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Software defined networking (SDN) aims to simplify 

network management by removing the control plane 

from switches and running custom control applications at a 

logically central controller. Unfortunately, writing control 

applications that always maintain a set of network invariants 

(e.g., the network does not contain forwarding loops or 

blackholes) is a challenging task. 

Prior work [1, 2] uses finite-state model checking and network 

snapshots to identify bugs in control applications. They can 

find errors, but they cannot  guarantee the absence of errors. 

Motivation Overview 
VeriCon verifies network-wide invariants for any  

event  sequence and all admissible topologies 
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Example: Stateful Firewall 
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• Always forward from trusted  

to untrusted hosts 

• Only forward from untrusted to trusted 

hosts if a trusted host previously  

sent a packet to the untrusted host 

rel tr(SW, HO) 

pktIn(sw,pkt,prt(1)) → 

 sw.forward(pkt,prt(1),prt(2)) 

 tr.insert(s,pkt.dst) 

 sw.install(pkt,prt(1),prt(2)) 

pktIn(sw,pkt,prt(2)) → 

 if tr(sw,pkt.src) then 

  sw.forward(pkt,prt(2),prt(1)) 

  sw.install(pkt,prt(2),prt(1)) 

• At least one switch with ports prt(1) & prt(2); 

a packet P is forwarded from an untrusted 

host U to a trusted host T 

 

 

• For every packet sent from an untrusted 

host U to a trusted host T there exists a 

packet sent to U from T 
 

 

• Flow table entries only contain forwarding 

rules from trusted hosts 
 

 

• Controller relation tr stores the correct hosts 
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Application in Core SDN Counterexample 

I1 is not inductive—not 

all executions starting 

from an arbitrary state 

satisfy the invariant 

I1 ˄ I2 ˄ I3 is inductive 
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Core SDN (CSDN) 
• Define and initialize relations:  rel r( )       init r = ( ) 

- Topology relations:     link(S,O,H)   path(S,O,H) 

- Forwarding relations:   ft(S,P,I,O)      fr(S,P,I,O) 

• Write packet-in event handlers: pktIn(S,P,I) 

- Update defined relations:  r.insert( )   r.remove( ) 

- Install rules (ft.insert):  S.install(P,I,O) 

- Forward packet (fr.insert): S.forward(P,I,O) 

- Conditionals:  if Cond then Cmd* else Cmd* 

Verification Time 
Program LOCs Topo 

Inv. 

Safety + 

Trans Inv. 

Time 

(sec) 

Firewall 8 1 3 + 0 0.12 

Stateless Firewall 4 1 2 + 0 0.06 

Firewall + Host Migration 9 0 3 + 0 0.16 

Learning Switch 8 1 4 + 2 0.16 

Learning Switch + Auth 15 2 5 + 3 0.21 

Resonance (simplified) 93 6 5 + 2 0.21 

Stratos (simplified) 29 12 3 + 0 0.09 

Types of Invariants 
• Topology: define admissible topologies 

• Safety: define the required consistency of network-wide states 

• Transition: define the effect of executing event handlers 
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