
VeriDroid: Automating Android Application Verification
Yepang Liu

Dept. of Comp. Sci. and Engr.
The Hong Kong Univ. of Sci. and Tech.

Kowloon, Hong Kong, China
andrewust@cse.ust.hk

Chang Xu*
State Key Lab for Novel Soft. Tech.

Dept. of Comp. Sci. and Tech.
Nanjing University, Nanjing, China

changxu@nju.edu.cn

ABSTRACT
Smartphone applications’ quality is vital. Many smartphone ap-
plications, however, suffer from various defects. One major rea-
son is that developers lack viable techniques to expose potential
defects in their applications. This paper presents a tool VeriDroid
to help automatically verify Android applications. We built Veri-
Droid by extending Java PathFinder (JPF), a widely-used verifica-
tion framework for general Java programs. Our extension ad-
dresses two technical challenges. First, Android applications are
event-driven and lack explicit calling relationships between event
handlers for verification. Second, Android applications closely
hinge on different framework libraries, whose implementations
are platform-dependent. To address these challenges, we derive
event handler scheduling policies from Android documentations,
and encode them to guide JPF to realistically execute Android
applications. Besides, we model side effects for a critical set of
Android APIs such that one can conduct verification precisely. By
doing so, our VeriDroid can verify Android applications in a fully
automated manner. We implemented a prototype checker on
VeriDroid and applied it to detect null-pointer dereference and
resource leak defects in Android applications. Our experiments
with five large-scale and popularly-downloaded subjects showed
that VeriDroid can effectively detect real defects and provide
actionable information to facilitate program debugging.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging.

General Terms
Design, Verification.

Keywords
Android application, dynamic analysis, functional defects

1. INTRODUCTION
The market of smartphone applications is expanding at an unprec-
edented rate. As of July 2013, over one million Android applica-
tions on Google Play store have received 50 billion downloads
[1]. Users rely on such applications for different purposes such as
daily task assistance, entertainment, socializing or even financial
management. As such, the software quality of these applications
is of vital importance. Developers should extensively test their
applications before shipping them.

Unfortunately, the reality is not optimistic. Many applications
suffer from different kinds of defects. A notorious example is that
Android SMS application intermittently sent meaningless mes-
sages to random recipients [4]. The pervasiveness of defects in
smartphone applications is attributable to two major reasons.
First, smartphone applications are typically developed by small
teams without dedicated quality assurance. It is not realistic for
developers to perform a thorough testing of their applications on
different devices. In fact, many Android applications such as K-9
Mail [13], an email client with millions of downloads, do not even
have a well-designed test suite. Second, unlike their desktop
counterparts, smartphone platforms have a short history. Devel-
opers lack mature industrial-strength tools to help analyze their
applications and expose defects. Existing tools like Robotium
[14], although powerful, require non-trivial manual effort to pro-
vide certain models (e.g., GUI models) or write test cases to
achieve an effective analysis. Thus, automated quality assurance
tools for smartphone applications are desirable.
To facilitate automated defect detection, we in this paper present
a tool VeriDroid, which is designed to help Android developers
automatically verify their applications. VeriDroid is built by ex-
tending JPF, a widely-used verification framework for general
Java programs [12][22]. This extension is a difficult task. Specifi-
cally, our earlier work [16] and related studies [18] identified two
major technical challenges in extending JPF to analyze an An-
droid application. The challenges are:
Lack of explicit control flows. Android applications follow an
event-driven programming paradigm, which hides an applica-
tion’s program control flows in the canned machinery of the An-
droid framework. Developers specify an application’s logic in a
set of loosely-coupled event handlers. At runtime, these event
handlers are implicitly called by the Android system. For exam-
ple, the onStart() lifecycle handler of an activity component is
called after the onCreate() lifecycle handler (see Section 2.1 for
details), but such calling order is never explicitly specified in the
program code. This causes trouble for dynamic analysis tools like
JPF as they are designed to execute and analyze programs whose
control flows are explicitly stated. 1
Heavy reliance on native libraries. Android exposes more than
8,000 public APIs to developers [10]. Many of them rely on An-
droid system functionalities or native libraries whose implementa-
tions are platform-specific (e.g., thread manipulation and GUI-
related APIs). Related code is written in system-native languages
(e.g., C), and thus not suitable to be executed in JPF’s Java virtual
machine. However, the side effect of such code must be consid-
ered, as otherwise JPF may encounter various unexpected prob-
lems when it executes and analyzes Android applications.
To address the first challenge, we derived event handler schedul-
ing policies from Android documentations, and formulated these

* Corresponding Author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Middleware 2013 Doctoral Symposium, December 10, 2013, Beijing,
China.
Copyright 2013 ACM 978-1-4503-2548-6/13/12 ...$15.00.

tailed report including all detected defects and relevant debugging
information. Conceptually, VeriDroid consists of two compo-
nents, i.e., a runtime controller and a defect checker, and adds an
Android library modeling layer on top of JPF. The runtime con-
troller guides JPF to execute an Android application, and the de-
fect checker detects certain types of defects (e.g., null-pointer
dereference and resource leak defects). This overview looks intui-
tive. However, there are several challenges: (1) how to schedule
event handlers in Android applications, and (2) how to model
Android APIs using JPF’s extension mechanisms. In the follow-
ing, we discuss how we addressed such challenges and enabled
VeriDroid to detect functional defects.

3.2 Event Handler Scheduling
Application execution model. An Android application starts with
its main activity, and ends after all its components are destroyed.
It keeps handling received events by calling their handlers accord-
ing to Android specifications. Each call to an event handler may
change the application’s state by modifying its components’ local
or global program data. To realistically execute Android applica-
tions in JPF’s JVM, we manually derived event handler schedul-
ing policies from Android specifications, and organized them as
an Application Execution Model (AEM).
Our AEM model is a collection of temporal rules that specify the
calling relationships between event handlers. They are generic to
all Android applications. Formally, we define our AEM model as
follows (unary temporal connective G means “always”):

Each temporal rule is expressed in the following form:

 [],[]
In a rule Ri, ψ and λ are two temporal formulae expressed in line-
ar-time temporal logic [9], and refer to the past and future, respec-
tively. ϕ is a propositional logic formula referring to the present.
ψ describes what has happened in an execution, ϕ evaluates the
current situation (what event is received), and λ describes what
should be done in the future. Then the whole rule can be inter-
preted as: If both ψ and ϕ hold, λ should be executed next.
We list two example rules in the following. The propositional
connectives ˄, ⇒, and ¬ in these example rules follow their tradi-
tional interpretations, and the meaning of the temporal connec-
tives is explained as follows. Unary temporal connective X means
“next”, and its past time analogue X-1 means “previously”. Binary
temporal connective S means “since”. Specifically, a temporal
formula “F1 S F2” means that F2 held at some time in the past, and
since then F1 always holds.
 Rule example 1: When to call the lifecycle handler onStart()

of an activity component act?

 Rule example 2: When to call a button-click GUI event han-
dler onClick()?

The first example rule states that the onStart() handler should be
called after the onCreate() handler completes as long as the con-
cerned activity does not finish. The second rule requires a button-
click event handler to be called if: (1) the button is clicked, (2) its
enclosing activity is at foreground (i.e., the activity’s onPause()
handler has not been called since the last call to onResume() han-

dler), and (3) its click event listener is properly registered. More
rule examples can be found in our earlier work [16] and technical
report [17].
AEM model enforcement and handler scheduling. To enforce
AEM model at runtime, we encoded it in the main scheduler of
our runtime controller. All temporal rules in AEM model are con-
verted to a decision procedure. This procedure helps the main
scheduler to decide which event handler to call next according to
the application’s execution history and its newly received events.
The events come from two sources: (1) those actively generated
by the main scheduler, including all GUI events (e.g., button
clicks), main activity’s start event, activity components’ lifecycle
events and component destroying events; (2) other events (e.g.,
the event to start a service) passively monitored during the appli-
cation’s execution. We can observe that the main scheduler is
sensitive to an application’s execution history. So it needs to track
the following information:
 A stack of active activities. Our main scheduler maintains

active activities in a stack. Each active activity is associated
with a GUI model, describing what UI widgets and GUI event
listeners are defined in this activity. This model is obtained by
analyzing the activity’s layout configuration file [17].

 A list of running services. Running services are maintained
in a list. Particularly, if a service is launched by binding from
other application components, it will be associated with a col-
lection of such components that are bound with it.

 A list of registered broadcast receivers. The main scheduler
also tracks a list of broadcast receivers. Each registered
broadcast receiver is associated with a filter specifying its in-
terested message types and permissions.

The scheduler serves as the analysis entry point for JPF. Figure 3
gives the pseudo code for the main scheduler’s event generator (a
core function of the scheduler). It first starts the application by
launching its main activity. After that it continuously generates
corresponding events to simulate user interactions, until the appli-
cation is terminated. In addition to the event generator, the main
scheduler also contains a monitor to listen to all events (including
all actively generated and passively monitored events) and handle
them on the fly by querying the decision procedure (i.e., the en-
coded AEM model) and calling corresponding event handlers.

3.3 Android API Modeling and Abstraction
As mentioned earlier, many Android APIs leverage system level
functionalities or rely on native libraries. This causes a big trouble
to JPF. First, the bytecode instructions of these Android APIs are
typically not available for analysis [18]. Second, even if their
bytecode instructions are obtained (e.g., by building the Android
framework to get the non-stub version of library classes), JPF will
still fail to execute them because it has no idea about how to han-
dle the transitively called native methods. Due to these reasons,
we need to properly model such APIs and their side effects. We
note that completely and precisely modeling all APIs requires

add main activity to activity stack and start it

while(application not stopping){

get the stack top activity act

if(act ready for interaction){

randomly generate one GUI event

} else{

generate act’s corresponding lifecycle event

}

}

finish all active activities

finish all running services
Figure 3. Main scheduler’s event generation algorithm

Button btn = (Button) findViewById(R.id.btn);
btn.setOnClickListener(myListener);

Public void onClick(View v){
... ...
Intent intent = new Intent(MapActivity.class);
startActivity(intent);

}

//if startActivity() called
Step 1: create the target activity
Step 2: manage activities

to learn the GUI model of each activity component. The GUI
model contains key information such as each UI element’s type
(e.g., a button), ID, and its associated text if any. Then, when the
application is executed by JPF, we register a listener to monitor
the call to findViewById(). When it is called, we would identify
the current activity, and its GUI model. By doing so, we would
obtain all necessary information about the UI element under
search. Finally, we can create a corresponding object in JPF’s
JVM for the UI element if it has not been constructed.
In the above, we discussed the modeling of some representative
Android APIs. We can see from the discussion that such modeling
tasks are labor-intensive. It took us several months to model the
76 Android APIs. In practice, to save manual effort, one can
choose to ignore the side effects of some APIs if these effects are
not relevant to the verification target. This “partial modeling”
helps reduce the state space that JPF needs to explore.

3.4 Defect Detection
With the two technical challenges addressed, VeriDroid is now
able to execute an Android application. It continuously generates
GUI events to simulate user interactions4 so as to explore different
application states for exposing defects. To study whether Veri-
Droid can help detect real defects, we implemented a checker for
detecting null-pointer dereference and resource leak defects [6].
We in the following briefly discuss the detection algorithms.

4 In this work, we do not study how to generate environmental inputs such

as sensory data. If such inputs are needed for application execution,
VeriDroid will randomly select a value from a pre-specified data pool.

Detect null-pointer dereference defects. To detect null-pointer
dereference defects, VeriDroid actively monitors each dereference
operation during the execution of an Android application. Specifi-
cally, VeriDroid intercepts the execution of a subset of Java
bytecode instructions that involves object reference resolving. For
example, the instruction invokevirtual invokes a virtual method on
an object obj. After bytecode interception, VeriDroid checks if
the concerned object reference (e.g., obj) equals null or not. If
yes, VeriDroid reports a warning.
Detect resource leak defects. Resource leaks happen when an
application fails to release computational resources (e.g., file han-
dles and database cursors) it acquired from the operating system
before it exits. Such defects are common in large applications [23]
and can cause system performance degradation if the leak is seri-
ous, because computational resources are finite. To detect such
defects, VeriDroid tracks the resource acquisition and releasing
by monitoring certain API calls (e.g., the open() API call on a file
object means a file handle is acquired from system). It maintains a
list of acquired but not released computational resources. When
an application exits, VeriDroid checks whether the list is empty.
If not, it means certain resources are not properly released. Then
VeriDroid will report warnings accordingly.

4. PRELIMINARY EVALUATION
To evaluate VeriDroid, we selected five real-world open-source
Android applications. Table 1 lists the basic information of these
applications, including (1) application name, (2) category, (3)
number of downloads, (4) the revision we selected for experi-
ments, (5) size of the selected revision, and (6) source code avail-
ability. As we can observe from the table, the selected applica-
tions are large-scale (up to 27 thousand lines of code), and popu-
larly-downloaded (up to 10 million downloads). Besides, they
cover four different application categories. We then built these
application subjects and applied VeriDroid to verify them. For
experimental purposes, we controlled VeriDroid to generate user
event sequences whose length does not exceed six. This suffices
for VeriDroid to explore thousands of different application states.
All our experiments were run on a dual-core machine with Intel
Core i5 CPU and 8GB RAM, running Windows 7 Professional
SP1. We report our experimental results below.
Defect detection capability. Encouragingly, we found that Veri-
Droid successfully detected seven defects in our selected five
application subjects. The last two columns of Table 1 report the
information of these defects. For example, VeriDroid detected one
null-pointer dereference defect and two resource leak defects in
the Omnidroid application. These detected defects have been
confirmed by developers and fixed in later revisions. This demon-
strates that VeriDroid is capable of verifying Android applications
and detect real defects. In addition, VeriDroid can also report

App configuration files

Activity 1

Activity n

GUI
Model

GUI
Model

Association

Association

JPF’s JVM

Call stack

findViewById()

Listener

VM events

//findViewById() modeling

Step 1: locate the concerned GUI model

Step 2: find the UI element

Step 3: prepare element object

Static part

Dynamic part

…

Figure 6. Modeling findViewById() API

Table 1. Experimental subject information and detected defects

Application name Category1 Downloads1 Revision
no. Size (LOC) Source

availability
Detected defects

NULL LEAK
Ushahidi [21] Communication 10K2 ~ 50K 5750c01 20.4K GitHub 0 1 (issue 100)
c:geo [7] Entertainment 1M ~ 5M 44ee89c 27.0K GitHub 1 (issue 124)3 0
Omnidroid [20] Productivity 1K ~ 5K 727 11.7K Google Code 1 (issue 77) 2 (issue 46, 103)
AnySoftKeyboard [5] Tools 500K ~ 1M 6a1a580 19.3K GitHub 1 (issue 80) 0
OI File Manager [19] Productivity 5M ~ 10M f41b141 6.7K GitHub 1 (issue 30) 0
1: The category and download information is obtained from Google Play store [11]; 2: 1K = 1,000 and 1M = 1,000,000
3: The detailed information of detected defects can be retrieve from corresponding issue tracking system using our provided IDs.

actionable information (e.g., handler invocation sequences) to
help developers debug these defects.
Computational resource consumption. Table 2 reports the re-
source consumption details when VeriDroid verifies our five ap-
plication subjects. We can observe that even for the largest sub-
ject c:geo, the verification can finish within three minutes, with
memory consumption less than 374.6 MB. Such verification
overhead is well-supported by modern PCs. This suggests that
developers can run tools like VeriDroid on their workstations to
detect potential defects in their applications and fix these defects
before releasing their applications to market.
Limitations and discussion. Our current implementation of
VeriDroid has two major limitations. First, it can generate false
alarms, especially when detecting null-pointer dereference de-
fects. We analyzed corresponding warnings and realized the false
alarms mostly arise from the incomplete and imprecise modeling
of Android APIs. Although related studies [18] modeled certain
APIs using simple stubs (e.g., randomly returning a value at call
boundaries), our experience from the evaluation with real-world
subjects suggests that the quality of API models can seriously
affect certain analysis. So we believe these false alarms can be
removed with more complete and precise modeling of Android
APIs. Second, VeriDroid cannot measure the code coverage (e.g.,
branch coverage) of its verification. We are designing a coverage
measurement component for VeriDroid. This can give developers
more control on how to set parameters such as the length limit of
generated user event sequences during verification.

5. CONCLUDING REMARKS
In this paper, we have presented a program verification tool,
VeriDroid, for Android applications. VeriDroid is built by extend-
ing JPF, a widely-used Java program verification framework. We
discussed in details how we enabled JPF to verify Android appli-
cations. Specifically, we addressed two challenges: (1) scheduling
of event handlers, and (2) modeling of Android APIs. To validate
the effectiveness of VeriDroid, we implemented and integrated a
null-pointer dereference and resource leak defect checker into
VeriDroid. We applied VeriDroid to five large-scale and popular-
ly-downloaded Android applications. VeriDroid successfully
detected seven real defects in these applications, and only con-
sumed a reasonable amount of computational resources. This
demonstrates the practical usefulness of VeriDroid.
In future, we are going to extend VeriDroid to detect more types
of defects and address its major limitations. We wish our work
can help improve the software quality of smartphone applications.
This can benefit millions of smartphone users.

6. ACKNOWLEDGMENTS
This work was supported in part by National High-tech R&D
Program (863 Program; Grant No. 2012AA011205), and National

Natural Science Foundation (Grant Nos. 61100038, 91318301,
61361120097) of China, and by Research Grants Council
(611912) of Hong Kong. Chang Xu was also partially supported
by Program for New Century Excellent Talents in University,
China (Grant No. NCET-10-0486). Besides, we also wish to thank
our advisor S.C. Cheung for his kind guidance during this work
and anonymous reviewers for their valuable comments on earlier
versions of this paper.

7. REFERENCES
[1] “Google Play.” http://en.wikipedia.org/wiki/Google_Play
[2] “Android developers.” http://developer.android.com/
[3] “Android platform.” http://www.android.com/
[4] “Android issue 9392.” http://code.google.com/p/android
[5] “AnySoftKeyboard.” https://github.com/AnySoftKeyboard
[6] M. Arnold, M. Vechev, and E. Yahav, “QVM: an efficient

runtime for detecting defects in deployed systems,” ACM
TOSEM, vol. 21, pp. 2:1-2:35, 2011.

[7] “c:geo.” https://github.com/cgeo
[8] E.M. Clarke, K. William, N. Miloš, and Z. Paolo. “Model

checking and the state explosion problem.” In Tools for
Practical Software Verification, 2012, pp. 1-30.

[9] K. Etessami, and T. Wilke, “An until hierarchy for temporal
logic,” In Proc. IEEE Symp. Logic in Comp. Sci. 1996, pp.
108‐117.

[10] A.P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “An-
droid permission demystified,” In Proc. ACM Conf. Comput-
er and Communications Security, 2011, pp. 627-638.

[11] “Google Play Store.” https://play.google.com/store
[12] “Java PathFinder.” http://babelfish.arc.nasa.gov/trac/jpf
[13] “K-9 Mail on Google Play.” https://play.google.com/store/

apps/details?id=com.fsck.k9
[14] “Robotium”. http://code.google.com/p/robotium/
[15] “The JVM Specification.” http://docs.oracle.com/
[16] Y. Liu, C. Xu, and S.C. Cheung, “Where has my battery

gone? Finding sensor related energy black holes in
smartphone applications," In Proc. 11th IEEE Int’l Conf.
Pervasive Computing and Communications, 2013, pp. 2-10.

[17] Y. Liu, C. Xu, and S.C. Cheung, “Verifying Android apps
using Java PathFinder,” Technical Report HKUST-CS12-03.
The Hong Kong Univ. of Sci. and Tech., September 2012.

[18] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R.
Mahmood, “Testing Android apps through symbolic execu-
tion,” SIGSOFT Softw. Eng. Notes, vol. 37, pp. 1-5, 2012.

[19] “OI File Manager.” https://github.com/openintents/
[20] “Omnidroid.” https://code.google.com/p/omnidroid
[21] “Ushahidi.” https://github.com/ushahidi/
[22] W. Visser, K. Havelund, G. Brat, and S. Park, “Model check-

ing programs,” In Proc. Int’l Conf. Automated Soft. Engr.,
2000, pp. 3-11.

[23] W. Weimer, and G. C. Necula, “Finding and preventing
run‐time error handling mistakes,” In Proc. ACM Conf. Ob-
ject‐oriented Programs, Sys., Lang., and Apps., 2004, pp.
419‐431.

Table 2. Verification overhead

Application name Verification time
(Seconds)

Memory consumption
(MB)

Ushahidi 29 129.1
c:geo 169 374.6
Omnidroid 151 141.7
AnySoftKeyboard 97 227.4
OI File Manager 22 112.3

