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Abstract 
Given a region qR and a future timestamp qT, a “range 
aggregate” query estimates the number of objects 
expected to appear in qR at time qT. Currently the only 
methods for processing such queries are based on spatio-
temporal histograms, which have several serious 
problems. First, they consume considerable space in 
order to provide accurate estimation. Second, they incur 
high evaluation cost. Third, their efficiency continuously 
deteriorates with time. Fourth, their maintenance requires 
significant update overhead. 

Motivated by this, we develop Venn sampling (VS), a 
novel estimation method optimized for a set of “pivot 
queries” that reflect the distribution of actual ones. In 
particular, given m pivot queries, VS achieves perfect 
estimation with only O(m) samples, as opposed to O(2m) 
required by the current state of the art in workload-aware 
sampling. Compared with histograms, our technique is 
much more accurate (given the same space), produces 
estimates with negligible cost, and does not deteriorate 
with time. Furthermore, it permits the development of a 
novel “query-driven” update policy, which reduces the 
update cost of conventional policies significantly. 

1. Introduction 
Spatio-temporal databases manage multi-dimensional 
objects whose location changes continuously with time. 
Related research typically assumes linear object 
movement. Specifically, the location p(t) of a d-
dimensional point p at time t is given by p(t)=p(0)+pV·t, 
where p(0) is the location of p at time 0, and pV its 
velocity (p(0), p(t), pV are d-dimensional vectors). 
Whenever the velocity pV changes, p sends an update 
message to a central server, which collects information 
from all objects in order to answer various predictive 
queries. The most common query type is the range 
aggregate (RA) search, which (based on the current data 
at the server) returns the number of objects that will fall in 
a rectangle qR at a (future) timestamp qT (e.g., “how many 
flights are expected to appear over the airspace of Hong 

Kong 10 minutes from now”). The results of such queries 
are used for prevention of possible congestions (in traffic 
supervision and flight control) or network overloading (in 
mobile computing and location-based services). 

RA queries can be processed using two main 
methodologies. The first one assumes that the server 
indexes the detailed information of all (moving) objects 
using a (typically disk-based) spatio-temporal access 
method [AAE00, SJLL00, AA03, TPS03]. Given a query 
q, the qualifying objects are retrieved (using the index) 
and their count is returned as the result. This technique, 
however, is inefficient in applications (e.g., those 
handling data streams [DGR03]) with substantial data 
updates. In this case, the maintenance of the index leads 
to excessive overhead (especially if I/O operations are 
involved), thus seriously compromising the system’s 
query processing ability.   

The second type of methodologies [CC02, HKT03, 
TSP03], which is receiving increasing attention, aims at 
accurately estimating the RA results. These approaches 
are motivated by the fact that approximate aggregates 
(with small error) are often as useful as the exact ones in 
practice, but can be obtained much more efficiently. In 
particular, such estimation methods require only a fraction 
of the dataset or a small amount of statistics and are 
significantly faster than exact retrieval. These properties 
are especially appealing in circumstances where the 
system memory is limited (relative to the dataset size), yet 
real-time processing is important. In this paper, we focus 
on approximate RA processing.   

1.1 Motivation 
Currently, the only effective methods for estimating RA 
retrieval are based on histograms. As explained in the 
next section, however, spatio-temporal histograms have 
several serious shortcomings (i): they incur large space 
consumption (which increases exponentially with the 
dimensionality) in order to provide satisfactory accuracy; 
(ii) they entail high processing cost; (iii), their precision 
continuously deteriorates with time and eventually the 
histogram must be re-built (by accessing the entire 
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database); (iv), their incremental maintenance requires 
significant overhead for handling data updates. These 
problems motivate alternative approximation techniques, 
among which sampling is the most obvious candidate due 
to its successful application in conventional databases 
(mostly for selectivity estimation). 

It is well-known that if every possible query has the 
same probability to be issued, a random sample of the 
database indeed minimizes the expected prediction error 
[AGP00]. In practice, however, queries follow certain 
“locality patterns” [CDN01], i.e., some values of the 
(query) parameters are more frequent than others. For 
example, in a traffic-supervision system, users are 
typically more concerned about the traffic volume in 
central regions than in the suburbs. This motivates 
workload-aware methods, which aim at maximizing the 
estimation accuracy for a set of pivot queries (extracted 
from historical statistics) that reflect the actual query 
distribution. Since future queries are expected to be 
similar to the pivot ones, workload-aware sampling 
provides better overall precision than random sampling 
(which essentially attempts to optimize all queries, many 
of which may never be raised).  

Unfortunately, the unique characteristics of moving 
objects render most existing sampling techniques 
inapplicable. First, the extremely frequent updates 
necessitate incremental maintenance of the sample set, 
eliminating algorithms that target static or “append-only” 
data [V85]. Second, the server keeps limited information 
about the dataset, invalidating methods that need to access 
a large portion of the database [GLR00]. Third, the exact 
result of a query is not computed (the estimate produced 
from the samples is directly returned to the user), 
canceling techniques that utilize query feedback 
[BGC01]. Finally, spatio-temporal sampling must take 
into account the underlying client-server architecture. 
Namely, in addition to optimizing space/time efficiency, it 
should also minimize the messages exchanged between 
the server and objects for maintaining the sample.    

1.2 Contributions 
This paper proposes Venn sampling (VS), a workload-
aware methodology based on solid theoretical foundation. 
VS generalizes stratified sampling [CDN01] (a well-
known workload-aware method) to highly dynamic 
environments, while at the same time it reduces 
significantly its space requirements. In particular, if m is 
the number of pivot queries, the memory consumption of 
VS is O(m), as opposed to O(2m) for stratified sampling. 
VS guarantees perfect estimation (i.e., no error at all) for 
pivot queries and, therefore, incurs small error for actual 
queries. Interestingly, this is achieved using a fixed 
sample set, namely, the samples of VS remain the same 
even if the object information changes continuously.   

VS is a general methodology that can be applied in a 
large number of scenarios. Its application to moving 
objects motivates a novel query-driven update policy. 

Specifically, an object issues an update to the server only 
when it starts/ceases to satisfy some pivot query, 
independently of its velocity changes (recall that the 
conventional policy requires an update whenever an 
object’s velocity changes). Query-driven updates 
constitute a natural concept because, intuitively, although 
real systems may involve millions of continuously 
moving objects, we only care about the ones that 
influence some query. We experimentally verify that VS 
outperforms spatio-temporal histograms on every aspect, 
i.e., accuracy, evaluation efficiency, space consumption, 
communication overhead and performance deterioration 
with time.  

The rest of the paper is organized as follows. Section 2 
introduces the related work on spatio-temporal histograms 
and sampling techniques. Section 3 formally defines the 
problem and overviews the proposed architecture. Section 
4 presents the theory of VS and discusses its general 
applicability. Section 5 contains a comprehensive 
experimental evaluation, and Section 6 concludes the 
paper with directions for future work.  

2. Related Work 
Section 2.1 reviews spatio-temporal histograms for RA 
processing, and illustrates their defects. Section 2.2 
surveys previous database sampling techniques.  

2.1 Spatio-temporal histograms 
Each d-dimensional linearly moving object can be 
converted to a point in a 2d-dimensional space, capturing 
both its coordinates (at reference time 0) and velocities. 
Figure 2.1a illustrates an example with d=1. Point p1 (in 
the converted space) represents an object whose location 
at time 0 (the horizontal axis) is at coordinate 15, and 
whose current velocity (the vertical dimension) equals 20 
(i.e., its position p1(t) at time t is computed as 15+20⋅t). 
Similarly, point p2, with location 35 and velocity 20, 
corresponds to a moving object with motion p2(t)=35+20⋅t.  

2

location

velocity

b2

b1

b4

b3

5

-5

15

25

-15

-25

p1 p

0 502015 35

20

 

location 

time

t

location
0 20

50
b1 and b2 b3 and b4

p1(t)

p1Vold=20 

= −5p1Vnew

p1(0) p1'(0)

 range of 
location 

 range of 
 

(a) A 1D histogram (b) Updating the histogram 
 Figure 2.1: Spatio-temporal histograms 

A spatio-temporal histogram [CC02, HKT03, TSP03] 
partitions the 2d-dimensional (converted) space into 
disjoint hyper-rectangular buckets. Each bucket b is 
associated with the number nb of points in its extent. In 
Figure 2.1a, the histogram consists of 4 buckets b1, …, b4; 
for instance, the extent of b2 covers the range [0, 20] ([15, 



25]) on the location (velocity) dimension, and includes 
only one point p1 (i.e., nb2=1). The number of buckets is 
subject to the amount of available space. In general, a 
larger number leads to better estimation accuracy.  

To answer a RA query q using the histogram, the 
processing algorithm first computes, for every bucket b, 
its “contribution” bcon to the query result, which equals the 
number of objects in b that are expected to satisfy q. Then, 
the (approximate) result of q is obtained by summing the 
contributions of all buckets. In particular, bcon is 
calculated as nb⋅Pb, where Pb is the probability that an 
object in b qualifies q (see [CC02, TSP03] for details). 

The spatio-temporal histogram can be dynamically 
maintained in the presence of object updates. Assume that 
object p1 in Figure 2.1a changes its velocity (from 
p1V

old=20) to p1V
new=−5 at time t. As a result, p1 no longer 

belongs to bucket b2 (since −5 is not in the velocity range 
[15, 25] of b2); thus, nb2

 decreases by 1. Deciding the 
bucket that covers the updated p1 should take into account 
the fact that the histogram includes objects’ location at the 
reference time 0 (instead of the current time). To illustrate 
this, Figure 2.1b shows the previous update in the 
location-time space. The position p1(t) (of p1 at time t) is a 
point on the horizontal line time=t (the segment 
connecting p1(0) and p1(t) has slope p1V

old=20). We find a 
point p1'(0) at time 0 such that it crosses p1(t) with the 
new velocity p1V

new=−5. Specifically, p1'(0) is the 
intersection between the horizontal axis and the line with 
slope −5 crossing p1(t). Thus, the bucket that includes the 
new p1 should be the one (i.e., b3) whose location and 
velocity ranges contain p1'(0) and p1V

new, respectively. The 
counter of this bucket is increased by 1. 

The accuracy of histograms relies on the assumption 
that the data distribution inside each bucket is uniform. 
However, the number of buckets required to achieve this 
property increases exponentially with the dimensionality. 
Unfortunately, this problem is particularly serious in the 
spatio-temporal context, as the dimensionality of the 
histogram actually doubles that of the data space. Indeed, 
the application of histograms has been limited to d=2 only 
(e.g., for d=3, a prohibitive number of buckets are 
necessary to satisfy the uniformity assumption in the 
resulting 6D space [BGC01]). Further, using a histogram 
to answer a RA query requires solving some complex 
formulae, which can be evaluated only with numerical 
approaches [TSP03]. The high cost of numerical 
evaluation severely compromises the query efficiency.   

Another disadvantage of spatio-temporal histograms is 
that their quality continuously deteriorates with time. This 
is illustrated in Figure 2.2 in the location-time space 
(d=1). Object p1 updates its velocity to p1V at time t1, and 
its new p1(0) (computed as in Figure 2.1b) is inside the 
location space. At some later timestamps (t1<t2<t3), 
objects p2, p3 change their velocities to the same value as 
p1 (p1V=p2V=p3V), at the same location p1(t1)=p2(t2)=p3(t3). 
The computed p2(0) and p3(0), however, fall outside the 

location space. Further, notice that the larger the update 
timestamp (e.g., t2<t3), the more distant the reference 
location p(0) is from the space boundary (i.e., 
p2(0)<p3(0)). 
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Figure 2.2: Quality degradation with time 

In fact, if the location space has range [0, L], then by 
solving inequality 0≤p(t)−pV⋅t≤L we obtain that p(0) lies 
inside [0, L] only if pV is in the range [(L−p(t))/(−t), p(t)/t] 
(remember that pV can be negative). Obviously, as t 
increases, this “permissible range” continuously shrinks. 
Eventually, the p(0) of most objects p fall outside [0, L], 
in which case the histogram becomes useless and must be 
re-built, choosing a larger timestamp as the reference 
time [TSP03]. The re-building requires accessing the 
entire database, and thus incurs considerable overhead. 
Besides periodic re-building, the histogram must be 
modified with every data update. This requires significant 
communication overhead (for objects to transmit their 
new information). As a result, in practice histogram-based 
systems cannot support large datasets.  

2.2 Sampling in databases 
In random sampling, every object has the same 
probability to be sampled. Given a RA query q, the 
estimation algorithm counts the number a of sample 
records qualifying q, and then predicts the query result as 
a⋅(n/k), where k is the sample size, and n the dataset 
cardinality. Numerous variations of random sampling 
have been proposed in the literature [V85, LNS90, 
GMP97, GM98, L00, CDD+01]. Other approaches 
[AGP00, GLR00, WAA01] sample objects with different 
probabilities, which depend on certain dataset or query 
properties. Jermaine [J03] proposes a general method to 
enhance the sampling efficiency.  

The technique most related to our solution is stratified 
sampling (SS) [CDN01], which optimizes the estimation 
accuracy for a set of pivot queries (which reflect future 
query distribution). It utilizes the concept of fundamental 
strata. Assume that we have two pivot queries q1 and q2. 
All the records can be classified into four strata s1, s2, s3, 
s4, depending on whether they satisfy (i) only q1, (ii) only 
q2, (iii) both q1 and q2, and (iv) neither query. Obviously, 
these sets si (1≤i≤4) are mutually exclusive. Furthermore, 
each pivot query either retrieves all or none of the tuples 
in each si (e.g., q1 returns all records in s1 and s3, but none 
in s2 and s4). SS first scans the database and assigns each 
tuple to exactly one stratum. Then, the algorithm selects 



randomly, from the objects assigned to each stratum si, a 
record oi and associates it with a weight wi that equals the 
number of tuples in si. The pairs {(oi, wi) | 1≤i≤4} 
constitute the final sample set.  

Given a query q, SS estimates the number of 
qualifying objects as the sum of weights wi of the samples 
oi satisfying q. For example, the estimation of q1 equals 
w1+w3, since objects o1, o3 qualify it but o2, o4 do not. In 
general, SS answers all pivot queries precisely (i.e., no 
error at all) which, however, is achieved with huge space 
requirements. Specifically, given m pivot queries, the total 
number of strata equals O(2m). Hence, the space 
consumption of SS increases exponentially with m (which 
in practice is at the order of 100).  

To alleviate this problem, Chaudhuri, et al. suggest 
keeping the best k samples (see [CDN01] for measuring 
the quality of each sample), where k (<<2m) is subject to 
the available memory. This solution, however, still incurs 
serious problems. First, it loses the quality guarantee that 
pivot queries are always captured precisely, leading to 
increased error for actual queries. Second, obtaining the 
best k samples still requires O(2m) space, since all the 
intermediate strata must be retained for this purpose. 
Third, the smaller sample set cannot be dynamically 
maintained (a more detailed discussion about this appears 
in Section 4.4).  

3. Problem Definition and System Architecture 
Let DS be a set of d-dimensional linearly moving points. 
We represent the location of object p at time t as a d×1 
vector p(t)={p(t)[0], p(t)[1], …, p(t)[d]}T, where p(t)[i] 
(1≤i≤d) denotes the coordinate of p on the i-th axis. 
Similarly, vector pV={pV[0], pV[1], …, pV[d]}T indicates 
the velocities of p along various dimensions. Without loss 
of generality, we consider that each coordinate p(tC)[i] 
(1≤i≤d) at the current time tC falls in a unit range [0, 1], 
and each velocity pV[i] in [Vmin, Vmax], where Vmin (Vmax) 
denotes the minimum (maximum) velocity.  

Given a rectangular region qR and a timestamp qT, a 
range aggregate (RA) query q retrieves the number of 
objects expected to appear in qR at time qT, based on their 
current motion parameters. The rectangle qR is 
represented using its two opposite corners qR−, qR+ (each 
being a d-dimensional point), and the projection of qR on 
the i-th (1≤i≤d) dimension is [qR−[i], qR+[i]]. Formally, the 
result of q is RA(q) = COUNT{p∈ DS | qR−[i] ≤ 
p(qT+tC)[i] ≤ qR+[i] for all 1≤i≤d, where tC is the current 
time, and p(qT+tC)[i] = p(tC)[i] + pV ⋅qT}. Note that qT is 
always relative to the current time tC, e.g., qT=2 should be 
interpreted as “two timestamps later”.  

The goal is to accurately estimate the results of RA 
queries. The accuracy of a query is measured as its 
relative error |act−est|/act, where act and est denote the 
actual and estimated results, respectively. Let Q be a 
workload with m queries and acti (esti) be the actual 
(estimated) result of the i-th query (1≤i≤m). Then, the 
workload error WE(Q) is defined as: 
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Next we discuss the intuition behind Venn sampling (VS). 
As with stratified sampling (SS), VS is workload-aware, 
namely, it is optimized for a set PvQ of m pivot queries. 
Specifically, PvQ is decided in a way such that, if a 
method can efficiently support PvQ, then it is expected to 
perform well also for actual queries, which are similar to 
those in PvQ (see [CDN01] for a general method of 
selecting pivot queries). We consider that the query 
distribution changes infrequently [CDN01] so that PvQ 
remains constant for relatively long periods of time.  

VS obtains perfect estimation for all the pivot queries 
(i.e., zero error for PvQ). Unlike SS which requires O(2m) 
space for this purpose, the space consumption of VS is 
only O(m). The sample set of VS contains m moving 
objects o1, o2, … om, and each oi (1≤i≤m) is associated 
with a weight wi (which may be positive or negative). 
Interestingly, the sample objects do not necessarily 
belong to the underlying dataset. Instead, they are 
“formulated” according to the pivot queries (as elaborated 
in the next section), and are not modified along with the 
data updates. Given a RA query q, VS estimates its result 
in the same way as SS: the estimate est equals the sum of 
the weights of samples satisfying q. 

Figure 3.1 demonstrates the architecture of the 
proposed system. Specifically, VS maintains the actual 
results act1, act2, …, actm of all m pivot queries (i.e., acti 
is the exact number of objects qualifying the i-th query). 
We use an m×1 vector ACT={act1, act2, …, actm}T to 
encode these results concisely. Meanwhile, VS 
continuously monitors the quality of the sample set. For 
this purpose, the “quality control” component calculates 
an m×1 vector EST={est1, est2, …, estm}T, where esti is 
the estimation of the i-th query (1≤i≤m) using the current 
samples. Then, it computes the error WE(PvQ) of PvQ by 
equation 3-1 using EST and ACT. If the error is above a 
certain threshold ε, the sample weights (but not the 
sample objects) are adjusted so that EST=ACT (i.e, 
WE(PvQ)=0). This (weight) adjustment requires only 
solving a set of linear equations, and is highly efficient.  

Following the common convention, we assume that 
the objects have basic computing capabilities (including a 
small amount of memory) and that they communicate 
with the server using a wireless network. During 
initialization, the VS system broadcasts1 the set PvQ of 
pivot queries to all the objects, which store them locally 
using O(m) space. Each update message from an object p 
has the form <sp

old, sp
new>. Specifically, sp

old is an m×1 bit 
vector (b1, b2, …, bm)T called signature, where bi=1 
(1≤i≤m) if the previous information of p (i.e., before the 
update) satisfies the i-th query, and bi=0 otherwise. The 

                                                           
1 The cost of broadcasting is significantly smaller than that of 
sending a large number of individual messages and does not 
increase with the dataset cardinality.   



signature sp
new is also an m×1 bit vector, except that each 

bit denotes if the object’s new information qualifies the 
corresponding query. When an update arrives, the system 
maintains the actual result as ACT = ACT−sp

old +sp
new. 
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Figure 3.1: System architecture 

An update message is necessary only when the object 
starts or ceases to satisfy some pivot query. To achieve 
this, every time an object issues an update, it preserves the 
sp

new just transmitted (to the server) locally as sp
old. At the 

next timestamp, the object p obtains its current location 
and velocity, and computes the new sp

new (i.e., the set of 
pivot queries it satisfies now). An update is sent to the 
server only if sp

new≠sp
old. Figure 3.2a illustrates this 

process with two objects whose (i) position at the current 
time 0 is denoted by black points, and (ii) their velocity 
on each axis is represented by an arrow with a number 
indicating the speed (p1 moves northeast with speed 8 
and p2 northwest with speed 18 ). The shaded area 
corresponds to the region qR of a pivot query q with qT=2. 
At time 0, the result of q is 1, since (based on the current 
information) p1(2) falls in qR. As shown in Figure 3.2b, at 
the next timestamp p1 ceases to satisfy the query (p1(3) is 
out of qR) and issues an update to the server. Although at 
the same timestamp, p2 incurs a velocity change (the 
direction becomes north), it does not inform the server 
because the change causes no effect to the query result (p2 
still does not qualify q).  
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Figure 3.2: Illustration of query-driven update 

Compared to the conventional velocity-driven update 
policy, the above query-driven approach significantly 
reduces the number of necessary update messages (sent 
by objects to the server) in most practical situations 
because it avoids messages from objects that do not 
influence any pivot query. For example, if all the pivot 

queries are in certain regions of the data space (e.g., 
around the centers of urban areas), then objects outside 
these regions (e.g., in the suburbs) do not need to issue 
updates no matter how often they change their velocities. 

4. Theory of Venn Sampling  
Section 4.1 presents the main algorithmic framework of 
VS. Section 4.2 solves a problem fundamental to 
obtaining the optimal sample weights. Section 4.3 
elaborates the sample computation. Finally, Section 4.4 
discusses the application of VS to other problems and 
clarifies its connection with stratified sampling.    

4.1 Main idea 
VS is motivated by the Venn diagram, which is a 
common tool for expressing the relationships among sets. 
In our context, we define the Venn area Θ(q) of a RA 
query q as the set of all possible objects that satisfy it. 
Specifically, if we regard a moving point o as a pair of 
vectors (o(tC), oV), then Θ(q) includes all vector pairs such 
that o(qT) (calculated as o(tC) + oV⋅qT) is covered by qR, or 
formally, qR−[i] ≤ o(qT)[i] ≤ qR+[i] on all dimensions 
1≤i≤d. In particular, Θ(q) is independent of the dataset 
DS, but depends solely on the parameters qR, qT of q.  

Figure 4.1a shows the Venn areas Θ(q1), Θ(q2) of two 
queries, which divide the space into 3 disjoint regions that 
can be represented using different signatures. Signature 
‘00’ indicates the area outside Θ(q1) and Θ(q2), 
corresponding to the set of objects that satisfy neither q1 
nor q2. Signature ‘10’ (‘01’) denotes the region inside 
Θ(q1) (Θ(q2)), covering objects qualifying only q1 (q2). 
These 3 signatures are valid with respect to q1 and q2, 
while signature ‘11’ is invalid because there is no object 
that can simultaneously satisfy both q1 and q2 (i.e., Θ(q1) 
does not intersect Θ(q2)). Figures 4.1b, 4.1c, 4.1d 
illustrate the other possible relationships between Θ(q1) 
and Θ(q2), together with the valid signatures in each case. 
Specifically, in Figure 4.1c (4.1d), every object that 
satisfies q1 (q2) also qualifies q2 (q1), and hence, the 
signature ‘10’ (‘01’) is invalid. 
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Figure 4.1: Signature examples 

In general, given m queries, a signature s is an m×1 bit 
vector, and the total number of possible (including valid 
and invalid) signatures is 2m. If the i-th (1≤i≤m) bit of 
signature s is 1, we say that the i-th query is active in s; 
otherwise the query is inactive. For example, in Figure 



4.1b, q1 is active in signatures ‘10’, ‘11’, but inactive in 
‘01’. By the definition of Venn areas, any object p is 
covered by exactly one signature s such that p satisfies 
only the active queries of s but not the inactive ones.     

VS maintains m sample objects o1, o2, …, om that are 
covered by m valid signatures s1, s2, …, sm (decided 
according to the pivot queries). S is a m×m matrix whose 
i-th column (1≤i≤m) equals si. W is the m×1 vector {w1, 
w2, …, wm}T of the sample weights. Recall that the 
estimate esti for the i-th pivot query qi is the sum of the 
weights of the samples satisfying it. Thus, the m×1 vector 
EST={est1, est2, …, estm}T can be obtained as the product 
of S and W: 

S×W = EST     (4-1) 
Assuming, for example, that m=4, the system keeps 
samples o1, o2, o3, o4 covered by signatures s1={0110}T, 
s2={1010}T, s3={0110}T, s4={1111}T, respectively. 
Hence, the samples that satisfy pivot query q1 include o2, 
o4, and thus the estimate est1 of q1 equals w2+w4. The 
estimates esti for other pivots qi (1≤i≤4) can be derived in 
a similar manner, leading to the following equation: 
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Ideally, EST should be equivalent to ACT={act1, act2, 
…, actm}T, in which case, the results of all pivot queries 
are precisely captured. In other words, the “ideal” vector 
W (i.e., the best weights for the samples) should satisfy:  

S×W = ACT     (4-3) 
The above formula can be regarded as a set of m 
equations (each row of S decides one equation) for m 
variables (i.e., the m weights in W). Therefore, the W that 
achieves zero error for PvQ can be uniquely solved from 
equation 4-3, provided that matrix S is non-singular (i.e., 
no row of S can be represented as a linear combination of 
the other rows). Finding such an S, however, is non-trivial 
due to the fact that the columns of S are not arbitrary but 
confined to the valid signatures (which in turn depend on 
PvQ). For example, S in equation 4-2 cannot be used to 
obtain W because its 4th row equals the sum of first two 
rows minus the 3rd one. In the next section, we provide an 
algorithm that produces a non-singular S, which, 
interestingly, depends only on PvQ, but is not affected by 
W and ACT. 

Figure 4.2 illustrates the high-level algorithms of VS. 
During initialization, VS notifies all objects about PvQ 
via broadcasting, and then computes the non-singular 
matrix S using algorithm compute_S discussed in Section 
4.2. Next, for each signature si (1≤i≤m) in S, it obtains a 
sample oi through algorithm find_samples discussed in 
Section 4.3. Both compute_S and find_samples need to be 
invoked only once2 during the entire execution of VS. 

                                                           
2 These two algorithms are invoked again only when PvQ 
changes, which as mentioned earlier, happens rather 
infrequently.  

After the initialization, S is flushed to the disk; the 
samples, as well as vectors W, ACT, EST (all initialized 
to 0), are retained in memory.  

The quality control component (in the architecture of 
Figure 3.1) continuously evaluates the estimation error 
WE(PvQ) (equation 3-1) for the pivot queries, according 
to the current EST and ACT (whose maintenance is 
discussed in Section 3). If the error is larger than a 
specified threshold ε, it means that the sample weights W 
can no longer accurately capture PvQ. In this case, W is 
re-computed by solving equation 4-3. The matrix S is 
fetched from the disk to perform the re-computation. 
Since the new W leads to exact estimation of ACT, vector 
EST is simply updated to ACT, and does not need to be 
modified again until the next re-computation of W (recall 
that EST depends on only S and W, as in equation 4-1).  

Algorithm VS_initialization (m, PvQ) 
//PvQ contains m pivot queries;  
1. broadcast PvQ to all objects 
2. invoke compute_S (m, PvQ) to obtain matrix S  
3. for each column si of S //si is a valid signature 
4.  oi=find_sample (si, m, PvQ) //decide the sample  
5. save S to disk 
6. W=0; ACT=0; EST=0 
End VS_initialization 

Algorithm VS_quality_control (PvQ, ε) 
//ε is the quality threshold 
1. while (true) 
2.  compute WE(PvQ) by equation 3-1 
3.  if WE(PvQ)>ε 
4.   load S from disk, and solve W from equation 4-3  
5.   set EST to ACT 
End VS_quality_control 

Figure 4.2: Algorithms of Venn sampling 

Another remark concerns the storage of matrix S. Due to 
its relatively large size O(m2), we do not keep it in 
memory but load it whenever W is re-computed. The total 
cost of loading S is small because (i) as shown in the 
experiments, re-computation of W is necessary only after 
a long period of time (since the last computation), and (ii) 
S can be stored sequentially so that no random I/O access 
occurs during its loading. Moreover, since S consists of 
only “0” and “1”, it can be effectively compressed (in a 
lossless way) using, for example, wavelets [DR03]. 
Although such compression slightly increases the CPU 
overhead, it reduces significantly the I/O cost of reading 
S, thus shortening the overall access time.     

Before proceeding, we provide an important 
observation: to achieve perfect estimation for all pivot 
queries, the sample size must be at least m. In general, if 
the sample size is k, then matrix S in equation 4-3 has k 
rows, which offer k equations to solve the m weights of 
W. If k<m, the equation-set is “over-determined” (i.e., 
fewer equations than variables), in which case no exact W 
can possibly exist. Further, our subsequent discussion 
shows that the sample size needs to be exactly m to 
capture PvQ (i.e., VS requires the smallest sample size).  



4.2 Finding non-singular matrix S 
In this section, we discuss how to find a (m×m) matrix S, 
whose columns are composed of valid signatures 
(formulated according to PvQ), and at the same time, its 
rows are mutually linearly independent. As a first step, we 
aim at identifying a feasible ordering {q1', q2', …, qm'} of 
the pivot queries, such that the Venn area of the i-th 
(1≤i≤m) query qi' is not totally covered by the union of the 
Venn areas of the preceding (i−1) queries. Equivalently, 
this means that for every 1≤i≤m, there exists some 
moving point that satisfies qi', but does not qualify any of 
q1', q2', …, qi−1'. As an example, Figure 4.3a shows the 
Venn diagram for m=3 queries. Ordering {q1, q2, q3} is 
not feasible because the Venn area Θ(q3) of q3 is covered 
by Θ(q1)∪ Θ(q2). The feasible orderings in this case are: 
{q2, q3, q1}, {q3, q2, q1}, or {q3, q1, q2}.   
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Figure 4.3: Illustration of feasible ordering 

Figure 4.4 presents a method find_ ordering that produces 
a feasible ordering for any pivot set PvQ. To illustrate the 
idea, recall that a moving point p satisfies a query q if and 
only if qR−[i] ≤ p(qT+tC)[i] = p(tC)[i] + pV[i]⋅qT ≤ qR+[i] on 
all dimensions 1≤i≤d. Without loss of generality, let us 
focus on the first dimension i=1, and consider a 2D space 
whose x- (y-) axis corresponds to p(tC)[1] (pV[1]). Thus, 
for an object p to qualify q, its (p(tC)[1], pV[1]) must fall 
in the intersection of two half-planes HP1≤(q): p(tC)[1] + 
pV[1]⋅qT ≤ qR+[1] and HP1≥(q): p(tC)[1] + pV[1]⋅qT ≥ qR−[1] 
(treating qT, qR+[1], qR−[1] as constants). The shaded area 
of Figure 4.3b illustrates such intersection for query q1 
(recall that pV[1] must also be in the range [Vmin, Vmax]).  

Algorithm find_ordering (m, PvQ) 
//PvQ contains m pivot queries 
1. for each query qi (1≤i≤m) in PvQ 
2.   get the intersection pi between HP1≤(qi) and pV[1]=0 
3. sort pi in ascending order of their p(tC)[1]; let {p1', p2', …, 

pm'} be the sorted order 
4. return {q1', q2', …, qm'} (qi' is the query that produced pi') 
End find_ordering 

Figure 4.4: Algorithm find_ordering 

Find_ordering considers the half-planes HP1≤(qi) of all 
pivot queries qi (1≤i≤m). Specifically, it computes the 
intersection between HP1≤(qi) with the x-axis, and sorts 
the intersection points in ascending order of their x-
coordinates. In Figure 4.3b (where m=3; for simplicity 

HP1≥(q2) and HP1≥(q3) are omitted), the sorted order is {A, 
B, C}, and thus find_ordering returns {q2, q1, q3} whose 
half-planes HP1≤(q) produce points A, B, C. To see that 
this ordering is indeed feasible, note that the Venn area 
Θ(q1) cannot be covered by Θ(q2), since there exists an 
object (corresponding to point B) that satisfies q1 but not 
q2. Similarly, Θ(q3) is not covered by Θ(q1)∪ Θ(q2) due to 
point C. 

Given a feasible ordering {q1', q2', …, qm'} of PvQ, we 
compute matrix S using an inductive approach. To 
illustrate the approach, let Si (2≤i≤m) be a non-singular 
i×i matrix whose columns are valid signatures according 
to the first i queries q1', q2', …, qi' of the ordering. Note 
that Sm is exactly the matrix S to be computed. Our 
algorithm first obtains S2 (i.e., by considering only q1', 
q2'). Then, based on Si (2≤i≤m−1), we obtain Si+1 by 
incorporating the (i+1)-st query qi'. This process is 
repeated until Sm has been constructed. The computation 
of S2 is trivial. As shown in Figure 4.1, for any 
relationship between the Venn areas of q1', q2', we can 
always find two valid signatures to build the targeted S2. 
For example, in Figure 4.1c the signatures {11}T and 
{10}T are valid and the resulting S2=[ ]1  1

1  0  is indeed non-
singular. Next we discuss the inductive step: calculate Si+1 
from Si (2≤i≤m−1).  

Due to the property of feasible ordering, the Venn area 
Θ(qi+1') of the (i+1)-th query is not totally covered in the 
union of Θ(q1'), …, Θ(qi'). It follows that the (i+1)×1 
vector {0…01}T (i.e., all the bits are 0 except the last one) 
is valid with respect to the first i+1 queries in the ordering 
(i.e., there exits some moving point satisfying only the 
(i+1)-th query, but not q1', …, qi'). Based on this 
observation, we construct Si+1 from Si by adding one 
column and one row as illustrated in Figure 4.5. In 
particular, the added (i.e., right-most) column is exactly 
the vector {0…01}T. 
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may be 1 or 0 dependeing 
on the validity of signatures  

Figure 4.5: Obtaining Si+1 from Si 

Now it remains to clarify how to decide the (i+1)-th row 
of Si+1. Note that the last bit of this row is already set to 1 
by the (i+1)-th column {0…01}T we just inserted. For the 
j-th (1≤j≤i) bit (other than the last one), it equals 1 if the 
resulting j-th column (i.e., a signature with respect to q1', 
…, qi+1') of Si+1 is valid, and 0 otherwise. We illustrate the 
process using the feasible ordering {q3, q1, q2} in Figure 
4.3a. For the first two queries q3, q1, we obtain S2=

1 0
1 1
 
    



(signatures {11}T and {01}T are valid for q3, q1). Based on 
S2, S3 is set to 1 0 0

1 1 0
0 1 1

 
 
  

, which is obtained as follows. First, 

the third column of S3 is simply {001}T. Second, the 1st 
number in the 3rd row equals 0 because, if it was 1, then 
the resulting signature (the 1st column of S3) {111}T 
would be invalid, i.e., no object can satisfy all 3 queries 
simultaneously. Finally, the 2nd number in the 3rd row is 
1 (the 2nd column {011}T of S3 is valid).  

To conclude, we explain why Si+1 built as in Figure 
4.4 is always non-singular, given that Si is non-singular. 
Let r1, r2, …, ri+1 be the (i+1) rows (each being an 1×(i+1) 
vector) of Si+1. It suffices to show that no row can be 
represented as a linear combination of the other, namely, 
there does not exist a row rj (1≤j≤i+1) such that: 

rj=c1⋅r1+…+cj−1⋅rj−1+cj+1⋅rj+1+…+ci+1⋅ri+1     (4-4) 
where c1,…, cj−1, cj+1,…, ci+1 are constants among which 
at least one is not zero. Obviously, since the last bit of the 
(i+1)-th row ri+1 is 1 (while the last bits of the other rows 
are 0), equation 4-4 never holds for j=i+1 (in this case, the 
last bits of the equation’s two sides do not match). Due to 
the same reason, the equation does not hold either for any 
j≠i+1 as long as ci+1≠0 (i.e., the last bit of the right hand 
side is non-zero, but that on the left is zero). Therefore, if 
an rj should satisfy equation 4-4, ci+1 must be 0, meaning 
that rj would be linearly dependent on r1, …, rj−1, rj+1, …, 
ri (i.e., the first i rows other than itself), which contradicts 
the fact that Si is non-singular. The absence of such rj 
establishes the non-singularity of Si+1. Figure 4.6 formally 
summarizes the algorithm compute_S. Line 8 invokes 
find_sample (discussed in the next section) to decide if a 
signature is valid (i.e., the answer is positive only if the 
result of find_sample is not empty).   

Algorithm compute_S (m, PvQ) 
//PvQ contains m pivot queries in feasible ordering  
1. if m=2 
2.  construct S depending on the relationship of the Venn 

areas of the two pivot queries (as shown in Figure 4.1) 
3. else // m>2    
4.  PvQ' contains the first m−1 queries in PvQ 
  let Sm−1=compute_S (m−1, PvQ') 
5.  construct Sm from Sm−1 as follows: add m×1 vector 

{0…01}T as the m-th column, and add 1×m vector 
{1…11} as the m-th row 

6.  for i=1 to m−1   
7.    let si be the i-th column of Sm 
8.    if find_sample (si, m, PvQ)=∅  
9.     set the last bit of this column to 0 
10. return Sm 
End compute_S 

Figure 4.6: Algorithm compute_S 

4.3 Computing the samples 
A sample oi does not have to be a “real” object, but it can 
be any moving point covered by si. We do not choose the 
samples from the dataset DS for the following reasons. 
First, recall that each sample oi must be covered by the 

corresponding signature si (i.e., oi satisfies the active 
queries of si, but dissatisfies all its inactive ones). Such an 
object may not necessarily exist in DS. Second, even if an 
object p in DS can be selected as the sample oi for si, 
when the information of p changes, oi needs to be updated 
accordingly increasing the maintenance overhead. In the 
sequel, we explain the general method to calculate the 
sample o for a signature s (omitting the subscripts for 
simplicity).  

Without loss of generality, assume that s has a active 
queries, and (thus) m−a inactive ones. Computing o is 
equivalent to finding a location o(tC) and velocity oV (both 
are d-dimensional vectors) such that (i) Vmin≤oV[i]≤Vmax 
(for all 1≤i≤d), (ii) for each active query q, qR−[i] ≤ 
o(tC)[i] + oV[i]⋅qT ≤ qR+[i] (for all 1≤i≤d), and (iii) for each 
inactive query q, there exists a dimension i, such that 
qR−[i] > o(tC)[i] + oV[i]⋅qT, or o(tC)[i] + oV[i]⋅qT > qR+[i]. 
Specifically, if we regard o(tC)[0], o(tC)[1], …, o(tC)[d], 
oV[0], oV[1], …, oV[d] as 2d variables, then each (active or 
inactive) query defines 2d linear constraints on them. 
These variables must satisfy all the constraints of an 
active query, but need to qualify only an arbitrary 
constraint of an inactive query. Hence, the problem of 
discovering o(tC) and oV is an instance of disjunctive 
programming. Our implementation of find_sample adopts 
a variation of the backtracking algorithm [B90].  

As an example, consider m=4 and signature 
s={1100}T that has a=2 active queries q1, q2 (q3, q4 are 
inactive). In the sequel, we denote the 2d constraints 
defined by qi (1≤i≤m) as Ci-1, Ci-2, …, Ci-2d, respectively. 
We first attempt to find a solution o (including the pair 
o(tC), oV) for all the active queries q1, q2. Such a solution 
must qualify all the 4d constraints of q1, q2, as well as 
Vmin≤oV[i]≤Vmax (for all 1≤i≤d). Let C be the set of all 
these (6d) constraints. This is a linear programming (LP) 
problem which can be efficiently solved in time linear to 
the size of C [BKOS00]. If solution o is not found, 
find_sample terminates and reports the signature as 
invalid.  

If o exists, we add the first constraint C3-1 of inactive 
query q3 into C, and invoke the LP solver on the current 
C. If the solution is not found, we remove C3-1 from C, 
insert the next constraint C3-2 of q3 into C, and execute the 
LP solver again. If no solution is found again, we try the 
next constraint of q3 and repeat these steps. If all the 
constraints have been attempted, and still no solution 
exists, find_sample claims s is invalid, and terminates. 
Assume, on the other hand, that a solution is found with 
constraint C3-j (for some j in [1,2d]), the algorithm keeps 
C3-j in C, and continues to check the constraints of the 
next inactive query q4. Similar to the examination of q3, 
we add each constraint C4-j into C in turn. If a solution o is 
obtained, then (since we have considered all queries), 
find_sample has found a moving point o that is covered 
by this signature. Otherwise (no solution is found with all 
the constraints of q4), the algorithm backtracks to the 



previous inactive query q3, removes C3-j from C, inserts 
C3-(j+1), and repeats the process for q3. 

The complete algorithm find_sample, shown in Figure 
4.7, includes an additional heuristic. In the previous 
example, for instance, assume that o is a solution of the 
constraints of q1, q2. After adding a constraint C3-j of q3 
into C, we first check if o satisfies C3-j. If yes, o is directly 
used as a solution to the current C. The LP solver is 
invoked (to find the solution of C) only if o does not 
qualify C3-j. 

Algorithm find_sample (s, m, PvQ) 
//PvQ contains m pivot queries; s is a signature 
1. C={Vmin≤oV[i]≤Vmax} for 1≤i≤d 
2. C=C∪ {the 2d constraints of each active query in PvQ} 
3. call LP solver to find solution o for C 
4. if o does not exist, return ∅  //s is invalid 
5. o=check_inactive(|IaQ|, IaQ, o, C) 
 //IaQ is the set of inactive queries, and |IaQ| is its size  
10. return o 
End find_sample 

Algorithm check_inactive (t, IaQ, o, C) 
//IaQ contains t inactive queries; o is the current solution for C 
1. if t=0 then return o 
2. let q be any query in IaQ  
 //let C1, …, C2d be its 2d constraints 
3. for j=1 to 2d //each constraint of the inactive query 
4.   C=C∪ Cj  
5.   if o satisfies Cj  
6.    o=check_inactive(t−1, IaQ−{q}, o, C)  
7.  else  
8.    call LP solver to find solution o for C 
9.    if o does not exist 
10.     C=C−Cj, and continue //to the next j  
11.    o=check_inactive(t−1, IaQ−{q}, o, C) 
12.  if o≠∅  return o else C=C−C-j 
13. return ∅  
End check_inactive 

Figure 4.7: Algorithm find_sample 

In the worst case find_sample needs to invoke LP solver 
(2d)m−a times (i.e., exponential to the number of inactive 
queries), but the average cost is much lower (i.e., the 
solution is usually found quickly). It is important to note 
that, this overhead is off-line, namely, as mentioned 
earlier find_sample is executed only once in the 
initialization stage of VS. On the other hand, query 
processing requires only checking each computed sample, 
and hence, is very efficient.    

4.4 Discussion 
Although our discussion focuses on RA processing on 
moving objects, Venn sampling can also be applied to 
“more traditional” scenarios. For example, a record in a 
relational table with several attributes can be regarded as a 
“static” multi-dimensional point (i.e., a special moving 
object). Selectivity estimation aims at predicting the 
number of points in a region qR, which can be thought of 
as a range aggregate query without the parameter qT. 

Hence, given a set of pivot queries, VS can be used for 
selectivity estimation, also supporting updates.  

In fact, the VS framework is general, i.e., the 
algorithms are not specific to moving objects except: (i) 
find_ordering (Figure 4.4), and (ii) find_sample (Figure 
4.6). The adaptation of VS to alternative problems 
requires re-designing only these two components (the 
other algorithms can be used directly). VS is particularly 
well-suited for streaming applications where real-time 
processing is imperative. This is because the expensive 
computations (compute_S and find_sample) are performed 
once, during the initialization stage. The on-line costs 
include merely (i) updating the ACT vector, and (ii) 
solving a set of linear equations occasionally. 
Furthermore, processing a RA query requires examining 
only m samples.   

Finally, although stratified sampling provides the 
initial motivation, it is inapplicable to our problem (and in 
general, any other problem with similar settings). Recall 
that SS keeps samples for all the signatures covering some 
objects in DS (each such signature corresponds to a 
stratum in Section 2.2). Since these signatures may 
emerge/disappear with data updates, their samples cannot 
be pre-computed as in VS. For example, assume that the 
sample o of signature s modifies its information, and is no 
longer covered by s. The new sample of s cannot be 
obtained efficiently because (i) the system does not 
maintain any other non-sampled data (eliminating the 
option of choosing another data point as the sample), and 
(ii) applying find_sample (Figure 4.6) to compute a 
hypothetical object is too expensive (recall that the 
algorithm is suitable only for off-line execution).  

5. Experiments 
This section empirically evaluates the efficiency of VS, 
using datasets created in the same way as in [TSP03]. 
Specifically, each axis of the 2D space is normalized to 
unit length. 5k points are randomly selected as “airports” 
from a real 2D point dataset CA/LB with cardinality 
130k/56k (http://www.census.gov/geo/www/tiger/). 100k 
aircrafts move among the airports as follows. For each 
aircraft p, two random airports are selected as the source 
src and destination des, respectively. The initial location 
of p is a random point on the segment connecting src and 
des. The orientation of the segment also determines the 
velocity direction of p, while the speed uniformly 
distributes in the range [0, 20]. Aircraft p flies for a 
number of timestamps uniformly distributed in [0, 5]. 
After that, p changes speed, moves (with the updated 
speed) for another period, and so on. As soon as p reaches 
the destination des, it flies towards another destination, 
repeating the above movements.  

The search region qR of a query is a square with length 
qrlen, and its query timestamp qT is uniform in [0, T], 
where T is the farthest future time that can be queried. 
The pivot workload PvQ contains m queries with the same 
qrlen, and the location of their qR is decided in a clustered 



manner. For this purpose, we first obtain numclu clusters 
following the airport distribution, where each cluster is a 
circle with diameter 0.05. The center of each qR (which, 
together with qrlen, completely decides qR) follows 
uniform distribution in a cluster. All clusters are expected 
to cover the same number of pivot queries. A user 
workload consists of 1k queries whose qrlen is identical 
to a given PvQ. The concrete qR and qT of a user query 
quser are decided based on a randomly-selected pivot query 
qpivot. Specifically, the qR center of quser deviates from that 
of qpivot by lε on each dimension, where lε is uniform in 
[0, lεmax⋅qrlen] (i.e., the maximum deviation is a 
percentage lεmax of qrlen). Similarly, the timestamp qT of 
quser differs from that of qpivot by tε uniform in [0, tεmax⋅T] 
(tεmax is also a percentage). Obviously, higher lεmax (tεmax) 
produces a user workload “less similar” to PvQ. 

We compare VS with the existing approaches for 
spatio-temporal estimation: spatio-temporal histograms 
(STH) and random sampling (RS) reviewed in Section 2. 
The performance of each method is measured as its 
estimation error (calculated by equation 3-1) in answering 
a user workload. In each experiment, we allocate the same 
amount of space to all techniques. Specifically, if VS 
keeps m samples (equal to the number of pivot queries), 
then the number of buckets (samples) in STH (RS) equals 
5.6m (1.2m) (taking into account different storage formats 
of various methods). All the experiments were performed 
using a Pentium IV 2.8 GHz CPU with 512 mega-bytes 
DDR400 memory. 

5.1 Effects of clustering in PvQ  
We first study the effect of m and numclu on the prediction 
accuracy. These two parameters decide the number of 
pivot queries in each cluster (i.e., a high m or low numclu 
results in densely-clustered queries). The other parameters 
are fixed to qrlen=0.05, T=10, lεmax=10%, and tεmax=3%. 
First, we fix numclu to 3 and measure the relative error as a 
function of m. As shown in Figure 5.1 (for both datasets 
CA and LB), VS outperforms its competitors significantly 
in all cases. Particularly, RS completely fails yielding up 
to 140% error. This is expected because RS performs well 
only if the sample size is sufficiently large (around 10% 
of the dataset [CDD+01]), while in our case the size is 
limited to at most 0.36% (for m=300) of the database 
(100k aircrafts). Similarly, STH also incurs considerable 
error due to the small number of buckets allowed (as 
shown in [TSP03], 3k buckets are needed to achieve 
accurate estimation).  

The precision of all methods improves as m increases 
for different reasons. RS (STH) uses a larger number of 
buckets (samples). The accuracy of VS, on the other hand, 
depends on the “similarity” between the user workload 
and PvQ. For large m (i.e., numerous pivot queries in a 
cluster), the probability that an actual query can be 
captured by some pivot increases. Specifically, recall that 
a user query quser is generated by drifting its qR, qT 
parameters from those of a pivot qpivot. For greater m, 

there is a higher chance that quser is very close to another 
pivot query (in the same cluster as qpivot), and hence can 
be accurately predicted. This phenomenon, referred to as 
mutual compensation in the sequel, explains why VS can 
provide good estimation even if the user workload differs 
from PvQ. 
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Figure 5.1: Error vs. m (qrlen=0.05, T=10, numclu=3, 
lεmax=10%, tεmax=3%) 

To further verify this, Figure 5.2 measures the error by 
changing the number numclu of clusters, fixing m=200. As 
numclu grows, the number of pivot queries in a cluster 
drops, thus weakening the effect of mutual compensation, 
and hence, lowering the VS precision. Nevertheless, VS is 
significantly better than RS and STH for all tested values 
of numclu. 
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Figure 5.2: Error vs. numclu (m=200, qrlen=0.05, T=10, 
lεmax=10%, tεmax=3%) 

5.2 Effects of query parameters 
In the sequel, we set m=200 and numclu=3, and compare 
alternative methods with respect to parameters qrlen and 
T (which determine qR and qT, respectively). Fixing T=10, 
Figure 5.3 plots the error as qrlen varies from 0.01 to 0.09 
(i.e., qR covers up to 0.81% of the data space). All 
methods become more accurate for larger qrlen (with VS 
still being the best method), which is consistent with the 
well-known fact that probabilistic estimation approaches, 
in general, perform better for larger query results 
[AGP00]. In Figure 5.4, qrlen is set to 0.05, and we 
evaluate the methods using different T. The accuracy of 
RS and STH is hardly affected by this parameter 
(confirming the results in [HKT03, TSP03]). VS 
deteriorates because, for higher T, the pivot queries are 
less similar to each other due to the greater difference in 
their qT (recall that qT uniformly distributes in [0, T]). 
Lower similarity between pivot queries reduces the effect 



of mutual compensation, thus leading to higher error.  
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Figure 5.3: Error vs. qrlen (m=200, T=10, numclu=3, 
lεmax=10%, tεmax=3%) 
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Figure 5.4: Error vs. T (m=200, qrlen=0.05, numclu=3, 

lεmax=10%, tεmax=3%) 

5.3 Effects of user workload similarity  
Next we set m, qrlen, T, numclu to their median values 200, 
0.05, 10, 3, respectively, and study the estimation 
efficiency by varying the similarity between user queries 
and PvQ. Figure 5.5 (5.6) fixes tεmax=3% (lεmax=10%), and 
illustrates the error as lεmax (tεmax) increases, adjusting the 
difference between user/pivot workloads in search regions 
(query timestamps). Evidently, VS performs satisfactorily 
even with the largest lεmax and tεmax (i.e., the lowest user 
similarity). In particular, VS yields maximum error below 
20%, and is considerably more accurate than RS and STH 
(which are not affected by lεmax and tεmax).     
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Figure 5.5: Error vs. lεmax (m=200, qrlen=0.05, T=10, 
numclu=3, tεmax=3%) 

5.4 Deterioration with time 
Having evaluated the estimation accuracy on a single 
timestamp, we proceed to investigate the performance of 
each method as time progresses. Towards this, we 
generate aircraft movements for 1k timestamps, and 

measure the accuracy of RS, STH, VS for the same user 
workload every 10 timestamps. For VS, we re-compute 
the weight vector (W in equation 4-3) whenever the error 
for PvQ is above 10%. Each re-computation requires less 
than 1ms. As shown in Figure 5.7, the precision of STH 
continuously deteriorates as time evolves, for the reasons 
discussed in Section 2.1. The performance of RS and VS 
is stable and eventually VS outperforms the other 
approaches by more than an order of magnitude. 
Interestingly, the error of VS changes in a “jigsaw” 
manner. The “ascending” parts (of the jigsaw) correspond 
to the slow accuracy degradation of VS (due to the data 
distribution changes) between consecutive weight re-
computations, while each “descending” part indicates the 
(immediate) improvement of re-computation. Note that 
re-computation is performed infrequently (on the average, 
every 200 timestamps). 
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Figure 5.6: Error vs. tεmax (m=200, qrlen=0.05, T=10, 
numclu=3, lεmax=10%) 
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Figure 5.7: Accuracy degradation with time (m=200, 

qrlen=0.05, T=10, numclu=3, lεmax=10%, tεmax=3%) 

5.5 Processing costs 
The last set of experiments evaluates the overhead of 
query estimation, dynamic maintenance, and pre-
computation. We only illustrate the results of CA dataset 
since those of LB are almost identical. Figure 5.8a (5.8b) 
compares the query processing time of each technique as 
a function of qrlen (T). STH is by far the slowest method 
because, as mentioned in Section 2.1, it entails expensive 
numerical evaluation. VS outperforms RS due to its 
smaller sample size. Figure 5.9 illustrates the number of 
update messages for dynamically maintaining each 
method in the experiments of Figure 5.7. VS requires 
considerably fewer messages than STH, confirming the 
superiority of data-driven updates over conventional 
(velocity-driven) policies. RS incurs even fewer messages 



because (i) an update is necessary only when a sample 
object changes its velocity, and (ii) the sample size is very 
small. However, the update efficiency of RS does not 
justify its poor estimation accuracy as shown in the 
previous sections. Finally, Figure 5.10 shows the pre-
computation time of VS as a function of the number m of 
pivot queries. Recall that this overhead is off-line and 
incurs only once.   
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Figure 5.10: Off-line 
initialization cost of VS (CA) 

6. Conclusions 
We propose Venn sampling, a spatio-temporal estimation 
technique that outperforms the existing solutions on all 
aspects including space consumption, evaluation 
efficiency, robustness with time and maintenance 
overhead. This paper also opens several exciting 
directions for future work. The first interesting question is, 
although VS already achieves perfect pivot estimation 
using as many samples as the number m of pivot queries, 
can its performance for actual queries be further 
improved if more space is allowed? An inverse version of 
the problem is: if the available space is less than O(m) 
(i.e., precise pivot prediction is impossible), how can we 
select the “best” signatures to minimize error? 
Furthermore, it would also be very useful to investigate 
the performance of VS in other applications (such as 
selectivity estimation in relational databases) and compare 
it with alternative techniques for the same problem.  

Acknowledgemnts 
This work was fully supported by 3 grants from the 
Research Grants Council of Hong Kong SAR, China. 
Specifically, the first author was sponsored by grant 
CityU 1163/04E, the second by HKUST 6180/03E, and 
the other authors by CityU 1038/02E.  

References 
[AA03] Aggarwal, C., Agrawal, D. On Nearest Neighbor 

Indexing of Nonlinear Trajectories. PODS, 2003. 
[AAE00] Agarwal, P., Arge, L., Erickson, J. Indexing Moving 

Points. PODS, 2000. 
[AGP00] Acharya, S., Gibbons, P., Poosala, V. Congressional 

Samples for Approximate Answering of Group-by 
Queries. SIGMOD, 2000. 

[B90]  Beaumont, N. An Algorithm for Disjunctive 
Programming. EJOR, 48: 362-371, 1990. 

[BGC01] Bruno, N., Gravano, L., Chaudhuri, S. STHoles: A 
Workload Aware Multidimensional Histogram. 
SIGMOD, 2001. 

[BKOS00] de Berg, M., van Kreveld, M., Overmars, M., 
Schwarzkopf, O. Computational Geometry: 
Algorithms and Applications (second edition). 
Springer, ISBN 3-540-65620-0, 2000. 

[CC02] Choi, Y., Chung, C. Selectivity Estimation for 
Spatio-Temporal Queries to Moving Objects. 
SIGMOD, 2002. 

[CDD+01] Chaudhuri, S., Das, G., Datar, M., Motwani, R., 
Narasayya, V. Overcoming Limitations of Sampling 
for Aggregation Queries. ICDE, 2001. 

[CDN01] Chaudhuri, S., Das, G., Narasayya. A Robust 
Optimization-Based Approach for Approximate 
Answering of Aggregate Queries. SIGMOD, 2001. 

[DGR03] Das, A., Gehrke, J., Riedewald, M. Approximate Join 
Processing Over Data Streams. SIGMOD, 2003. 

[DR03] Deligiannakis, A., Roussopoulos, N. Extended 
Wavelets for Multiple Measures. SIGMOD, 2003 

[GLR00] Ganti, V., Lee, M., Ramakrishnan. ICICLES: Self-
tuning Samples for Approximate Query Answering. 
VLDB, 2000. 

[GM98] Gibbons, P., Mattias, Y. New Sampling-based 
Summary Statistics for Improving Approximate 
Query Answers. SIGMOD, 1998 

[GMP97] Gibbons, P., Mattias, Y., Poosala, V. Fast 
Incremental Maintenance of Approximate 
Histograms. VLDB, 1997. 

[HKT03] Hadjieleftheriou, M., Kollios, G., Tsotras, V. 
Performance Evaluation of Spatio-temporal 
Selectivity Estimation Techniques, SSDBM, 2003.  

[J03] Jermaine, C. Making Sampling Robust with APA. 
VLDB, 2003. 

[L00] Lynch, J. Analysis and Application of Adaptive 
Sampling. PODS, 2000. 

[LNS90] Lipton, R., Naughton, J., Schneider, D. Practical 
Selectivity Estimation through Adaptive Sampling. 
SIGMOD, 1990. 

[SJLL00] Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M. 
Indexing the Positions of Continuously Moving 
Objects. SIGMOD, 2000. 

[TPS03] Tao, Y., Papadias, D., Sun, J. The TPR*-Tree: An 
Optimized Spatio-Temporal Access Method for 
Predictive Queries. VLDB, 2003. 

[TSP03] Tao, Y., Sun, J., Papadias, D. Analysis of Predictive 
Spatio-Temporal Queries. ACM TODS, 28(4): 295-
336, 2003.  

[V85] Vitter, J. Random Sampling with a Reservoir. ACM 
TOMS, 11: 37-57, 1985.  

[WAA01] Wu, Y., Agrawal, D., Abbadi, A. Applying the 
Golden Rule of Sampling for Query Estimation. 
SIGMOD, 2001. 


