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Although the concept of botanical carnivory has been known since Darwin’s time, the molecular mechanisms that allow

animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the tran-

scriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon in-

sect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of

general defense responses is accompanied by the repression of cell death–related genes/processes. We hypothesize that

the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient

acquisition.

[Supplemental material is available for this article.]

Carnivory is not restricted to the realm of animal life; the plant

kingdom also has flesh eaters (Darwin 1875; Adamec 1997; Krol

et al. 2012). This remarkable trait has evolved independently at

least six times in plants (Albert et al. 1992; Ellison and Gotelli

2009). Techniques to catch prey are as diverse as pitcher, sticky,

and snap traps. Remarkably, some of these have evolved con-

vergently in different clades. However, the carnivory lifestyle

appears costly for the plant (Givnish et al. 1984), implying

that themetabolic price deters amore frequent use of plant carniv-

ory than its invention. Assuming that plant carnivory is based

on readily accessible traits, Charles Darwin suggested routes as

to how plant carnivory was gradually acquired (Darwin 1875).

Nonetheless, despite increasing insights into the phylogeny

of the carnivorous plants, current models mainly focus on the

morphological and anatomical traits of the typical organs.

Knowledge about the molecular and physiological roots of carniv-

ory is essentially lacking, as are unbiased, data-driven approaches

aimed at unraveling the molecular mechanisms involved in plant

carnivory.

Here, we focus on one of the most prominent carnivorous

plants, Dionaea muscipula, which belongs to the Caryophyllales

order. At least four of the carnivorous families—Nepenthaceae,

Drosophyllaceae, Dioncophyllaceae, and Droseraceaea—can be

unequivocally placed within the Caryophyllales (Heubl et al.

2006). Their presence within a single clade indicates a common

ancestor and argues that sticky traps are the most ancient trap

form within this clade; the snap traps found in Dionaea and

Aldrovanda are derived from a sticky trap. Current phylogenetic re-

constructions indicate that this type of trap evolved only once

within the common ancestor of these two species (Cameron

et al. 2002). Today, the Venus flytrap, D. muscipula, is only found

natively in the Green Swamp of North and South Carolina. The

leaf at the end of a photosynthetically active petiole ofDionaea de-

velops into a green bilobed snap trap, with the inner trap surface

equipped with peculiar mechanosensitive hairs. These hairs allow

Dionaea to recognize prey by transducing a mechanical stimula-

tion into an electrical signal known as action potential (AP). The

first mechano-electric stimulation of a trigger hair sets the trap to

an “attention mode.” In other words, a one touch-induced AP is

memorized but does not close the trap. With a second AP, the

Dionaea trap closes within a fraction of a second (Forterre et al.

2005; Escalante-Perez et al. 2014), locking the prey between the

two trap lobes. Prey, when trying to escape, repeatedly touch the

mechano-sensors, thereby eliciting repetitive firing of APs. In a

very recent study, Böhm et al. (2016b) showed that the Venus fly-

trap can count the number of APs generated, thus “memorizing”

how often an insect has touched it and preventing false alarms.
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While two APs trigger fast trap closure, more than five APs result in

the capture organ becominghermetically sealed.Numerous glands

that cover the inner surface of the stomach start expressing genes

that encode enzymes involved in decomposing the prey into its

nutrient building blocks (Schulze et al. 2012). Interestingly,

mechano-electric stimulation can be substituted by direct admin-

istration of the touch hormone jasmonic acid (JA), suggesting that

the number of APs translates into a chemical signal that roughly

informs the plant about the size and nutrient content of a strug-

gling prey.

Although Darwin recognized early on that Dionaea’s animal

prey consumption is based on electrical excitability (Burdon-

Sanderson 1872) and fast flytrap biomechanics, the molecular

mechanism of these animal-like features still remains poorly un-

derstood.Despite recent efforts in themolecular analysis of various

carnivorous plant species, no lifestyle-specific genes have as yet

been identified (Ibarra-Laclette et al. 2011, 2013; Leushkin et al.

2013; Fleischmann et al. 2014; Barta et al. 2015; Cao et al. 2015;

Carretero-Paulet et al. 2015a,b; Stephens et al. 2015; Tran et al.

2015). To gain mechanistic insights into the molecular processes

underlying the carnivory syndrome, we combined ultrastructural,

physiological, and proteomic analyses with thorough transcrip-

tome sequencing to analyze the prey-dependent changes in gross

gene expression patterns and nutrient transport in relation to the

endocrine biology of the glands.

Results

The molecular composition of the trap

Although the Venus flytrap is uniquely adapted to circumvent

malnutrition on poor soils, it still shows the typicalmorphological

and gross physiological properties of a green plant. Nonetheless,

Dionaea has evolved a highly specialized trap for hunting animals

(Volkov et al. 2013), and profound morphological features distin-

guish the trap-forming leaf tip from the leaf base (petiole). These

features can be attributed to trap-specific functions, namely, the

need to catch and digest prey and, subsequently, the absorption

of released nutrients. We hypothesized that these functional traits

should relate to the nature and the abundance of transcripts specif-

ic to traps. Consequently, we compared the transcriptome of the

trap with the overall transcriptomic landscape of D. muscipula,

covering root, flower, and petiole tissue. Furthermore, we analyzed

the transcriptomes of nonstimulated traps and glands versus those

of traps and glands processing insects or stimulated with corona-

tine (COR), a molecular mimic of the phytohormone JA. In total,

6.5 billion reads (Supplemental Table S1) were produced using

high-throughput RNA sequencing on the Illumina HiSeq plat-

form. Following assembly, correction, and filtering, we found

that the final transcriptome of the Venus flytrap comprised

51,196 potential genes. Assessment of the completeness of the ref-

erence transcriptome with Benchmarking Universal Single-Copy

Orthologs (BUSCO) (Simao et al. 2015) revealed that 91% of all

universal single-copy orthologs in the BUSCO’s plantae bench-

mark set were present and complete. A conservative high-confi-

dence ortholog assignment with CRB-BLAST (Aubry et al. 2014)

resulted in 19,293 genes with a nonambiguous ortholog in the

Arabidopsis thaliana reference genome.

By using this data set as a reference transcriptome, we aimed

to unravel the molecular adaptations associated with prey capture

and processing in the Dionaea leaf. Integrating data from flowers,

roots, and petioles into this analysis, we identified general trends

that characterize these organs using a principal component analy-

sis (PCA) on variance-stabilized expression data for all 51,196

genes (Fig. 1A; Supplemental Table S2). The component with the

largest spread (34.87%) separated the photosynthetically active

petiole and trap from the root and the flower. The second largest

spread component (22.08%) divided organs into reproductive

(flower) and nonreproductive (trap, petiole, and root) organs.

The third strongest component (15.50%) distinguished the trap

from all the other tissues (Supplemental Fig. S1). Out of 2139 genes

significantly contributing to the third component, only 540

(25,24%) were annotated with a gene ontology (GO) term. These

genes were associated with responses to external stimuli and

the generation of precursormetabolites and energy (Supplemental

Table S2). Due to the pronounced ratio of nonannotated genes

(74,76%), we could not further link the third component to other

particular features at this point. To analyze the transcriptomic

commonalities underlying the observed separations, respectively

groupings, of the first three components more precisely, we iden-

tified differentially expressed genes (DEGs) in the root, trap, flow-

er, and petiole using an all-versus-all pairwise comparison. From

this analysis, we identified 17,715 out of the 51,196 genes as differ-

entially expressed in at least one pairwise comparison, while

14,089 DEGs were detected in multiple different comparisons

(Fig. 1B). A Venn analysis revealed 3626 organ-specific DEGs,

with the highest number for the root (1470) followed by the flower

(1113), petiole (655), and trap (388). However, flowers only exhib-

ited organ-specific DEGs enriched for biological functions related

to flower physiology, namely, anatomical structure morpho-

genesis, cell growth, and the cell cycle (Supplemental Table S3).

Petioles, roots, and traps showed no obvious organ-specific signa-

tures. The results of the PCA and the Venn analysis allowed us to

speculate that the transcriptomic landscape of a nonstimulated

trap is represented by a patchwork of genes that are also expressed

in other organs. A global correlation measurement based on nor-

malized expression counts demonstrated that the expression

profile of nonstimulated traps strongly correlates with that of the

petioles (Fig. 1C). Thus, our results provide the first transcrip-

tome-wide molecular support for the common assumption that

the trap is indeed a modified leaf.

Since the overall trap transcriptome integrates the expression

profile of various typical leaf cell types, we could not exclude the

existence of carnivorous signatures in certain trap-specific cell

types such as glands. Considering that prey digestion and nutrient

uptake are directly linked to the activity of about 37,000 glands on

the inner surface of the trap (Juniper et al. 1989; Escalante-Perez

et al. 2011), we generated a transcriptomic profile of isolated non-

stimulated glands, as well as the trap rim, which is free of digesting

glands, to clarify this issue. Correlating the resulting expression

profiles of the gland, rim, root, and petiole revealed that the rim

ismost akin to the petiole, and glands showing highest correlation

with the roots (Fig. 1D). Testing for differential expression in

glands and roots compared with petioles revealed 7427 DEGs in

glands and 6897 in roots. Both tissues shared 5013 DEGs exhibit-

ing strong signals of transport, stress response, and protein meta-

bolic processes, according to the GO. A detailed study of the

underlying molecular functions using lower level MapMan bins

(level 3) (Thimm et al. 2004), coupled with a generally applicable

gene-set enrichment (GAGE) (Luo et al. 2009), revealed that

DEGs from both tissues were enriched for gene sets involved in

transcriptional regulation via AP2, C2H2, WRKY, and bHLH-like

transcription factors, protein synthesis (ribosome biogenesis), pro-

tein modification, and degradation, as well as protein targeting
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along the secretory pathway (Supplemental Table S4). The ob-

served similarity of glands and roots is therefore based on gene ex-

pression profiles that reflect the heterotrophic physiology and

secretory capability of both tissues.

Gland functional morphology

Our finding that glands show a gene expression profile reminis-

cent of heterotrophic secreting tissues prompted us to analyze

the gland structure in more detail (Fig. 2). Early morphological

studies show that each gland is composed of 46 cells (Juniper

et al. 1989). Transmission electron microscopy (TEM) shows the

typical three-layer arrangement of a gland (Fig. 2C). Two basal cells

are surmounted by four endodermoid (stalk) cells, comprising lay-

er 3 (L3, blue). Overlying this is an inner layer (L2, brown) formed

by eight cells, followed by an outer layer (L1, green) of 32 secretory

cells that form the head of a mature gland (Lloyd 1942; Rea et al.

1983). All gland cells are connected by plasmodesmata, thus creat-

ing a metabolic and ionic cytoplasmic continuum. Both the cell

wall and the cuticle of the glands are less developed and more

permeable to solutes than are the common epidermal cells (Joel

et al. 1983). In nonstimulated glands, the innermost stalk cells

(L3) are tightly packed with oleosomes (Fig. 2F), implying that a

triacylglycerol (TAG) reservoir represents the primary currency

for energy consumptive processes. Supporting this observation

is our finding that transcripts involved in TAG breakdown, includ-

ing peroxisomal beta-oxidation, are

highly expressed in glands (Supplemen-

tal Table S5). Highly abundant mito-

chondria in L2 cells (Fig. 2E) suggest

that activated fatty acids provide the

dominant resource for ATP generation

at this site. The pronounced appearance

of plasma membrane invaginations at

the basal ends of L1 and in L2 cells (Fig.

2D,E) is indicative of an increased inter-

face capacity for nutrient recognition

and transport (see below). Finally, the

existence of an expanded rough endo-

plasmic reticulum in L1 together with

pronounced transcriptional activity in

glands indicates that a highly dynamic

protein biosynthesis and translocation

machinery is present in the outer cell lay-

er even when in the nonstimulated state

(see Fig. 2D and below).

In nature, gland secretion is stimu-

lated upon insect capture and, in the

laboratory, by the application of JA

or its molecular mimic COR (Radhika

et al. 2010). Both stimuli result in gross

ultrastructural changes in gland cells.

In L1 cells, gland stimulation results in

the dispersal of large apical vacuoles

(Supplemental Fig. S2). Structural chang-

es in head cells of the L2 layer are even

more dramatic. Glands of insect digest-

ing traps exhibit L2 cells containing large

vacuoles (probably generated through

vesicle fusions) and a heavily invaginat-

ed plasma membrane that completely

covers the stimulated cells and is indica-

tive of active secretion processes. In line with this observation,

we have previously shown that upon stimulation with COR,

glands change their surface-to-volume ratio by increasing their

mean surface area by >30% (Escalante-Perez et al. 2011).

Active glands in secretion mode

To associate the ultrastructural changes in glands with cellular ac-

tivities, we performed a comparative transcriptomic analysis of

nonstimulated and active glands. Glands were stimulated with

insects so as to activate secretion, and stimulated glands were me-

chanically separated from the inner trap surface 24 h after stimulus

onset and subjected to transcriptome profiling. Stimulated glands

show 3447 genes up-regulated and 2826 genes down-regulated.

The majority of the up-regulated genes are indicative of highly

active transport, signal transduction, and stress responses (Supple-

mental Table S6). In detail, transcriptional regulators for stress

responses together with components of the secretory pathway, in-

cluding pathogen-related proteins, cysteine, and serine proteases

contributed to the strong stress signal.

The combination of profile-based signal peptide annotations

with high-throughput screening (HTS) proteomics data from the

digestive fluid of the “green stomach” allowed the Venus flytrap

secretome to be characterized in more detail. Proteomics data

were generated for traps stimulatedwith either insect, COR, or trig-

ger hair bending (mechanical stimulation). Within the group of

A B

C D

Figure 1. The transcriptomic landscape of the nonstimulated Venus flytrap (Dionaea muscipula). (A)
Principal component analysis of all biological replicates (n = 3) from petiole, trap, root, and flower. The
first two dimensions account for 57% of all the variance in the nonstimulated Venus flytrap data (for ad-
ditional dimensions, see Supplemental Fig. S1). (B) Venn diagram from an all-versus-all differential ex-
pression analysis. Overall, 14,744 DEGs were shared by at least two tissues, while 3626 DEGs are most
likely expressed in a tissue-specific manner. (C ) Hierarchically clustered visualization of the global
Pearson correlation between all major organs. All individual pairwise correlations are significant accord-
ing tomultiple testing adjusted probabilities (P≤ 0.01). (D) Visualization of the global Pearson correlation
between all major organs with traps being represented by rim and gland. Again all correlations tested are
significant (P≤ 0.01).
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up-regulated, signal sequence containing transcripts, we identified

42 highly abundant DEGs. By using the HTS proteomic data set

of the secretion fluid, we independently confirmed that these

42 candidate genes are indeed actively secreted (Fig. 3A, left;

Supplemental Table S7). Among them, 15 proteinswere secreted ir-

respective of the nature of the stimulus (COR, trigger hair stimula-

tion, or insect). They encoded secretome-related proteins with

hydrolase activity such as proteases, phosphatases, and chitinases,

aswell as defensin-like (DEFL) cysteine-richproteins (Fig. 3A, right;

Supplemental Table S7). In contrast, only 13 down-regulatedDEGs

had proteomic evidence togetherwith an annotated signal peptide

(Fig. 3A, denominators; Supplemental Table S7). Among these, we

found transcripts encoding the Nepenthesin-like aspartic protease

(Buch et al. 2015) and a Lipid Transfer

Protein (LTP). Both these genes were al-

ready highly expressed in nonstimulated

glands, but the majority of hydrolase

genes showed a massive induction rang-

ing from fivefold to 900-fold following

stimulation (Fig. 3A, right).

To gain insights into the kinetics of

the secretion process, we followed the

time course of selectedmarker hydrolases

in traps, namely, SAG12 and SCPL49pro-

teases using qPCR. COR-stimulated traps

showed rapid transcriptional activation

of hydrolases 1–2 h after stimulus onset.

As Paszota et al. (2014) have already

shown for VF CHITINASE I, SAG12 and

SCPL49 hydrolase expression reached

peak levels at 24–48 h after stimulation,

irrespective of the nature of the stimulus

(insect, trigger hair bending/mechanics,

or COR) (Fig. 3B). To further investigate

the functional interaction between

mechano- and chemo-sensing during

prey capture, we performed a kinetic

analysis of hydrolase activation in re-

sponse to two consecutive stimuli (Fig.

3C). Traps were first stimulated mechan-

ically. This was followed by a second

stimulus 8 h later, applied either as a

second trigger hair stimulation or chem-

ically by means of chitin application

(a component of the insect coat). The

first mechanical stimulation of the

trap’s trigger hairs resulted in a strong

increase in VF CHITINASE I expression

after 8 h (Escalante-Perez et al. 2011;

Schulze et al. 2012; Scherzer et al.

2013). VF CHITINASE I expression re-

mained elevated until 24 h but returned

to its resting level after 48 h if no further

stimulus was applied. In contrast, a sec-

ond mechanical stimulation at 8 h fur-

ther increased the already high VF

CHITINASE I mRNA levels (413-fold) un-

til 48 h after the initial stimulus. If the

second stimulus was of a prey-associated

chemical such as chitin, VF CHITINASE I

expression after 48 h was boosted up to

almost 2000-fold.

In noncarnivorous plants, chemical sensing often involves re-

ceptor-like kinases (RLKs), such as the chitin sensing LysM subfam-

ily (Antolin-Llovera et al. 2012). By searching for members of the

trap’s sensory system,we identified 237 RLKs. Nonstimulated traps

already differentially expressed 201 RLKs compared with petioles.

Active traps and glands showed 63 and 134 RLKs differentially

expressed, respectively, compared with their corresponding non-

stimulated control (Supplemental Table S8). A Dionaea LysM-

type chitin oligosaccharide-responsive CERK1-like kinase (Miya

et al. 2007) was significantly up-regulated following gland insect

stimulation, suggesting that glands might be able to assess the

movement (mechanics), chemistry, and quality of the prey during

progressive digestion and adjust the secretion process accordingly.

Figure 2. Gland functional morphology. (A) REM false-coloredmicrograph showing a trigger hair (yel-
low) surrounded by multiple glands (red) on the inner surface of a Dionaea trap. (B) Close-up of glands
(from A). (C–F ) TEM micrographs of gland sections. Structural organization of a gland (C) consisting of
three functional layers (L1–L3): outer layer L1 (green), inner layer L2 (brown), and endodermoid layer L3
(blue). Secretory cell of the L1 outer layer (D) characterized by large vacuoles and the presence of rough
endoplasmic reticulum. Cell of the inner L2 layer (E) exhibiting numerous plasma membrane invagina-
tions. Beta-oxidation probably occurs in L2 cells, which contain big central vacuoles, numerous peroxi-
somes, and a remarkable number of mitochondria (see also Supplemental Fig. S2). This implies the
existence of energy demanding, metabolically active, processes in L2 cells. Endodermoid (stalk) cell (F)
comprising layer L3 harboring plenty of oleosomes.
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Trap insect processing builds on JA-based

touch/wound signaling

Stimulus-induced hydrolase expression indicates that molecular

pathways resembling defense and/or wounding responses ac-

company the carnivorous phenomenon. This hypothesis is cor-

roborated by the strong stress-like response that prevails in

stimulated glands (see above and Supplemental Table S6). To

elucidate the system-wide response to insect feeding, we generat-

ed transcriptomic profiles of insect-activated traps, identifying

2137 genes as up-regulated, with 852 suppressed. Only a sub-

set of 103 insect-stimulated DEGs were regulated in an insect-

specific manner, and the majority of DEGs were differentially ex-

pressed in at least one other pairwise comparison of nonstimu-

lated tissues.

Similar to the stimulated glands, insect-activated traps

displayed a high transport activity together with amassivewound-

ing response compared with nonstimulated tissues (Supplemental

Table S9). Identified DEGs were mainly enriched for processes

controlled or triggered by the stress hormones JA and abscisic

acid, followed by ethylene, auxin, and salicylic acid. Corroborating

previous findings that the wounding hormone JA plays an im-

portant role in carnivorous plants (Escalante-Perez et al. 2011;

Nakamura et al. 2013; Libiakova et al. 2014), our analyses now

demonstrate that not only JA biosynthesis but also its signaling

components were differentially regulated. A detailed inspection

showed that insect processing induces JA core components in traps

(Fig. 4A; Supplemental Table S10), and a

highly similar transcriptional response

was triggered when the secretion-induc-

ing JA mimic COR was applied to glands

and traps (Supplemental Tables S11,

S12).

To obtainmore detailed insight into

JA signaling in active traps, we performed

quantitative PCR (qPCR) to follow the

kinetics of the JA receptor COI1

(CORONATINE INSENSITIVE 1) (Fig. 4B)

and its coreceptor JAZ1 (JASMONIC

ACID ZIM DOMAIN 1) (Fig. 4C; Chini

et al. 2007; Wasternack and Hause

2013). COI1 is moderately expressed in

nonstimulated traps, but within 4 h of ei-

therCORor insect stimulation, it is rapid-

ly and sustainably repressed (Fig. 4B). In

contrast to COI1, JAZ1 expression tran-

siently increases in stimulated traps (12-

fold) (Fig. 4C), reaching peak expression

after 4 h and remaining at sustained

elevated levels for 24 h. Both COR and

insects seem to activate the oxylipin

pathway that leads to the formation

of 12-oxo-phytodienoic acid (OPDA).

Insects, however, further promote bio-

synthesis of JA-Ile, the true COI1 ligand

(see Fig. 4A; Sheard et al. 2010). These re-

sults indicate that insects mechanically

induce JA-Ile signals, thereby shifting

glands into the secretion mode. This

finding is further substantiatedbyourob-

servation that the JA antagonist corona-

tine-O-methyloxime (COR-MO), which

prevents COI1–JAZ interaction leading to JAZ degradation, repress-

es the mechanical induction of hydrolase expression (Fig. 4D).

Furthermore, the set of insect-stimulated DEGs in traps

was comprised of genes related to the production of reactive ox-

ygen species (ROS) (Supplemental Table S13) scavengers (Mittler

et al. 2004) and components of the ER-quality-control machinery

(ER-QC) (Supplemental Table S13; Liu and Howell 2010; Williams

et al. 2014). Both processes are related to oxidative stress manage-

ment and are essential for controlling protein translation and

maturation (Howell 2013). These signals likely originate in active

glands characterized by persisting translation, folding, and target-

ing of extracellular hydrolases (see above), as well as plasma

membrane receptors and transporters (see below). Remarkably,

we found 38 genes that are predicted to negatively regulate the

programmed cell death (PCD) prevalent in active traps (Supple-

mental Table S14). Among these, we identified Dionaea HEXOKI-

NASE 1 (HXK1), a negative regulator of PCD in higher plants

(Kim et al. 2006; Bruggeman et al. 2015). Likewise, we detected

a Dionaea homolog of NECROTIC SPOTTED LESIONS 1 (NSL1),

a known suppressor of cell death programs and defense responses

(Noutoshi et al. 2006). Furthermore, the cyclic nucleotide

gated (CNG) type channel DEFENCE-NO-DEATH-1 (DND1), a

key player in pathogen defense responses and PCD in Arabidopsis

(Xu and Brosche 2014), was up-regulated in active traps. Our

findings suggest that ROS production is initiated by insect pro-

cessing and that traps actively form a shield against detrimental

ROS effects.

A

B C

Figure 3. The Dionaea hydrolase cocktail is activated synergistically by touch and taste. (A, left) Venn
diagram of potential secretome members from an overlay of RNA-seq data (nonstimulated and insect-
stimulated glands) and HTS proteomic measurements of secreted fluid from chemically (COR), mechan-
ically, and insect-stimulated traps. Numbers indicate up-regulated (top) and down-regulated (bottom)
transcripts. Potential candidates are limited to transcripts that are differentially regulated, contain a prop-
er signal peptide, and are detected at least once using HTS proteomics. (A, right) List of potential secre-
tome members differentially up-regulated after insect stimulation and detected in all three HTS
proteomic measurements. (B) qPCR time course of Dionaea marker hydrolases SCPL49 and SAG12 in re-
sponse to insect, mechanical, and COR stimulation. Both enzymes are up-regulated several thousand-
fold after stimulation. Expression at time point 0 h is within statistical noise. (C) Synergistic stimulation
of VF CHITINASE I expression in response to an initial mechanical stimulation followed by a chemical stim-
ulus (chitin).
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Accessing prey nutrients

When commencing digestion of the victim, metabolites and

minerals containing the essential plant nutrients nitrogen (N),

phosphorus (P), potassium (K), calcium (Ca), sulfur (S), and mag-

nesium (Mg) are released (Adamec 1997). Absorption of the prod-

ucts of digestion is mediated by glands aided by stimulus-induced

formation of cuticular gaps (Robins and Juniper 1980; Joel et al.

1983). Accordingly, we observed that upon insect stimulation of

traps or glands and the increasing availability of prey-derived nu-

trients, the expression profile of the Dionaea transportome chang-

es dramatically. We identified 145 down-regulated and 148 up-

regulated transcripts, which are classified as transporters according

to the transporter classification (TC) system (Supplemental Table

S15). By using all TC-database classified transcripts as background,

we sought for the most significantly enriched class. As would be

expected from a nutrient uptake system, secondary active-trans-

porters represented the most significantly enriched class (GAGE

q-value: 2.6 × 10−13). Regarding the subcellular localization of the

corresponding transport proteins, we observed that the plasma

membrane transporters weremost strongly regulated (GAGE q-val-

ue: 3.5 × 10−8) within all differentially expressed transporters. On

the contrary, plastid localized transporters (GAGE q-value: 1.3 ×

10−9) appeared down-regulated, with the exception of the ener-

gy-supplying, plastidic ATP/ADP antiporter NTT1, which was

strongly induced (Flügge et al. 2011).

Focusing on the substrate classes of the transporters, we

found metal, nitrogen, and cation transporters to be the most reg-

ulated classes (Supplemental Table S16). We identified the highly

induced plasma membrane phosphate transporters PHT1 and

PHT2 (Shin et al. 2004). Consistent with the essential requirement

of the molybdenum (Mo) cofactor in catalytic centers of several

plant metabolic key enzymes, including ABA synthesis, a high-af-

finity molybdate transporter MOT1 (Tomatsu et al. 2007) was

prominent in insect processing glands. Likewise, plasma mem-

brane transporters for sulfate, as well as nitrogen-containing sol-

utes, were induced by insects, suggesting that metabolites and

macromolecules, such as amino acids, peptides, and nucleotides/

DNA, all represent part of Dionaea’s diet. Furthermore, we found

that the Dionaea ammonium transporter DmAMT1 is induced in

active traps, as well as a Dionaea AKT1-like potassium channel

and a HAK5-like high-affinity potassium transporter (Scherzer

et al. 2015). When we analyzed the kinetics of transporter expres-

sion, it became apparent that upon trap stimulation, the expres-

sion of DmAMT1, DmHAK5, and DmHKT1 was induced 2–4 h

after the onset of the stimulus, reaching peak expression after

12 h (Fig. 5A).

To test how the increased RNA abundance of DmAMT1,

DmHAK5, and DmHKT1 translates into transporter activity, we

stimulated Dionaea traps with COR and followed the time course

of membrane potential changes of glands in response to NH4
+, K+,

and Na+ feeding. Comparing the transporter transcription and

gland plasma membrane depolarization in response to the cat-

ions tested, we found that transporter activity lagged >3 h behind

gene expression (Fig. 5A). Detailed analysis using qPCR demon-

strated that frequent firing of APs strongly triggered the expres-

sion of transporters involved in nutrient acquisition (Fig. 5B).

As observed for hydrolases (see Fig. 4D), their transcriptional in-

duction is inhibited upon blocking JA signaling downstream

from APs by pretreating traps with the recently identified JA-

antagonist COR-MO (Fig. 5B; Monte et al. 2014). Taken togeth-

er, our findings suggest that stimulated glands translate hapto-

A

B

D

C

Figure 4. Activated Venus flytraps show signs of elevated jasmonate sig-
naling. (A) Heat map depicting the expression of key genes mediating
jasmonate biosynthesis, transport, and signaling in activated (COR/insect)
versus nonstimulated traps. Expression values are scaled by rows
(Z-scoring). The majority of the components are transcriptionally activat-
ed by insect or COR stimulation in traps and glandular tissue. Genes
encoding the key enzymes of jasmonic acid (JA) biosynthesis such as
LOX2 (LIPOXYGENASE 2), AOS (ALLENEOXIDE SYNTHASE), and OPR3
(OXOPHYTODIENOATE-REDUCTASE 3) were highly induced in insect-
and COR-stimulated traps and glands. Likewise, the ABC-transporter
PXA1 (PEROXISOMAL ABC-TRANSPORTER 1) mediating the import of
the JA precursor OPDA (12-oxo-phytodioneic acid) into peroxisomes,
and peroxisomal enzymes of the beta-oxidation chain generating JA
from OPDA were stimulus induced. JAR1 (JASMONIC ACID RESISTANT
1), which finally converts JA into its physiologically active form JA-Ile, ap-
pears specifically induced by insects. (B,C) Quantitative PCR (qPCR) of
the Dionaea JA receptor COI1 (CORONATINE INSENSITIVE 1) and its co-
receptor/repressor JAZ1 (JASMONATE-ZIM-DOMAIN 1). (D) Effect of the
JA-antagonist coronatine-O-methyloxime (COR-MO) on electro-mechan-
ical induction of hydrolase expression. Traps were pretreated 4 h before
application of zero or 60 APs with H2O (green) or 100 μMCOR-MO (blue).
Transcript numbers are given relative to 10,000 molecules of DmACT1 ±
SE, n = 6. RNA was sampled after 24 h in response to zero or 60 recorded
action potentials (APs). qPCR Abbreviations are as follows: (DGL) DONGLE,
PLA1-type phospholipase; (LOX2) LIPOXYGENASE 2; (AOS) ALLENE OXIDE
SYNTHASE; (AOC3) ALLENE OXIDE CYCLASE 3; (OPR3) 12-
OXOPHYTODIENOATE REDUCTASE 3; (OPCL1) OPC-8:0 COA LIGASE1;
(PXA1) PEROXISOMAL ABC TRANSPORTER 1; (KAT) PEROXISOMAL 3-
KETOACYL-COA THIOLASE 3; (AIM1) ABNORMAL INFLORESCENCE
MERISTEM; (ACX2) ACYL-COA OXIDASE 2; (JAR1) JASMONATE RESISTANT
1; and (JMT) JASMONIC ACID CARBOXYL METHYLTRANSFERASE (Dave and
Graham 2012).
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electric signaling into JA-dependent transcriptional regulation of

hydrolases and transporters. This ensures perfect gearing of secre-

tion and prey digestion to the acquisition of prey-derived

nutrients.

Active traps display conserved stress signals

When noncarnivorous plants are wounded by herbivores, they

produce the touch hormone JA. Upon JA binding to the recep-

tor/coreceptor complex COI1–JAZ1, this hormone signaling in-

duces a local as well as a systemic electrical signal (Mousavi et al.

2013; Hedrich et al. 2016). This results in the production of sub-

stances toxic to herbivores or in making the plant meal indi-

gestible. To test the hypothesis that the overall transcriptomic

response of insect-stimulated Dionaea traps resembles defined

stress-related responses known from noncarnivorous plants, we

performed an interspecies comparison of active Dionaea plants to

known coexpressed gene clusters in A. thaliana (Zaag et al. 2015).

Taking advantage of the Complete Arabidopsis Transcriptome

MicroArray (CATMA) gene expression reference database for

Arabidopsis, we identified a diverse pattern of validated abiotic

and biotic stress-related gene clusters (Supplemental Table S17)

up-regulated in active traps. Further exploration of this response

based on available Arabidopsis microarray data did indeed show

that according to semantic similarities of GO enrichments, the

Dionaea transcriptomic profile during insect capture and digestion

closely resembles that of plants facing herbivore attack or wound-

ing as opposed to fungal or bacterial infections (Fig. 6).

Discussion

Darwin’s pioneering work demonstrated the existence of carnivo-

rous lifestyles in several plant genera (Darwin 1875). He became

particularly fascinated with the snap traps of D. muscipula, which

resemble a sensory motion system that operates at high speed and

precision without nerves or muscles (Brownlee 2013). When

Darwin exposed open flytraps with all kinds of nutrient sources

ranging from meat pieces to nitrogen-rich chemicals (Darwin

1875), he realized that, over time, the capture organ slowly closes

and starts secretion. From this phenomenon, he concluded that as

well as a touch sensor, Dionaea operates a chemo-sensing system

that assesses the quality of the food provided by the prey.

A

B

Figure 5. Cation transporters are highly up-regulated in active traps. (A) Coronatine-induced expression kinetics based on qPCR data of ammonium
(DmAMT1; left), potassium (DmHAK5;middle), and sodium (DmHKT1; right) transporters and time course of membrane potential depolarizations in gland
cells in response to either 6 mMNH4

+, 3 mM K+, or 12 mMNa+. (B) Effect of the JA-antagonist COR-MO on transcript levels of ammonium (DmAMT1; left),
potassium (DmHAK5;middle), and sodium (DmHKT1; right) transporters in response to 60 elicited APs. Traps were pretreated with H2O (light gray) or 100
μM COR-MO (dark gray) for 4 h before imposition of APs. Transcript numbers are given relative to 10,000 molecules of DmACT1 ± SE, n = 6. Experimental
conditions were as described for Figure 4D.

Figure 6. Prevailing signs of defense responses in active Dionaea traps.
Semantic similarity between different Arabidopsis thaliana microarray ex-
periments (GSE48676, GSE49981, GSE5520, and GSE50526) and active
(insect-activated) traps. The semantic similarity is calculated by a quantita-
tive comparison of all sets of significantly enriched gene ontology terms for
each individual experiment. The lower triangle shows individual gene on-
tology similarities while the upper triangle visualizes the similarity as a rel-
ative pie chart. Black frames indicate results of the hierarchical clustering
procedure using “complete” as agglomeration method.
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By taking advantage of the Venus flytrap as an experimental

system that switches from a nonstimulated to an active insect-

processing state on demand, we provide unprecedented insights

into the molecular and physiological processes that accompany

plant carnivory. To obtain insights into the molecular processes

underlying the Dionaea hunting cycle, we assembled a reference

transcriptome using complementary sequencing data sets from

inactive and active Dionaea. Rather than revealing specific ana-

tomical and physiological properties, we found that, at the tran-

scriptomic level, the nonstimulated Dionaea trap exhibits the

expected hallmarks of any typical leaf (cf. petiole-trap overlap,

Fig. 1C).What renders the trap transcriptome signature as different

from the petiole is that nongreen glands share features with the

root (Fig. 1D). Multicellular glands covering the inner surface of

the trap represent the endocrine system of the trap and appear to

be of tripartite functional morphology, organized in three layers.

By combining results from EMultrastructure with the gene expres-

sion patterns of glands at rest and under stimulation, we may as-

sign a particular function to the cells in each of the three layers:

(1) The inner layer 3 is densely packed with oil bodies, so it could

serve as the energy reservoir for feeding the energy-dependent pro-

cesses in the upper two layers; (2) layers 1 and 2 are engaged with

the production and secretion of hydrolases that break down the

prey trapped in the green stomach; and (3) prey processing and

with some delay, the uptake of released nutrients very likely go

hand-in-hand. The EM data suggest that the apical end of stimu-

lated L1 cells is predominantly operating secretory vesicle fusion

(Fig. 2; Supplemental Fig. S2). That the plasma membrane folding

increases toward the basal end of these cells suggests that this cell

pole of enlarged surface area is engaged, at least in part, with nutri-

ent resorption (Adlassnig et al. 2012). Using the same reasoning,

the stimulated cells in layer 2, which are entirely folded in a

brush-boarder-like fashion (Supplemental Fig. S2), would provide

for gross nutrient uptake. Indeed, JA treatment of Arabidopsis has

been shown to increase the membrane surface of metabolite shut-

tling transfer cells (Amiard et al. 2007; Adams et al. 2014), a situa-

tion resembling the ultrastructural changes toward the brush-

boarder-like plasmamembrane folding observed in the stimulated

gland cells of layer 2.

We have shown that as well as mechano and JA hormone

control of endocrine processes, chemo-sensing of the nutrient’s

nature provides for appraisal of the prey’s presence and food

quality. Our expression analyses showed that when chitin, a

polymer of the insect exoskeleton, is supplied in addition to a

mechanical stimulation, the expression of hydrolases, including

VF CHITINASE I, increases a thousand-fold (Fig. 3C). This explains

Darwin’s observation and underlines the notion that forDionaea, a

living insect prey represents a mechanical as well as a chemical

stimulus. What Darwin could not know at the time is that trigger

hair stimulation, in other wordsmechanics, causes JA biosynthesis

(Escalante-Perez et al. 2011; Böhm et al. 2016b). This is also the

case for insect-stimulated traps of the carnivorous plant Drosera

carpensis (Nakamura et al. 2013). JA not only represents a chemical

trigger of gland cell secretion (Libiakova et al. 2014; Buch et al.

2015) but at the transcriptional level is able to partially substitute

for insect action (see Figs. 3, 4A,B). In noncarnivorous plants, in-

cluding Arabidopsis, JA biosynthesis is induced by herbivory and

wounding (Gfeller et al. 2010).

Our transcriptomic studies demonstrate that active Dionaea

traps operate stress-related pathways, including defense-associated

responses (Supplemental Table S9). Included among the latter are

hydrolytic enzymes secreted by carnivorous species, which are also

transcriptionally induced upon pathogen challenge in noncarniv-

orous plants (Renner and Specht 2013). Although it has long been

postulated that carnivory might have evolved from defense mech-

anisms, hitherto, there has been a lack of both molecular data and

experimental approaches to separate nonstimulated from active

trapping organs (Ibarra-Laclette et al. 2011, 2013; Leushkin et al.

2013; Barta et al. 2015). In this study, a comparative analysis of

the transcriptomic profiles of nonstimulated versus active traps

and glands demonstrates for the first time that, as well as hydrolas-

es, a plethora of stress-associated pathways, including ROS and

PCD signaling, are predominant in the activated Dionaea plant.

This finding is further corroborated by an additional interspecies

comparison that demonstrates that gene activities related to her-

bivory responses in noncarnivorous plants are prevalent in active

traps (Fig. 6; Supplemental Table S17).

In response to insect attack, a traveling electrical wave trans-

lates into the rapid biosynthesis of JA (Mousavi et al. 2013) and its

receptor-active derivative jasmonoyl-L-isoleucine (JA-Ile) (Campos

et al. 2014). COI1-based perception of JA-Ile relieves JAZ protein–

mediated negative transcriptional control, resulting in the pro-

duction of secondary metabolites and proteins that exhibit

well-known roles in defense. In the flytrap, a captured insect strug-

gling to escape or COR treatment alone both activate the JA path-

way (Fig. 4; Escalante-Perez et al. 2011; Böhm et al. 2016a).

Activation of the JA pathway leads to the processing and consump-

tion of, from the view of a noncarnivorous plant, a potential her-

bivore. Prey capture of the sundew Drosera induces both leaf

bending and the accumulation of defense-related jasmonate phy-

tohormones (Nakamura et al. 2013), and jasmonate increases the

proteolytic activity in the pitcher fluid of the Nepenthes plant

(Buch et al. 2015). Taken together, this suggests that Dionaea re-

wires defense responses known from noncarnivorous plants in or-

der to operate its carnivorous lifestyle and that jasmonate signaling

probably represents a basic mechanism in plant carnivory (Fig. 7).

In general, turning on defense is metabolically costly; it is fre-

quently accompanied by significant growth inhibition and re-

quires metabolic, transcriptional, and hormonal reprogramming

(Yang et al. 2012; Campos et al. 2014). Initially,Dionaea invests en-

ergy in producing and growing traps and in providing themorpho-

logical and anatomical requirements for fast insect capture by

storing elastic energy in a metastable configuration of the snap

trap (Forterre et al. 2005). During this nonstimulated phase, glands

are already producing hydrolases such as the Nepenthesin-like

aspartic protease (Buch et al. 2015). Upon insect capture, this

pH- and temperature-resistant broad range protease is probably

among the first hydrolases released, with others being massively

induced after chemical sensing and ongoing prey digestion.

Insect-induced defense responses thus include hydrolase produc-

tion, membrane remodeling, and secretion. In contrast to the typ-

ical defense response of noncarnivorous plants, the Dionaea trap

actively suppresses cell death while fostering prey degradation

and, more importantly, nutrient absorption. This is reflected in

the expression of otherwise root-expressed transporters in stimu-

lated glands. Little is known about the fate of prey-derived nutri-

ents and their uptake, but by feeding isotope-labeled insects to

traps, Kruse et al. (2014) showed that the organic nitrogen gained

from insect prey was immediately redistributed and invested into

the growth of new traps. Ammonium, an important nitrogen-

based cation nutrient released from insect-derived glutamine by

Dionaea deaminases (Scherzer et al. 2013), represents the substrate

of the NH4
+-selective uptake channel DmAMT1. As well as organic

nutrients, degrading animal prey also releases potassium and
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sodium. Dionaea requires potassium for turgor formation and trap

reopening, as well as for growth and the development of new traps.

For the uptake of prey-derived potassium ions, Dionaea glands op-

erate two K+ selective uptake systems in concert: a low-affinity,

high-capacity K+ channel DmAKT1 and a high-affinity, low-capac-

ity proton-coupled K+ transporter DmHAK5 (Scherzer et al. 2015).

In Arabidopsis, HAK5 expression strongly depends on K+ availabil-

ity and is under control of the ERF/AP2-type transcription factor

AtDDF2 (Hong et al. 2013). Expression of the Dionaea DDF2 is

barely detectable in nonstimulated glands but is induced more

than 150-fold and more than 400-fold in glands stimulated by in-

sects or COR, respectively (data not shown). Interestingly, active

traps also take up the otherwise toxic Na+ ions via a gland cell ex-

pressed Na+ channel DmHKT1. Most likely, sodium ions are re-

quired for osmotic adjustment. In contrast to K+, however, Na+

accumulates only in mature traps (Böhm et al. 2016a) and is not

channeled to young ones, presumably to protect young traps

from its toxic effect during organ growth and development.

In summary, our work extends and refines the current model

of the Dionaea hunting cycle. We show that the first mechano-

electric stimulation of the trigger hair by a trap-visiting insect

sets the trap into a “poised to capture” mode (Supplemental Fig.

S3). One touch-induced AP is memorized by the trap but is insuf-

ficient for trap closure. A second AP elicited within a given period

(about ≤20 sec) is required for fast closure and prey capture. When

trying to escape, a prey insect repeatedly touches the mechano

sensors, thereby eliciting the repetitive firing of APs. Two or

more APs activate the JA signaling pathway. Upon five or more

elicited APs, the capture organ becomes hermetically sealed and

the victim is digested. Glands covering the inner surface of the

stomach start to express genes encoding enzymes that decompose

the prey into its nutrient building blocks, alongside the expression

of transporters for the uptake of prey-derived nutrients. In the lat-

ter processes, mechano-electric stimulation can be substituted by

direct JA hormone administration. Themore often the trigger hairs

are touched, APs are fired, and the touch hormone is synthesized,

the longer andmore active is the flytrap’s endocrine system, a pro-

cess further stimulated by “prey derived molecular patterns.” By

these means, the number of APs informs the plant about the size

and nutrient content of the struggling prey.

In evolutionary terms, it seems remarkable that a generic

wounding response pathway that exists in most plant species

has been partly rewired to enable prey capture, digestion, and nu-

trient acquisition (Fig. 7). Following this strategy, the carnivorous

syndrome not only covers expenses (keeping the trap active), but

also gains a surplus, allowing the carnivorous plant to afford and

grow new capture organs for future hunting cycles.

Methods

Plant growth

Dionaea plants were grown as described previously (Scherzer et al.

2013). Briefly, D. muscipula plants were purchased from CRESCO

Carnivora and grown in plastic pots at 22°C in a 16-h:8-h light–

dark photoperiod. All experiments were performed with healthy

mature plants. Nonstimulated traps, petioles, roots, trap rims,

and flowers were immediately frozen in liquid nitrogen and pro-

cessed. Traps and glands were stimulated by feeding traps with

live crickets or by spraying a 100 μM COR solution (Sigma-

Aldrich) directly onto open traps. Tissues were harvested upon

trap closure or secretion onset (within 4–12 h) and immediately

frozen in liquid nitrogen. Isolation of secretory gland complexes

was achieved by gently abrading the inner trap surface using a

sharp razor blade. For mechanical induction of gene expression,

trigger hairs were stimulated 60 times (1/min), and samples were

collected 24 h after the first stimulus. In inhibitor tests, 100 µM

COR-MO (synthesized according to the method described by

Böhm et al. 2016b) was sprayed 4 h before mechanical stimulation

was applied to the Venus flytraps.

RNA extraction, sequencing, and qPCR

RNA was isolated separately from each sample using a modified

cetyltrimethylammonium bromide (CTAB)–based protocol. In

brief, 0.1 g plant material powdered in liquid nitrogen was thor-

oughly mixed with 0.7 mL of hot (65°C) RNA-extraction buffer

(2% CTAB, 2% polyvinylpyrrolidone K 25 [PVP], 100 mM TRIS/

HCl at pH 8.0, 25 mM Na-EDTA at pH 8.0, 2 M NaCl, with 2.5%

[v/v] 2-mercaptoethanol added immediately before use).

Following 10 min incubation at 65°C and extraction with 1 vol

of chloroform/isoamyl alcohol (24:1, v/v), RNA was precipitated

from the supernatant by adding 175 µL of 8 M LiCl overnight

(4°C). RNA was collected by centrifugation, resuspended in

Figure 7. Turning defense into offense. Flow chart comparing the main
events occurring at individual levels during the interaction of insects/her-
bivores with Dionaea or noncarnivorous plants. Similar to noncarnivorous
plants, Dionaea attracts insects by means of volatile and nectar production
(Kreuzwieser et al. 2014). Herbivores use plant leaves as a food source and
by chewing, for example, caterpillars, impose a wounding event on the
plant. InDionaea, visiting insects generate touch events sensed by the trig-
ger hairs of the trap leaf, triggering APs, while in noncarnivorous plants,
slow-wave potentials (SWPs) or APs can be generated. APs represent trav-
eling electrical waves that are capable of generating systemic responses in
noncarnivores. In Dionaea, however, AP spreading is confined to the stim-
ulated trap; it is not able to cross the trap–petiole anatomical barrier. Both
wounding and touch-evoked electrical signaling trigger similar secondary
signaling events: changes in cytosolic calcium concentration, production
of reactive oxygen species (ROS), and synthesis of the touch hormone
JA. Activation of JA signaling in noncarnivorous plants results in the produc-
tion of a large number of specialized compounds with established roles in
defense. This includes alkaloids, terpenoids, phenylpropanoids, phenola-
mides, amino acid derivatives, anti-nutritional proteins, and some patho-
genesis-related (PR) proteins (Mithöfer and Boland 2012). Conversely,
activation of the JA signaling pathway in Dionaea further leads to the ex-
pression of a broad spectrum of hydrolases (cf. Fig. 3), ROS scavengers,
and finally nutrient uptake transporters. Thus, while in noncarnivorous
plants the global objective is to repel a herbivore, Dionaea’s only purpose
is to consume it. Both strategies are costly, requiring the investment of a
substantial amount of metabolic energy; if successful though, they signifi-
cantly increase the chance of plant survival.
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DEPC H2O, and precipitated in the presence of 0.1 vol 3 M Na ac-

etate (pH 5.2) and 2.5 vol of 96% EtOH. After a washing step using

70% EtOH, RNA was dissolved in 40 µL of DEPC H2O. DNA con-

tamination was removed by DNase I treatment on a column

(Roche). RNA quantity and quality were determined by capillary

electrophoresis (Experion automated electrophoresis system and

Experion RNA high sense analysis kit, Bio-Rad Laboratories).

TruSeq RNA libraries (partially stranded) were generated, and

RNA sequencing was performed using an Illumina HiSeq 2000

sequencer at LGC Genomics.

Individual transcript levels were analyzed by quantitative

real-time PCR (qPCR). qPCR was performed using a Realplex

Mastercycler (Eppendorf), 1:20 diluted cDNA, and the ABsolute

QPCR SYBR green capillary mix (Thermo Scientific). Expression

levels were quantified using a standard for each primer pair

and normalized to 10,000 molecules of actin (DmACT) cDNA

transcripts.

Primers employed were as follows: SCPL49LCfwd, 5′-AC

TTAATCCGGGTATCA-3′; SCPL49LCrev, 5′-AGGTCCATAGGTA

TTCA-3′; VF CHITINASE ILCfwd, 5′-GAAAGTTATTACGGTCG-

3′; VF CHITINASE ILCrev, 5′-CTTTACCACACTCAACG-3′; SAG

12fwd, 5′-CGCATTCGAGTATATGA-3′; SAG12rev, 5′-CAACATT

CCTTTGCATC-3′; AMT1LCfwd, 5′-TTGCT ACCAAGAAACAC-3′;

AMT1LCrev, 5′-TGAGTTGATGTAAGGAG-3′; HAK5.1LCfwd, 5′-

GTATGTTT TGTGCTGG-3′; HAK5.1Lrev, 5′-GTCCGAGCATATAA

GTC-3′; HKT1LCfw, 5′-GAATGTAGCAGT CGAG-3′; HKT1LCrev,

5′-CCCGTGCATGTTAAAT-3′; JAZ1.1LCfwd, 5′-GTGTTCAACGA

CTTCC-3′; JAZ1.1LCrev, 5′-TTGTTAAGGTGTATGGC-3′; COI1L

Cfwd, 5′-TTACGTCGGACTGTAT-3′; and COI1LCrev, 5′-AACTCT

AAGCTAAGACAT-3′.

Data preparation and transcriptome assembly

Raw read data sets were screened for quality issues with FastQC (ver-

sion0.11.4).Passeddata setswerequality trimmedusing skewer (ver-

sion 0.1.67; -Q 30; -q 30; -l 75; -m pe) (Jiang et al. 2014) The

transcriptomewas assembled using Trinity (release 2013-02-16; -jac-

card_clip; -min_kmer_cov 2; -path_reinforcement_distance 75)

(Grabherret al. 2011). Theassemblywas screened for artificial fusion

events caused by low-complexity regions or highly similar UTRs. A

linkagemapwas constructed for transcripts withmore than one po-

tential coding region (see below). Evidence from homology-based

database searches and mapped paired-end reads were used to link

the potential coding regions. Paired-end mappings were produced

with Bowtie (version 0.12.7) (Langmead et al. 2009), while homolo-

gy evidence was generated by searching transcripts against a plant-

comprising subset of the UniProt database (2015; release 2014-06-

19) (UniProt-Consortium 2015) using BLAST (version 2.2.29)

(Camacho et al. 2009). Where no linkage evidence was found, the

transcript was considered to be fused. Fusion sites were detected by

searching for the lowermost covered site between two coding re-

gions. Transcriptswere cut apart, and the regionwith the lowermost

coverage was trimmed from both the resulting transcripts.

Whenever a transcript was defused, the original isoform-gene rela-

tion returned by Trinity was disregarded. To recreate a reliable iso-

form–gene relation, we partitioned all defused isoforms derived

from the same gene using transitivity clustering (version 1.0)

(Wittkop et al. 2010) intonewgenes. If sufficient evidence for a link-

age was found, the transcripts were considered intron containing.

Introns were removed by aligning high-scoring templates from the

homology search to the transcript using GeneWise (version 2.4.1)

(Birneyet al. 2004).Onlyproper alignmentswere used to cut introns

from transcripts; otherwise, transcripts were left untouched.

Feature annotation

Refined transcripts were annotated using homology- and pro-

file-based methods. Coding regions were identified using

TransDecoder (http://transdecoder.github.io; release 2014-01-

16). Putative peptides were preferred when they had a significant

match to a Pfam domain. Only peptides with a length of at least

30 aa were considered. Protein families and domains were classi-

fied using InterProScan (release 44.0) Quevillon et al. 2005).

Phobius (version 1.01) (Kall et al. 2004), SignalP (version 4.0)

(Petersen et al. 2011), and TMHMM (version 2.0) (Moller et al.

2001) were integrated into the default signature recognitionmeth-

ods. GO terms were predicted using Blast2GO (version 2.5.2)

(Conesa et al. 2005). GO terms were augmented with Interpro an-

notations using ANNEX (Myhre et al. 2006). MapMan bins were

annotated with Mercator (Lohse et al. 2014). Interspersed repeats

and low-complexity regions were identified using RepeatMasker

(version 4.0.3) (Smit et al. 2013–2015). Putative orthologs between

the Venus flytrap transcriptome and A. thaliana (“TAIR10”)

(Lamesch et al. 2012) were assigned using a conservative condi-

tional reciprocal best BLAST (CRB-BLAST; release 2015-05-19)

(Aubry et al. 2014). TCDB classifications were assigned with a

two-step approach. First, a CRB-BLAST against the TCDB sequence

set was used to identify conditional reciprocal best hits. If no dis-

tinct one-to-one hit was found, the sum of the best hits (e-value

≤10−5) was evaluated. If all hits were annotated with the same

TCDB family, the annotation was mapped to the Venus flytrap

sequence.

Transcript filtering

Prior to differential expression analyses and enrichment studies,

the following filtering steps were applied to the refined assembly:

(1) Noncoding RNAs were excluded by searching for isoforms

without a potential coding region; (2) ambiguous low abundance

genes were excluded when no sequenced sample produced an ex-

pected count higher than five; (3) in addition, ambiguous isoforms

were removed by only considering isoforms with an abundance

>1% of the abundance of its parental gene; and (4) possible con-

taminations were filtered with a two-step approach. Isoforms

were split into overlapping k-mers (k-mer size 19 bp). Each k-mer

was then searched in a database of trusted k-mers created from

genomic sequencing data (data not shown). Isoforms without

a single k-mer present in the trusted k-mer databases were disre-

garded. The remaining isoforms were searched against the com-

plete nonredundant database (release 2015-01-13) (Sayers et al.

2009) using BLASTN. Resulting hits were taken to calculate the

lowest common ancestor (LCA) with MEGAN4 (Huson et al.

2011), using default settings. Isoforms with a LCA in bacteria, fun-

gi, or metazoa were disregarded. (5) Transposon-like isoforms de-

tected by RepeatMasker were excluded if they only contained the

transposable element or a protein domain associated with inter-

spersed repeats in the current RepBase release (release 2014-04-2)

(Jurka et al. 2005).

Transcript abundance estimation and differential

expression testing

Isoform and gene abundances were quantified with RSEM (version

1.2.5) (Li and Dewey 2011) using the unfiltered read data sets.

Differential expression tests and enrichment analysis, as well as

abundance visualizations, were carried out using gene counts.

Isoform abundances were only used to select a representing iso-

form for genes of interest. The manual selection prioritized iso-

forms over others that were complete (presence of ORF with

flanking UTRs), and had a protein domain annotation and an
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expression profile similar to its parental gene. Gene countmatrices

for each experiment were normalized using the normalization

method implemented in the DESeq package (version 1.22.0)

(Anders and Huber 2010). Samples that were possible outliers

were detected using arrayQualityMetrics (version 3.26.0)

(Kauffmann et al. 2009) and a variance stabilized transformation

of the normalized gene count data set. The same expression data

set was used for the PCA. DEGs were detected using DESeq. Only

genes exhibiting an adjusted P-value equal or smaller than 0.01

were considered as significant. DEGs for A. thalianamicroarray ex-

periments (GSE48676, GSE49981, GSE5520, and GSE50526) were

detected using GEO2R (Barrett et al. 2013).

Enrichment analysis and semantic similarity

GO and GOSlim enrichment studies were carried out using topGO

(version 2.22.0) (Alexa et al. 2006) using the generic GO and the

plant slim subset developed by The Arabidopsis Information

Resource (“TAIR”). Measures for differential expression (P-value)

were included using the weighted algorithm, while Fisher’s exact

test was used as a test statistic. Terms were considered significant

with a P-value equal or smaller than 0.01 after Bonferroni correc-

tion. Semantic similarity of GO enrichments was measured with

the GNU R Bioconductor package GOSemSim (Yu et al. 2010) us-

ing Wang’s measurement method and the best-match average

(BMA) strategy to combine scores for individual terms. Gene set

enrichments (GSEAs) were carried out with GAGE (Luo et al.

2009) using MapMap bins, TCs, or manually assigned gene classi-

fications. DESeq derived adjusted P-values were used as per gene

score, and gene sets were considered significant at a q-value equal

or lower than 0.1.

Definition of the putative secretome and transportome

The secretome of the Venus flytrap was defined with the following

rule set. Each putative member had to be a DEG when comparing

nonstimulated with insect-stimulated glands (both down- and up-

regulated DEGs were considered). The underlying gene needed to

have at least one differentially expressed isoform with an annotat-

ed signal peptide and evidence of a detectable peptide in the same

open reading frame. The transportome was defined similar to the

secretome. Putative members had to be differentially expressed

in nonstimulated or insect-stimulated glands. The gene needed

to have at least one differentially expressed isoform annotated

with two or more transmembrane domains. Furthermore, the

same sequence needed to have a proper TCDB classification as de-

scribed above.

Proteomics

Protein preparation for mass spectrometry

Sampling of secreted fluid and gel-free proteomics of the digestive

fluid was performed essentially as described in Schulze et al.

(2012). A total of 50 µg protein was predigested for 3 h with endo-

proteinase Lys-C (0.5 µg/µL; Wako Chemicals) at room tempera-

ture (RT). After fourfold dilution with 10 mM Tris-HCl (pH 8),

samples were digested with 4 µL sequencing grade modified tryp-

sin (0.5 μg µL−1; Promega) overnight at 37°C. After overnight

digestion, trifluoroacetic acid (TFA) was added (until pH ≤3) to

stop digestion. Digested peptides were desalted over C18 tips

(Rappsilber et al. 2003).

LC-MS/MS analysis of peptides and phosphopeptides

Tryptic peptidemixtures were analyzed by LC/MS/MS using nano-

flow easy-nLC1000 (Thermo Scientific) as an HPLC-system and a

quadrupole-orbitrap hybrid mass spectrometer (Q-Exactive Plus,

Thermo Scientific) as a mass analyzer. Peptides were eluted from

a 75-μm×50-cm C18 analytical column (PepMan, Thermo

Scientific) on a linear gradient running from 4% to 64% acetoni-

trile in 120 min and sprayed directly into the Q-Exactive mass

spectrometer. Proteins were identified by MS/MS using informa-

tion-dependent acquisition of fragmentation spectra of multiple

charged peptides. Up to 12 data-dependent MS/MS spectra were

acquired for each full-scan spectrum acquired at 70,000 full-width

half-maximum resolution. Fragment spectrawere acquired at a res-

olution of 35,000. The overall cycle time was ∼1 sec.

Protein identification and ion intensity quantitation was

carried out by MaxQuant version 1.5.3.8 (Cox and Mann 2008).

Spectra were matched against the Dionaea contigs using

Andromeda (Cox et al. 2011). Carbamidomethylation of cysteine

was set as a fixed modification, and oxidation of methionine was

set as variablemodification.Mass tolerance for the database search

was set to 20 ppm on full scans and 0.5 Da for fragment ions.

Multiplicity was set to one. For label-free quantitation, retention

time matching between runs was chosen within a time window

of 2 min. The peptide false-discovery rate (FDR) and protein FDR

were set to 0.01, while site FDR was set to 0.05. Hits to contami-

nants (e.g., keratins) and reverse hits identified by MaxQuant

were excluded from further analysis.

Mass spectrometric data analysis and statistics

Reported ion intensity values were used for quantitative data anal-

ysis. cRacker (Zauber and Schulze 2012) was used for label-free data

analysis based on the MaxQuant output (evidence.txt). All phos-

phopeptides and proteotypic nonphosphopeptides were used for

quantitation. Within each sample, ion intensities of each peptide

ion species (eachm/z) were normalized against the total ion inten-

sities in that sample (peptide ion intensity/total sum of ion inten-

sities). Subsequently, each peptide ion species (i.e., eachm/z value)

was scaled against the average normalized intensities of that ion

across all treatments. For each peptide, values from three biological

replicates then were averaged after normalization and scaling.

Electron microscopy

Plant material was cut into small pieces and immediately fixed in

5% glutaraldehyde in a 0.1 M cacodylate buffer for 3 h at 4°C.

Pieces were washed twice, first with 7% sucrose in a 0.1 M cacody-

late buffer and then with a 0.1M cacodylate buffer alone. For post-

fixation, the solution was replaced by 2% osmium tetroxide in a

0.1 M cacodylate buffer for 2 h on ice. Following a three-stage

washing step with 0.05 M cacodylate buffer, the plant material

was dehydrated using an ascending ethanol series and then stored

in 100% ethanol overnight at RT. After two 1-h incubations at RT

in 100% ethanol and propylene oxide, respectively, the plant ma-

terial was again stored overnight in fresh propylene oxide at RT.

The next day, it was equilibratedwith and subsequently embedded

in Spurr’s epoxy resin (Spurr 1969). After changing the solution

several times using an increasing ratio of Spurr:propylene oxide,

plant pieces were transferred to appropriate embedding molds

filled with 100% Spurr. Contrasted ultrathin sections (60–70 nm)

of the embedded plant material were examined using a JEOL

JEM-2100 TEM.

Electrophysiology

Prior to measurements, the lobe of a cut trap was glued to the bot-

tomof a recording chamber and left to recover for 30min in a stan-

dard solution containing 0.1 mM KCl, 10 mM CaCl2, and 15 mM

MES/TRIS (pH 6). Osmolarity was adjusted to 240 mOsm/kg using
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D-sorbitol. Membrane potential recordings were performed as de-

scribed elsewhere (Scherzer et al. 2015) using a standard solution

supplemented with varying concentrations of either NaCl, KCl,

or NH4Cl as indicated in the figure legend.

Data access

The sequence data from this study have been submitted to the

NCBI BioProject (http://www.ncbi.nlm.nih.gov/bioproject) under

accession number PRJNA203407. Sequence annotations, expres-

sion quantifications, and differential testing results of the Venus

flytrap reference transcriptome are available in the Supplemental

Tables S1–S17 and through the Carnivorome transcriptome

browser (http://tbro.carnivorom.com). The mass spectrometry

proteomics data have been submitted to the ProteomeXchange

Consortium (http://www.proteomexchange.org) via the PRIDE

partner repository (http://www.ebi.ac.uk/pride/archive/) (Viz-

caino et al. 2016) with the data set identifier PXD003480.
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