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Abstract: Supportive care with mechanical ventilation continues to be an essential strategy for
managing severe neonatal respiratory failure; however, it is well known to cause and accentuate
neonatal lung injury. The pathogenesis of ventilator-induced lung injury (VILI) is multifactorial
and complex, resulting predominantly from interactions between ventilator-related factors and
patient-related factors. Importantly, VILI is a significant risk factor for developing bronchopulmonary
dysplasia (BPD), the most common chronic respiratory morbidity of preterm infants that lacks specific
therapies, causes life-long morbidities, and imposes psychosocial and economic burdens. Studies
of older children and adults suggest that understanding how and why VILI occurs is essential to
developing strategies for mitigating VILI and its consequences. This article reviews the preclinical and
clinical evidence on the pathogenesis and pathophysiology of VILI in neonates. We also highlight the
evidence behind various lung-protective strategies to guide clinicians in preventing and attenuating
VILI and, by extension, BPD in neonates. Further, we provide a snapshot of future directions that
may help minimize neonatal VILI.

Keywords: volutrauma; atelectrauma; hyperoxia; biotrauma; volume-targeted ventilation;
bronchopulmonary dysplasia

1. Introduction

Respiratory morbidities and respiratory failure continue to be serious problems in
preterm neonates [1–3]. The mainstay of management for severe neonatal respiratory
failure is supportive care with mechanical ventilation (MV). However, MV by itself may
inflict and accentuate lung injury [3–5]. This secondary lung damage caused by MV is often
called ventilator-induced lung injury (VILI) [6]. VILI is an important risk factor in extremely
low birth weight (ELBW) infants for developing bronchopulmonary dysplasia (BPD) [7,8].
Therefore, neonatologists avoid and minimize MV in preterm infants. The use of MV as an
initial modality to mitigate respiratory failure in ELBW infants has substantially declined
over the past decade [9]. However, MV is at times a life-saving intervention to support the
structurally and functionally immature lungs. Some reports indicate that up to ninety-five
percent of surviving ELBW infants will be exposed to MV at some point during their NICU
stay [10] and 30–80% of them require MV during the first few days of life [11,12], signifying
a substantial failure rate of non-invasive respiratory support in the early life of ELBW
infants. Thus, there is a need to be aware of lung-protective ventilation strategies.
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2. Pathology

Acute lung injury caused by MV is characterized by lung inflammation and diffuse
alveolar damage [13–15]. Increased microvascular permeability from endothelial and
epithelial dysfunction and disruption of the alveolar-capillary barrier causes pulmonary
edema [16,17]. Histologically, there is diffuse alveolar damage that is characterized by
an acute or exudative phase, organizing or proliferative phase, and the late-resolving or
fibrotic phase. In patients with repeated episodes of lung injury, all these histological
phases may coexist [18,19].

During the acute phase, there is edema, alveolar hemorrhage, hyaline membrane
formation, and interstitial widening. This phase is also characterized by necrosis of the
endothelial and alveolar cells and extensive thrombus formation [14,20]. Type II pneumo-
cytes hyperplasia occurs towards the end of this phase [15,18,21]. In the organizing phase
of VILI, hyaline membranes begin to organize and are incorporated into the alveolar septa
through macrophages. There is also granulation tissue development in the alveolar spaces
by proliferating myofibroblasts. Type 2 pneumocyte hyperplasia and squamous metaplasia
may be more pronounced in this stage. In the late-resolving phase, the granulation tissue
incorporates into the alveolar septa, accompanied by fibrosis and hyalinization of the
alveolar walls [14,18,19].

Chronic severe VILI in neonates is characterized by inflammation, airway epithelial
metaplasia, smooth muscle hypertrophy, and parenchyma fibrosis, which were the typical
pathological findings with lung injury in the pre-surfactant era, referred to as old BPD [22].
In the post-surfactant era, neonatal lung injury is mostly mild-to-moderate, characterized
by limited lung fibrosis and arrested alveolar and pulmonary vascular development [23].

3. Risk Factors and Pathogenesis

MV is an outstanding risk factor for neonatal lung injury. However, it is also important
to remember that MV is not the sole contributor of VILI. The pathogenesis of VILI is
multifactorial and complex, resulting from interactions between ventilator-related and
patient-related factors. Major ventilator-related factors include volutrauma, barotrauma,
atelectrauma, oxygen toxicity, and biotrauma. Patient-related factors include immature
lungs, surfactant deficiency, asymmetric lung disease, and lung inflammation [24–26].

3.1. Ventilator-Related Risk Factors
3.1.1. Volutrauma

Volutrauma refers to lung injury caused by exposure to high tidal volume (VT) with
resultant alveolar overdistension. Lung overinflation will cause overstretching of the small
airways and alveoli, resulting in acute edema and increased protein sieving in pulmonary
microcirculation [27]. Volutrauma is also associated with the release of proteases, cytokines,
and chemokines, leading to the activation of macrophages and neutrophils and increased
inflammation and injury in the lungs [28]. Studies have demonstrated that exposure to
high VT, even for short periods, can induce lung injury [27,29,30]. Volutrauma may also
decrease the response to surfactant treatment [29]. The most critical determinant of lung
injury appears to be the lung volume at the end of inspiration. A moderately high VT
superimposed on a high end-expiratory volume results in end-inspiratory overdistension
and volutrauma [31]. Lung injury is more pronounced if the sum of functional residual
capacity (FRC) and VT exceeds the total lung capacity (TLC). In preterm neonates, a higher
VT delivery is associated with an increased risk of prolonged ventilator dependence [32].

Neonatal clinical studies have demonstrated the importance of preventing volutrauma.
Keszler and Abubakar reported that volume targeted ventilation (VTV) stabilizes the deliv-
ered VT during MV in preterm infants [33]. Lista et al. demonstrated that VTV could reduce
pulmonary inflammation in preterm infants with respiratory distress syndrome (RDS) [34].
Strategies to maintain a constant VT while the lung compliance and resistance changes can
decrease volutrauma [35]. The benefits of controlling the VT and limiting volutrauma have
been noted in randomized controlled trials (RCTs) that compared VTV to pressure limited
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ventilation (PLV). A meta-analysis of these studies showed that VTV, compared to PLV,
significantly reduced the combined outcome of death or BPD at 36 weeks postmenstrual
age (PMA). The incidence of pneumothoraces, hypocarbia, severe intraventricular hemor-
rhage (IVH), periventricular leukomalacia (PVL), and the mean days of ventilation was
also significantly lower in preterm infants supported with VTV than in those supported
with PLV [36]. The meta-nalyses and a recent review by Cannavo et al. [37] emphasize that
avoiding volutrauma may be important not only for decreasing lung injury, but also brain
injury in neonates.

3.1.2. Barotrauma

Barotrauma refers to the lung injury caused by overstretching of the airways and
alveoli from exposure to extreme positive pressure. Webb and Tierney were among the first
investigators to demonstrate that MV with higher peak pressure produces lung injury in
rats [38]. They observed that the severity of the lung injury was directly proportional to the
administered peak airway pressure.

The lung expansion is determined by the difference between the alveolar and pleural
pressures, i.e., transpulmonary pressure. Currently, there is no reliable technology to
accurately measure these pressures. Pleural pressure is difficult to estimate, although
esophageal pressures can be used as a surrogate estimate. Plateau pressure is the most
commonly used measure for alveolar pressure. Alveolar pressure depends upon the airway
resistance and the elastic properties of the lung and chest at any given plateau airway
pressure. Therefore, the peak airway pressure may not always be directly proportional
to the alveolar or lung distending pressure [6]. This concept is exemplified by the lung
physiology of trumpet players. While playing a note, the alveolar pressures of these
players can be as high as 150 cm H2O; however, at the same time, their pleural pressures
can be as high as 140 cm H2O and thus, their transpulmonary/lung distending pressure
(150 − 140 = 10 cm H2O) is low and as a result, their lungs are protected against injury [39].
Other examples include infants with high airway resistance and increased pleural pressures.
In both these instances, the transpulmonary pressure and, thereby, the lung injury risk is not
increased despite high peak inspiratory pressures. In infants with high airway resistance
(e.g., BPD infants) [40–43], the alveolar pressure is lower than the peak inspiratory pressure
because of the increased airway resistance. By contrast, in infants with high pleural
pressure (e.g., infants with hydrops, chest wall edema, or abdominal distension), the
concept is similar to that of a trumpet player. Although these infants may require a very
high inspiratory pressure to accomplish adequate gas exchange, the lung distending or the
transpulmonary pressure is not significantly increased because their pleural pressures are
also very high.

What Is More Injurious: Pressure or Volume?

Whether volutrauma or barotrauma is the more significant determinant of lung injury
has been a baffling question. Although volutrauma and barotrauma can be interrelated,
studies have demonstrated that more than the high airway pressure per se, it is the degree
of lung overinflation that determines the lung injury [44].

In their classic experiment, Dreyfuss et al. [45] subjected rats to high or low VT
ventilation using identical high peak airway pressures. Thoraco-abdominal excursions were
limited during low-volume ventilation by strapping the chest wall while being exposed
to high airway pressure. Increased lung injury was detected in the rats subjected to high
VT–high airway pressure ventilation, whereas there was no injury in animals ventilated
with normal VT-high airway pressure ventilation. Similarly, Carlton et al. reported lung
injury when preterm lambs were exposed to high VT rather than when exposed to high
pressures [27]. Furthermore, systematic analysis of clinical trials in neonates also indicates
that VTV causes less lung injury than PLV [36].
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3.1.3. Atelectrauma

Atelectrauma results from ventilating at low lung volumes. This type of lung in-
jury results from shear stress secondary to repeated alveolar collapse and expansion
(RACE) [8,46–48]. The very preterm infants are at high risk for RACE because they have
difficulty maintaining their upper airway patency and FRC [49]. Atelectrauma also causes
surfactant dysfunction [47].

The role of positive end-expiratory pressure (PEEP) in preventing atelectasis and
lung injury cannot be understated. Positive pressure ventilation (PPV) with inadequate
PEEP leads to a low residual volume, inability to establish FRC, and atelectasis. Preclinical
studies have highlighted the importance of PEEP during ventilation. In rats, Webb and
Tierney [38] have demonstrated that MV with very high peak airway pressures and a
high PEEP of 10 cm H2O resulted in no lung injury, whereas animals ventilated with the
same peak airway pressure but zero PEEP had significant injuries. Muscedere et al. [46]
studied rat lungs ventilated with physiologic VT at different end-expiratory pressures
(above and below inflection pressure or Pinf). The compliance fell dramatically, and lung
injury was severe in groups ventilated with a PEEP below Pinf, while there was no change
in the group ventilated with PEEP above Pinf. Sandhar et al. investigated the role of
PEEP in surfactant-depleted rabbits and reported a significantly lower incidence of hyaline
membrane formation in the group ventilated with PEEP, thereby highlighting its role in the
prevention of atelectrauma [50].

Ventilation with sufficient end-expiratory lung volume has also been shown to in-
fluence exogenous surfactant efficacy [51]. Injury to ventilated surfactant-deficient lungs
can be minimized by recruiting alveoli using appropriate mean airway pressures and
maintaining lung volume at higher than normal FRC [52]. The lung injury risk during
volume recruitment is significantly less than the damage arising from de-recruitment and
atelectasis [53]. Mead et al. noted that the stretching forces at the margins between open
and collapsed regions of lung parenchyma could be five times more than that observed
between the open regions [54].

Finally, atelectasis can cause regional volutrauma. The delivered VT takes the path
of least resistance and preferentially enters and distends the aerated lungs rather than the
atelectatic lungs because the critical opening pressure is lower in aerated regions than in
the atelectatic regions of the lungs (Laplace’s law). This heterogeneous distribution of VT
leads to regional volutrauma and injury of the relatively healthy lungs [5,55] despite the
set VT being in the normal range (Figure 1).

3.1.4. Oxidative Stress

Oxygen therapy is frequently used to mitigate hypoxic respiratory failure in infants;
however, excessive oxygen exposure (hyperoxia) causes lung injury [56]. Northway et al.
initially described BPD as a disorder resulting from lung oxygen toxicity [22]. In newborn
guinea pigs exposed to 100% oxygen, they observed radiographic and histologic features
similar to BPD infants [57]. Preterm infants are particularly susceptible to oxygen toxicity be-
cause the antioxidant mechanisms are not fully developed until the third trimester [5,56,58].
Further, the ability to sequester hyperoxia-mediated generation of reactive oxygen species
(ROS) is decreased in neonates [59]. The deleterious effects of hyperoxia are mediated by
ROS and lung inflammation. ROS can oxidize cell membrane lipids, proteins, nucleic acid,
and enzymes, causing cell death and tissue damage [60].

Human studies emphasize the acute consequences of hyperoxia in neonates. A single-
center RCT in infants born between 24- and 28-weeks gestational age (GA) compared higher
(90%) versus lower (30%) initial oxygen concentration in the delivery room. Infants who
received a higher oxygen load had higher oxidative stress and inflammation and were at
higher risk of developing BPD [61]. Similar results were reported in infants between 24-
and 34-weeks GA who were randomized at birth to receive either 21% or 100% oxygen
and then titrated to achieve a SpO2 target between 85% and 94% [62]. Oxidative stress,
respiratory morbidities, and BPD rates were lower in the infants initially resuscitated with
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room air. Trials have also shown that resuscitating asphyxiated newborn infants with
room air reduces mortality compared to resuscitation with 100% oxygen [63]. A recent
meta-analysis [64] confirmed this finding, leading to neonatal resuscitation guidelines that
caution against starting resuscitation with 100% FiO2 in term and near-term infants [65,66].
However, the clinical studies have not shown convincing evidence that limiting oxygen
exposure can prevent BPD. A meta-analysis comparing high (>50%) and low (<50%) initial
oxygen exposures in patients <32 weeks GA found no differences in the BPD rates between
the groups [67]. Another larger meta-analysis of infants born at <28 weeks GA examining
the effects of low (85–89%) versus high (91–95%) SpO2 reported no differences in BPD
rates between the groups. However, they observed that the mortality and necrotizing
enterocolitis was increased, and severe retinopathy of prematurity was reduced in the
low-oxygen saturation-targeted infants [68]. Additionally, the risk of mortality and severe
intraventricular hemorrhage is significantly increased in preterm infants if their oxygen
saturation remains below 80% in the first 5 min of life [69,70]. These findings suggest the
importance of avoiding hypoxia and hyperoxia, both of which can cause oxidative stress,
during the neonatal period. The European consensus guidelines recommend targeting
oxygen saturation between 90% to 94% in preterm infants receiving oxygen therapy [71].
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3.1.5. Biotrauma

Biotrauma results from the release of inflammatory mediators (cytokines and chemokines)
secondary to injuries caused by volutrauma, barotrauma, atelectrauma, oxygen toxicity, and
sepsis, magnifying the initial injury within the lungs [6]. Inflammatory cells accumulate in
the preterm lung during VILI [72], and there is an increased expression of pro-inflammatory
cytokines [73,74] and decreased expression of anti-inflammatory cytokines [75]. The inflam-
matory response from acute lung injury need not be compartmentalized to the lungs [76,77].
The loss of compartmentalization is a two-way disturbance, with cytokines and microbes
shifting from the vascular to the alveolar compartment and vice versa [77]. When these me-
diators are translocated into the systemic circulation, systemic inflammatory response syn-
drome occurs, causing widespread inflammatory damage and multi-organ dysfunction [78].
Further, biotrauma can cause systemic infection or sepsis when the respiratory tract is
infected or colonized with pathogenic microbes [79–82].

3.1.6. Mechanical Power, Stress and Strain

Mechanical power is the amount of energy transferred from the mechanical ventilator
to the lungs per unit of time and is expressed in joules per minute [83]. The risk of VILI
is directly proportional to the duration and amount of energy delivered to the lungs [83].
Mechanical power is a function of tidal volume, respiratory rate, and PEEP [83]. Therefore,
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the amount of power applied to the lungs is dependent on the ventilatory parameters
set by the patient care provider team [84]. However, the risk of VILI from mechanical
power depends on the lung size and the underlying lung disease. The energy transfer
will be less intense if the lungs have a large surface and uniform mechanical properties.
However, if the lungs are small or heterogeneous with varying mechanical properties, the
risk of VILI is significantly increased for the same mechanical power delivered [85–87]. In
a recent international multicenter observational study that involved 55 pediatric intensive
care units, the use of a higher mechanical power was associated with an increased risk of
BPD [88].

Lung stress is defined as force per unit area and is expressed in the same units as
pressure [89], whereas lung strain is define as the change in lung volume caused by lung
stress [90]. Mechanical power is the major determinant of lung stress and strain [83]. Stress
and strain play an important role in mediating VILI in patients with heterogeneous lung
disease because stress concentrators arise at margins between atelectatic and aerated lung
units [91,92]. Strain and stress are concentrated in these regions because the applied VT
preferentially enters, over-distends, and stretches the adjacent normal lungs, which are
constrained by the non-expandable atelectatic lungs. This focused stress can be more
than two-fold greater than the transpulmonary pressure applied to the whole lung [54,93].
Additionally, the risk for VILI also depends upon whether the lungs are subjected to
dynamic or static strain. Lung volume change mediated by VT causes dynamic strain,
whereas the volume change mediated by PEEP causes static strain, and dynamic strain is
more injurious to the lungs than static strain [94].

3.2. Patient-Related Risk Factors
3.2.1. Lung Immaturity

Preterm infants are susceptible to lung injury because their lungs are structurally
and functionally immature. Infants with lung immaturity have decreased functional lung
units. This means they will need oxygen therapy and MV support to save their lives and
prevent brain damage. However, these infants are not equipped with repair mechanisms
to counter the adverse effects of these supportive therapies [95,96]. Surfactant-deficient
preterm lungs are easily injured during MV [24]. An increased tendency for the collapse of
air spaces, the need for higher pressures to recruit and keep the lungs open, and an increase
in surface tension, all contribute to lung injury. Preterm lungs are very non-compliant but
are supported by a very compliant chest wall. At the same time, the distal airways are
highly compliant as they lack smooth muscle and cartilage. This leads to the expansion
of distal airways with collapsed alveoli, causing injury to both the airways and atelectatic
alveoli [24]. The developmental immaturity of the collagen and elastin components in the
respiratory system of preterm infants predisposes them to volutrauma [95,96]. Similarly,
prematurity-associated antioxidant enzyme deficiency [5,56,58] increases the risk of ROS-
mediated lung injury.

3.2.2. Preexisting Lung Disease

Preexisting lung disease, especially asymmetric lung disease, is a significant risk factor
for VILI. When heterogeneous lungs, comprised of both aerated and consolidated regions,
are ventilated, the administered VT takes the path of least resistance and preferentially
enters and over-distends the aerated or good regions of the lung rather than the consoli-
dated or atelectatic regions because the critical opening pressure is lower in the healthier
lungs [97,98]. This heterogeneous VT distribution leads to regional volutrauma of relatively
healthy lungs despite the administered VT being in the normal range (Figure 1). Impor-
tantly, the existence of asymmetric lung disease may not be easily recognized because chest
X-rays, the commonly used diagnostic imaging modality to detect lung disease, are not
sensitive enough to diagnose asymmetric lung disease [96].
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3.2.3. Nutrition

Good nutrition is necessary for somatic growth and development [99]. Likewise,
optimal nutrition is also necessary for lung development and repair [100–103], as well as
defense against infection [42,104,105] and oxidative stress [106–108], which are all risk fac-
tors for VILI. Preterm infants are at risk of poor nutritional states due to the increased work
of breathing, immature gastrointestinal function, fluid restriction, and exposure to medica-
tions such as steroids and diuretics [42,109,110]. Intrauterine growth restriction [111] and
postnatal growth restriction [112] increase the risk for chronic lung injury. Animal studies
suggest that both pre-and post-natal nutritional deficiency are risk factors for lung injury.
Nutritional deficiency mediates lung injury by altering the lung surface area–bodyweight
ratio, decreasing antioxidant activity [113], delaying type 2 alveolar epithelial cell matu-
ration, reducing surfactant production [113], impairing pulmonary alveolarization and
vascular development, causing pulmonary vascular remodeling [114,115], and inducing
intestinal dysbiosis [116]. By contrast, human studies suggest that increased caloric intake
in the first days of life is associated with decreased respiratory morbidities in preterm
infants [117,118].

4. Consequences of VILI

MV injures lung epithelial and endothelial cells and disrupts alveolarization and vas-
culogenesis. The damaged blood vessels become leaky, and their endothelial cells become
activated, leading to the recruitment of inflammatory cells and the accumulation of inflam-
matory mediators and protein-rich fluid in the lungs. These inflammatory changes increase
the distance between the capillary endothelial cells and alveolar epithelial cells, decreasing
the gas-exchange efficacy. These changes also cause surfactant dysfunction and deficiency,
hyaline membrane formation, and atelectasis [31,45,96]. The inflammatory mediators and
bacterial flora in the lungs can also translocate to the systemic circulation, causing systemic
inflammatory response syndrome, sepsis, and multi-organ dysfunction [78]. Finally, severe,
recurrent, or persistent lung injury causes suboptimal repair and BPD (Figure 2).
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Figure 2. Schema of consequences of VILI: 1: Type II alveolar epithelial cell; 2: Type I alveolar
epithelial cell; 3: Alveolar macrophage; 4: Interstitium; 5: Fibroblast; 6: Red blood cell; 7: Endothelial
cell; 8: Protein-rich edema; 9: Activated neutrophil; 10: Injured type I alveolar epithelial cell; 11:
Cellular debris; 12: Hyaline membrane; 13: Neutrophil.

5. Lung-Protective Strategies

Studies of adults with acute respiratory distress syndrome (ARDS) suggest that VILI
can be mitigated if we employ lung-protective strategies while ventilating respiratory
failure patients. The following are some of the strategies to mitigate VILI.
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5.1. Open Lung Ventilation Strategy

Optimizing lung recruitment and ensuring that the lungs receive even distribution
of the delivered VT, i.e., open lung concept (OLC), is the fundamental principle of any
lung-protective ventilation strategy [119]. Avoiding excessive VT and facilitating uni-
form distribution of VT, and thus decreasing volutrauma and atelectrauma, is the key to
preventing acute and chronic lung injury.

5.2. Preventing Volutrauma

As discussed in the VILI pathogenesis, decreasing alveolar overdistension by targeting
VT attenuates VILI. VT is better regulated and stabilized by VTV than PLV. In PLV, VT
delivery can vary significantly depending on the compliance and resistance of the respi-
ratory system and the patient’s effort, resulting in volutrauma or atelectrauma. Studies
in both adult and newborn animal models have shown that reducing VT and applying
PEEP during conventional MV attenuates VILI. Although PEEP can reduce the severity of
VILI, PEEP might favor hyperinflation if VT is not optimized because the main determinant
of acute lung injury is end-inspiratory and end-expiratory lung volume [31,46,120]. MV
with lower VT has been shown to decrease mortality and the number of days of ventilation
compared to higher VT strategies in ARDS [121]. Similarly, a Cochrane review of twenty
RCTs comprising more than 1000 infants reported that the VTV reduced the primary out-
come of death or BPD at 36 weeks PMA and the secondary outcomes of pneumothorax,
MV duration, and the incidence of hypocarbia, severe IVH, and PVL [36].

5.3. High-Frequency Ventilation

Animal models of acute lung injury have demonstrated that high-frequency ventila-
tion (HFV) may decrease lung inflammation and improve lung function, mechanics, and
histopathology [51,52]. Multiple RCTs compared elective HFV with conventional MV in
preterm infants with respiratory failure. Although the systematic reviews have reported
that BPD risk in survivors was significantly reduced with HFV use, this effect was inconsis-
tent across studies [122–124]. Lung-protective strategies with conventional ventilation may
be as good as HFV in preterm infants. Conventional ventilation with optimization of lung
volumes can achieve similar degrees of lung protection as HFV [125–127].

5.4. Preventing and Reversing Atelectrauma

Avoiding atelectrauma by using sufficient inflation pressure to recruit collapsed alveoli
and stabilizing the recruited alveoli by sufficient PEEP protects against lung injury. CPAP
or PEEP can improve respiratory function by: (a) reducing upper airway resistance by
mechanically splinting the airway [128]; (b) increasing FRC [128]; (c) reducing inspiratory
resistance by dilating the airways [129]; (d) increasing lung compliance; (e) stabilizing the
chest wall; (f) increasing the mean airway pressure and improving the ventilation-perfusion
mismatch [130]; and (g) conserving surfactant [131].

5.5. Noninvasive Respiratory Support

Three landmark studies compared CPAP to MV. In the COIN trial, Morley et al.
randomized 610 infants between 25 and 28 6/7 weeks GA to initial respiratory management
with either CPAP or MV. CPAP decreased the days on MV and the requirement for oxygen
at 28 days. However, they did not find any significant difference in the rates of death or
BPD between the groups [132]. The SUPPORT trial enrolled 1316 infants between 24 and
27 6/7 weeks GA and randomized them either to initial CPAP therapy with subsequent
selective rescue surfactant therapy or to primary MV with prophylactic surfactant therapy.
There was no significant difference in the rates of death or BPD between the groups.
However, infants randomized to CPAP treatment required less frequent intubation, fewer
days of MV, and decreased postnatal corticosteroid therapy [133]. In the Vermont Oxford
Network trial, Dunn et al. randomized 648 infants between 26 and 29 6/7 weeks GA to
prophylactic surfactant followed by MV, prophylactic surfactant followed by extubation to
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CPAP, or initial CPAP therapy with selective surfactant treatment [134]. The rates of death
or BPD at 36 weeks PMA between the groups were not different, although early CPAP
reduced the need for intubation and surfactant treatment.

A meta-analysis comparing early surfactant administration with brief MV followed by
extubation to CPAP vs. selective surfactant administration followed by MV and extubation
from low respiratory support showed that the former treatment strategy was associated
with a reduced need for MV, lower BPD incidence, and lower air leak syndromes [135].
Similarly, a more recent meta-analysis of four RCTs comparing nasal CPAP versus MV
in preterm infants reported that CPAP reduces the combined outcome of death or BPD,
or both, at 36 weeks PMA [136]. Based on these studies, the Committee on Fetus and
Newborn by the American Academy of Pediatrics published a policy statement according
to which the early use of CPAP with subsequent selective surfactant administration in
preterm infants results in lower rates of BPD/death compared to prophylactic or early
surfactant therapy [137].

Other forms of nasal ventilatory strategies (nasal intermittent MV (NIMV) or nasal
intermittent positive pressure ventilation (NIPPV)) have also been shown to protect the
lungs. Kugelman et al. randomized 84 preterm infants to either nasal CPAP or NIMV and
observed that infants randomized to NIMV were intubated less often and had decreased
BPD incidence [138]. Another retrospective study of preterm infants weighing ≤1250 g
assessed the impact of CPAP versus synchronized NIPPV (SNIPPV). In the cohort of infants
with birth weights between 500 and 750 g, NIPPV was associated with reduced incidence
of the combined outcome of BPD and death compared to CPAP [139]. In a prospective
randomized study, Bhandari et al. compared SNIPPV with conventional MV in 41 infants
with a birth weight between 600 and 1250 g. They found a lower BPD and death rate in the
SNIPPV group [140]. A meta-analysis of three studies including 360 infants concluded that
NIPPV was superior to CPAP in preventing invasive ventilation, although neither of these
therapies decreased BPD [141]. These results were substantiated by a larger multinational
RCT in ELBW infants, which showed no difference in BPD-free survival at 36 weeks PMA
with either CPAP or NIPPV [142]. However, a recent meta-analysis indicates that when
compared to CPAP, ventilator-generated synchronized NIPPV may decrease BPD incidence
in preterm infants [143].

6. Conclusions

MV is a key risk factor for both acute and chronic lung injury in neonates. Although
the pathogenesis of VILI is complex and multifactorial, it is possible to prevent or mitigate
this injury in many neonates. Importantly, the emphasis should be to avoid MV and use
noninvasive respiratory support if possible as the initial modality to manage respiratory
failure in neonates, especially ELBW infants. The fundamental principle is to achieve an
acceptable but not entirely normal level of gas exchange with the least deleterious form of
ventilatory support. If MV is a necessity, employment of lung-protective ventilatory strate-
gies should be considered. End-inspiratory alveolar overdistension should be minimized
by employing VTV. FRC should be optimized by reversing atelectasis and stabilizing lung
units by providing sufficient PEEP or CPAP. Incorporating these three strategies will enable
the delivery of optimal VT uniformly throughout the lungs, improving oxygenation and
simultaneously minimizing volutrauma, atelectrauma, and oxygen toxicity (Figure 3).
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7. Future Directions

Although not comprehensive, this article discusses two important concepts that can
help prevent or mitigate VILI in neonates. Estimating the mechanical power needed to
support the lung function can be an important strategy to decrease mechanical energy
delivered to the lungs over time by MV and the resultant lung injury. The mechanical power
needed during MV can be estimated by measuring the patient’s respiratory mechanics, such
as pulmonary and respiratory system elastance. Second, normalizing the delivered VT to
lung size rather than bodyweight is necessary to provide accurate respiratory support and
prevent or decrease VILI. The aerated lung size or FRC can be measured by quantitative
CT scan analysis or gas dilution techniques.
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