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Abstract. VeriFast is a prototype verification tool for single-threaded
and multithreaded C and Java programs. In this paper, we first describe
the basic symbolic execution approach in some formal detail. Then we
zoom in on two technical aspects: the approach to permission accounting,
including fractional permissions, precise predicates, and counting permis-
sions; and the approach to lemma function termination in the presence
of dynamically-bound lemma function calls. Finally, we describe three
ongoing efforts: application to JavaCard programs, integration of shape
analysis, and application to Linux device drivers.

1 Introduction

VeriFast is a prototype verification tool for single-threaded and multithreaded
C and Java programs annotated with preconditions and postconditions written
in separation logic. To enable rich specifications, the programmer may define
inductive datatypes, primitive recursive pure functions over these datatypes,
and abstract separation logic predicates. To enable verification of these rich
specifications, the programmer may write lemma functions, i.e., functions that
serve only as proofs that their precondition implies their postcondition. The
verifier checks that lemma functions terminate and do not have side-effects. Since
neither VeriFast itself nor the underlying SMT solver need to do any significant
search, verification time is predictable and low. VeriFast comes with an IDE that
enables interactive annotation insertion and symbolic debugging and is available
for download at http://www.cs.kuleuven.be/˜bartj/verifast/.

For an introduction to VeriFast, we refer to earlier work [1]; furthermore,
a tutorial text is available on the web site. In this invited paper, we take the
opportunity to zoom in on three aspects of VeriFast that have not yet been cov-
ered in the same level of detail in earlier published work: in Section 2 we present
in some formal detail the essence of VeriFast’s symbolic execution algorithm; in
Section 3 we present VeriFast’s support for permission accounting; and in Sec-
tion 4 we present our approach for ensuring termination of lemma functions that
perform dynamically bound calls. Additionally, in Section 5, we briefly discuss
some of the projects currently in progress at our group.
? Jan Smans is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO).



2 Symbolic Execution

In this section, we present the essence of VeriFast’s verification algorithm in
some formal detail.

2.1 Symbolic Execution States

VeriFast modularly verifies a C or Java program by symbolically executing each
routine (function or method) in turn, using other routines’ contracts to verify
calls. A symbolic execution state is much like a concrete execution state, except
that terms of an SMT solver, containing logical symbols, are used instead of
concrete values. For example, at the start of the symbolic execution of a routine,
each routine parameter’s value is represented using a fresh logical symbol.

Specifically, a symbolic state σ = (Σ, h, s) consists of a path condition Σ, a
symbolic heap h, and a symbolic store s. The path condition is a set of formulae
of first-order logic that constrain the values of the logical symbols that appear
in the symbolic heap and the symbolic store. The symbolic heap is a multiset of
heap chunks. Each heap chunk is of the form [f ]p〈τ〉(t), where f is the coefficient,
p the predicate name, τ the type arguments, and t the arguments of the chunk.
The coefficient f is a term representing a real number; if it is different from 1,
the chunk represents a fractional permission (see Section 3). The predicate name
is a term that denotes the predicate of which the chunk is an instance; it is either
the symbol associated with a built-in predicate, such as a struct or class field
predicate, or a user-defined predicate, or it is a predicate constructor application,
which is essentially a partially applied predicate (see [2] for more information),
or it is some other term, which typically means the predicate name was passed
into the function as a value. VeriFast supports type parameters on user-defined
predicates; hence the type arguments, which are VeriFast types. Finally, each
chunk specifies argument terms for the predicate’s parameters. The symbolic
store maps local variable names to terms that represent their value.

2.2 Algorithm: Preliminary Definitions

To describe the essence of the symbolic execution algorithm formally, we define
a highly stylized syntax of assertions a, commands c, and routines r (given an
unspecified syntax for arithmetic expressions e and boolean expressions b, and
given a set of variables x):

a ::= [e]e(e, ?x) | b | a ∗ a | if b then a else a
c ::= x := r(e) | (c; c) | if b then c else c

rdef ::= routine r(x) req a ens a do c

We assume all predicates have exactly two parameters, and we consider only
predicate assertions where the first argument is an expression and the second
argument is a pattern.



We will give the semantics of a symbolic execution step by means of sym-
bolic transition relations, which are relations from initial symbolic states σ to
outcomes o. An outcome is either a final symbolic state or the special outcome
abort, which signifies that an error was found. A given initial state may be
related to multiple outcomes due to case splitting, and it may be related to no
outcomes if all symbolic execution paths are found to be infeasible.

VeriFast sometimes makes arbitrary choices. Specifically, it arbitrarily chooses
a matching chunk when consuming a predicate assertion that has multiple match-
ing chunks (a situation we call an ambiguous match). To model this, we define
the semantics of a symbolic execution step not as a single transition relation, but
as a set of transition relations. Each element of this set makes different choices
in the event of ambiguous matches. The soundness theorem states that if, for
a given initial symbolic state, there is any transition relation where this initial
state does not lead to an abort, then all concrete states represented by this
initial symbolic state are safe. It is possible that some choices cause VeriFast to
fail (i.e., lead to an abort), while others do not. It is up to the user to avoid such
unfortunate matches, for example by wrapping chunks inside predicates defined
just for that purpose to temporarily hide them.

A note about picking fresh logical symbols. We will use the function

nextFresh(Σ) = (u,Σ′)

which given a path condition Σ returns a symbol u that does not appear free in
Σ, and a new path condition Σ′ = Σ ∪ {u = u}, which is equivalent to Σ but
in which u appears free. Since path conditions are finite sets of finite formulae,
and there are infinitely many logical symbols, this function is well-defined. We
will also use this function to generate sequences of fresh symbols.

We use the following operations on sets of transition relations. Conjunction
W ∧W ′ denotes the pairwise union of relations from W and W ′:

W ∧W ′ = {R ∪R′ | R ∈W ∧R′ ∈W ′}

Similarly, generalized conjunction
∧
i ∈ I. W (i) denotes the set where each

element is obtained by taking the union of one element of each W (i):

(
∧
i ∈ I. W (i)) = {

⋃
i ∈ I. ψ(i) | ∀i ∈ I. ψ(i) ∈W (i)}

We omit the range I if it is clear from the context. Sequential composition W ;W ′

denotes the pairwise sequential composition of relations from W and W ′:

W ;W ′ = {R;R′ | R ∈W ∧R′ ∈W ′}

where the sequential composition of transition relations R;R′ is defined as

R;R′ = {(σ,abort) | (σ,abort) ∈ R} ∪ {(σ, o) | (σ, σ′) ∈ R ∧ (σ′, o) ∈ R′}

We denote the term or formula resulting from evaluation of an arithmetic
expression e or boolean expression b under a symbolic store s as s(e) or s(b),
respectively. We abuse this notation for sequences of expressions as well.



2.3 The Algorithm

A basic symbolic execution step is an assumption step assume(b), defined as
follows:

assume(b) = {{((Σ, h, s), (Σ ∪ {s(b)}, h, s)) | Σ 6`SMT ¬s(b)}}

It consists of a single transition relation, which adds b to the path condition, un-
less doing so would lead to an inconsistency, in which case the symbolic execution
path ends (i.e., the initial state does not map to any outcome).

Symbolic execution of a routine starts by producing the precondition, then
verifying the body, and finally consuming the postcondition. Producing an as-
sertion means adding the chunks and assumptions described by the assertion to
the symbolic state:

produce([e]e′(e′′, ?x)) =
{{((Σ, h, s), (Σ′, h ] {[s(e)]s(e′)(s(e′′), u)}, s[x := u])) |

(u,Σ′) = nextFresh(Σ)}}
produce(b) = assume(b)
produce(a ∗ a′) = produce(a); produce(a′)
produce(if b then a else a′) = assume(b); produce(a) ∧ assume(¬b); produce(a′)

Conversely, consuming an assertion means removing the chunks described by the
assertion from the symbolic heap, and checking the assumptions described by
the assertion against the path condition.

consume([e]e′(e′′, ?x)) =
choice({matches(Σ, h, s) | matches(Σ, h, s) 6= ∅})
∧ {{((Σ, h, s),abort) | matches(Σ, h, s) = ∅}}
where choice(C) = {{ψ(c) | c ∈ C} | ∀c ∈ C. ψ(c) ∈ c}
and matches(Σ, h, s) =
{((Σ, h, s), (Σ, h′, s[x := t′])) |

h = h′ ] {[f ]p(t, t′)} ∧Σ `SMT s(e, e′, e′′) = f, p, t}
consume(b) =
{{((Σ, h, s), (Σ, h, s)) | Σ `SMT s(b)} ∪ {((Σ, h, s),abort) | Σ 6`SMT s(b)}}

consume(a ∗ a′) = consume(a); consume(a′)
consume(if b then a else a′) =

assume(b); consume(a) ∧ assume(¬b); consume(a′)

Notice that consuming a predicate assertion generates one transition relation
for each choice function ψ that picks one match for each initial state that has
matches.

Verifying a routine call means consuming the precondition (under the sym-
bolic store obtained by binding the arguments), followed by picking a fresh sym-
bol to represent the return value, followed by producing the postcondition, fol-
lowed by binding the return value into the caller’s symbolic store. The other



commands are straightforward.

verify(x := r(e)) =∧
s. {{((Σ, h, s), (Σ, h, [x := s(e)]))}}; consume(a);∧
r.{{((Σ, h, s′), (Σ′, h, s′[result := r])) | (r,Σ′) = nextFresh(Σ)}};
produce(a′); {{((Σ, h, s′′), (Σ, h, s[x := r]))}}

where routine r(x) req a ens a′

verify((c; c′)) = verify(c); verify(c′)
verify(if b then c else c′) = assume(b); verify(c) ∧ assume(¬b); verify(c′)

Verifying a routine means binding the parameters to fresh symbols, then produc-
ing the precondition, then saving the resulting symbolic store s′, then verifying
the body under the original symbolic store, then restoring the symbolic store s′

and binding the result value, and then finally consuming the postcondition. The
routine is valid if in at least one transition relation, the initial state does not
lead to abort.

valid(routine r(x) req a ens a′ doc) =
∃R ∈W. ((Σ0, ∅, [x := u]),abort) /∈ R
where (u,Σ0) = nextFresh(∅)
and W =

∧
s. {{((Σ, h, s), (Σ, h, s))}}; produce(a);∧

s′. {{((Σ, h, s′), (Σ, h, s))}; verify(c);∧
s′′. {{((Σ, h, s′′), (Σ, h, s′[result := s′′(result)]))}}; consume(a′)

A program is valid if all routines are valid.

2.4 Soundness Proof Sketch

We now sketch an approach for proving the soundness of this algorithm. First,
we define abstracted execution operations aproduce, aconsume, and averify, that
differ from the corresponding symbolic execution operations only in that they
use concrete values instead of logical terms in heap chunks and store bindings.
We then prove that the relation between an abstracted state and a symbolic
state that represents it (through some interpretation of the logical symbols) is
a simulation relation: if some symbolic state represents some abstracted state,
then for every transition relation in the symbolic execution, there is a transition
relation in the abstracted execution such that if the abstracted state aborts,
then the symbolic state aborts, and if the abstracted state leads to some other
abstracted state, then the symbolic state either aborts or leads to some other
symbolic state that represents this abstracted state. It follows that if a program
is valid under symbolic execution, it is valid under abstracted execution.

We then prove two lemmas about abstracted execution. Firstly, we prove that
all abstracted execution operations are local, in the sense that heap contraction
is a simulation relation: for state (s, h]h0) and contracted state (s, h), for every
transition relation R2 there is a transition relation R1 such that if (s, h ] h0)
aborts in R1, then (s, h) aborts in R2, and otherwise if (s, h]h0) leads to a state



(s′, h′) in R1, then either (s, h) aborts in R2 or h0 ⊆ h′ and (s, h) leads to state
(s′, h′ − h0) in R2.

Secondly, we prove the soundness of abstracted assertion production and
consumption. Specifically, we prove that if we consume an assertion a in a state
(h, s), then this either aborts or we obtain some state (h′, s′), and for every
such final state it holds that producing a in some state (h′′, s) leads to state
(h′′ ] (h− h′), s′).

Finally, given a big-step operational semantics of the programming language,
we prove that if all routines are valid, then concrete execution is simulated by
abstracted execution: for every initial state, if concrete execution leads to some
outcome, then in each transition relation either abstracted execution aborts or
leads to the same or a contracted outcome.1 We detail the case of routine call.

Consider a routine call x := r(e) started in a state (s, h). Now, consider an
arbitrary transition relation of consumption of r’s precondition in state ([x :=
s(e)], h). Either this aborts, in which case abstracted execution of the routine call
aborts and we are done. Otherwise, it leads to a state (s′, h′). Then, by the second
lemma, production of the precondition in state ([x := s(e)], h′) leads to state
(s′, h). Now, consider the execution of the body of r in state ([x := s(e)], h). If
this aborts, then by the induction hypothesis, we have that abstracted execution
of the body aborts in all transition relations when started in the same state. By
locality, it follows that production of the precondition in state ([x := s(e)], ∅)
leads to state (s′, h−h′) and abstracted execution of the body in state (s′, h−h′)
aborts. This contradicts the assumption that the routine is valid.

Now consider the case where execution of the body of the routine, when
started in state ([x := s(e)], h), leads to some state (s′′, h′′). Consider an arbi-
trary transition relation of consumption of r’s postcondition in state (s′[result :=
s′′(result)], h′′). Either consumption aborts, in which case, by locality, the rou-
tine is invalid and we obtain a contradiction. Or it leads to some state (s′′′, h′′′).
Then, by the second lemma, production of r’s postcondition in state (s′[result :=
s′′(result)], h′) leads to state (s′′′, h′](h′′−h′′′)). By locality, we have h′ ⊆ h′′′; as
a result, we have h′](h′′−h′′′) ⊆ h′′′](h′′−h′′′) = h′′, so the abstracted execution
leads to a contraction of the final concrete execution state (s[x := s′′(result)], h′′).

3 Permission Accounting

This section presents VeriFast’s support for permission accounting. Specifically,
to enable convenient sharing of heap locations, mutexes, and other resources
among multiple threads, and for other purposes, VeriFast has built-in support
for fractional permissions (Section 3.1), and library support for counting per-
missions (Section 3.4). To facilitate the application of fractional permissions to

1 A contracted outcome (i.e., with a smaller heap) occurs in the case of routine calls if
heap chunks remain after the routine’s postcondition is consumed. When verifying
a C program, VeriFast signals a leak error in this case; for a Java program, however,
this is allowed.



user-defined predicates, VeriFast has special support for precise predicates (Sec-
tion 3.2). Finally, to facilitate unrestricted sharing of resources in case reassembly
is not required, VeriFast supports dummy fractions (Section 3.3).

3.1 Fractional Permissions

VeriFast has fairly convenient built-in support for the fractional permissions sys-
tem proposed by Bornat et al. [3]. The basics of this support consist of the fol-
lowing elements: a coefficient term in each heap chunk, a relaxed proof rule for
read-only memory accesses, fractional assertions, opening and closing of frac-
tional user-defined predicate chunks, and autosplitting. Some more advanced
features are explained in later subsections.

Fractional Heap Chunks and Memory Reads As mentioned in Section 2,
in VeriFast’s symbolic heap data structure, each heap chunk specifies a term
known as its coefficient. This term belongs to the SMT solver’s sort of real num-
bers. If the real number represented by this term is different from 1, we say the
chunk is a fraction. On any feasible symbolic execution path, the coefficient of
any chunk that represents a memory location lies between 0, exclusive, and 1, in-
clusive, where 1 represents exclusive write access, and a smaller value represents
shared read access. However, coefficients of user-defined predicates may feasibly
lie outside this range.

Fractional Assertions Both points-to assertions and predicate assertions may
mention a coefficient f , which is a pattern of type real, using the syntax [f]`
|-> v or [f]p(v). Just like other patterns, the coefficient pattern may be an
expression, such as 1/2 or x, where x is a previously declared variable of type
real. It may also be a question mark pattern ?x, which existentially quantifies
over the coefficient and binds it to x. Finally, it may be a dummy pattern _,
which also existentially quantifies over the coefficient but does not bind it to
any variable. Dummy coefficient patterns are treated specially; see Section 3.3.
If a points-to assertion or predicate assertion does not mention a coefficient, it
defaults to 1.

The following simple example illustrates a common pattern:

int read_cell(int *cell)
requires [?f]integer(cell, ?v);
ensures [f]integer(cell, v) &*& result == v;

{ return *cell; }

The above function requires an arbitrary fraction of the integer chunk that
permits access to the int object at location cell, and returns the same fraction.

Fractions and User-Defined Predicates The syntax of open and close
ghost statements allows mentioning a coefficient: open [f]p(v), close [f]p(v).



By definition, applying a coefficient f to a user-defined predicate is equivalent
to multiplying the coefficient of each chunk mentioned in the predicate’s body
by f . There is no restriction on the value of f . If no coefficient is mentioned, a
close operation defaults to coefficient 1, and an open operation defaults to the
coefficient found in the symbolic heap.

Autosplitting When consuming a predicate assertion, the nano-VeriFast al-
gorithm presented in Section 2 requires a precise match between the coefficient
expression specified in the predicate assertion and the coefficient term in a heap
chunk. Full VeriFast is more relaxed: for assertion coefficient fa and chunk coeffi-
cient fc, it requires either fa = fc or 0 < fa < fc. In the latter case, consumption
does not remove the chunk, but simply reduces the chunk’s coefficient to fc−fa.

3.2 Precise Predicates

Autosplitting is sound both for built-in memory location predicates and for ar-
bitrary user-defined predicates. For built-in memory location predicates, we also
have a merge law:

[f1]` 7→ v1 ∗ [f2]` 7→ v2 ⇒ [f1 + f2]` 7→ v1 ∧ v2 = v1

This law states not only that two fractions whose first arguments are equal
can be merged into one, but also that their second arguments are equal. Veri-
Fast automatically performs this merge operation and adds this equality to the
path condition when producing a built-in predicate chunk if a matching chunk
is already present in the symbolic heap. Merging of fractional permissions is
important because it enables modifying or deallocating memory locations once
they are no longer shared between multiple threads.

However, VeriFast does not automatically merge arbitrary predicate chunks,
even if they have identical argument lists. Doing so would be unsound, as illus-
trated by the following pathological user-defined predicate:

predicate foo() = integer(_, _);
lemma void evil()

requires integer(_, _) &*& integer(_, _);
ensures [2]integer(_, _);

{ close foo(); close foo(); open [2]foo(); }

Specifically, this would violate the invariant that on feasible paths, memory
location chunks never appear with a coefficient greater than 1.

Therefore, VeriFast automerges only precise predicates. A user-defined pred-
icate may be declared as precise by using a semicolon in the parameter list to
separate the input parameters from the output parameters. If a predicate is de-
clared as precise, VeriFast performs a static analysis on the predicate body to
check that the merge law holds for this predicate. The merge law for a predicate
p with input parameters x and output parameters y states:

[f1]p(x, y1) ∗ [f2]p(x, y2)⇒ [f1 + f2]p(x, y1) ∧ y2 = y1



For example, the static analysis accepts the following definition of the classic list
segment predicate:

struct node { struct node *next, int value };
predicate lseg(struct node *f, struct node *l; list<int> vs) =

f == l ? vs == nil :
f->next |-> ?n &*& f->value |-> ?v &*& malloc_block_node(f) &*&
lseg(n, l, ?vs0) &*& vs == cons(v, vs0);

As a result, the following lemma is verified automatically:

lemma void lseg_merge(struct node *f, struct node *l)
requires [?f1]lseg(f, l, ?vs1) &*& [?f2]lseg(f, l, ?vs2);
ensures [f1+f2]lseg(f, l, vs1) &*& vs2 == vs1;

{}

The static analysis for a predicate definition predicate p(x; y) = a; checks
that given fixed variables x, assertion a is precise and fixes variables y; formally:
x ` a y. The meaning of this judgment is given by a merge law for assertions:

[f1]a1 ∗ [f2]a2[x1/x2]⇒ [f1 + f2]a1 ∧ y2 = y1

where a1 is a with all free variables subscripted by 1 and a2 is a with all free vari-
ables subscripted by 2. The static analysis proceeds according to the inference
rules shown in Figure 1. Notice that the analysis allows both expressions and

predicate q(x; y) |e| = |x| FreeVars(e) ⊆ X

X ` q(e, pat) X ∪ FixedVars(pat)

FreeVars(e) ⊆ X

X ` x = e X ∪ {x}

X ` e X

FreeVars(e) ⊆ X
X ` a Y

X ` [e]a Y

X ` a Y

X ` [ ]a Y

X ` a1  Y
Y ` a2  Z

X ` a1 ∗ a2  Z

FreeVars(b) ⊆ X X ` a1  Y X ` a2  Y

X ` b ? a1 : a2  Y

X ` a Y Y ′ ⊆ Y

X ` a Y ′

where

FixedVars(x) = {x} FixedVars(e) = ∅ FixedVars(?x) = {x} FixedVars( ) = ∅

Fig. 1. The static analysis for preciseness of assertions

dummy patterns as coefficients (but not question mark patterns). In allowing
dummy patterns, VeriFast’s notion of preciseness deviates from the separation
logic literature, where an assertion is precise if for any heap, there is at most



one subheap that satisfies the assertion. Indeed, in the presence of dummy frac-
tions, there may be infinitely many fractional subheaps that satisfy the assertion;
however, the merge law still holds.

3.3 Dummy Fractions for Leakable Resources

VeriFast treats dummy coefficients in predicate assertions specially, to facilitate
scenarios where reassembly of fractions of a given resource is not required, and
as a result the resource can be shared arbitrarily. Specifically, when consuming
a predicate assertion with a dummy coefficient, VeriFast always performs an
autosplit; that is, it does not remove the matched chunk but merely replaces its
coefficient by a fresh symbol.

Furthermore, when verifying a C program, dummy fractions affect leak check-
ing. In general, when verifying a C function, if after consuming the postcondition
the symbolic heap is not empty, VeriFast signals a leak error. However, VeriFast
does not signal an error if for all remaining resources, the user has indicated
explicitly that leaking this resource is acceptable. The user can do so using a
leak a; command. This command consumes the assertion a, and then reinserts
all consumed chunks into the symbolic heap, after replacing their coefficients
with fresh symbols and registering these symbols as dummy coefficient symbols.
Leaking a chunk whose coefficient is a dummy coefficient symbol is allowed.

To allow this leakability information to be carried across function boundaries,
dummy coefficients in assertions are considered to match only dummy coefficient
symbols. That is, consuming a dummy fraction assertion matches only chunks
whose coefficients are dummy coefficient symbols, and producing a dummy frac-
tion assertion produces a chunk whose coefficient is a dummy coefficient symbol.

To understand the combined benefit of these features, consider the common
type of program where the main method creates a mutex and then starts an
unbounded number of threads, passing a fraction of the mutex to each thread.
Each thread leaks its mutex fraction when it dies. If the user performs a leak op-
eration on the mutex directly after it is created, VeriFast automatically splits the
mutex chunk when a thread is started, and silently leaks each thread’s fraction
when the thread finishes.

VeriFast also uses dummy fractions to represent C’s string literals.

3.4 Counting Permissions

Fractional permissions are sufficient in many sharing scenarios; however, an im-
portant example of a scenario where they are not applicable is when verifying
a program that uses reference counting for resource management. For this sce-
nario, another permission accounting scheme known as counting permissions [3]
is appropriate.

VeriFast does not have built-in support for counting permissions. However,
using VeriFast’s support for higher-order predicates, VeriFast offers counting
permissions support in the form of a trusted library, specified by header file



predicate counting<a, b>(predicate(a; b) p, a a, int count; b b);

predicate ticket<a, b>(predicate(a; b) p, a a, real frac;);

lemma void start_counting<a, b>(predicate(a; b) p, a a);

requires p(a, ?b);

ensures counting(p, a, 0, b);

lemma void counting_match_fraction<a, b>(predicate(a; b) p, a a);

requires counting(p, a, ?count, ?b1) &*& [?f]p(a, ?b2);

ensures counting(p, a, count, b1) &*& [f]p(a, b2) &*& b2 == b1;

lemma real create_ticket<a, b>(predicate(a; b) p, a a);

requires counting(p, a, ?count, ?b);

ensures counting(p, a, count + 1, b)

&*& ticket(p, a, result) &*& [result]p(a, b) &*& 0 < result;

lemma void destroy_ticket<a, b>(predicate(a; b) p, a a);

requires counting(p, a, ?count, ?b1)

&*& ticket(p, a, ?f) &*& [f]p(a, ?b2) &*& 0 != count;

ensures counting(p, a, count - 1, b1) &*& b2 == b1;

lemma void stop_counting<a, b>(predicate(a; b) p, a a);

requires counting(p, a, 0, ?b);

ensures p(a, b);

Fig. 2. The specification of VeriFast’s counting permissions library

counting.h, reproduced in Figure 2. This library allows any precise predicate
of one input parameter and one output parameter to be shared by means of
counting permissions. VeriFast’s built-in memory location predicates satisfy this
constraint, so they can be used directly. Precise predicates that are of a different
shape can be wrapped in a helper predicate that bundles the input and output
arguments into tuples.

Once a chunk is wrapped into a counting chunk using the start_counting
lemma, tickets can be created from it using the create_ticket lemma. This
lemma not only increments the counting chunk’s counter and produces a ticket
chunk; it also produces an unspecified fraction of the wrapped chunk. In case
of built-in memory location chunks, this allows the memory location to be read
immediately. The ticket chunk remembers the coefficient of the produced frac-
tion. The same fraction is consumed again when the ticket is destroyed using
lemma destroy_ticket. When the counter reaches zero, the original chunk can
be unwrapped using lemma stop_counting.

Notice that this library is sound even when applied to predicates that are not
unique, i.e., predicates that can appear with a fraction greater than one. However,
the existence of non-unique precise predicates does mean that we cannot assume



that the counter of a counting chunk remains nonnegative, as illustrated in
Figure 3.

predicate foo(int *n; int v) = [1/2]integer(n, v);

predicate hide(int *n; int v) = counting(foo, n, 1, v);

lemma void test(int *n)

requires integer(n, ?v);

ensures counting(foo, n, -1, v) &*& hide(n, v);

{

close [2]foo(n, v);

start_counting(foo, n); create_ticket(foo, n);

close hide(n, v);

start_counting(foo, n); destroy_ticket(foo, n);

}

Fig. 3. Example where a counter decreases below zero

4 Lemma Function Termination and Dynamic Binding

VeriFast supports lemma functions, which are like ordinary C functions, except
that lemma functions and calls of lemma functions are written inside annota-
tions, and VeriFast checks that they have no side-effects on non-ghost memory
and that they terminate. Lemma functions serve mainly to encode inductive
proofs of lemmas about inductive datatypes, such as the associativity of ap-
pending two mathematical lists, or inductive proofs of lemmas about recursive
predicates, such as a lemma stating that a linked list segment from node n1

to node n2 separately conjoined with a linked list segment from node n2 to 0
implies a linked list segment from node n1 to 0.

To enable such inductive proofs, lemma functions are allowed to be recursive.
Specifically, to ensure termination, VeriFast allows a statically bound lemma
function call if either the callee is defined before the caller in the program text,
or the callee equals the caller and one of the following hold: 1) after consuming
the precondition, at least one full (i.e., non-fractional) memory location predicate
remains, or 2) the body of the lemma function is a switch statement over one of
the function’s parameters whose type is an inductive datatype, and the callee’s
argument for this parameter is a component of the caller’s argument for this
parameter, or 3) the body of the lemma function is not a switch statement
and the first chunk consumed by the callee’s precondition was obtained from
the first chunk produced by the caller’s precondition through one or more open
operations. These three cases constitute induction on the size of the concrete
heap, induction on the size of an argument, and induction on the derivation of
the first conjunct of the precondition.



However, VeriFast supports not just statically bound lemma function calls,
but dynamically bound calls as well. Specifically, VeriFast supports lemma func-
tion pointers and lemma function pointer calls. The purpose of these is as follows.

VeriFast supports the modular specification and verification of fine-grained
concurrent data structures. It does so by modularizing Owicki and Gries’s ap-
proach based on auxiliary variables. The problem with their approach is that
it requires application-specific auxiliary variable updates to be inserted inside
critical sections. If the critical sections are inside a library that is to be reused
by many applications, this is a problem. In earlier work [4], we propose to solve
this problem by allowing applications to pass auxiliary variable updates into the
library in a simple form of higher-order programming. In VeriFast, this can be
realized through lemma function pointers.

A simple approach to ensure termination of lemma functions in the presence
of lemma function pointers would be to allow lemma function pointer calls only
in non-lemma functions. However, when building fine-grained concurrent data
structures on top of other fine-grained concurrent data structures, layer N needs
to be able to call lemma function pointers it receives from layer N + 1 inside of
its own lemma function, which it passes to layer N − 1.

To support this, we introduced a new kind of built-in heap chunks, called
lemma function pointer chunks. A call of a lemma function pointer p is allowed
only if the symbolic heap contains a lemma function pointer chunk for p, and
this chunk becomes unavailable for the duration of the call. Non-lemma functions
may produce lemma function pointer chunks arbitrarily. A lemma function may
only produce lemma function pointer chunks for lemma functions that appear
before itself in the program text, and furthermore, these chunks are consumed
again before the producing lemma function terminates, so the pointer calls must
occur within the dynamic scope of the producing lemma function.

We prove that this approach guarantees lemma function termination, by
contradiction. Consider an infinite chain of nested lemma function calls. Since
we have termination of statically bound calls, the chain must contain infinitely
many pointer calls. Of all functions that appear infinitely often, consider the
one that appears latest in the program text. It must be called infinitely often
through a pointer. Therefore, infinitely many pointer chunks must be generated
during the chain. However, these can only be generated by functions that appear
later, which is a contradiction.

5 Ongoing Efforts

In this section, we briefly describe three projects currently proceeding in our
group.

5.1 JavaCard Programs

JavaCard is a trimmed-down version of the Java Platform for smart cards such
as cell phone subscriber cards, payment cards, identity cards, etc. We are ap-



plying VeriFast to a number of JavaCard programs, to prove absence of runtime
exceptions and functional correctness properties.

An interesting aspect of the JavaCard execution environment is the fact
that by default, objects allocated by a JavaCard program (called an applet) are
persistent. That is, once a JavaCard applet is installed on a card, the applet
object and objects reachable from its fields persist for the entire lifetime of
the smart card. This interacts in interesting ways with the phenomenon of card
tearing, which occurs when the user removes the smart card from the card reader
while a method call on the applet object is in progress. To allow the programmer
to preserve the consistency of the applet object, JavaCard offers a transaction
mechanism, that ensures that modifications to objects during a transaction are
rolled back if a card tear occurs before the transaction is committed.

We developed a specification of the JavaCard API that is sound in the pres-
ence of card tearing. We did not need to modify the VeriFast tool itself. In
our specification, when a newly installed applet is registered with the virtual
machine, the virtual machine takes ownership of the applet’s state as defined
by its valid predicate. When an applet receives a method call, the method re-
ceives a 1/2 fraction of the applet’s valid predicate. This allows the method
to inspect but not modify the applet’s state. As a result, the method is forced
to call the beginTransaction method before modifying the state. This API
method produces the other half of the valid chunk. Conversely, API method
commitTransaction consumes the entire valid chunk and produces a 1/2 frac-
tion.

The soundness argument for this approach goes as follows. We need to show
that in every execution, even one where card tears occur, at the start of each
toplevel method call on the applet, the valid predicate is fully owned by the
VM. We do so by showing that at every point during a method call, either we
are in a transaction, or the VM owns half of valid and the method call owns the
other half. When a method call terminates, either normally or due to a card tear,
the method call’s fraction is simply transfered to the VM. This proof explains
the contract of commitTransaction: if commitTransaction merely consumed
1/2 of valid, it would not guarantee that the thread owned the other half.

5.2 Integrating Shape Analysis

We are in the process of integrating separation logic-based shape analysis algo-
rithms from the literature [5, 6] into VeriFast. The goal is to enable a scenario
where annotations are inserted into a program using a mixed manual-automatic
process: the user writes some manual annotations; then they invoke the shape
analysis algorithm, which, given the existing annotations, infers additional ones;
then, the user adds further annotations where the algorithm failed; etc. We are
not yet at the point where we can report if this approach works or not.

We are currently targeting the scenario where the code is not evolving, i.e.,
the scenario where an existing, unannotated program is annotated for the first
time. In a later stage, we intend to consider the question whether shape analysis
can help to adapt existing annotations to code evolution. The latter problem



seems much more difficult, especially if the generated shape annotations have
been extended manually with functional information.

5.3 Linux Device Drivers

We are applying VeriFast to the verification of device drivers for the Linux op-
erating system. These programs seem particularly suited for formal verification,
because they are at the same time tricky to write, critical to the safety of the sys-
tem, written by many different people with varying backgrounds and priorities,
and yet relatively small and written against a relatively small API.

A significant part of the effort consists in writing specifications for the Linux
kernel facilities used by the driver being verified. Part of the challenge here
is that these facilities are often documented poorly or not at all, so we often
find ourselves inventing a specification based on inspection of the kernel source
code. Another part of the challenge is that VeriFast does not yet support all
C language features required to interface with these facilities. As a temporary
measure, in these cases we write a thin intermediate library that implements a
VeriFast-friendly interface on top of the actual kernel interface.

We are only in the early stages of this endeavor. We have so far verified a
small “Hello, world” driver that exposes a simple /proc file with an incrementing
counter. This example, and the preliminary version of the VeriFast Linux Kernel
Module Verification Kit that enables its verification, are included in the current
VeriFast distribution. We are currently looking at a small USB keyboard driver.
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