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ABSTRACT 
Smartphone applications’ quality is vital. Many smartphone ap-
plications, however, suffer from various defects. One major rea-
son is that developers lack viable techniques to expose potential 
defects in their applications. This paper presents a tool VeriDroid 
to help automatically verify Android applications. We built Veri-
Droid by extending Java PathFinder (JPF), a widely-used verifica-
tion framework for general Java programs. Our extension ad-
dresses two technical challenges. First, Android applications are 
event-driven and lack explicit calling relationships between event 
handlers for verification. Second, Android applications closely 
hinge on different framework libraries, whose implementations 
are platform-dependent. To address these challenges, we derive 
event handler scheduling policies from Android documentations, 
and encode them to guide JPF to realistically execute Android 
applications. Besides, we model side effects for a critical set of 
Android APIs such that one can conduct verification precisely. By 
doing so, our VeriDroid can verify Android applications in a fully 
automated manner. We implemented a prototype checker on 
VeriDroid and applied it to detect null-pointer dereference and 
resource leak defects in Android applications. Our experiments 
with five large-scale and popularly-downloaded subjects showed 
that VeriDroid can effectively detect real defects and provide 
actionable information to facilitate program debugging. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging.  

General Terms 
Design, Verification. 
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1. INTRODUCTION 
The market of smartphone applications is expanding at an unprec-
edented rate. As of July 2013, over one million Android applica-
tions on Google Play store have received 50 billion downloads 
[1]. Users rely on such applications for different purposes such as 
daily task assistance, entertainment, socializing or even financial 
management. As such, the software quality of these applications 
is of vital importance. Developers should extensively test their 
applications before shipping them. 

Unfortunately, the reality is not optimistic. Many applications 
suffer from different kinds of defects. A notorious example is that 
Android SMS application intermittently sent meaningless mes-
sages to random recipients [4]. The pervasiveness of defects in 
smartphone applications is attributable to two major reasons. 
First, smartphone applications are typically developed by small 
teams without dedicated quality assurance. It is not realistic for 
developers to perform a thorough testing of their applications on 
different devices. In fact, many Android applications such as K-9 
Mail [13], an email client with millions of downloads, do not even 
have a well-designed test suite. Second, unlike their desktop 
counterparts, smartphone platforms have a short history. Devel-
opers lack mature industrial-strength tools to help analyze their 
applications and expose defects. Existing tools like Robotium 
[14], although powerful, require non-trivial manual effort to pro-
vide certain models (e.g., GUI models) or write test cases to 
achieve an effective analysis. Thus, automated quality assurance 
tools for smartphone applications are desirable. 
To facilitate automated defect detection, we in this paper present 
a tool VeriDroid, which is designed to help Android developers 
automatically verify their applications. VeriDroid is built by ex-
tending JPF, a widely-used verification framework for general 
Java programs [12][22]. This extension is a difficult task. Specifi-
cally, our earlier work [16] and related studies [18] identified two 
major technical challenges in extending JPF to analyze an An-
droid application. The challenges are: 
Lack of explicit control flows. Android applications follow an 
event-driven programming paradigm, which hides an applica-
tion’s program control flows in the canned machinery of the An-
droid framework. Developers specify an application’s logic in a 
set of loosely-coupled event handlers. At runtime, these event 
handlers are implicitly called by the Android system. For exam-
ple, the onStart() lifecycle handler of an activity component is 
called after the onCreate() lifecycle handler (see Section 2.1 for 
details), but such calling order is never explicitly specified in the 
program code. This causes trouble for dynamic analysis tools like 
JPF as they are designed to execute and analyze programs whose 
control flows are explicitly stated. 1 
Heavy reliance on native libraries. Android exposes more than 
8,000 public APIs to developers [10]. Many of them rely on An-
droid system functionalities or native libraries whose implementa-
tions are platform-specific (e.g., thread manipulation and GUI-
related APIs). Related code is written in system-native languages 
(e.g., C), and thus not suitable to be executed in JPF’s Java virtual 
machine. However, the side effect of such code must be consid-
ered, as otherwise JPF may encounter various unexpected prob-
lems when it executes and analyzes Android applications. 
To address the first challenge, we derived event handler schedul-
ing policies from Android documentations, and formulated these 
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tailed report including all detected defects and relevant debugging 
information. Conceptually, VeriDroid consists of two compo-
nents, i.e., a runtime controller and a defect checker, and adds an 
Android library modeling layer on top of JPF. The runtime con-
troller guides JPF to execute an Android application, and the de-
fect checker detects certain types of defects (e.g., null-pointer 
dereference and resource leak defects). This overview looks intui-
tive. However, there are several challenges: (1) how to schedule 
event handlers in Android applications, and (2) how to model 
Android APIs using JPF’s extension mechanisms. In the follow-
ing, we discuss how we addressed such challenges and enabled 
VeriDroid to detect functional defects. 

3.2 Event Handler Scheduling 
Application execution model. An Android application starts with 
its main activity, and ends after all its components are destroyed. 
It keeps handling received events by calling their handlers accord-
ing to Android specifications. Each call to an event handler may 
change the application’s state by modifying its components’ local 
or global program data. To realistically execute Android applica-
tions in JPF’s JVM, we manually derived event handler schedul-
ing policies from Android specifications, and organized them as 
an Application Execution Model (AEM). 
Our AEM model is a collection of temporal rules that specify the 
calling relationships between event handlers. They are generic to 
all Android applications. Formally, we define our AEM model as 
follows (unary temporal connective G means “always”): 

         
  

Each temporal rule is expressed in the following form: 

    [ ],[ ]    
In a rule Ri, ψ and λ are two temporal formulae expressed in line-
ar-time temporal logic [9], and refer to the past and future, respec-
tively. ϕ is a propositional logic formula referring to the present. 
ψ describes what has happened in an execution, ϕ evaluates the 
current situation (what event is received), and λ describes what 
should be done in the future. Then the whole rule can be inter-
preted as: If both ψ and ϕ hold, λ should be executed next.  
We list two example rules in the following. The propositional 
connectives ˄, ⇒, and ¬ in these example rules follow their tradi-
tional interpretations, and the meaning of the temporal connec-
tives is explained as follows. Unary temporal connective X means 
“next”, and its past time analogue X-1 means “previously”. Binary 
temporal connective S means “since”. Specifically, a temporal 
formula “F1 S F2” means that F2 held at some time in the past, and 
since then F1 always holds. 
 Rule example 1: When to call the lifecycle handler onStart() 

of an activity component act? 

                                                     

 Rule example 2: When to call a button-click GUI event han-
dler onClick()? 
                                  

                                                    
                      

The first example rule states that the onStart() handler should be 
called after the onCreate() handler completes as long as the con-
cerned activity does not finish. The second rule requires a button-
click event handler to be called if: (1) the button is clicked, (2) its 
enclosing activity is at foreground (i.e., the activity’s onPause() 
handler has not been called since the last call to onResume() han-

dler), and (3) its click event listener is properly registered. More 
rule examples can be found in our earlier work [16] and technical 
report [17]. 
AEM model enforcement and handler scheduling. To enforce 
AEM model at runtime, we encoded it in the main scheduler of 
our runtime controller. All temporal rules in AEM model are con-
verted to a decision procedure. This procedure helps the main 
scheduler to decide which event handler to call next according to 
the application’s execution history and its newly received events. 
The events come from two sources: (1) those actively generated 
by the main scheduler, including all GUI events (e.g., button 
clicks), main activity’s start event, activity components’ lifecycle 
events and component destroying events; (2) other events (e.g., 
the event to start a service) passively monitored during the appli-
cation’s execution. We can observe that the main scheduler is 
sensitive to an application’s execution history. So it needs to track 
the following information: 
 A stack of active activities. Our main scheduler maintains 

active activities in a stack. Each active activity is associated 
with a GUI model, describing what UI widgets and GUI event 
listeners are defined in this activity. This model is obtained by 
analyzing the activity’s layout configuration file [17]. 

 A list of running services. Running services are maintained 
in a list. Particularly, if a service is launched by binding from 
other application components, it will be associated with a col-
lection of such components that are bound with it. 

 A list of registered broadcast receivers. The main scheduler 
also tracks a list of broadcast receivers. Each registered 
broadcast receiver is associated with a filter specifying its in-
terested message types and permissions. 

The scheduler serves as the analysis entry point for JPF. Figure 3 
gives the pseudo code for the main scheduler’s event generator (a 
core function of the scheduler). It first starts the application by 
launching its main activity. After that it continuously generates 
corresponding events to simulate user interactions, until the appli-
cation is terminated. In addition to the event generator, the main 
scheduler also contains a monitor to listen to all events (including 
all actively generated and passively monitored events) and handle 
them on the fly by querying the decision procedure (i.e., the en-
coded AEM model) and calling corresponding event handlers. 

3.3 Android API Modeling and Abstraction 
As mentioned earlier, many Android APIs leverage system level 
functionalities or rely on native libraries. This causes a big trouble 
to JPF. First, the bytecode instructions of these Android APIs are 
typically not available for analysis [18]. Second, even if their 
bytecode instructions are obtained (e.g., by building the Android 
framework to get the non-stub version of library classes), JPF will 
still fail to execute them because it has no idea about how to han-
dle the transitively called native methods. Due to these reasons, 
we need to properly model such APIs and their side effects. We 
note that completely and precisely modeling all APIs requires 

add main activity to activity stack and start it

while(application not stopping){

get the stack top activity act

if(act ready for interaction){

randomly generate one GUI event

} else{

generate act’s corresponding lifecycle event 

}

}

finish all active activities

finish all running services  
Figure 3. Main scheduler’s event generation algorithm 



Button btn = (Button) findViewById(R.id.btn); 
btn.setOnClickListener(myListener);

Public void onClick(View v){
... ...
Intent intent = new Intent(MapActivity.class);
startActivity(intent);

}

//if startActivity() called
Step 1: create the target activity
Step 2: manage activities



to learn the GUI model of each activity component. The GUI 
model contains key information such as each UI element’s type 
(e.g., a button), ID, and its associated text if any. Then, when the 
application is executed by JPF, we register a listener to monitor 
the call to findViewById(). When it is called, we would identify 
the current activity, and its GUI model. By doing so, we would 
obtain all necessary information about the UI element under 
search. Finally, we can create a corresponding object in JPF’s 
JVM for the UI element if it has not been constructed. 
In the above, we discussed the modeling of some representative 
Android APIs. We can see from the discussion that such modeling 
tasks are labor-intensive. It took us several months to model the 
76 Android APIs. In practice, to save manual effort, one can 
choose to ignore the side effects of some APIs if these effects are 
not relevant to the verification target. This “partial modeling” 
helps reduce the state space that JPF needs to explore. 

3.4 Defect Detection 
With the two technical challenges addressed, VeriDroid is now 
able to execute an Android application. It continuously generates 
GUI events to simulate user interactions4 so as to explore different 
application states for exposing defects. To study whether Veri-
Droid can help detect real defects, we implemented a checker for 
detecting null-pointer dereference and resource leak defects [6]. 
We in the following briefly discuss the detection algorithms. 
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as sensory data. If such inputs are needed for application execution, 
VeriDroid will randomly select a value from a pre-specified data pool. 

Detect null-pointer dereference defects. To detect null-pointer 
dereference defects, VeriDroid actively monitors each dereference 
operation during the execution of an Android application. Specifi-
cally, VeriDroid intercepts the execution of a subset of Java 
bytecode instructions that involves object reference resolving. For 
example, the instruction invokevirtual invokes a virtual method on 
an object obj. After bytecode interception, VeriDroid checks if 
the concerned object reference (e.g., obj) equals null or not. If 
yes, VeriDroid reports a warning. 
Detect resource leak defects. Resource leaks happen when an 
application fails to release computational resources (e.g., file han-
dles and database cursors) it acquired from the operating system 
before it exits. Such defects are common in large applications [23] 
and can cause system performance degradation if the leak is seri-
ous, because computational resources are finite. To detect such 
defects, VeriDroid tracks the resource acquisition and releasing 
by monitoring certain API calls (e.g., the open() API call on a file 
object means a file handle is acquired from system). It maintains a 
list of acquired but not released computational resources. When 
an application exits, VeriDroid checks whether the list is empty. 
If not, it means certain resources are not properly released. Then 
VeriDroid will report warnings accordingly. 

4. PRELIMINARY EVALUATION 
To evaluate VeriDroid, we selected five real-world open-source 
Android applications. Table 1 lists the basic information of these 
applications, including (1) application name, (2) category, (3) 
number of downloads, (4) the revision we selected for experi-
ments, (5) size of the selected revision, and (6) source code avail-
ability. As we can observe from the table, the selected applica-
tions are large-scale (up to 27 thousand lines of code), and popu-
larly-downloaded (up to 10 million downloads). Besides, they 
cover four different application categories. We then built these 
application subjects and applied VeriDroid to verify them. For 
experimental purposes, we controlled VeriDroid to generate user 
event sequences whose length does not exceed six. This suffices 
for VeriDroid to explore thousands of different application states. 
All our experiments were run on a dual-core machine with Intel 
Core i5 CPU and 8GB RAM, running Windows 7 Professional 
SP1. We report our experimental results below. 
Defect detection capability. Encouragingly, we found that Veri-
Droid successfully detected seven defects in our selected five 
application subjects. The last two columns of Table 1 report the 
information of these defects. For example, VeriDroid detected one 
null-pointer dereference defect and two resource leak defects in 
the Omnidroid application. These detected defects have been 
confirmed by developers and fixed in later revisions. This demon-
strates that VeriDroid is capable of verifying Android applications 
and detect real defects. In addition, VeriDroid can also report 
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Figure 6. Modeling findViewById() API 

 

Table 1. Experimental subject information and detected defects 

Application name Category1 Downloads1 Revision 
no. Size (LOC) Source 

availability 
Detected defects 

NULL LEAK 
Ushahidi [21] Communication 10K2 ~ 50K 5750c01 20.4K GitHub  0 1 (issue 100) 
c:geo [7] Entertainment 1M ~ 5M 44ee89c 27.0K GitHub 1 (issue 124)3 0 
Omnidroid [20] Productivity 1K ~ 5K 727 11.7K Google Code 1 (issue 77) 2 (issue 46, 103) 
AnySoftKeyboard [5] Tools 500K ~ 1M 6a1a580 19.3K GitHub 1 (issue 80) 0 
OI File Manager [19] Productivity 5M ~ 10M f41b141 6.7K GitHub 1 (issue 30) 0 
1: The category and download information is obtained from Google Play store [11]; 2: 1K = 1,000 and 1M = 1,000,000 
3: The detailed information of detected defects can be retrieve from corresponding issue tracking system using our provided IDs. 



actionable information (e.g., handler invocation sequences) to 
help developers debug these defects. 
Computational resource consumption. Table 2 reports the re-
source consumption details when VeriDroid verifies our five ap-
plication subjects. We can observe that even for the largest sub-
ject c:geo, the verification can finish within three minutes, with 
memory consumption less than 374.6 MB. Such verification 
overhead is well-supported by modern PCs. This suggests that 
developers can run tools like VeriDroid on their workstations to 
detect potential defects in their applications and fix these defects 
before releasing their applications to market. 
Limitations and discussion. Our current implementation of 
VeriDroid has two major limitations. First, it can generate false 
alarms, especially when detecting null-pointer dereference de-
fects. We analyzed corresponding warnings and realized the false 
alarms mostly arise from the incomplete and imprecise modeling 
of Android APIs. Although related studies [18] modeled certain 
APIs using simple stubs (e.g., randomly returning a value at call 
boundaries), our experience from the evaluation with real-world 
subjects suggests that the quality of API models can seriously 
affect certain analysis. So we believe these false alarms can be 
removed with more complete and precise modeling of Android 
APIs. Second, VeriDroid cannot measure the code coverage (e.g., 
branch coverage) of its verification. We are designing a coverage 
measurement component for VeriDroid. This can give developers 
more control on how to set parameters such as the length limit of 
generated user event sequences during verification. 

5. CONCLUDING REMARKS 
In this paper, we have presented a program verification tool, 
VeriDroid, for Android applications. VeriDroid is built by extend-
ing JPF, a widely-used Java program verification framework. We 
discussed in details how we enabled JPF to verify Android appli-
cations. Specifically, we addressed two challenges: (1) scheduling 
of event handlers, and (2) modeling of Android APIs. To validate 
the effectiveness of VeriDroid, we implemented and integrated a 
null-pointer dereference and resource leak defect checker into 
VeriDroid. We applied VeriDroid to five large-scale and popular-
ly-downloaded Android applications. VeriDroid successfully 
detected seven real defects in these applications, and only con-
sumed a reasonable amount of computational resources. This 
demonstrates the practical usefulness of VeriDroid. 
In future, we are going to extend VeriDroid to detect more types 
of defects and address its major limitations. We wish our work 
can help improve the software quality of smartphone applications. 
This can benefit millions of smartphone users. 
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Table 2. Verification overhead 

Application name Verification time 
(Seconds) 

Memory consumption 
(MB) 

Ushahidi 29 129.1 
c:geo 169 374.6 
Omnidroid 151 141.7 
AnySoftKeyboard 97 227.4 
OI File Manager 22 112.3 

 


