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Introduction

Once upon a time the existence of ventilator-induced lung
injury (VILI) was debated. After all, most patients with
lung dysfunction requiring mechanical ventilation had
other potential causes of lung injury, and many patients
appeared to tolerate mechanical ventilation for prolonged
periods without any adverse sequelae. However, as a re-
sult of numerous studies over the past century, and es-
pecially during the past 20 years it is now generally ac-
cepted that mechanical ventilation per se can initiate as
well as exacerbate lung injury and contribute to patient
morbidity and mortality. This review examines the sem-
inal bench and bedside studies that contributed to our
current understanding of VILI, and that form the basis for
current recommendations for mechanical ventilation of
the critically ill. Figure 1 schematically depicts a timeline
of bench to bedside research on VILI. Included in this

review are many of the most frequently cited studies (with
the number of citations, N, from the Institute for Science
Information Citation Index as of August 2005 included in
parentheses), as well as those studies which the authors
feel have had a particularly significant impact on subse-
quent research and/or clinical practice.

Brief overview of the early years: air leaks,
surfactant dysfunction, and “respirator lung”

As early as the 1700s investigators raised concerns that
inflation of the lung with positive pressure ventilation
could potentially damage the lungs and produce air leaks
(for an excellent historical review see [1]). In 1887
Champneys [2] reported that lung rupture and cervical
emphysema ensue if the lungs of dead infants are sub-
jected to pressures of 20–80 mmHg. In 1939 Macklin [3]
(Number of citations, N=467) published a frequently cited
study demonstrating that excessive alveolar distension
produces rupture at the junction of the alveolar wall and
vascular sheath, allowing air to track along the bron-
chovascular sheath into the mediastinum and subcutane-
ous tissues or to rupture into the pleural or peritoneal
spaces. Given that the development of air leaks appeared
to be related to the use of high airway pressures, the term
“barotrauma” was applied.

In addition to air leaks, laboratory investigations also
demonstrated that mechanical ventilation can adversely
affect lung compliance and surfactant function. Green-
field et al. [4] (N=115) showed that ventilation of dog
lungs with large tidal volume (Vt; generated with a peak
inspiratory pressure, PIP, of 36–32 cmH2O) for 2 h pro-
duces surfactant dysfunction, and Faridy et al. [5]
(N=178) observed in an ex vivo dog lung model that the
addition of positive end expiratory pressure (PEEP) at-
tenuates ventilation-induced increases in surface tension.

Early investigators also made a number of important
observations. For example, in 1949 Fowler [6] (N=325)
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published a key observation that would be revisited in
later studies of VILI: the fact that ventilation in lungs is
not uniform, particularly in the presence of underlying
lung disease. Mead et al. [7] (N=584) published an often
cited paper examining the forces acting on alveoli within
the lung. They illustrated that although uniform force
proportional to the transalveolar pressure acts on adjacent
alveoli in a uniformly expanded lung, the traction forces
exerted by adjacent expanded alveoli on the walls of a
collapsed alveolus can greatly exceed transpulmonary
pressure (e.g., exceed 140 cmH2O) due to interdepen-
dence.

On the clinical front the use of mechanical ventilation
as a supportive therapy outside the operating theater be-
came increasingly widespread in the aftermath of the
polio epidemics of the 1950s, and the term “respirator
lung” started being applied to autopsy findings of diffuse
alveolar damage (dense pulmonary cellular infiltrates,
pulmonary edema, and hyaline membranes) in critically
ill patients who had required ventilation with high airway
pressures prior to death. Indeed, when Ashbaugh et al. [8]
(N=1193) submitted their landmark paper in 1967 on
acute respiratory distress (ARDS) in adults, one reviewer
purportedly dismissed this “new” syndrome as simply a
manifestation of VILI [9].

Recognizing that it would be impossible in the clinical
arena to dissect out the contribution of ventilator-induced
injury from lung injury due to other causes, investigators
turned to the bench.

Seminal bench studies on ventilator-induced injury

The initial challenge tackled by investigators was deter-
mining whether mechanical ventilation per se could pro-
duce diffuse lung injury (i.e., “respirator lung”), and if
so, what ventilatory parameters (e.g., Vt, end-expiratory
pressure) were responsible.

Can mechanical ventilation produce lung injury
other than air leaks, and at what ventilatory settings?

A landmark paper examining this question was published
by Webb and Tierney [10] (N=374) in 1974 entitled
“Experimental pulmonary-edema due to intermittent
positive pressure ventilation with high inflation pressures.
Protection by positive end-expiratory pressure.” Realizing
that “some patients with ARDS may require pressures of
40–80 cmH2O,” Webb and Tierney set out to determine
whether the “only complications of these pressures in-
volve lung rupture with interstitial emphysema or pneu-
mothorax.” Their study design consisted of ventilating
rats with normal lungs with PIP values of 14, 30, or
45 cmH2O without PEEP, as well as with PIP of 30 or
45 cmH2O and 10 cmH2O of PEEP. In order to maintain
similar PaCO2 with the various ventilation strategies the
dead space of the ventilatory circuit was altered.

This seminal study had several key findings. First, in
keeping with prior studies, Webb and Tierney demon-
strated that ventilation of normal lungs with low pressures

Fig. 1 Time line illustrating a
number of the seminal basic
science (top) and clinical (bot-
tom) observations that have in-
fluenced our understanding of
ventilator-induced lung injury
and have changed ventilatory
support of critically ill patients
over the years
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(PIP 14 cmH2O) does not cause significant injury. Sec-
ond, they dramatically showed that ventilation with high
pressures (30 or 45 cmH2O) produces perivascular edema,
and that ventilation at high airway pressures (45 cmH2O)
without PEEP leads to severe lung injury (gross pulmo-
nary edema, severe hypoxia) as well as death within
35 min. Third, they showed that PEEP confers protection
from alveolar edema due to high inspiratory pressure
ventilation.

Based on the results of this study, Webb and Tierney
put forth a number of precepts that future research would
validate: (a) that lungs from patients with ARDS have
some “normal alveoli scattered among collapsed or fluid-
filled alveoli, and that although the flooded alveoli “may
be protected from over inflation... we are concerned that
the normal alveoli may be over inflated and damaged,”
(b) that “tissue disruption secondary to a high inspiratory
pressure is probably not the mechanism of the changes we
observed,” and (c) that surfactant dysfunction with certain
ventilatory strategies likely contributed to the develop-
ment of lung injury. Prophetically, they concluded with
the comment that the results “have influenced our man-
agement of patients requiring ventilatory assistance. We
avoid the use of high inspiratory pressure positive pres-
sure breathing, especially if the end-expiratory volume is
low, as for example in patients with ARDS...” and “in
such situations we strive to avoid high inspiratory pres-
sures, use a low frequency, and apply PEEP” (quite
similar to current recommendations decades later).

However, the study by Webb and Tierney (and other
animal studies to follow) had a number of significant
limitations. As would subsequently become even more
apparent, different species have different susceptibility to
VILI (i.e., small species are generally more susceptible).
Therefore it remained uncertain whether the bench find-
ings were applicable to humans. Second, the period of
ventilation in this study was only approx. 60 min (N.B.
short periods of ventilation are a limitation of most bench
studies). As such, it remained unclear whether the results
were applicable to the lung injury found with longer pe-
riods of ventilation. Third, hemodynamic parameters were
not measured or controlled between groups and lung
volumes (e.g., Vt, end-inspiratory volume) were not
measured. Thus it remained unclear whether other factors
(e.g., hypotensive shock) may have contributed to the
lung injury. Finally, the study did not dissect out the
mechanisms responsible for high inspiratory pressure
VILI.

What ventilatory parameters are injurious and how?

In a series of eloquently designed experiments Dreyfuss
and colleagues [11, 12, 13] explored which of the many
parameters of mechanical ventilation (e.g., Vt, PIP, end
expiratory lung volume) is responsible for the develop-

ment of pulmonary edema, and whether the physiological
changes seen with injurious ventilation are associated
with any ultrastructural changes (as assessed by electron
microscopy). In their 1985 paper Dreyfuss et al. [11]
demonstrated that high pressure (PIP 45 cmH2O) venti-
lation of rat lungs in vivo increases extravascular water
and lung albumin uptake rapidly (within 5 min of venti-
lation), and that with longer periods of ventilation (up to
20 min) a progressive increase in lung injury occurs (i.e.,
endothelial cell detachment and blebs progressing to
diffuse injury including denudation of the epithelial
basement membrane, interstitial and alveolar edema with
hyaline membranes and cell debris) [11] (N=364). This
study illustrated that injurious ventilation of normal lungs
could not only produce ultrastructural cellular damage,
but that this injury occurs within minutes of initiating an
injurious ventilation strategy.

Dreyfuss et al. [12] (N=503) also explored whether it
was the high airway pressure per se or the resulting lung
volume that leads to VILI and pulmonary edema. In order
to differentiate the effect of airway pressure from that of
lung volume rats were subjected to one of the following
five ventilatory strategies: (a) low PIP (7 cmH2O) re-
sulting in relatively low Vt (13 ml/kg); (b) high PIP
(45 cmH2O) resulting in high Vt (40 ml/kg); (c) high PIP
(45 cmH2O) and 10 cmH2O PEEP (Vt 25 ml/kg); (d) high
PIP (45 cmH2O) but restricted Vt (19 ml/kg, produced by
using a thoracoabdominal binder to limit chest wall ex-
cursion); and (e) negative inspiratory pressure (using a
mini-iron lung) and high Vt (44 ml/kg). The key finding
of this study was that high Vt ventilation, irrespective of
airway pressure, produces severe lung injury character-
ized by pulmonary edema, increased alveolar-capillary
permeability, and structural abnormalities. In contrast,
ventilation with lower Vt, irrespective of airway pressure,
does not produce ultrastructural changes or signs of al-
veolar edema or hemorrhage. In addition, PEEP once
again was found to be “protective,” as the presence of
PEEP prevented pulmonary epithelial damage and alve-
olar edema and significantly reduced interstitial edema
and endothelial cell changes. As a result of this study (and
several confirmatory studies in other models, see [13]),
researchers began to focus in on “volutrauma” (i.e., injury
due to lung volume which is proportional to the trans-
mural pressure gradient across the alveolus) rather than
“barotrauma” (injury due to airway pressure) as the pre-
dominant injurious ventilatory parameter. These results
agreed with Bouhuys’ [14] observation in Nature in 1969
that musicians playing the trumpet repetitively develop
pressures at the airway opening of approx. 150 cmH2O
without developing lung injury. Further laboratory studies
showed that ventilation with either high Vt or high end-
inspiratory lung volume is detrimental [13].

Meanwhile, other investigators such as West et al. [15]
and Parker et al. [16, 17] focused on the injurious forces
acting on the opposite side of the thin (<0.4 �m) alveolar
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capillary interface, i.e., the endothelial surface. Using
isolated perfused rabbit lungs, West et al. [15] (N=230)
examined the role of three of the major forces acting on
the pulmonary capillary wall (circumferential tension due
to transmural pressure, surface tension of the alveolus,
and longitudinal tension due to lung inflation) and dem-
onstrated that at high lung volume or with high perfusion
pressure, capillary stress failure greatly increases.

Multiple investigators also explored the relationship
between PEEP and VILI (including what level of PEEP is
associated with reduced alveolar edema, surfactant dys-
function, histological injury, and improved gas exchange).
Studies showed that in experimental models in which
excessive lung distension could occur with high PEEP
(e.g., open chest models or ex vivo lungs), high PEEP
worsened lung edema. However, with in vivo models in
which lung volume was restricted by the chest wall, high
PEEP resulted in cardiovascular compromise and was
associated with either increased or decreased pulmonary
edema. The particular level of PEEP that was injurious
appeared to depend on a number of factors including the
experimental model, animal species, and end-inspiratory
lung volume (with similar PEEP leading to more adverse
sequelae in ex vivo models, smaller species or with large
lung volumes) [13].

Conversely, ventilation without PEEP did not appear
to cause significant injury, provided low airway pressure/
physiological Vt was used in normal lungs in vivo (i.e.,
with intact negative pleural pressure to maintain end-ex-
piratory lung volume) for short periods of time. However,
ventilation with low PEEP or no PEEP in ex vivo lungs,
or lungs with surfactant dysfunction (such as occurs with
high Vt ventilation) was associated with lung injury and
dysfunction. For example, in an ex vivo rat lung model
Muscedere et al. [18] (N=332) illustrated that ventilation
using PEEP below the inflection point of the pressure-
volume curve resulted in significant distal airway injury
and reduced lung compliance as compared to the minimal
injury found if PEEP greater than the inflection point was
used. These studies led to a new concept in VILI—”at-
electrauma” (injury from repetitive opening and collapse
of distal lung units due to insufficient end-expiratory lung
volume) [19] (N=46).

Factors that predispose to ventilator-induced lung injury

Multiple bench studies have also identified a number of
factors (such as underlying lung disease, systemic in-
flammation, surfactant dysfunction, aspiration, pulmonary
edema, extremes of age, heterogeneous lung ventilation)
that increase the susceptibility of lungs to injury by me-
chanical ventilation. Often a synergistic interaction was
found between mechanical ventilation and a preexisting
lung abnormality. For example, in isolated perfused rabbit
lungs Hernandez et al. [20] (N=63) demonstrated that,

individually, oleic acid or ventilation with PIP of
25 cmH2O has negligible effects on lung capillary fil-
tration coefficients. However, when the insults are com-
bined, severe lung injury (pulmonary edema, hyaline
membranes, and extensive alveolar hemorrhage) ensue.
Similarly, they found that age or surfactant inactivation
predisposes to increased injury with subsequent mechan-
ical ventilation [21, 22], and Dreyfuss et al. [23] (N=93)
demonstrated a synergistic interaction between high vol-
ume ventilation (Vt 45 ml/kg) and pretreatment of rats
with a-naphthylthiourea (a drug that increases alveolar
capillary permeability and edema). Of the various factors
studied particular attention was paid to surfactant dys-
function, given its prevalence in both neonatal respiratory
distress and in adult lung disorders such as aspiration and
lung sepsis (for review see [24]).

Several explanations have been put forth as to why
such preexisting lung abnormalities increase the suscep-
tibility to mechanical VILI. First, for structural disruption
to occur the magnitude of force applied must exceed the
resilience of the underlying lung parenchyma. Thus it
follows that factors that either increase the forces applied
to regions of the lung (e.g., surfactant dysfunction, het-
erogeneous ventilation due to atelectasis and flooded al-
veoli, repetitive opening and collapse of alveoli) or
weaken lung tissue (such as age, inflammation) predis-
pose to injury. In addition, factors that prime the in-
flammatory response or inhibit tissue healing also in-
crease the lung’s susceptibility to VILI [25], as does ge-
netic predisposition. It is thought that the interaction of
mechanical ventilation with other coexisting lung abnor-
malities is one explanation as to why identical ventilation
settings produce VILI in some individuals but not all.

Is the mechanism of ventilator-induced injury due
solely to physical disruption due to excessive force?

Most of the investigations cited above suggest physical
disruption of the lung (e.g., capillary stress failure by
alveolar overdistension) as one mechanism whereby me-
chanical ventilation produces lung injury. However, evi-
dence of a potentially important role for ventilator-in-
duced molecular and cell-mediated events in the patho-
genesis of ventilator-induced injury soon began to
emerge.

In 1983 Hamilton et al. [26] (N=263) published a study
showing a benefit of high-frequency oscillation (i.e.,
using 15 Hz, Vt 1.5 ml/kg; mean airway pressure
15 cmH2O) compared to “conventional” ventilation (us-
ing PIP 25 cmH2O; PEEP 6 cmH2O) in surfactant de-
pleted rabbits. In this study the authors found significantly
better lung function with fewer signs of histological lung
injury in the high-frequency oscillation study group than
in the conventional ventilation group. On further analysis,
however, the investigators noted the presence of granu-
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locyte infiltration in the alveoli and interstitium of the
rabbits in the conventional ventilation group. To deter-
mine whether the granulocytes had a significant role in
producing ventilation related lung injury Kawano et al.
[27] (N=126) repeated the study using both neutrophil-
depleted rabbits and neutrophil-depleted rabbits in which
the granulocytes were reintroduced. They found that in
contrast to rabbits with neutrophils, the neutrophil-de-
pleted rabbits did not develop significant lung injury
(changes in oxygenation, vascular permeability, hyaline
membranes or granulocyte infiltration) with conventional
ventilation. However, when neutrophils were reinfused
into the neutrophil depleted rabbits, lung dysfunction
ensued. Thus lung injury due to surfactant dysfunction/
VILI in this model was not due simply to structural dis-
ruption but was mediated in large part by granulocytes.

Other investigators have observed that ventilation of
lungs can increase levels of inflammatory mediators
within the lungs, and that treatment with blockers of in-
flammatory mediators can reduce ventilator associated
lung injury. For example, Tremblay et al. [28] (N=364)
found increased bronchoalveolar lavage levels of several
inflammatory mediators—including tumor necrosis factor
(TNF) a, interleukin (IL) 6, and IL10—in ex vivo rat
lungs subjected to injurious ventilation strategies. The
same investigators in another report [29] (N=75) coined
the term “biotrauma” to encompass this new field of in-
vestigation of molecular and cell mediated mechanisms of
VILI. Supportive of this hypothesis, investigators such as
Narimanbekov and Rozycki [30] (N=52) demonstrated
that use of cytokine modulators can reduced lung dys-
function following mechanical ventilation. Administra-
tion of an IL-1 receptor antagonist prior to initiation of the
injurious ventilation strategy in surfactant depleted rabbits
reduced the severity of lung injury (bronchoalveolar la-
vage levels of polymorphonuclear cells, elastase, and al-
bumin) produced by hyperoxia and 8 h of ventilation with
24 cmH2O PIP. Of note, in this study the use of IL-1
receptor antagonist (RA) did not significantly improve
either lung compliance or oxygenation. Other investiga-
tors, however, have demonstrated reduced ventilator as-
sociated lung injury as well as reduced ventilator-asso-
ciated systemic abnormalities (such as increased gut
permeability) using mediators such as anti-TNF or
transgenic mice strains (for a concise summary of these
studies see [31]).

Numerous subsequent studies have revealed species
and model-specific differences with regards to levels of
multiple mediators (including cytokines, receptors, ion
channels, proteases, and extracellular components such as
collagen/laminin) as well as a role for various cell types in
addition to neutrophils in mediating the ventilator asso-
ciated inflammatory response (e.g., type II pneumocytes,
macrophages). Studies have also suggested that mechan-
otransduction (the conversion of externally applied forces
on cells into activation of various cell signaling pathways

and alterations in gene expression or cell structure) plays
a role in VILI, and multiple stretch-activated signal
transduction pathways (e.g., mitogen-activated protein
kinases, stretch-sensitive ion channels, integrin receptors)
have been identified. In a seminal study using an isolated
perfused rat lung model Parker et al. [16] (N=51) abro-
gated the increase in microvascular permeability due to
high PIP ventilation (20 and 30 cmH2O) with gadolinium
(an inhibitor of endothelial stretch-activated cation
channels). In a subsequent study Parker et al. [17] dem-
onstrated in the same model that inhibition of phospho-
tyrosine kinase increases the susceptibility of the lungs to
high PIP injury; in contrast, inhibition of tyrosine kinase
attenuates lung injury. The results of these studies lent
further support to the contention that ventilation-induced
changes in microvascular permeability is actively modu-
lated by a molecular response to ventilation rather than
simply a result of passive structural failure of the alveolar
capillary membrane.

Not surprisingly, significant debate has ensued and
continues as to the relative contribution of physical dis-
ruption vs. biotrauma in the pathogenesis of ventilator-
induced injury [32, 33].

Is ventilator-induced injury limited to the lung?

Early investigators appreciated that in addition to lung
injury, mechanical ventilation can also have adverse
systemic sequelae including death from tension pneu-
mothorax, or hypotension and impaired renal function
secondary to high PEEP. In recent years experimental
evidence has emerged that mechanical ventilation may
also produce numerous other systemic sequelae. For ex-
ample, Kolobow et al. [34] (N=378) compared the effect
in sheep of ventilation with prolonged high Vt (50–70 ml/
kg, PIP 50 cmH2O) to that with low Vt (10 ml/kg, PIP 15–
20 cmH2O) . Interestingly, they found that all sheep
subjected to the high Vt strategy died with multiple organ
system dysfunction within 48 h.

In 1998 we hypothesized that biotrauma and the
translocation of mediators can lead to the development of
multisystem organ dysfunction [35] (N=185). Supportive
of this hypothesis, several investigators have demon-
strated that the increased alveolar capillary membrane
permeability observed with high Vt ventilation allows
translocation of various alveolar inflammatory mediators
or bacteria into the systemic circulation. For example,
using in an isolated perfused lung model von Bethmann et
al. [36] (N=122) showed that high Vt ventilation produces
increased levels of TNFa and IL6 in the perfusate; and in
an acid aspiration rat model Chiumello et al. observed
increased serum TNF-a levels in the group ventilated with
zero PEEP and high Vt [37] (N=130). Similarly, using an
in vivo dog model Nahum et al. [38] (N=85) demonstrated
translocation of Escherichia coli from the lungs into the
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bloodstream of most dogs ventilated with high Vt and low
PEEP (transpulmonary pressure of 35, equivalent to
76 ml/kg, 3 cmH2O PEEP). In contrast, bacterial trans-
location was only found in one of six dogs ventilated at
the same end-inspiratory pressure (35 cmH2O) and
10 cmH2O PEEP, and in none of the dogs ventilated with
Vt 15 ml/kg and 3 cmH2O PEEP. Subsequent studies have
provided further evidence of ventilation-induced “spil-
lover” of a number of other intra-alveolar pathogens (e.g.,
Klebsiella [39], LPS [40]) and inflammatory mediators
into the circulation. In addition, recent studies have shown
that ventilatory strategy can also have a wide range of
effects on remote organs, including increased ileal per-
meability [41], increased renal and small intestine apop-
tosis [42], changes in the peripheral immune response and
host susceptibility to infection, and the development of
systemic capillary leak [32, 43].

Strengths and weakness of the bench studies

As alluded to above, bench studies have a number of
limitations that prevent direct extrapolation to the clinical
arena. Although in vitro and ex vivo models are indis-
pensable for addressing questions regarding the effect of
cell stretch or ventilation on particular cells or signal
transduction pathways in the absence of confounding
systemic sequelae (such as hypotension due to high mean
pleural pressure), the findings from such models may not
be representative of the events occurring in vivo. In ad-
dition, although animal models may minimize differences
between study participants, there are genetic and species-
specific susceptibilities and responses to certain stimuli
which may or may not be representative of the human
response. Furthermore, with few exceptions the majority
of laboratory studies of VILI to date have involved only
brief periods of ventilation (hours) and used fairly ex-
treme ventilatory settings to produce injury, leading some
to question the clinical relevance of such studies.

Seminal bedside studies on ventilation-induced
lung injury

From a clinician’s perspective the key question is whether
VILI contributes to patient morbidity and mortality, and if
so, how can it be avoided. Although underlying lung in-
jury is known to be a confounding factor present in many
patients on ventilatory support, the laboratory studies
have suggested that, if anything, this places the patients at
increased risk of VILI as: (a) these patients often require
higher pressure/volume to oxygenate/ventilate, and (b)
many of these patients have factors known to increase
susceptibility to VILI (such as surfactant dysfunction,
malnutrition, endotoxemia).

In a series of publications Gattinoni et al. used com-
puted tomography to demonstrate the effect of different
ventilation strategies on the lungs of patients with acute
lung injury (ALI). In a highly cited study Gattinoni et al.
[44] (N=318) examined the effect of ventilation with
different levels of PEEP (5, 10, and 15 cmH2O) on lung
compliance, lung volumes (as measured by helium dilu-
tion), and the computed tomographic appearance of the
lungs in 20 patients with ALI. The key finding of this
study was the visual evidence that lung inflation in ALI is
extremely heterogeneous, with dependent regions being
flooded or atelectatic, and often only a low volume of
aerated nondependent lung. In addition, ventilation in
these patients with ALI appears to be distributed princi-
pally to this low volume of aerated nondependent lung
with relatively normal compliance (which the authors
termed “baby lung,” due to its low volume) [44, 45].
These computed tomography studies also suggested that
the pressure-volume curve of the patients is representative
of only the healthy aerated zones of the lung, and that
optimal lung recruitment (i.e., opening up of lung units
without significant overdistension) coincides with the
PEEP at which optimal lung compliance was measured.
Thus, in keeping with the speculations of Webb and
Tierney [10] and others decades earlier, the studies by
Gattinoni et al. demonstrated how mechanical ventilation
of heterogeneously injured lungs with even relatively low
Vt can produce significant regional overdistension. For
example, in a lung with only 25% of alveoli ventilated, a
ventilator set to deliver a Vt of 10 ml/kg would actually
deliver approx. 40 ml/kg to the patient’s “baby lungs”—a
volume associated with significant lung injury in labora-
tory studies.

Based on the above, and mounting experimental evi-
dence of potential adverse sequelae of mechanical venti-
lation with greater than physiological volumes, clinical
investigators began to question whether mechanical ven-
tilation using “conventional” Vt of 10–15 ml/kg to
maintain normal arterial oxygenation and ventilation is
necessary or harmful, particularly in patients with ARDS
and “baby” lungs. After all, in patients with status asth-
maticus a ventilatory approach that uses lower peak
pressures and allows higher PaCO2, a technique termed
“controlled hypoventilation,” appeared to be well toler-
ated and associated with improved outcomes [46, 47].

In 1990 Hickling et al. [48] (N=368) published a
landmark study showing that the use of a “protective”
ventilation strategy that limits PIP (<40 or <30 cmH2O if
possible, corresponding to Vt of 4–7 ml/kg) and allowed
hypercapnia and a slight deterioration in oxygenation,
appeared to reduce mortality by 60% in 70 patients with
severe ARDS compared to mortality predicted by Acute
Physiology and Chronic Health Evaluation II score (i.e.,
16% vs. 40%). This seminal study suggested a promising
new approach for ventilation in ARDS. A major weakness
of the study, however, was the absence of a concurrent
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control group. In addition, the study was only a retro-
spective case series from a single institution, which de-
spite showing an apparent survival advantage did not
observe a difference in either gas exchange or signs of
lung injury between survivors and nonsurvivors. These
weaknesses, however, do not diminish the importance of
this study which helped to change the prevailing philos-
ophy at the time that normal arterial blood gases should
be a major goal of ventilatory support.

To circumvent the inherent limitations of retrospective
and nonrandomized trials, prospective randomized trials
examined whether a ventilation strategy with lower vs.
higher lung volume improves patient outcome. In 1995
Amato et al. [49] (N=238) published a positive trial that
further fueled debate. In this study 28 patients with ARDS
were randomized to either a low Vt/high PEEP strategy
(Vt <6 ml/kg, PIP<40 cmH2O, permissive hypercapnia,
PEEP 15–20 cmH2O, and a goal of a plateau pressure,
Pplat, <30 cmH2O) or a high Vt strategy (Vt 12 ml/kg,
PEEP 6–8 cmH2O, Pplat of approx. 46 cmH2O). The low
Vt strategy was associated with improved survival (40%
relative reduction in mortality at 28 days). The benefits of
the low Vt/high PEEP strategy were confirmed by ex-
tending the study to 53 patients at which point the study
was stopped because an interim analysis revealed a sig-
nificant survival difference (28-day mortality of 38% with
the low volume/high PEEP strategy vs. 71% with the high
Vt strategy; p<0.001) [50] (N=678). In addition to a sur-
vival advantage, at 28 days more patients in the “pro-
tective” ventilation strategy arm had been weaned from
ventilation (66% vs. 29%), and there was a lower inci-
dence of barotrauma (7% vs. 42%). However, the Amato
et al. study was criticized for having higher than predicted
mortality in the control group. Furthermore, three other
small prospective randomized trials failed to find a sur-
vival advantage of low vs. high Vt ventilation strategy
[51, 52, 53] (N=258, 182, 102, respectively). These
smaller negative trials, however, were criticized for hav-
ing only a small difference in Vt between study groups,
insufficient statistical power to detect a difference, the
presence of uncorrected acidosis in the low volume arms,
as well as the fact that the conventional ventilation arms
in all the negative trials had a Pplat less than 32 cmH2O
(i.e., had relatively low end-inspiratory lung volumes
more in keeping with ventilatory strategies found to be
noninjurious in laboratory studies).

To overcome the limitations of these small studies the
National Institutes of Health (NIH) sponsored a consor-
tium (ARDSNet) to carry out a large multicenter
prospective randomized trial in which patients with ALI
or ARDS were randomized to either: (a) “traditional” Vt
of 12 ml/kg predicted body weight (using a formula based
on gender and height rather than actual weight) and a Pplat
of 50 cmH2O or lower, or (b) Vt of 6 ml/kg predicted
body weight and a Pplat of 30 cmH2O or lower [54]
(N=1027). Although the study was conceived with a pa-

tient population of approx. 1000, the trial was stopped
early after an interim analysis revealed a 22% relative
survival advantage with the low Vt strategy (n=861;
mortality of 31% vs. 39.8%). In addition to improved
survival, patients in the low Vt strategy were also found to
have more days free of ventilatory support during the
28 days following randomization (12€11 vs. 10€11). Of
note, the mean Pplat s of the low and high Vt strategy were
25€6 vs. 33€8 cmH2O respectively (a greater difference
between groups than that of the small, negative trials).
Furthermore, in keeping with the animal studies sug-
gesting that ventilation affect systemic inflammation, the
low Vt strategy also resulted in lower plasma IL-6 levels
(on day 3) as well as fewer nonpulmonary organ failures
(circulatory, renal, coagulation).

Subsequent reports, however, have brought to light a
number of caveats regarding the ARDSNet study. First,
some have argued that the study demonstrated the in-
creased mortality of a high Vt strategy resulting in a high
Pplat (33 cmH2O) rather than a survival advantage to using
Vt of 6 ml/kg. Of note, the Pplat in all of the smaller
negative studies was less than 32 cmH2O in both study
groups (i.e., control and less injurious ventilation strategy
groups). Second, it has been argued that those in the low
Vt group may have developed higher auto-PEEP than
those in the conventional ventilation group due to the high
respiratory rates used [55]. As such, the survival advan-
tage may have been due to higher PEEP rather that low Vt
and/or end-inspiratory lung volume (although the results
of a more recent trial argue against this [56]). Third, the
study population was restricted to patients with ALI or
ARDS and the exclusion criteria included patients with
severe chronic respiratory disease, morbid obesity, burns,
a contraindication to hypercapnia or hypoxia (such as
increased intracranial pressure or sickle cell disease) or a
predicted 6 month mortality of more than 50%. Thus the
study findings cannot be directly extrapolated to the ex-
cluded patient populations or to patients with less injured
or normal lungs. Fourth, the low Vt group developed
hypercapnia and received bicarbonate to treat acidosis
(note: bicarbonate was not used in the smaller negative
trials). Thus it is unclear to what extent bicarbonate
contributed to the survival difference. Fifth, the higher
number of ventilator-free days was due to reduced mor-
tality (i.e., no significant difference was found in venti-
lator-free days among survivors between the two groups).
Nevertheless, despite these limitations this study was the
only large interventional study in decades in ARDS pa-
tients to show a significant reduction in mortality, and
certainly was in keeping with the plethora of laboratory
studies showing that high volume lung ventilation stra-
tegies are deleterious. Thus this study provided a new
“gold standard” ventilation strategy for patients with
ARDS or ALI.

Another seminal study in patients that also supported
the experimental evidence that ventilation strategy can
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have systemic effects on the host inflammatory response
was published by Ranieri and colleagues [57] (N=360) in
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Recently the NIH consortium published the results of
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seminal studies that led to our current understanding of
VILI. Understanding these studies is helpful for inter-
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nisms of injury and develop novel approaches to further
reduce or abrogate ventilator-induced injury.
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