American Association for Cancer Research 19 (1): 279–90.

Cancer Genome Atlas Research Network, John N. Weinstein, Eric A. Collisson, Gordon B. Mills, Kenna R. Mills
Shaw, Brad A. Ozenberger, Kyle Ellrott, Ilya Shmulevich, Chris Sander, and Joshua M. Stuart. 2013. “The
Cancer Genome Atlas Pan-Cancer Analysis Project.” Nature Genetics 45 (10): 1113–20.

Catz, S. D., and J. L. Johnson. 2003. “BCL-2 in Prostate Cancer: A Minireview.” Apoptosis: An International
Journal on Programmed Cell Death 8 (1): 29–37.

21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.05.25.445658doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445658
http://creativecommons.org/licenses/by-nc/4.0/


Chaudhary, K. S., P. D. Abel, and E. N. Lalani. 1999. “Role of the Bcl-2 Gene Family in Prostate Cancer
Progression and Its Implications for Therapeutic Intervention.” Environmental Health Perspectives 107
Suppl 1 (February): 49–57.

Chen, Yi-Hsin, Wei-Yu Chen, Yu-Ting Chen, Bo-Cheng Tsai, Yu-Chiang Frank Wang, and Min Sun. 2017. “No
More Discrimination: Cross City Adaptation of Road Scene Segmenters.” In Proceedings of the IEEE
International Conference on Computer Vision, 1992–2001.

Costello, James C., NCI DREAM Community, Laura M. Heiser, Elisabeth Georgii, Mehmet Gönen, Michael P.
Menden, Nicholas J. Wang, et al. 2014. “A Community Effort to Assess and Improve Drug Sensitivity
Prediction Algorithms.” Nature Biotechnology. https://doi.org/10.1038/nbt.2877.

Cronin, Kathleen A., Andrew J. Lake, Susan Scott, Recinda L. Sherman, Anne-Michelle Noone, Nadia Howlader,
S. Jane Henley, et al. 2018. “Annual Report to the Nation on the Status of Cancer, Part I: National Cancer
Statistics.” Cancer 124 (13): 2785–2800.

Delbridge, Alex R. D., Stephanie Grabow, Andreas Strasser, and David L. Vaux. 2016. “Thirty Years of BCL-2:
Translating Cell Death Discoveries into Novel Cancer Therapies.” Nature Reviews. Cancer 16 (2): 99–109.

Ding, Zijian, Songpeng Zu, and Jin Gu. 2016. “Evaluating the Molecule-Based Prediction of Clinical Drug
Responses in Cancer.” Bioinformatics 32 (19): 2891–95.

El Sheikh, Soha Salama, Jan Domin, Paul Abel, Gordon Stamp, and El-Nasir Lalani. 2004. “Phosphorylation of
Both EGFR and ErbB2 Is a Reliable Predictor of Prostate Cancer Cell Proliferation in Response to EGF.”
Neoplasia 6 (6): 846–53.

Ganin, Yaroslav, and Victor Lempitsky. 2015. “Unsupervised Domain Adaptation by Backpropagation.” In
Proceedings of the 32nd International Conference on Machine Learning, edited by Francis Bach and David
Blei, 37:1180–89. Proceedings of Machine Learning Research. Lille, France: PMLR.

Gao, Hui, Joshua M. Korn, Stéphane Ferretti, John E. Monahan, Youzhen Wang, Mallika Singh, Chao Zhang, et al.
2015. “High-Throughput Screening Using Patient-Derived Tumor Xenografts to Predict Clinical Trial Drug
Response.” Nature Medicine 21 (11): 1318–25.

Garnett, Mathew J., Elena J. Edelman, Sonja J. Heidorn, Chris D. Greenman, Anahita Dastur, King Wai Lau,
Patricia Greninger, et al. 2012. “Systematic Identification of Genomic Markers of Drug Sensitivity in
Cancer Cells.” Nature 483 (7391): 570–75.

Garraway, Levi A., Jaap Verweij, and Karla V. Ballman. 2013. “Precision Oncology: An Overview.” Journal of
Clinical Oncology: Official Journal of the American Society of Clinical Oncology 31 (15): 1803–5.

Geeleher, Paul, Nancy J. Cox, and R. Stephanie Huang. 2014. “Clinical Drug Response Can Be Predicted Using
Baseline Gene Expression Levels and in Vitro Drug Sensitivity in Cell Lines.” Genome Biology 15 (3): R47.

Geeleher, Paul, Eric R. Gamazon, Cathal Seoighe, Nancy J. Cox, and R. Stephanie Huang. 2016. “Consistency in
Large Pharmacogenomic Studies.” Nature 540 (7631): E1–2.

Gordon, Michael S., Michael Hussey, Raymond B. Nagle, Primo N. Lara Jr, Philip C. Mack, Janice Dutcher,
Wolfram Samlowski, et al. 2009. “Phase II Study of Erlotinib in Patients with Locally Advanced or
Metastatic Papillary Histology Renal Cell Cancer: SWOG S0317.” Journal of Clinical Oncology: Official
Journal of the American Society of Clinical Oncology 27 (34): 5788–93.

Gulrajani, Ishaan, and David Lopez-Paz. 2020. “In Search of Lost Domain Generalization.” arXiv [cs.LG]. arXiv.
http://arxiv.org/abs/2007.01434.

Haibe-Kains, Benjamin, Nehme El-Hachem, Nicolai Juul Birkbak, Andrew C. Jin, Andrew H. Beck, Hugo J. W. L.
Aerts, and John Quackenbush. 2013. “Inconsistency in Large Pharmacogenomic Studies.” Nature 504
(7480): 389–93.

Hatzis, Christos, Lajos Pusztai, Vicente Valero, Daniel J. Booser, Laura Esserman, Ana Lluch, Tatiana Vidaurre,
et al. 2011. “A Genomic Predictor of Response and Survival Following Taxane-Anthracycline
Chemotherapy for Invasive Breast Cancer.” JAMA: The Journal of the American Medical Association 305
(18): 1873–81.

Haverty, Peter M., Eva Lin, Jenille Tan, Yihong Yu, Billy Lam, Steve Lianoglou, Richard M. Neve, et al. 2016.
“Reproducible Pharmacogenomic Profiling of Cancer Cell Line Panels.” Nature 533 (7603): 333–37.

He, Zhaoyue, He Liu, Holger Moch, and Hans-Uwe Simon. 2020. “Machine Learning with Autophagy-Related
Proteins for Discriminating Renal Cell Carcinoma Subtypes.” Scientific Reports 10 (1): 720.

Holmberg, Olle G., Niklas D. Köhler, Thiago Martins, Jakob Siedlecki, Tina Herold, Leonie Keidel, Ben Asani, et
al. 2020. “Self-Supervised Retinal Thickness Prediction Enables Deep Learning from Unlabelled Data to
Boost Classification of Diabetic Retinopathy.” Nature Machine Intelligence 2 (11): 719–26.

Hu, Jian, Xiangjie Li, Gang Hu, Yafei Lyu, Katalin Susztak, and Mingyao Li. 2020. “Iterative Transfer Learning

22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.05.25.445658doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445658
http://creativecommons.org/licenses/by-nc/4.0/


with Neural Network for Clustering and Cell Type Classification in Single-Cell RNA-Seq Analysis.” Nature
Machine Intelligence 2 (10): 607–18.

Iorio, Francesco, Theo A. Knijnenburg, Daniel J. Vis, Graham R. Bignell, Michael P. Menden, Michael Schubert,
Nanne Aben, et al. 2016. “A Landscape of Pharmacogenomic Interactions in Cancer.” Cell 166 (3): 740–54.

Jiang, Yuepeng, Stefano Rensi, Sheng Wang, and Russ B. Altman. 2020. “DrugOrchestra: Jointly Predicting Drug
Response, Targets, and Side Effects via Deep Multi-Task Learning.”

Kelly, Rachel S., Jennifer A. Sinnott, Jennifer R. Rider, Ericka M. Ebot, Travis Gerke, Michaela Bowden, Andreas
Pettersson, et al. 2016. “The Role of Tumor Metabolism as a Driver of Prostate Cancer Progression and
Lethal Disease: Results from a Nested Case-Control Study.” Cancer & Metabolism 4 (December): 22.

Klijn, Christiaan, Steffen Durinck, Eric W. Stawiski, Peter M. Haverty, Zhaoshi Jiang, Hanbin Liu, Jeremiah
Degenhardt, et al. 2015. “A Comprehensive Transcriptional Portrait of Human Cancer Cell Lines.” Nature
Biotechnology 33 (3): 306–12.

Kuenzi, Brent M., Jisoo Park, Samson H. Fong, Kyle S. Sanchez, John Lee, Jason F. Kreisberg, Jianzhu Ma, and
Trey Ideker. 2020. “Predicting Drug Response and Synergy Using a Deep Learning Model of Human
Cancer Cells.” Cancer Cell 38 (5): 672–84.e6.

Ma, Jianzhu, Samson H. Fong, Yunan Luo, Christopher J. Bakkenist, John Paul Shen, Soufiane Mourragui,
Lodewyk F. A. Wessels, et al. 2021. “Few-Shot Learning Creates Predictive Models of Drug Response That
Translate from High-Throughput Screens to Individual Patients.” Nature Cancer, January.
https://doi.org/10.1038/s43018-020-00169-2.

Mammoliti, Anthony, Petr Smirnov, Minoru Nakano, Zhaleh Safikhani, Chantal Ho, Gangesh Beri, and Benjamin
Haibe-Kains. 2020. “ORCESTRA: A Platform for Orchestrating and Sharing High-Throughput
Pharmacogenomic Analyses.” Cold Spring Harbor Laboratory.
https://doi.org/10.1101/2020.09.18.303842.

Manica, Matteo, Ali Oskooei, Jannis Born, Vigneshwari Subramanian, Julio Sáez-Rodríguez, and María
Rodríguez Martínez. 2019. “Toward Explainable Anticancer Compound Sensitivity Prediction via
Multimodal Attention-Based Convolutional Encoders.” Molecular Pharmaceutics 16 (12): 4797–4806.

Marquart, John, Emerson Y. Chen, and Vinay Prasad. 2018. “Estimation of the Percentage of US Patients With
Cancer Who Benefit From Genome-Driven Oncology.” JAMA Oncology 4 (8): 1093–98.

Martin, Sarah K., Marisa Kamelgarn, and Natasha Kyprianou. 2014. “Cytoskeleton Targeting Value in Prostate
Cancer Treatment.” American Journal of Clinical and Experimental Urology 2 (1): 15–26.

Menden, Michael P., Francesco Paolo Casale, Johannes Stephan, Graham R. Bignell, Francesco Iorio, Ultan
McDermott, Mathew J. Garnett, Julio Saez-Rodriguez, and Oliver Stegle. 2018. “The Germline Genetic
Component of Drug Sensitivity in Cancer Cell Lines.” Nature Communications 9 (1): 3385.

Mourragui, Soufiane, Marco Loog, Daniel J. Vis, Kat Moore, Anna Gonzalez Manjon, Mark A. van de Wiel, Marcel
J. T. Reinders, and Lodewyk F. A. Wessels. 2020. “PRECISE+ Predicts Drug Response in Patients by
Non-Linear Subspace-Based Transfer from Cell Lines and PDX Models.” bioRxiv.

Mourragui, Soufiane, Marco Loog, Mark A. van de Wiel, Marcel J. T. Reinders, and Lodewyk F. A. Wessels. 2019.
“PRECISE: A Domain Adaptation Approach to Transfer Predictors of Drug Response from Pre-Clinical
Models to Tumors.” Bioinformatics 35 (14): i510–19.

Mpindi, John Patrick, Bhagwan Yadav, Päivi Östling, Prson Gautam, Disha Malani, Astrid Murumägi, Akira
Hirasawa, et al. 2016. “Consistency in Drug Response Profiling.” Nature 540 (7631): E5–6.

Neyshabur, B., H. Sedghi, and C. Zhang. 2020. “What Is Being Transferred in Transfer Learning?” Advances in
Neural Information Processing Systems.
https://papers.nips.cc/paper/2020/file/0607f4c705595b911a4f3e7a127b44e0-Paper.pdf.

Noghabi, Hossein Sharifi, Soheil Jahangiri-Tazehkand, Casey Hon, Petr Smirnov, Anthony Mammoliti, Sisira
Kadambat Nair, Arvind Singh Mer, Martin Ester, and Benjamin Haibe-Kains. 2021. “Drug Sensitivity
Prediction From Cell Line-Based Pharmacogenomics Data: Guidelines for Developing Machine Learning
Models.” bioRxiv.

Numakura, Kazuyuki, Norihiko Tsuchiya, Susumu Akihama, Takamitsu Inoue, Shintaro Narita, Mingguo Huang,
Shigeru Satoh, and Tomonori Habuchi. 2014. “Successful Mammalian Target of Rapamycin Inhibitor
Maintenance Therapy Following Induction Chemotherapy with Gemcitabine and Doxorubicin for
Metastatic Sarcomatoid Renal Cell Carcinoma.” Oncology Letters 8 (1): 464–66.

Pal, Sumanta K., Michael J. Miller, Neeraj Agarwal, Susan Marina Chang, Mariana Chavez-MacGregor, Ezra
Cohen, Suzanne Cole, et al. 2019. “Clinical Cancer Advances 2019: Annual Report on Progress Against
Cancer From the American Society of Clinical Oncology.” Journal of Clinical Oncology: Official Journal of the

23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.05.25.445658doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445658
http://creativecommons.org/licenses/by-nc/4.0/


American Society of Clinical Oncology 37 (10): 834–49.
Pan, Sinno Jialin, and Qiang Yang. 2010. “A Survey on Transfer Learning.” IEEE Transactions on Knowledge and

Data Engineering 22 (10): 1345–59.
Paraf, F., J. Gogusev, Y. Chrétien, and D. Droz. 1995. “Expression of Bcl-2 Oncoprotein in Renal Cell Tumours.”

The Journal of Pathology 177 (3): 247–52.
Peres da Silva, Rafael, Chayaporn Suphavilai, and Niranjan Nagarajan. 2021. “TUGDA: Task Uncertainty Guided

Domain Adaptation for Robust Generalization of Cancer Drug Response Prediction from in Vitro to in
Vivo Settings.” Bioinformatics , May. https://doi.org/10.1093/bioinformatics/btab299.

Pignon, Jean-Christophe, Benjamin Koopmansch, Gregory Nolens, Laurence Delacroix, David Waltregny, and
Rosita Winkler. 2009. “Androgen Receptor Controls EGFR and ERBB2 Gene Expression at Different Levels
in Prostate Cancer Cell Lines.” Cancer Research 69 (7): 2941–49.

Pozdeyev, Nikita, Minjae Yoo, Ryan Mackie, Rebecca E. Schweppe, Aik Choon Tan, and Bryan R. Haugen. 2016.
“Integrating Heterogeneous Drug Sensitivity Data from Cancer Pharmacogenomic Studies.” Oncotarget 7
(32): 51619–25.

Raghu, Maithra, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. 2019. “Transfusion: Understanding Transfer
Learning for Medical Imaging.” In Advances in Neural Information Processing Systems, edited by H.
Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, and R. Garnett,
32:3347–57. Curran Associates, Inc.

Reid, Alison, Laura Vidal, Heather Shaw, and Johann de Bono. 2007. “Dual Inhibition of ErbB1 (EGFR/HER1)
and ErbB2 (HER2/neu).” European Journal of Cancer 43 (3): 481–89.

Renner, Wilfried, Uwe Langsenlehner, Sabine Krenn-Pilko, Petra Eder, and Tanja Langsenlehner. 2017. “BCL2
Genotypes and Prostate Cancer Survival.” Strahlentherapie Und Onkologie: Organ Der Deutschen
Rontgengesellschaft ... [et Al] 193 (6): 466–71.

Safikhani, Zhaleh, Petr Smirnov, Mark Freeman, Nehme El-Hachem, Adrian She, Quevedo Rene, Anna
Goldenberg, et al. 2016. “Revisiting Inconsistency in Large Pharmacogenomic Studies.” F1000Research 5
(September): 2333.

Saito, Kuniaki, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. 2018. “Maximum Classifier
Discrepancy for Unsupervised Domain Adaptation.” In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. IEEE. https://doi.org/10.1109/cvpr.2018.00392.

Sakellaropoulos, Theodore, Konstantinos Vougas, Sonali Narang, Filippos Koinis, Athanassios Kotsinas,
Alexander Polyzos, Tyler J. Moss, et al. 2019. “A Deep Learning Framework for Predicting Response to
Therapy in Cancer.” Cell Reports 29 (11): 3367–73.e4.

Schwartz, Lawrence H., Saskia Litière, Elisabeth de Vries, Robert Ford, Stephen Gwyther, Sumithra Mandrekar,
Lalitha Shankar, et al. 2016. “RECIST 1.1-Update and Clarification: From the RECIST Committee.”
European Journal of Cancer 62 (July): 132–37.

Seashore-Ludlow, Brinton, Matthew G. Rees, Jaime H. Cheah, Murat Cokol, Edmund V. Price, Matthew E. Coletti,
Victor Jones, et al. 2015. “Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset.”
Cancer Discovery 5 (11): 1210–23.

Sharifi-Noghabi, Hossein, Shuman Peng, Olga Zolotareva, Colin C. Collins, and Martin Ester. 2020. “AITL:
Adversarial Inductive Transfer Learning with Input and Output Space Adaptation for
Pharmacogenomics.” Bioinformatics 36 (Supplement_1): i380–88.

Sharifi-Noghabi, Hossein, Olga Zolotareva, Colin C. Collins, and Martin Ester. 2019. “MOLI: Multi-Omics Late
Integration with Deep Neural Networks for Drug Response Prediction.” Bioinformatics 35 (14): i501–9.

Smirnov, Petr, Victor Kofia, Alexander Maru, Mark Freeman, Chantal Ho, Nehme El-Hachem, George-Alexandru
Adam, Wail Ba-Alawi, Zhaleh Safikhani, and Benjamin Haibe-Kains. 2018. “PharmacoDB: An Integrative
Database for Mining in Vitro Anticancer Drug Screening Studies.” Nucleic Acids Research 46 (D1):
D994–1002.

Smirnov, Petr, Zhaleh Safikhani, Nehme El-Hachem, Dong Wang, Adrian She, Catharina Olsen, Mark Freeman,
et al. 2016. “PharmacoGx: An R Package for Analysis of Large Pharmacogenomic Datasets.” Bioinformatics
32 (8): 1244–46.

Snow, Oliver, Hossein Sharifi-Noghabi, Jialin Lu, Olga Zolotareva, Mark Lee, and Martin Ester. 2020. “BDKANN -
Biological Domain Knowledge-Based Artificial Neural Network for Drug Response Prediction.” Cold
Spring Harbor Laboratory. https://doi.org/10.1101/840553.

Sun, Baochen, and Kate Saenko. 2016. “Deep CORAL: Correlation Alignment for Deep Domain Adaptation.” In
Computer Vision – ECCV 2016 Workshops, 443–50. Springer International Publishing.

24

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.05.25.445658doi: bioRxiv preprint 

http://paperpile.com/b/9y8SHw/jmnS
http://paperpile.com/b/9y8SHw/jmnS
https://doi.org/10.1101/2021.05.25.445658
http://creativecommons.org/licenses/by-nc/4.0/


Taroni, Jaclyn N., Peter C. Grayson, Qiwen Hu, Sean Eddy, Matthias Kretzler, Peter A. Merkel, and Casey S.
Greene. 2019. “MultiPLIER: A Transfer Learning Framework for Transcriptomics Reveals Systemic
Features of Rare Disease.” Cell Systems 8 (5): 380–94.e4.

Tarvainen, Antti, and Harri Valpola. 2017. “Mean Teachers Are Better Role Models: Weight-Averaged
Consistency Targets Improve Semi-Supervised Deep Learning Results.” arXiv [cs.NE]. arXiv.
http://arxiv.org/abs/1703.01780.

Tzeng, Eric, Judy Hoffman, Kate Saenko, and Trevor Darrell. 2017. “Adversarial Discriminative Domain
Adaptation.” In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE.
https://doi.org/10.1109/cvpr.2017.316.

Wang, Jindong, Cuiling Lan, Chang Liu, Yidong Ouyang, Wenjun Zeng, and Tao Qin. 2021. “Generalizing to
Unseen Domains: A Survey on Domain Generalization.” arXiv [cs.LG]. arXiv.
http://arxiv.org/abs/2103.03097.

Wang, Ziqi, Marco Loog, and Jan van Gemert. 2021. “Respecting Domain Relations: Hypothesis Invariance for
Domain Generalization.” In 2020 25th International Conference on Pattern Recognition (ICPR), 9756–63.

Warren, Allison, Andrew Jones, Tsukasa Shibue, William C. Hahn, Jesse S. Boehm, Francisca Vazquez, Aviad
Tsherniak, and James M. McFarland. 2020. “Global Computational Alignment of Tumor and Cell Line
Transcriptional Profiles.” Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.03.25.008342.

Xia, Fangfang, Jonathan Allen, Prasanna Balaprakash, Thomas Brettin, Cristina Garcia-Cardona, Austin Clyde,
Judith Cohn, et al. 2021. “A Cross-Study Analysis of Drug Response Prediction in Cancer Cell Lines.” arXiv
[q-bio.QM]. arXiv. http://arxiv.org/abs/2104.08961.

Yang, Yuzhe, and Zhi Xu. 2020. “Rethinking the Value of Labels for Improving Class-Imbalanced Learning.”
arXiv [cs.LG]. arXiv. http://arxiv.org/abs/2006.07529.

Yu, Michael K., Jianzhu Ma, Jasmin Fisher, Jason F. Kreisberg, Benjamin J. Raphael, and Trey Ideker. 2018.
“Visible Machine Learning for Biomedicine.” Cell 173 (7): 1562–65.

Zhang, Haoran, Natalie Dullerud, Laleh Seyyed-Kalantari, Quaid Morris, Shalmali Joshi, and Marzyeh
Ghassemi. 2021. “An Empirical Framework for Domain Generalization in Clinical Settings.” In Proceedings
of the Conference on Health, Inference, and Learning. New York, NY, USA: ACM.
https://doi.org/10.1145/3450439.3451878.

Zhao, Shanshan, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. 2020. “Domain Generalization via
Entropy Regularization.” Advances in Neural Information Processing Systems 33.

Zhou, Kaiyang, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. 2021. “Domain Generalization: A Survey.”
arXiv [cs.LG]. arXiv. http://arxiv.org/abs/2103.02503.

Zhu, Yitan, Thomas Brettin, Yvonne A. Evrard, Alexander Partin, Fangfang Xia, Maulik Shukla, Hyunseung Yoo,
James H. Doroshow, and Rick L. Stevens. 2020. “Ensemble Transfer Learning for the Prediction of
Anti-Cancer Drug Response.” Scientific Reports 10 (1): 18040.

25

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.05.25.445658doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445658
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Material

Table S1 Characteristics of the employed datasets

Dataset Drug Type Domain Label Tissue #Samples #Genes

CTRPv2 Docetaxel Cell line Source AAC Solid 292 1453

GDSCv2 Docetaxel Cell line Source AAC Solid 234 1453

TCGA-LUAD Docetaxel Patient Source Unlabeled Solid 507 1453

TCGA-BRCA Docetaxel Patient Source Unlabeled Solid 1051 1453

TCGA-PAAD Docetaxel Patient Source Unlabeled Solid 131 1453

gCSI Docetaxel Cell line Target AAC Solid 280 1453

GSE25065D Docetaxel Patient Target RECIST Solid 51 1453

CTRPv2 Gemcitabine Cell line Source AAC Solid 514 2080

GDSCv2 Gemcitabine Cell line Source AAC Solid 226 2080

TCGA-LUAD Gemcitabine Patient Source Unlabeled Solid 507 2080

TCGA-BRCA Gemcitabine Patient Source Unlabeled Solid 1051 2080

TCGA-PAAD Gemcitabine Patient Source Unlabeled Solid 131 2080

gCSI Gemcitabine Cell line Target AAC Solid 277 2080

TCGA-Gem Gemcitabine Patient Target RECIST Solid 66 2080

PDXE Gemcitabine PDX Target RECIST Solid 25 2080

CTRPv2 Erlotinib Cell line Source AAC Solid 607 2066

GDSCv2 Erlotinib Cell line Source AAC Solid 230 2066

TCGA-LUAD Erlotinib Patient Source Unlabeled Solid 507 2066

TCGA-BRCA Erlotinib Patient Source Unlabeled Solid 1051 2066

TCGA-PAAD Erlotinib Patient Source Unlabeled Solid 131 2066

gCSI Erlotinib Cell line Target AAC Solid 283 2066

GSE33072 Erlotinib Patient Target RECIST Solid 25 2066

PDXE Erlotinib PDX Target RECIST Solid 21 2066

26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.05.25.445658doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445658
http://creativecommons.org/licenses/by-nc/4.0/


CTRPv2 Paclitaxel Cell line Source AAC Solid 445 1452

GDSCv2 Paclitaxel Cell line Source AAC Solid 230 1452

TCGA-LUAD Paclitaxel Patient Source Unlabeled Solid 507 1452

TCGA-BRCA Paclitaxel Patient Source Unlabeled Solid 1051 1452

TCGA-PAAD Paclitaxel Patient Source Unlabeled Solid 131 1452

gCSI Paclitaxel Cell line Target AAC Solid 284 1452

GSE25065P Paclitaxel Patient Target RECIST Solid 84 1452

PDXE Paclitaxel PDX Target RECIST Solid 43 1452

TCGA-PRAD Docetaxel Patient Target Unlabeled Solid 498 1453

TCGA-KIRC Docetaxel Patient Target Unlabeled Solid 534 1453

TCGA-PRAD Paclitaxel Patient Target Unlabeled Solid 498 1452

TCGA-KIRC Paclitaxel Patient Target Unlabeled Solid 534 1452

TCGA-PRAD Gemcitabine Patient Target Unlabeled Solid 498 2080

TCGA-KIRC Gemcitabine Patient Target Unlabeled Solid 534 2080

TCGA-PRAD Erlotinib Patient Target Unlabeled Solid 498 2066

TCGA-KIRC Erlotinib Patient Target Unlabeled Solid 534 2066

CTRPv2 Docetaxel Cell line Source AAC Non-solid 62 1453

GDSCv2 Docetaxel Cell line Source AAC Non-solid 69 1453

gCSI Docetaxel Cell line Target AAC Non-solid 50 1453

CTRPv2 Paclitaxel Cell line Source AAC Non-solid 100 1452

GDSCv2 Paclitaxel Cell line Source AAC Non-solid 67 1452

gCSI Paclitaxel Cell line Target AAC Non-solid 50 1452

CTRPv2 Gemcitabine Cell line Source AAC Non-solid 129 2080

GDSCv2 Gemcitabine Cell line Source AAC Non-solid 69 2080

gCSI Gemcitabine Cell line Target AAC Non-solid 50 2080

CTRPv2 Erlotinib Cell line Source AAC Non-solid 135 2066

GDSCv2 Erlotinib Cell line Source AAC Non-solid 68 2066

gCSI Erlotinib Cell line Target AAC Non-solid 49 2066

27

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.05.25.445658doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445658
http://creativecommons.org/licenses/by-nc/4.0/


Figure S1 The percentage of tissue types in CTRPv2 and GDSCv2 cell line datasets combined.
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