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1. Introduction

brain computer interface (BCI) 

translates human intentions into 

control signals to 

establish a direct commu-

nication channel between 

the human brain and 

external devices. Because 

a BCI does not depend 

on the brain’s normal out-

put pathways of peripheral 

nerves and muscles, it can 

provide a new communi-

cation channel to people 

with severe motor disabilities [1–3].

Electroencephalograms (EEGs) 

recorded from the surface of the 

scalp are widely used in current BCIs 

for their non-invasive nature and 

easy applications. Among EEG based 

BCIs, systems based on visual evoked 

potentia l s  (VEPs) have received 

widespread attention in recent de -

cades [4–27].

VEPs are caused by sensory stimu-

lation of a subject’s visual field, and re-

flect visual information processing 

mechanisms in the brain. Stimulation 

of the central visual field evokes larger 

VEPs than peripheral stimulation. A 

VEP based BCI is a tool that can iden-

tify a target on which a user is visually 

fixated via analysis of concurrently re-

corded EEG. Fig. 1. shows the system 

diagram of a VEP based BCI. In a VEP 

based BCI, each target is coded by a 

unique stimulus sequence which in 

turn evokes a unique VEP pattern. A 

fixation target can thus be identified 

by analyzing the characteristics of the 

VEP. To ensure reliable identification, 

VEPs derived from dif-

ferent stimulus sequenc-

es should be orthogonal 

or near orthogonal to 

each other in some 

t r an s f o r m doma in . 

Stimulus sequence de-

sign is an essential prob-

lem for a VEP based 

BCI. Depending on the 

specific stimulus se-

quence modulation approach used, 

current VEP based BCIs can be orga-

nized into three categories: time mod-

ulated VEP (t-VEP) BCIs [4-6], 

frequency modulated VEP (f-VEP) 

BCIs [11–27], and pseudorandom code 

modulated VEP (c-VEP) BCIs [7–10]. 

Due to the different modulation 

approaches and target identification 

methods employed, performance differs 

between systems. In this paper, a com-

parison study of the three systems is 

presented. We will first compare the 

designs of these systems, and then 

describe in detail our recent work on 

two online BCI systems using f-VEPs 

and c-VEPs.

2. System Design 

2.1 t-VEP based BCI

In a t-VEP BCI, the flash sequences of 

different targets are mutually indepen-

dent. This may be achieved by requiring 

that flash sequences for different targets 

are strictly non-overlapping [4], or by 

randomizing the duration of ON and 

OFF states of each target’s flash se-

quence [5]. The briefly flashed stimuli 

elicit flash visual evoked potentials 

(FVEP) which have short latencies and 

durations. Fig. 2 shows a typical t-VEP 

stimulation sequence, and the wave-

form of a typical FVEP.

 In a t-VEP BCI, a synchronous sig-

nal must be given to the EEG amplifier 

for marking the flash onset of each tar-

get. FVEPs are time-locked and phase-

locked to visual stimulus onset. Thus, 

since the flash sequences for all targets 

are mutually independent, averaging 

over several short epochs segmented 

according to flash onset of a fixation tar-

get will enhance FVEPs corresponding 

to that target while suppressing contri-

butions of FVEPs elicited by peripheral 

non-fixation targets. Since foveal FVEPs 

are larger than peripheral FVEPs, the 

target producing the largest averaged 
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FIGURE 1 System diagram of a VEP based BCI.
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peak-to-valley FVEP amplitude can be 

identified as the fixation target.

Accurate target identification in a 

t-VEP BCI requires averaging over 

many epochs. Furthermore, to prevent 

overlap of two consecutive FVEPs, 

t-VEP BCIs usually have low stimulus 

rates (,4 Hz). Thus t-VEP BCIs have a 

lower information transfer rate (ITR) 

(,30 bits/min). ITR is a performance 

measure for BCI systems [1]. 

2.2 f-VEP Based BCI

In an f-VEP based BCI, each target is 

flashed at a different frequency generat-

ing a periodic sequence of evoked 

responses with the same fundamental 

frequency as that of the flickered stimu-

lus as well as its harmonics. Fig. 3 shows 

a stimulation sequence of an f-VEP 

BCI, and the power spectrum of the 

evoked response. 

Power spectral analysis is most widely 

used for target identification of the 

f-VEP based BCI. For a segment of 

EEG data x obtained from a k-target 

f-VEP BCI with flicker frequencies 

f1, f2 cfk respectively, target identifica-

tion may be implemented through fol-

lowing steps:

1) Calculate the power spectrum P 1 f 2  
of the EEG signal x using a Fast 

Fourier Transform (FFT) or other 

spectral analysis technique.

2) Calculate the signal-to-noise ratio 

(SNR) Sk of each stimulus frequency 

fk. Here, SNR is defined in terms of 

the ratio of P 1 fk 2 to the mean value 

of the adjacent frequency points.

3) Identify the fixation target by select-

ing the target, K, corresponding to 

the maximum Sk.

Because the flicker frequency of 

f-VEP BCI usually are higher than 6Hz, 

the evoked responses from consecutive 

flashes of the target overlap with each 

other, generating a periodic sequence of 

VEPs—a steady-state visual evoked 

potential (SSVEP)—which is frequency-

locked to the flickering target. As such, 

f-VEP BCIs are often referred to as 

SSVEP BCIs. In past decades, the 

robustness of f-VEP BCI systems has 

been demonstrated convincingly in 

many laboratory and clinical tests 

[11–27]. Advantages of an f-VEP BCI 

include simple system configuration, lit-

tle or no user training, and a high ITR 

(30–60 bits/min).

2.3 c-VEP Based BCI

In a c-VEP BCI, pseudorandom 

sequences are used. The m-sequence is 

the most widely used pseudorandom 

sequence [28]. A binary m-sequence is 

generated using maximal linear feed-

back shift registers which have many 

properties that make them valuable tools 

in linear and nonlinear systems analysis. 

An m-sequence has an autocorrelation 

function which is very close approxima-

tion to a unit impulse function, and it is 

nearly orthogonal to its time lag 

sequence. Thus an m-sequence and its 

time lag sequence can be used for a 

c-VEP BCI. Fig. 4 shows stimulation 

sequences of a c-VEP BCI as well as the 

time course, spectrum, and autocorrela-

tion function of the evoked response. 

As with t-VEP systems, a synchro-

nous signal is necessary in the c-VEP 

based BCI system. At the beginning of 

each stimulation cycle, a synchronous 

signal providing a trigger for target 

identification should be given to the 

EEG amplifier. 

A template matching method is gen-

erally used for target identification. To 

obtain the template, a training stage must 

be implemented. The steps of target 

identification are as follows:

1) In the training stage, the user is 

instructed to fixate on one of k tar-

gets, with the fixation target denot-

ed by k0. During N  stimulation 

cycles, EEG data Xn, n 5 1, 2 ...N  is 

collected.

2) A template T 1 t 2  is obtained by aver-

aging over N  cycles. 

3) The templates of all targets are 

obtained by shifting T 1 t 2 :
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FIGURE 2 (a) The stimulus sequences of targets of a t-VEP based BCI. Target flashes 
are  mutually independent. (b) The evoked response to a single stimulus.
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FIGURE 3 (a) The stimulus sequences for targets of an f-VEP based BCI. Targets flash at 
 different frequencies. (b) The power spectrum of the evoked response derived from a target 
flickering at 10 Hz.
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 where tk 2 tk0
 indicates the time lag 

between target k and target k0.

4) For a segment of EEG data x, the 

correlation coefficient rk between x 

and the template Tk is calculated as:

  rk 5
Tkx

T

"1TkTk
T 2 1xxT 2

.

5) Identify the fixation target by select-

ing the target, K, which maximizes 

the correlation coefficient rk.

The most representative c-VEP 

based BCI system was developed by 

Sutter [7, 8]. Sutter‘s system reached a 

very high communication rate of 10 to 

12 words/minute (.100 bits/min). 

However, during the past decades, there 

have been few other studies on c-VEP 

and the performance of the proposed 

system was not satisfying. For example, 

Momose designed a c-VEP BCI system 

with four targets [9, 10]. It took five 

seconds for the system to identify a tar-

get (,20 bits/min).

3. Performance Comparison

3.1 Experiment Design 

and Analysis

Because of the lower performance of 

the t-VEP based BCI, relative to 

f-VEP and c-VEP systems, we will 

focus on a detailed comparison of the 

latter two systems. Two online systems 

based on f-VEP and c-VEP were 

implemented and tested on the same 

group of subjects under the same 

experimental environment. 

In both BCI systems, a CRT display, 

with a screen refresh rate of 60 Hz and 

screen resolution of 1024 3 768 pixels, 

was used for stimulus presentation. A 

parallel port was used to synchronize 

EEG data acquisition with stimulus.

There were six targets in the f-VEP 

based BCI system, with flickering fre-

quencies of 15 Hz, 12 Hz, 10 Hz, 8.6 

Hz, 7.5 Hz and 6 Hz, respectively, corre-

sponding to 4, 5, 6, 7, 8, 10 frames in 

single frequency cycle. 

In the c-VEP based BCI system, 

stimulation targets were composed of 

16 rectangular blocks displayed as a 

4 3 4 matr ix on the monitor as 

shown in Fig. 5. A binary m-sequence 

with 63 elements was used as the 

modulation signal. The lags t 1k 2  of 

different targets were decided by the 

following equation:

t 1k 2 5 4 3 k   k 5 0, 1 . . .15. 

Twelve healthy right-handed adults 

(three females, nine males) with normal 

or corrected to normal vision served as 

paid volunteer subjects after giving 

informed consent. EEG was sampled at 

1000 Hz from 47 scalp electrodes 

mounted in an elastic cap using Syn-

Amps2 (NeuroScan). 

The experiment was divided into a 

training stage and a testing stage. In the 

training stage, subjects were required to 

fixate on each of the targets sequentially 

for the f-VEP BCI, and fixate on the 

target “10” for the c-VEP BCI. Data 

from the training stage was used for 

offline analysis, including channel selec-

tion and to obtain the template for the 

c-VEP BCI.

Because of the large var iation 

between subjects in the spatial distribu-

tion of VEP responses, channel selection 

is widely used in VEP based BCIs. In 
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FIGURE 4 The stimulus sequences and evoked response of a c-VEP based BCI. (a) The 
sequences of targets in one stimulation cycle. Each sequence is from a binary m-sequence. 
There is a four-frame lag between two consecutive sequences. All targets were activated 
simultaneously, and the stimulation cycle was repeated constantly. (b) A waveform of the 
evoked response. (c) The power spectrum of the evoked response. (d) The auto-correlation 
of the evoked response.

FIGURE 5 The target arrangement of the 
c-VEP based BCI. The sixteen targets distrib-
ute as a 4 3 4 array surrounded by a border 
to eliminate the effect of the array boundary. 
When the border fields are stimulated 
according to the wrap-around principle, all 
targets have equivalent neighbors. Thus the 
responses obtained when the subject fixates 
on different targets are practically identical.
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this study, an exhaustive method was 

adopted for channel selection. In prac-

tice, the channel with the highest VEP 

amplitude can be considered the signal 

channel. To reduce time complexity of 

the exhaustive search, in both the f-VEP 

and c-VEP systems, electrode Oz was 

chosen as the signal channel and the 

bipolar reference channel which maxi-

mized training accuracy was selected as 

the optimal reference channel.

 In the testing stage, an online BCI 

application was implemented. The refer-

ence channel and template obtained 

from the training stage was used for 

online testing. Each subject was asked to 

input two strings of commands with 32 

characters for both BCI systems. The 

online accuracy and corresponding ITR 

was used for evaluating the online sys-

tem performance.

3.2 Results 

The average training accuracy was 

88 ; 6% and 95 ; 6% for the f-VEP 

and c-VEP system respectively. The 

online accuracy of the c-VEP system 

was higher than the f-VEP system (91% 

vs. 85%). The ITR was 39.7 ; 7.8 bits/

min for the f-VEP BCI and 92.8 ; 14.1  

bits/min for the c-VEP BCI. 

4. Discussion

In this paper, a detailed introduction of 

the three VEP based BCI systems is pre-

sented. The similarities and differences 

between these systems are as follows.

First, the stimulus modulation 

approach is different for the three systems. 

In a t-VEP BCI, stimuli corresponding 

to different targets appear at different 

times. In an f-VEP BCI, each target is 

flashed at a unique frequency. In a 

c-VEP BCI, near-orthogonal pseudo-

random codes are used for modulating 

targets. These three coding methods are 

similar to the three multiple access 

methods widely used in mobile com-

munication: Time Division Multiple 

Access (TDMA), Frequency Division 

Multiple Access (FDMA), and Code 

Division Multiple Access (CDMA), 

respectively [28]. 

Second, while a training stage is nec-

essary for c-VEP BCIs, it is not a funda-

mental requirement for f-VEP BCIs and 

t-VEP BCIs. While our f-VEP imple-

mentation utilized training data for chan-

nel selection, in multi-channel f-VEP 

BCI systems, channel selection and 

parameter optimization can be ignored 

[23, 24]. In contrast, in c-VEP BCIs, the 

temporal profile of the evoked response 

may differ substantially between users 

and is thus unknown for a new subject; a 

training stage is necessary to obtain the 

template of the evoked response.

Third, an f-VEP BCI has a simpler 

system configuration relative to t-VEP 

and c-VEP BCIs. Both c-VEP and 

t-VEP BCIs, require a stimulus onset 

trigger signal to be synchronized with 

the EEG data acquisition, increasing 

the complexity of hardware and soft-

ware design.

Fourth, the identification accuracy of 

a c-VEP BCI is higher than an f-VEP 

BCI. A principal reason for the higher 

identification accuracy of the c-VEP 

BCI is that the stimulus sequences, and 

thus the neuronal responses evoked by 

each target, are equivalent except for the 

time shift. However in an f-VEP BCI, 

the amplitudes and topographies of 

evoked responses from targets flickered at 

different frequencies may differ substan-

tially [14]. The disequilibrium of targets 

brings difficulty to target identification. 

Additionally, the wide-band evoked 

response of the c-VEP BCI may con-

tribute to its superior accuracy. As shown 

in Fig. 4 (c), the neuronal response 

evoked by a c-VEP BCI has a broadband 

spectrum distributed over 5–25 Hz. In 

contrast, an f-VEP BCI generates a nar-

row-band response, with sharp peaks at 

the target flicker frequency and harmon-

ics. Natural EEG activity includes many 

such narrow-band signals such as theta, 

alpha and beta rhythms, which may 

interfere with the f-VEP narrow-band 

response. However, this background 

“noise” is less likely to interfere with the 

wide-band c-VEP response.

The three BCI systems exhibit dif-

ferent characteristics, and they can be 

chosen for different applications. An 

f-VEP BCI is most suitable for appli-

cations requiring fewer options, such 

as wheelchair control, while a c-VEP 

BCI is more suitable for applications 

requir ing more options, such as a 

speller application. All three systems, 

as described above, require the user to 

shift gaze to select targets. Thus they 

are unsuitable for users who cannot 

shift gaze, such as fully “locked-in” 

patients with late-stage ALS. However, 

for the majority of potential BCI users 

who still have eye movement control, 

VEP based BCI systems can provide a 

fast and accurate communication 

pathway. Recently, independent VEP 

based BCIs have been realized based 

on visual attention [25–27]. These sys-

tems provide evidence that a VEP 

based BCI may also be used without 

requir ing gaze-shifting, render ing 

them suitable for use by fully locked-

in patients. 

5. Conclusion 

We described the three stimulus mod-

ulation approaches used in current 

VEP based BCIs: time modulation 

( t-VEP), f requency modulat ion 

(f-VEP), and pseudorandom code 

modulation (c-VEP). We then carried 

out a detailed comparison of system 

performance between an f-VEP BCI 

and a c-VEP BCI. The results show 

that an f-VEP BCI has the advantage 

of little or no training and simple sys-

tem configuration, while the c-VEP 

based BCI has a higher communica-

tion speed.

The stimulus modulation design is 

the crux of VEP based BCI systems. In 

future work, other stimulus modulation 

techniques, such as various multiple 

access methods used in communication 

systems, may be used to improve BCI 

performance.

Acknowledgments 

This work was supported in part 

by the National Natural Science Foun-

dation of China under Grant (No.

30630022, No.90820304) and the 

National High Technology Research 

and De velopment Program of China 

(No. 2006AA01Z134). The authors 

would like to thank Tim Mullen for his 

helpful comments and careful proof-

reading of the manuscript.



26    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2009

References
[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. 

Pfurtscheller, and T. M. Vaughan, “Brain-computer 

interfaces for communication and control,” Clin. Neuro-

physiol., vol. 113, no. 6, pp. 767–791, 2002.

[2] M. A. Lebedev and M. Nicolelis, “Brain-machine in-

terfaces: Past, present and future,” Trends Neurosci., vol. 

29, no. 9, pp. 536–546, 2006.

[3] N. Birbaumer, “Brain-computer-interface research: 

Coming of age,” Clin. Neurophysiol., vol. 117, no. 3, pp. 

479–483, 2006.

[4] F. Guo, B. Hong, X. R. Gao, and S. K. Gao, “A brain-

computer interface using motion-onset visual evoked 

potential,” J. Neural Eng., vol. 5, no. 4, pp. 477–485, 

2008.

[5] P. L. Lee, J. C. Hsieh, C. H. Wu, K. K. Shyu, S. S. Chen, T. 

C. Yeh, and Y. T. Wu, “The brain computer interface using 

flash visual evoked potential and independent component 

analysis,” Ann. Biomed. Eng., vol. 34, no. 10, pp. 1641–1654, 

2006.

[6] P. L. Lee, J. C. Hsieh, C. H. Wu, K. K. Shyu, and Y. 

T. Wu, “Brain computer interface using f lash onset and 

offset visual evoked potentials,” Clin. Neurophysiol., vol. 

119, no. 3, pp. 605–616, 2008.

[7] E. E. Sutter, “The visual evoked response as a com-

munication channel,” IEEE Trans. Biomed. Eng., vol. 31, 

no. 8, pp. 583–583, 1984.

[8] E. E. Sutter, “The brain response interface-communica-

tion through visually induced electrical brain  responses,” J. 

Microcomput. Appl., vol. 15, no. 1, pp. 31–45, 1992.

[9] K. Momose, “Evaluation of an eye gaze point detec-

tion method using VEP elicited by multi-pseudorandom 

stimulation for brain computer interface,” in Proc. 29th 

Annu. Int. Conf. IEEE EMBS, 2007.

[10] J. Hanagata and K. Momose, “A method for detect-

ing gazed target using visual evoked potentials elicited 

by pseudorandom stimuli,” in Proc. 5th Asia Pacific Conf. 

Medical and Biological Engineering and 11th Int. Conf. Bio-

medical Engineering (ICBME), 2002.

[11] M. Middendorf, G. McMillan, G. Calhoun, and K. 

S. Jones, “Brain-computer interfaces based on the steady-

state visual-evoked response,” IEEE Trans. Neural Syst. 

Rehab. Eng., vol. 8, no. 2, pp. 211–214, 2000.

[12] M. Cheng, X. R. Gao, S. K. Gao, and D. F. Xu, “De-

sign and implementation of a brain-computer interface 

with high transfer rates,” IEEE Trans. Biomed. Eng., vol. 

49, no. 10, pp. 1181–1186, 2002.

[13] X. R. Gao, D. F. Xu, M. Cheng, and S. K. Gao, 

“A BCI-based environmental controller for the motion-

disabled,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 11, 

no. 2, pp. 137–140, 2003.

[14] Y. J. Wang, R. P. Wang, X. R. Gao, B. Hong, and 

S. K. Gao, “A practical VEP-based brain-computer inter-

face,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 14, no. 2, 

pp. 234–239, 2006.

[15] E. C. Lalor, S. P. Kelly, C. Finucane, R. Burke, R. Smith, 

R. B. Reilly, and G. McDarby, “Steady-state VEP-based 

brain-computer interface control in an immersive 3D gam-

ing environment,” EURASIP J. Appl. Signal Process., vol. 2005, 

no. 19, pp. 3156–3164, 2005.

[16] G. R. Muller-Putz, R. Scherer, C. Brauneis, and G. 

Pfurtscheller, “Steady-state visual evoked potential (SSVEP)-

based communication: Impact of harmonic frequency com-

ponents,” J. Neural Eng., vol. 2, no. 4, pp. 123–130, 2005.

[17] L. J. Trejo, R. Rosipal, and B. Matthews, “Brain-

computer interfaces for 1-D and 2-D cursor control: 

Designs using volitional control of the EEG spectrum 

or steady-state visual evoked potentials,” IEEE Trans. 

Neural Syst. Rehab. Eng., vol. 14, no. 2, pp. 225–229, 

2006.

[18] P. Martinez, H. Bakardjian, and A. Cichocki, “Fully 

online multicommand brain-computer interface with 

visual neurofeedback using SSVEP paradigm,” Comput. 

Intell. Neurosci., p. 94561, 2007.

[19] G. R. Muller-Putz and G. Pfurtscheller, “Control of 

an electrical prosthesis with an SSVEP-based BCI,” IEEE 

Trans. Biomed. Eng., vol. 55, no. 1, pp. 361–364, 2008.

[20] Z. H. Wu and D. H. Yao, “Frequency detection with 

stability coefficient for steady-state visual evoked poten-

tial (SSVEP)-based BCIs,” J. Neural Eng., vol. 5, no. 1, pp. 

36–43, 2008.

[21] Y. J. Wang, X. R. Gao, B. Hong, C. Jia, and S. K. 

Gao, “Brain-computer interfaces based on visual evoked 

potentials—Feasibility of practical system designs,” IEEE 

Trans. Biomed. Eng., vol. 27, no. 5, pp. 64–71, 2008.

[22] C. Jia, H. Xu, B. Hong, X. R. Gao, Z. G. Z, and 

S. K. Gao, “A human computer interface using SSVEP-

based BCI technology,” Lect. Notes Comput. Sci., vol. 

4565, no. 2007, pp. 113–119, 2007.

[23] G. Y. Bin, X. R. Gao, Z. Yan, B. Hong, and S. K. 

Gao, “An online multi-channel SSVEP-based brain-

computer interface using a canonical correlation analysis 

method,” J. Neural Eng., vol. 6, no. 4, p. 046002, 2009.

[24] O. Friman, I. Volosyak, and A. Graser, “Multiple 

channel detection of steady-state visual evoked potentials 

for brain-computer interfaces,” IEEE Trans. Biomed. Eng., 

vol. 54, no. 4, pp. 742–750, 2007.

[25] A. Bastos, T. Mullen, R. Canolty, B. Pasley, R. 

Knight, and R. Freeman, “SSVEP-based single-trial 

classif ication of attention,” in Proc. Cognitive Neuroscience 

Society Conf., San Francisco, CA, 2008.

[26] S. P. Kelly, E. C. Lalor, C. Finucane, G. McDarby, 

and R. B. Reilly, “Visual spatial attention control in an 

independent brain-computer interface,” IEEE Trans. 

Biomed. Eng., vol. 52, no. 9, pp. 1588–1596, 2005.

[27] B. Z. Allison, D. J. McFarland, G. Schalk, S. D. 

Zheng, M. M. Jackson, and J. R. Wolpaw, “Towards an 

independent brain-computer interface using steady state 

visual evoked potentials,” Clin. Neurophysiol., vol. 119, 

no. 2, pp. 399–408, 2008.

[28] A. J. Viterbi, CDMA Principles of Spread Spectrum Com-

munication. Reading, MA: Addison-Wesley, 1995. 

From Imagination to Market 

IEEE Expert Now
The Best of IEEE Conferences and Short Courses

Free Trial!
Experience IEEE – 

request a trial for your company.

www.ieee.org/expertnow

An unparalleled education resource that provides the latest

in related technologies.

 Keep up-to-date on the latest trends in related technologies

 Interactive content via easy-to-use player-viewer, audio and 

video fi les, diagrams, and animations

 Increases overall knowledge beyond a specifi c discipline

 1-hour courses accessible 24/7

“With IEEE, we have

24/7 access to the 

technical information

we need exactly when

we need it.”

 – Dr. Bin Zhao, Senior Manager, 

  RF/Mixed Signal Design

  Engineering, Skyworks Solutions


