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Verbascoside promotes apoptosis by regulating
HIPK2–p53 signaling in human colorectal cancer
Lihong Zhou1†, Yuanyuan Feng1†, Yongjie Jin1, Xuan Liu1, Hua Sui1, Ni Chai1, Xingzhu Chen1, Ningning Liu1,

Qing Ji1, Yan Wang2 and Qi Li1*

Abstract

Background: We investigated the role of the HIPK2–p53 signaling pathway in tumorigenesis and resistance to the

drug Verbascoside (VB) in colorectal cancer (CRC), using in vivo and in vitro experiments.

Methods: Primary human CRC samples and normal intestinal tissues from patients were analyzed for HIPK2

expression by immunohistochemistry (IHC) and its expression was correlated against patients’ clinicopathological

characteristics. Human CRC HCT-116 cells were implanted in BALB/c nude mice; mice with xenografted tumors were

randomly administrated vehicle (control), 20, 40, or 80 mg/mL VB, or 1 mg/mL fluorouracil (5-FU). HIPK2, p53, Bax,

and Bcl-2 expression in these tumors were determined by IHC. In vitro effects of VB on CRC cell proliferation and

apoptosis were measured by CCK-8 assay and flow cytometry; HIPK2, p53, p-p53, Bax, and Bcl-2 were measured by

western blot.

Results: IHC analysis for 100 human CRC tumor samples and 20 normal intestinal tissues, showed HIPK2 expression

to inversely correlate with Dukes stage and depth of invasion in CRC (P < 0.05). In vivo, the inhibition rates of 20, 40,

and 80 mg/mL VB on CRC xenograft tumor weight were 42.79%, 53.90%, and 60.99%, respectively, and were

accompanied by increased expression of HIPK2, p53, and Bax, and decreased Bcl-2 expression in treated tumors.

In vitro, VB significantly inhibited proliferation of CRC cell lines HCT-116, HT-29, LoVo, and SW620, in a time- and

dose-dependent manner. The apoptosis rates of 25, 50, and 100 μM VB on HCT-116 cells were 10.83 ± 1.28, 11.25 ±

1.54, and 20.19 ± 2.87%, and on HT-29 cells were 18.92 ± 6.12, 21.57 ± 4.05, and 25.14 ± 6.73%, respectively. In summary,

VB treatment significantly enhanced the protein expression of pro-apoptotic HIPK2, p53, p-p53, Bax, and decreased

anti-apoptotic Bcl-2 expression in CRC cells.

Conclusions: HIPK2 protein modulates the phosphorylation status of p53, and levels of Bax and Bcl-2 in CRC. We also

found that VB effectively activated the HIPK2–p53 signaling pathway, resulting in increased CRC cell apoptosis.
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Background

Colorectal cancer (CRC) is one of the most common

malignancies in the world. With economic development

and lifestyle changes, the incidence of CRC has been

increasing yearly, with a significant rising rate. According

to Global Cancer Statistics 2011, the incidence of CRC

ranked third among male cancer patients and second

among female cancer patients. In 2011, people who died

from CRC accounted for 8% of all cancer deaths. It is the

fourth most common cause of cancer death [1]. In China,

the rate of CRC incidence is increasing faster nationally

than all other cancers. In the Shanghai area, CRC went

from the fourth most common cancer in 1980s to the

third most common in the 1990s [2] and by 2009 had

become the second most common cancer in Shanghai [3].

Various factors contribute to CRC development, in-

cluding intestinal mucosa losing normal growth control

at the genetic level, leading to cell hyperproliferation.

Most recent investigations of CRC tumorigenesis have

therefore focused on functional abnormalities of relevant

genes and their products.
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Homeodomain Interacting Protein Kinase 2 (HIPK2) is

a member of the serine/threonineproteinkinase family, lo-

cated inside the cell nucleus. It is a transcription mediator

that interacts with homobox plastein. Reportedly, HIPK2

is associated with late embryogenesis, and neural, retinal,

and muscle tissue development, and also participates

in various aspects of tumorigenesis, including oncogene

expression [4], apoptosis [5], angiogenesis [6], and multi-

drug resistance [7-9].

HIPK2 is a key regulator of numerous transcription

factors, including p53, in DNA damage signaling path-

ways. HIPK2 co-localizes with p53in nucleosomes and

phosphorylates Ser46 of p53. Using a microarray assay,

Puca et al. found that HIPK2 knockdown in colon cancer

cells led to the loss of target gene activation of wild-type

p53 [10]. They also identified misfolding of p53 protein,

and impaired p53–DNA binding and transcription of

target genes. HIPK2 stimulates p300 and lys382-p53

for co-recruitment onto apoptosis promoters. By balan-

cing p53 acetylation and deacetylation, HIPK2 regulates

p53 apoptosis-promoting transcription activity [11].

McDonough et al. found HIPK2interacts with DAXX, a

p53-binding protein, to inhibit binding with downstream

effect or proteins, thus activating Ser46 phosphorylation

and promoting p53 apoptotic signaling [12].

Verbascoside (VB), an active constituent of a Chinese

traditional medical plant genus, Cistanche, has been

shown to have anti-cancer activity in treating CRC,

stomach [13], breast [14,15], prostate [16], melanoma

[17], glioma [18], and other cancers. Cistanche, as a

common clinical treatment for CRC, inhibits post-operative

tumor recurrence, tumor invasion and metastasis, although

the underlining mechanisms are not yet well understood.

In this study, we analyzed HIPK2 expression in primary

tumor specimens of human CRC, with particular regard

to post-operative cancer recurrence, metastasis, and ma-

lignancy grades. We used a xenograft CRC mouse model

to test the in vivo anti-tumor effect of VB and measured

protein levels of HIPK2 and p53, and apoptosis-related

gene products Bax and Bcl-2. We also show that VB

inhibits cell proliferation and promotes apoptosis in CRC

by stimulating the HIPK2–p53 signaling pathway.

Methods

Cell culture

Human CRC cell lines HCT-116, LoVo, HT-29, and

SW62were purchased from the Chinese Academy of

Science. HCT-116 and LoVo were cultured in RPMI-1640

medium with 10% fetal bovine serum (FBS), HT-29 and

SW620 were cultured in McCoy’s 5A medium with 10%

FBS. All cells were cultured with 100 μg/mL streptomycin

(Invitrogen, Carlsbad, CA, USA) at 37°C in a 5% CO2

humidified incubator (Thermo Fisher Scientific Inc.,

Waltham, MA, USA).

Human tissue samples

Human CRC tumor and normal tissue samples were

collected from the General Surgery Department of our

hospital from January 2011 to February 2012. All the

experiments and animal care were approved by Shanghai

Medical Experimental Animal Care Commission and in

accordance with the Provision and General Recommenda-

tion of Chinese Experimental Animals Administration

Legislation. The tissues were immediately frozen in liquid

nitrogen and later preserved at −80°C for long-term stor-

age. The use of all human tissue samples was approved by

the Institutional Review Board of the Shuguang Hospital

affiliated to Shanghai University of Traditional Chinese

Medicine. We obtained consent from every patient, for

the use of all human tissues used in this study.

Animals

BALB/c nude male mice, aged 4–6 weeks and weighing

18–20 g, were purchased from Sino-British SIPPR/BK

lab Animal Co., Ltd (Shanghai, China, license No. SCXK

2008–0016). All animal protocols were approved by the

Institutional Animal Use and Care Committee of Shanghai

University of Traditional Chinese Medicine. Breeding

conditions of the SPF Animal Laboratory were: free ac-

cess to food and water, ventilation, humidity at 50–65%,

temperature at 22–24°C, 12 h of light/dark. The animal

laboratory abided by related regulations of the Animal

Ethics Committee.

Immunohistochemical staining

The human CRC tumor and normal tissue samples were

paraffin embedded and serially sectioned. Tissue sections

were processed by de-paraffining, rehydrating through

an alcohol gradient, peroxidase clearing, antigen re-

trieval and blocking, antibody binding, DAB staining,

washing with distilled water, hematoxylin staining, nia-

cin alcohol differentiation, dilute ammonia bluing,

incremental graded alcohol dehydration, xylene and

conventional resin mounting. The primary antibody

was rabbit-anti-human HIPK2 monoclonal antibody

diluted by 1:50 (Abcam, Cambridge, MA, USA). The

secondary biotin-labeled antibody was used at 1:200.

For color development, streptavidin was labeled with

horseradish peroxidase at 1:200. Under 400 × magnifi-

cation, five random fields were selected. Staining was

assessed as: non-staining: 0 point; light brown: 1 point;

brownish yellow: 2 points; and dark brown: 3points.

Percentages of positive-stained cells were rated as:

positive cells ≤5%: 0 point; 6–25%: 1 point; 26–50%:2

points; and ≥75%: 3 points. Points for staining and per-

centage were multiplied for a 10-point scale: 0 point:

negative (−), 1–3 points: weakly positive (+); 4–6

points: positive (++); and 7–9 points: strongly positive

(+++).
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In vitro cell proliferation test

Human CRC HCT-116, LoVo, HT-29, and SW620 cells

in logarithmic growth phases were plated at 5 × 103

cells/well in 96-well plates; the next day, culture media

was replaced with 200 μL culture medium containing

VB (purity >98%, purchased from Chendu Herb purify

Biotechnology Co., Ltd, Chendu, China, serial number:

20100123), with concentrations of 12.5, 25, 50, 100, 150,

or 200 μM. For each concentration, 12 ventral orifices

were set. After 24 h, 48 h, and 72 h, 20 μL of CCK-8

reagent (Dojindo Molecular Technologies, Inc., Tokyo,

Japan) was added into each well. Four hours later, the

light absorption value of each well at 490 nm was mea-

sured in a microplate reader (Bio-Rad Laboratories,

Philadelphia, PA, USA). The inhibition rate of VB on the

growth of CRC cells was calculated as the following

equation: GIR = [1− (ODN −OD0)/(ODC −OD0) ] × 100%;

where OD0 was the absorbance value of the blank group,

ODC the control group, and ODN groups with different

doses of VB. The IC50 of VB was calculated using three in-

dependent experiments.

Apoptosis measured by flow cytometry

Rapid growing HCT-116 and HT-29 cells were treated

with VBat different concentrations (25, 50, or 100 μM)

for 48 h. Cells were then stained with 2 μL Annexin-V

and 2 μL PI in 50 μL of apoptosis reaction solution at

4°C for 30 min. FACScan flow cytometry was used to

detect apoptotic cells. Cell debris in different quadrants

was calculated statistically. Cells in the upper right

quadrant represented early apoptosis; cells in the lower

right quadrant represented late apoptosis.

In vivo xenografic CRC model

HCT-116 cells (2 × 106/mouse) were injected subcutane-

ously into the right axilla of nude mice. Ten to 14 days

later, when tumors formed, the nude mice with good

growth state and unbroken tumors were used as tumor

supply mice, and were then sacrificed. Tumors were

dissected out under aseptic conditions, with necrotic

and fibrous tissues removed. Fresh parts on the edge of

tumors were cut into 1-mm3tumor blocks, which were

implanted under the axillar skin of the right front legs

of nude mice. With this method, three generations of

mice were produced. The third-generation mice with

unbroken transplanted tumor and sound growth state

were sacrificed, and using the above-described method,

the tumors were re-implanted and when they reached

a size of 50–100 mm3, the tumor-bearing mice were

randomly divided into five groups (six mice for each

group): the control group (isometric normal saline),

the low-, medium-, and high-dose VB groups (20, 40,

and 80 mg/kg/day, respectively) and the fluorouracil

(5-FU) group (1 mg/kg/day). VBand 5-FU were admin-

istered by tail vein injection. At days 1, 4, 7, 10, and 14,

the long diameter (a) and the short diameter (b) of

each tumor was measured, and tumor volume was cal-

culated as [(a × b2)/2]. After 14 days of treatment, mice

were sacrificed and their tumors were dissected and

connective tissues were removed. The tumors were

Figure 1 Representative HIPK2 IHC staining in normal and colorectal tumor tissue. Low HIPK2 protein expression in the normal tissue

(−and +, Figure 1A), high HIPK2 protein expression in normal tissue (++ and +++, Figure 1B). Low HIPK2 protein expression in colorectal tumor

tissue (−and +, Figure 1C) and high expression incolorectal tumor tissue (++ and +++, Figure 1D). Magnification × 200.
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weighed. We then calculated the tumor volume inhibition

rates [(1− average tumor volume of the experimental

group/average tumor volume of the control group) ×

100%]; and the tumor weight inhibition rates [(l − average

tumor weight of the experimental group/average tumor

weight of the control group) × 100%].

Protein extraction and western blot

Western blot analyses were conducted as previously

described [19,20]. Briefly, HCT-116 cells were treated

by VB (25, 50, and 100 μM) for 48 h, before being lysed

and total protein was extracted. Protein samples were

separated with 10%SDS-PAGE gel, transferred to a

PVDF membrane with a Trans-Blot (Bio-Rad). The

membrane was probed with primary antibodies (1: 1000

of anti-HIPK2, 1: 1000 of anti-P53, 1: 1000 of anti- p-p53,

1:1000 of anti-Bax, 1: 1000 of anti-Bcl-2, or 1: 4000 of

anti-β-actin; Cell Signaling Technology, Danvers, MA,

USA). The signal intensities of protein abundance were

quantitatively analyzed by Image J.

Statistical analysis

Software SPSS18.0 was used for statistical data analysis.

The data was expressed with x ± s. If data met the homo-

geneity of variance of Gaussian distribution, we used one-

way analysis of variance for statistical inference; otherwise,

we used non-parametric tests. The test criterion α = 0.05,

P < 0.05 was considered statistically significant.

Table 1 Differential expression of HIPK2 in cancerous and

normal colorectal tissues

Group N
Expression of HIPK2 (%)

P
Low High

Normal colorectal tissues 20 40% 60%
0.003

Colorectal cancer tissues 100 74% 26%

Table 2 Relationship between clinicopathological parameters and HIPK2 expression in human CRC

Variable N

N at different HIPK2 expression levels

χ
2

PLow expression High expression

− + ++ +++

Sex

Male 47 23 13 7 4
0.31 >0.05

Female 53 26 12 12 3

Age (years)

≤60 29 11 9 7 2
0.88 >0.05

>60 71 38 16 12 5

Maximum diameter of tumor

≤5 58 30 16 8 4
2.02 >0.05

>5 42 19 9 11 3

Degree of differentiation

Well differentiated 12 7 2 2 1

6.44 <0.05Moderately differentiated 67 33 16 12 6

Poorly differentiated 5 1 4 0 0

Depth of invasion

Not invading serosa 42 28 7 5 2

4.71 >0.05In serosa 25 6 9 9 1

Outside serosa 33 15 9 5 4

Duke stage

Stages A and B 72 35 19 15 3
0.13 >0.05

Stages C and D 28 14 6 4 4

Lymph node status

Metastasis 65 32 18 12 3
0.82 >0.05

No metastasis 35 17 7 7 4

TNM stage

Stages I and II 57 31 14 11 1
1.69 >0.05

Stages III and IV 43 18 11 8 6
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Results
HIPK2 protein levels and CRC clinicopathologic features

are inversely associated

In 100 cases of human CRC cancer samples, 74 expressed

low levels of HIPK2 protein (−and +, Figure 1A) and

26showed high expression (++ and +++, Figure 1B). In 20

cases of normal colorectal cancer tissues, eight had low

HIPK2 protein expression (−and +, Figure 1C) and 12had

high expression (++ and +++, Figure 1D). Expression of

HIPK2 was significantly higher in normal tissues than in

CRC tissues (Table 1). We further found that HIPK2 pro-

tein expression in human CRC significantly correlated

with the degree of differentiation (Table 2). However, the

HIPK2 expression levels were not significantly associated

with sex, age, maximum tumor diameter, Dukes staging,

degree of cancer infiltration, or number of metastasized

lymph nodes.

Pro-apoptotic effects of VB in CRC xenograft tumors

To investigate the tumor inhibitory activity of VB for

CRC, we first established a human CRC xenograft mode

in mice, which were then treated with different doses of

VB. In vivo data showed that VB remarkably inhibited

growth of the xenografted tumors (Figure 2A and B).

Figure 2 Verbascoside (VB) inhibited in vivo growth of CRC tumor in a dose- and time-dependent manner. Growth of xenograft tumors

in nude mice treated with different doses of VB and 5-FU at 1, 4, 7, 9, 12, and 15 days (A). Dissected tumor samples from nude mice in different

treatment groups (B). Xenograft tumor volumes of mice treated with indicated doses of VB and 5-FU, respectively: 353.4 ± 124.8 mm3, 182.4 ± 54.5 mm3,

137.7 ± 37.5 mm3, 128.1 ± 40.2 mm3, and87.9 ± 62.0 mm3(C), and xenograft tumor weights of mice treated with indicated doses of VB and 5-FU,

respectively: 0.423 ± 0.150 g, 0.242 ± 0.135 g, 0.195 ± 0.057 g, 0.165 ± 0.065 g, and 0.143 ± 0.067 g (D). P < 0.05.

Table 3 Effect of Verbascoside on expression levels of

apoptosis-related proteins in CRC xenograft tumors

Groups n
Relative protein expression level

HIPK2 P53 Bax Bcl-2

Control 6 3.23 ± 0.61 11.70 ± 2.08 9.82 ± 0.55 17.43 ± 1.50

20 mg/kg VB 6 4.83 ± 0.62 14.59 ± 0.90 14.41 ± 0.38 14.08 ± 1.04

40 mg/kg VB 6 8.46 ± 0.99 17.60 ± 1.40 15.84 ± 0.54 11.93 ± 0.93

80 mg/kg VB 6 11.90 ± 1.21 23.10 ± 2.10 26.28 ± 0.55 7.48 ± 0.86

1 mg/kg 5-FU 6 13.50 ± 0.94 22.44 ± 2.05 26.34 ± 2.33 5.46 ± 0.67
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Tumor volume inhibition rates in the low-, medium-, and

high-VB dose groups were 48.41%, 61.04%, and 63.75%,

respectively; and tumor weight inhibition rates were

42.79%, 53.90%, and 60.99%, respectively (Figure 2C, D).

Notably, at higher doses, the anti-tumor effect of VB was

similar to that of 5-FU (Figure 2). The VB-treated tumor

samples were then analyzed by IHC for levels of

apoptosis-related proteins such as HIPK2, p53, Bax, and

Bcl-2. The results indicated that VB significantly enhanced

expression of pro-apoptotic HIPK2, p53, and Bax proteins

in tumors, but decreased expression of anti-apoptotic pro-

tein Bcl-2, in a dose-dependent manner (Table 3, Figure 3).

In vitro inhibitory effect of VBon CRC cells

We next tested whether VB affected in vitro growth of

CRC cell lines. After 24, 48, and 72 h of VB treatment,

the growth of CRC cells HCT-116, LoVo, HT-29, and

SW620 was dramatically inhibited, in a time- and dose-

dependent manner, with an IC50of 29–67 μM after 72 h

(Figure 4).

VB promoted apoptosis via p53 in human CRC cells

Based on the cell proliferation inhibition data, we se-

lected 48-htreatment of CRC HCT-116 and HT-29 as

the optimal time frame for apoptosis experiments. We

used drug doses of 25, 50, and 100 μM of VB to treat

cells for 48 h (Figure 5A, B), and used FITC Annexin-V/PI

method to measure apoptosis induced by VB. Our data

showed the apoptosis rate to be significantly increased by

VB in a dose-dependent manner (Figure 5C). Interestingly,

this pro-apoptotic effect by VB was countered by a p53-

specific inhibitor, FPT-a (Figure 5D). This suggests that VB

promotes apoptosis in CRC cells through ap53-dependent

mechanism.

VB promotes apoptosis in human CRCviaHIPK2–p53signaling

pathway

We next determined if expression levels of apoptosis-

related proteins changed in VB-treated human CRC cells

HCT-116 and HT-29. We found, after 48 h of treatment,

VB increased protein expression of HIPK2, p53, p-p53,

Figure 3 Expression of apoptosis-related proteins is affected by Verbascoside (VB) in CRC xenograft tumors. IHC staining of HIPK2, p53,

Bax, and Bcl-2 proteins in tumors treated with VB (A). Relative protein expression levels in (A) were quantified by image analysis software

(B). Magnification × 200.
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and Bax, but decreased that of Bcl-2, in a dose-dependent

manner in the CRC cell lines (Figure 6A). These data both

recapitulated the results we saw in the VB-treated CRC tu-

mors in vivo, and further indicated that VB promotes

apoptosis in CRC, probably through HIPK2–p53signaling

axis. To verify this point, we added the p53-specific inhibi-

tor PFT-a to the treated cells along with VB. The results

showed that PFT-a rescued the cells from VB-induced

apoptosis, by reducing VB-enhanced protein levels of

p-p53 on Ser46, Bax, and restoring Bcl-2 protein expres-

sion, but did not affect HIPK2 protein levels (Figure 6B).

These findings strongly suggest that VB-induced apoptosis

is mediated by the HIPK2–p53signaling pathway.

Discussion
Apoptosis is a response of cells to internal and external

signals under certain physiological and pathological

circumstances, to maintain homeostasis [21]. Many anti-

cancer drugs attack tumors by triggering apoptosis [22].

Mechanisms of drug-induced tumor apoptosis include

altering cell signaling pathways, expression levels of

tumor-suppressor oncogene products, and influencing

other apoptosis-promoting and -inhibiting proteins.

Anti-cancer drugs can also block the cell cycle and inhibit

cell growth, while activating caspase cascades and modu-

lating telomerase expression and activity [23-25].

As a newly found auxiliary transcription inhibition fac-

tor, HIPK2 has been suggested to affect many aspects of

cancer. Studies showed that HIPK2 participates in a var-

iety of signal transduction pathways, including p53 [26],

Wnt/β-catenin [27], JNK [28], and hypoxiainducible factor

[11,29,30]. Recent studies suggest that HIPK2 influences

apoptosis through a variety of mechanisms, especially the

p53-mediated apoptosis signaling cascade [19,20]. p53 is

the most important tumor-suppressor gene, and is impli-

cated in regulation of apoptosis; its protein is activation is

controlled by post-translational modifications, such as

phosphorylation, acetylation, and interactions with other

proteins. p53 phosphorylation not only stabilizes and en-

hances the transcription activity of p53, but also regulates

Figure 4 Inhibitory effect of Verbascoside (VB) on different human CRC cell lines, at indicated doses and durations. The IC50 doses of VB on

human CRC cells at 24, 48, and 72-h culture, respectively, were 208.89 μmol/L, 97.86 μmol/L and 63.51 μmol/L in HCT-116 cells (A); 83.83 μmol/L,

59.62 μmol/L, and 43.96 μmol/L in LoVo cells (B); 144.5 μmol/L, 108.82 μmol/L, and 66.68 μmol/L in HT-29 cells (C); and 52.73 μmol/L, 42.42 μmol/L,

and 29.05 μmol/L in SW620 cells (D).
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Figure 5 (See legend on next page.)
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its subcellular localization. p53 serine (Ser46) phosphoryl-

ation is critical to transcription of apoptosis-related genes.

HIPK2 overexpression stabilizes and activatesp53 and

promotes its binding to form the HIPK2–p53 complex,

leading to Ser46 phosphorylation and increased apop-

tosis [31].

We conducted a retrospective analysis on 100 primary

CRC tumor samples, and found that the average age of

CRC diagnosis was 67.25 ± 11.91 years, which did not

significantly vary by sex. Common symptoms of CRC

include changes in bowel habits, hemafecia/melena, and

abdominal pain or discomfort. Among them, hemafecia

is the most common symptom, seen in 93.75% of pa-

tients with CRC. As for the clinicopathological fea-

tures, the average tumor diameter was 5.31 ± 2.21 cm,

with glandular cancer as the most common histology

(91%), and ulcerative type as the major morphological

type (37%). IHC analyses showed HIPK2 expression in

normal colorectal mucosal tissues to be higher than in

CRC samples. These data are consistent with previous

reports showing a similar pattern for HIPK2 expressions

in breast cancer and thyroid cancer [32-34]. Correlation

analysis showed that HIPK2 expression was closely as-

sociated with Dukes staging and infiltration degrees,

but not to sex, age, degree of differentiation, or lymph

node metastasis.

We next tested VB’s anti-tumor activity in an in vivo

mouse model of human CRC, and found VB to significantly

inhibit xenograft tumor growth. IHC analyses showed

heightened levels of pro-apoptotic proteins HIPK2, p53,

(See figure on previous page.)

Figure 5 Verbascoside (VB) promoted apoptosis via p53 in human CRC cells. CRC HCT-116 and HT-29 cells were treated by VB at indicated

doses and duration, and then analyzed for apoptosis by flow cytometry. Inhibition at 25, 50, and 100 μM of VB to HCT-116 cells was 20.20 ± 4.08%,

43.28 ± 9.80%, and 56.79 ± 9.11% (A), and HT-29 cells, 4.36 ± 3.39%, 18.22 ± 3.94%, and 37.01 ± 6.98%, respectively (B). HCT-116 apoptosis rate

after being treated with 25, 50, and 100 μM of VB was 10.83 ± 1.28%, 11.25 ± 1.54%, and 20.19 ± 2.8%, and the HT-29 apoptosis rate, 18.92 ± 6.12%,

21.57 ± 4.05%, and 25.14 ± 6.73%, respectively (C). HCT-116 and HT-29 apoptosis rate was 11.25 ± 1.54% and 21.57 ± 4.05% after being treated with

50 μM Verbascoside; and 5.03 ± 2.77% and 3.11 ± 1.16% after being treated with FPT-a (p53-specific inhibitor); and 5.02 ± 0.73% and 3.18 ± 1.82% after

being treated with FPT-a and 50 μM VB respectively (D).

Figure 6 Verbascoside (VB) alters levels of HIPK2–p53apoptosis signaling molecules in CRC cells. HCT-116 and HT-29 cells treated with VB

extracts were probed for HIPK2, p53, p-p53, Bax, and Bcl-2 protein (A), and were compared with cells treated with both VB extracts and PFT-a (B).

Zhou et al. BMC Cancer 2014, 14:747 Page 9 of 11

http://www.biomedcentral.com/1471-2407/14/747



Bax, and decreasedBcl-2 in VB-treated tumors. These

results imply that VB promotes cancer cellapoptosis

throughHIPK-2- and p53-related signaling. To study the

mechanisms of this anti-cancer effect, we used VB to

treat human CRC cell lines. As with the in vivo studies,

VB had a remarkable anti-proliferative and apoptosis-

promoting effect in HCT-116, HT-29, LoVo, and

SW620 cells, in a time- and dose-dependent manner. In

addition, this nicely correlates with the previous finding

that VB induces genotoxic stress [35].

Reportedly, theHIPK2–p53 apoptotic pathway is down-

regulated in different human cancer cells [36-42]. In inves-

tigating the mechanisms that underpin VB-promoted

apoptosis, we first learned that both in CRC tumors and

cells, VB elevated HIPK2 protein levels. Additionally,

levels of p53, p-p53 at Ser46, and downstream pro-

apoptosis Bax protein were greatly boosted, whereas

anti-apoptosis Bcl-2 protein expression was reduced, by

VB treatment. Furthermore, the pro-apoptotic action of

VB was obscured by a p53-specific inhibitor, which restored

protein levels of p-p53 (Ser46), p53, Bax, and Bcl-2 to the

untreated status. Interestingly, HIPK2 protein expression

was not influenced. To summarize, our data suggest that

VB promotes p53 phosphorylation and Bax expression and

inhibits Bcl-2 expression by increasing HIPK2 levels in

CRC, which leads to activation of theHIPK2–p53 signaling

pathway and increased apoptosis.

Conclusions
In summary, we found that HIPK2 expression inversely

correlates with primary CRC, Dukes staging, and infiltra-

tion degrees. We also found that VB significantly inhibits

CRC growth in vivo, and represses CRC cell proliferation,

and promotes apoptosis, by modulating the HIPK2–p53

signaling pathway.
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