
VeriCon: Towards Verifying Controller Programs

in Software-Defined Networks
Thomas Ball*, Nikolaj Bjørner*, Aaron Gember†, Shachar Itzhaky‡,

Aleksandr Karbyshev¬, Mooly Sagiv‡, Michael Schapira° and Asaf Valadarsky°

*Microsoft Research, †University of Wisconsin, ‡Tel Aviv University, ¬Technische Universität München, °Hebrew University

Software defined networking (SDN) aims to simplify

network management by removing the control plane

from switches and running custom control applications at a

logically central controller. Unfortunately, writing control

applications that always maintain a set of network invariants

(e.g., the network does not contain forwarding loops or

blackholes) is a challenging task.

Prior work [1, 2] uses finite-state model checking and network

snapshots to identify bugs in control applications. They can

find errors, but they cannot guarantee the absence of errors.

Motivation Overview
VeriCon verifies network-wide invariants for any

event sequence and all admissible topologies

SDN application

in Core SDN

Topology

constraints &

invariants in

first order logic

Guarantee

invariants

are satisfied

Concrete

counter-

example

Verify conditions

using the Z3

theorem prover

+
OR

Example: Stateful Firewall

A

B

C

D

Trusted

Hosts
Untrusted

Hosts

1 2

• Always forward from trusted

to untrusted hosts

• Only forward from untrusted to trusted

hosts if a trusted host previously

sent a packet to the untrusted host

rel tr(SW, HO)

pktIn(sw,pkt,prt(1)) →

 sw.forward(pkt,prt(1),prt(2))

 tr.insert(s,pkt.dst)

 sw.install(pkt,prt(1),prt(2))

pktIn(sw,pkt,prt(2)) →

 if tr(sw,pkt.src) then

 sw.forward(pkt,prt(2),prt(1))

 sw.install(pkt,prt(2),prt(1))

• At least one switch with ports prt(1) & prt(2);

a packet P is forwarded from an untrusted

host U to a trusted host T

• For every packet sent from an untrusted

host U to a trusted host T there exists a

packet sent to U from T

• Flow table entries only contain forwarding

rules from trusted hosts

• Controller relation tr stores the correct hosts

Invariants

T
o

p
o

lo
g

y
 I

n
v
a

ri
a

n
t

S
a

fe
ty

 I
n

v
a

ri
a

n
ts

Application in Core SDN Counterexample

I1 is not inductive—not

all executions starting

from an arbitrary state

satisfy the invariant

I1 ˄ I2 ˄ I3 is inductive

References
[1] Kazemian, P., Varghese, G., and McKeown, N. Header Space Analysis: Static Checking For Networks. In Network Systems Design and Implementation (NSDI). 2012.

[2] Canini, M., Venzano, D., Peres, P., Kostic, D., and Rexford, J. A NICE Way to Test OpenFlow Applications. In Network Systems Design and Implementation (NSDI). 2012.

Core SDN (CSDN)
• Define and initialize relations: rel r() init r = ()

- Topology relations: link(S,O,H) path(S,O,H)

- Forwarding relations: ft(S,P,I,O) fr(S,P,I,O)

• Write packet-in event handlers: pktIn(S,P,I)

- Update defined relations: r.insert() r.remove()

- Install rules (ft.insert): S.install(P,I,O)

- Forward packet (fr.insert): S.forward(P,I,O)

- Conditionals: if Cond then Cmd* else Cmd*

Verification Time
Program LOCs Topo

Inv.

Safety +

Trans Inv.

Time

(sec)

Firewall 8 1 3 + 0 0.12

Stateless Firewall 4 1 2 + 0 0.06

Firewall + Host Migration 9 0 3 + 0 0.16

Learning Switch 8 1 4 + 2 0.16

Learning Switch + Auth 15 2 5 + 3 0.21

Resonance (simplified) 93 6 5 + 2 0.21

Stratos (simplified) 29 12 3 + 0 0.09

Types of Invariants
• Topology: define admissible topologies

• Safety: define the required consistency of network-wide states

• Transition: define the effect of executing event handlers

Learn

More!

http://agember.com/go/vericon

checked initially &

after each event

assumed to hold initially

