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Abstract. The notion of verifiable database (VDB) enables a resource-
constrained client to securely outsource a very large database to an
untrusted server so that it could later retrieve a database record and
update a record by assigning a new value. Also, any attempt by the
server to tamper with the data will be detected by the client. When
the database undergoes frequent while small modifications, the client
must re-compute and update the encrypted version (ciphertext) on the
server at all times. For very large data, it is extremely expensive for the
resources-constrained client to perform both operations from scratch.
In this paper, we formalize the notion of verifiable database with in-
cremental updates (Inc-VDB). Besides, we propose a general Inc-VDB
framework by incorporating the primitive of vector commitment and the
encrypt-then-incremental MAC mode of encryption. We also present a
concrete Inc-VDB scheme based on the computational Diffie-Hellman
(CDH) assumption. Furthermore, we prove that our construction can
achieve the desired security properties.

Keywords: Verifiable Database, Incremental Cryptography, Outsourc-
ing Computations, Vector Commitment.

1 Introduction

With the availability of cloud services, the techniques for securely outsourcing the
prohibitively expensive computations are getting widespread attentions in the
scientific community [1–3, 18, 19]. That is, the clients with resource-constraint
devices can outsource the heavy computation workloads into the untrusted cloud
servers and enjoy the unlimited computing resources in a pay-per-use manner.
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Since the cloud servers may return an invalid result in some cases (e.g., the
servers might contain a software bug that will fail on a constant number of
invocation), one crucial requirement of outsourcing computation is that the client
has the ability to verify the validity of computation result efficiently.

The primitive of verifiable computation has been well studied by plenty of
researchers in the past decades [4, 8, 9, 20, 21, 23–25]. Most of the prior work fo-
cused on generic solutions for arbitrary function (encoded as a Boolean circuit).
Though in general the problem of verifiable computation has been theoretically
solved, the proposed solutions are still much inefficient for real-world applica-
tions. Therefore, it is still meaningful to seek for efficient protocols for verifiable
computation of specific functions.

Benabbas, Gennaro and Vahlis [12] first proposed the notion of verifiable
database (VDB), which is extremely useful to solve the problem in the context
of verifiable outsourcing storage. Assume that a resource constrained client would
like to store a very large database on a server so that it could later retrieve a
database record and update a record by assigning a new value. If the server
attempts to tamper with the database, it will be detected by the client with
an overwhelming probability. Besides, the computation and storage resources
invested by the client must not depend on the size of the database (except for
an initial setup phase).

For the case of static database, we can construct VDB based on simple so-
lutions using message authentication codes or digital signatures. That is, the
client signs each database record before sending it to the server, and the server
is requested to output the record together with its valid signature. The solu-
tion does not work if the client performs updates on the database. As noted in
[12], the main technical difficulty is that the client must have a mechanism to
revoke the signatures given to the server for the previous values. Otherwise, the
malicious server can utilize the previous (while valid) database records and cor-
responding signatures to responde the current query of the client. This is called
the Backward Substitution updates (BSU) attack on VDB. In order to solve this
issue, the client should keep track of every change locally. However, this totally
contradicts the goal of outsourcing, i.e., the client should use much less resources
than those needed to store the database locally.

This problem has been addressed by works on accumulators [15, 16, 29] and
authentication data structures [27, 28, 30, 31]. However, it seems that the pre-
vious solutions based on the two techniques either rely on non-constant size
assumptions (such as q-Strong Diffie-Hellman assumption), or require expensive
operations such as generation of primes and expensive “re-shuffling” procedures.
Benabbas, Gennaro and Vahlis [12] presented the first practical verifiable com-
putation scheme for high degree polynomial functions and used it to design an
efficient VDB scheme. The construction relies on a constant size assumption in
bilinear groups of composite order, while does not support public verifiability
(i.e., only the owner of the database can verify the correctness of the proofs).
Very recently, Catalano and Fiore [13] proposed an elegant solution to build
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VDB from a primitive named vector commitment. The concrete construction
relies on standard constant-size assumption and supports public verifiability.

The data records often contain some sensitive information that should not be
exposed to the cloud server. Therefore, the client should encrypt the database
and store the encrypted version on the server. In some scenarios, the data (plain-
text) of client undergoes frequent while small modifications and the client must
re-compute and update the encrypted version (ciphertext) on the server at all
times [5, 6]. For very large data, it is extremely expensive for the resources-
constrained client to re-compute and update the ciphertext from scratch each
time. Therefore, it is meaningful to seek for efficient constructions for VDB with
incremental updates (Inc-VDB, for short). Loosely speaking, Inc-VDB means
that re-computing and updating the ciphertext in VDB are both incremental
algorithms, i.e., the client can efficiently perform both operations with previous
values, rather than from scratch.

Bellare, Goldreich, and Goldwasser [5, 6] introduced the notion of incremental
cryptography to design cryptographic algorithms whose output can be updated
very efficiently when the underlying input changes. For example, if a single block
of the data is modified (we can view the data as a sequence of blocks), the client
only needs to re-compute the ciphertext on this certain block and the ciphter-
text of other blocks remains identical [7, 26]. Nevertheless, we argue that the
incremental encryption does not provide a full solution for constructing efficient
Inc-VDB schemes. The reasons are two folds: Firstly, previous incremental en-
cryption schemes cannot solve the case of distributed updates on the data. That
is, multiple blocks of the plaintext are modified while the modification on each
single block is very small. The worst case is that every block of the plaintext
is updated while only one bit for each single block is changed. If this case hap-
pens, the client must re-compute the whole ciphertext from scratch. Secondly,
previous incremental encryption schemes cannot necessarily lead to incremen-
tal updates on VDB. That is, the update algorithm of VDB is not incremental
and the client still needs to re-compute new updated token from scratch each
time. To the best of our knowledge, it seems that there is no research work on
constructing efficient Inc-VDB schemes.

1.1 Our Contribution

In this paper, we further study the problem of constructing verifiable database
with efficient updates. Our contributions are three folds:

– We first introduce the notion of verifiable database with incremental updates
(Inc-VDB). The update algorithm in Inc-VDB is an incremental one, i.e.,
the client can efficiently compute the new ciphertext and the updated tokens
with previous values, rather than from scratch. Thus, Inc-VDB schemes can
lead to huge efficiency gain when the database undergoes frequent while
small modifications.

– We propose a general Inc-VDB framework by incorporating the primitive
of vector commitment [13] and the encrypt-then-incremental MAC mode
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of encryption [7]. We also present a concrete Inc-VDB scheme based on
the computational Diffie-Hellman (CDH) assumption. Besides, the proposed
Inc-VDB scheme supports the public verifiability.

– We first introduce a new property called accountability for VDB schemes.
That is, after the client detected the tampering of the server, the client should
be able to provide a proof to convince the judge of the facts. All of the existing
VDB schemes does not satisfy the property of accountability. We prove that
the proposed Inc-VDB scheme satisfies the property of accountability.

1.2 Organization

This paper is organized as follows. Some preliminaries are presented in Section
2. We present the formal definition and security requirements of Inc-VDB in
Section 3. We propose a new efficient Inc-VDB framework and a concrete Inc-
VDB scheme in Section 4. The security and efficiency analysis of the proposed
Inc-VDB scheme are given in Section 5. Finally, concluding remarks will be made
in Section 6.

2 Preliminaries

In this section, we first introduce the basic definition and properties of bilinear
pairings. We then present the formal definition of VDB.

2.1 Bilinear Pairings

Let G1 and G2 be two cyclic multiplicative groups of prime order p. Let g be a
generator of G1. A bilinear pairing is a map e : G1×G1 → G2 with the following
properties:

1. Bilinear: e(ua, vb) = e(u, v)ab for all u, v ∈ G1, and a, b ∈ Z
∗
p.

2. Non-degenerate: e(g, g) �= 1.
3. Computable: There is an efficient algorithm to compute e(u, v) for all u, v ∈

G1.

The examples of such groups can be found in supersingular elliptic curves
or hyperelliptic curves over finite fields, and the bilinear pairings can be derived
from the Weil or Tate pairings. In the following, we introduce the Computational
Diffie-Hellman (CDH) problem in G1.

Definition 1. The Computational Diffie-Hellman (CDH) problem in G1 is de-
fined as follows: given a triple (g, gx, gy) for any x, y ∈R Zp as inputs, output
gxy. We say that the CDH assumption holds in G1 if for every probabilistic
polynomial time algorithm A, there exists a negligible function negl(·) such that
Pr[A(1k, g, gx, gy) = gxy] ≤ negl(k) for all security parameter k.

A variant of CDH problem is the Square Computational Diffie-Hellman (Squ-

CDH) problem. That is, given (g, gx) for x ∈R Zp as inputs, output gx
2

. It has
been proved that the Squ-CDH assumption is equivalent to the classical CDH
assumption.
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2.2 Verifiable Database

Informally, a VDB scheme allows a resource-constraint client to outsource the
storage of a very large database to a server in such a way that the client can later
retrieve and update the data records from the server. Besides, any attempts to
tamper with the data by the dishonest server will be detected when the client
queries the database. The formal definition for VDB is given as follows [12, 13]:

Definition 2. A verifiable database scheme VDB=(Setup,Query,Verify,Update)
consists of four algorithms defined below.

– Setup(1k, DB): On input the security parameter k, the setup algorithm is run
by the client to generate a secret key SK to be secretly stored by the client,
and a public key PK that is distributed to all users (including the client itself)
for verifying the proofs.

– Query(PK, x): On input an index x, the query algorithm is run by the server,
and returns a pair τ = (v, π).

– Verify(PK/SK, x, τ): The public/private verification algorithm outputs a value
v if τ is correct with respect to x, and an error ⊥ otherwise.

– Update(SK, x, v′): In the update algorithm, the client firstly generates a token
t′x with the secret key SK and then sends the pair (t′x, v′) to the server. Then,
the server uses v′ to update the database record in index x, and t′x to update
the public key PK.

Remark 1. There are two different kinds of verifiability for the outputs of the
query algorithm, i.e., τ = (v, π). In the Catalano-Fiore’s scheme [13], anyone can
verify the validity of τ with the public key PK. Therefore, it satisfies the property
of public verifiability. However, in some applications, only the client can verify
the proofs generated by the server since the secret key of the client is involved in
the verification. This is called the private verifiability [12]. Trivially, a verifiable
database scheme should support both verifiability for various applications.

3 Verifiable Database with Incremental Updates

3.1 Formal Definition

Without loss of generality, we consider the databaseDB as a set of tuples (x,mx)
in some appropriate domain, where x is an index and mx is the corresponding
value which can be arbitrary payload sizes. In order to achieve the confidential-
ity of the data record mx, the client can use an arbitrary semantically-secure
encryption scheme ENC (the key is implicit in the notaton) to encrypt each mx.
Trivially, given the ciphertext vx = ENC(mx), only the client can compute the
record mx. Therefore, we only consider the case of encrypted database (x, vx).
This is also implicitly assumed in the existing academic research.

Informally, verifiable database with incremental updates (Inc-VDB) can be
viewed a special case of VDB in which the updated record m′

x is only slightly
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different from the previous one mx (note that the corresponding ciphertexts
v′x and vx may be totally different). The distinct feature of Inc-VDB is that
the update algorithm is an incremental one. That is, the client can efficiently
compute a new token t′x from the previous one, rather than re-computing it from
scratch (similarly, the server can efficiently update the public key rather than
re-computing it from scratch). Trivially, Inc-VDB can lead to huge efficiency
gains, especially in the scenario when the database is subject to frequent, small
modification. In the following, we present a formal definition for Inc-VDB.

Definition 3. A verifiable database scheme with incremental updates Inc-VDB =
(Setup,Query,Verify, Inc-Update) consists of four algorithms defined below.

– Setup(1k, DB): On input the security parameter k, the setup algorithm is run
by the client to generate a secret key SK to be secretly stored by the client,
and a public key PK that is distributed to all users (including the client itself)
for verifying the proofs.

– Query(PK, x): On input an index x, the query algorithm is run by the server,
and returns a pair τ = (v, π).

– Verify(PK/SK, x, τ): The public/private verification algorithm outputs a value
v if τ is correct with respect to x, and an error ⊥ otherwise.

– Inc-Update(SK, x, v′): In the update algorithm, the client utilizes the secret
key SK to compute a new token t′x from the previous one in an incremental
manner rather than computing it from scratch. Then, the client sends the pair
(t′x, v′) to the server. If the token t′x is valid, the server uses v′ to update the
database record in index x, and t′x to incrementally update the public key PK.

3.2 Security Requirements

In the following, we introduce some security requirements for Inc-VDB. Obvi-
ously, Inc-VDB should inherently satisfy three security properties of VDB [12],
i.e., security, correctness, and efficiency. Besides, we also introduce a new prop-
erty named accountability for Inc-VDB.

The first requirement is the security of Inc-VDB scheme. Intuitively, an Inc-
VDB scheme is secure if a malicious server cannot convince a verifier to accept
an invalid output, i.e., v �= vx where vx is the value of database record in the
index x. Note that vx can be either the initial value given by the client in the
setup stage or the latest value assigned by the client in the update procedure.

Definition 4. (Security) An Inc-VDB scheme is secure if for any database
DB ∈ [q]×{0, 1}∗, where q = poly(k), and for any probabilistic polynomial time
(PPT) adversary A, we have

AdvA(Inc-VDB, DB, k) ≤ negl(k),

where AdvA(Inc-VDB, DB, k) = Pr[ExpInc-VDB
A (DB, k) = 1] is defined as the

advantage of A in the experiment as follows:
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ExperimentExpInc-VDB
A [DB, k]

(PK, SK)← Setup(DB, k);

For i = 1, . . . , l = poly(k);

Verify query :

(xi, τi)← A(PK, t′1, . . . , t
′
i−1);

vi ← Verify(PK/SK, xi, τi);

Inc-Update query :

(xi, v
(i)
xi
)← A(PK, t′1, . . . , t

′
i−1);

t′i ← Inc-Update(SK, xi, v
(i)
xi
);

(x̂, τ̂ )←A(PK, t′1, . . . , t
′
l);

v̂ ← Verify(PK/SK, x̂, τ̂)

If v̂ �=⊥ and v̂ �= v
(l)
x̂ , output 1; else output 0.

In the above experiment, we implicitly assign PK ← PKi after every update
query.

The second requirement is the correctness of Inc-VDB scheme. That is, the
value and proof generated by the honest server can be always verified successfully
and accepted by the client.

Definition 5. (Correctness) An Inc-VDB scheme is correct if for any database
DB ∈ [q]×{0, 1}∗, where q = poly(k), and for any valid pair τ = (v, π) generated
by an honest server, the output of verification algorithm is always the value v.

The third requirement is the efficiency of Inc-VDB scheme. That is, the client
in the verifiable database scheme should not be involved in plenty of expensive
computation and storage (except for an initial pre-processing phase)1.

Definition 6. (Efficiency) An Inc-VDB scheme is efficient if for any database
DB ∈ [q]×{0, 1}∗, where q = poly(k), the computation and storage resources in-
vested by the client must be independent of the size of the database DB. Besides,
the cryptographic operations performed by the client should be incremental.

Finally, we introduce a new requirement named accountability for Inc-VDB
scheme. That is, after the client has detected the tampering of dishonest server,
he should provide some evidence to convince a judge of the facts.

Definition 7. (Accountability) An Inc-VDB scheme is account if for any
database DB ∈ [q] × {0, 1}∗, where q = poly(k), the client can provide a proof
for this misbehavior if the dishonest server has tampered with the database.

1 In some scenarios, the client is allowed to invest a one-time expensive computational
effort. This is known as the amortized model of outsourcing computations [22].
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4 Inc-VDB Framework from Vector Commitment

In this section, we present an efficient Inc-VDB framework from vector commit-
ment and the incremental encrypt-then-MAC mode of encryption. Besides, we
propose a concrete Inc-VDB scheme based on the CDH assumption.

4.1 High Description

Catalano and Fiore presented an elegant construction for building a general
VDB framework from vector commitment [13]. The main idea is as follows: Let
C be the vector commitment on the database. Given a query on index x by
the client, the server provide the value vx and the opening of commitment as
a proof that vx has not been tampered with. During the update phase, the
client computes a new ciphertext v′x and a token t′x and then sends them to the
server. Finally, the server updates the database and the corresponding public
key with the pair (t′x, v

′
x). We also use the vector commitment to construct

incremental VDB schemes. However, the main difference is that the client in our
construction does not compute the updated ciphertext v′x and the corresponding
(updated) commitment C′ in the token t′x. The main trick is that we use a special
incremental encryption to generate the ciphertext v′x. More precisely, we define
v′x = (vx, Px), where Px = (p1, p2, · · · , pω) denotes the bit positions where m′

x

and mx have different values, i.e, m′
x[pi] �= mx[pi] for 1 ≤ i ≤ ω. Trivially, given

v′x = (vx, Px), the client firstly decrypts vx to obtain mx, and then perform
the bit flipping operation on the positions of Px to obtain m′

x. Since the bit
flipping operation is extremely fast, the computation overhead of decrypting v′x
is almost the same as that of decrypting vx. Moreover, it requires much less
storage since |Px| << |v′x| (note that we only consider the case of incremental
updates). Besides, we argue that the incremental encryption scheme (ENC, P )
is more suitable for discrete and uniform update on the data record (note that
previous incremental encryption schemes mainly focus on local updates, e.g.,
updates on a single block of the data).

Note that the secret key of the client should be involved in the update algo-
rithm. That is, only the client is allowed to update the database. In order to
achieve this goal, we utilize the encrypt-then-incremental MAC mode of encryp-
tion [7], i.e., an incremental encryption together with an incremental MAC of the
ciphertext (the encrypt-then-MAC approach [11]). Trivially, we could use an in-
cremental signature scheme to substitute the incremental MAC. In our concrete
construction, we adopt the (incremental) BLS signature scheme [10]. For every
update, the client first verify the current BLS signature on the commitment CR

and all the current modifications (P
(1)
x , · · · , P (T )

x ) of the data record vx, where

P
(i)
x denotes the modification in the i-th update for 1 ≤ i ≤ T . This ensures

that the current database is not tampered with by the server. If the verification

holds, the client then sends a new modification P
(T+1)
x and the corresponding

(incremental) BLS signature to the server.
Since we also use the signature to achieve the integrity of the database, it is

essential to invoke the previous signatures given to the server. Our trick is that
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we introduce a counter Tx to denote the update times of each index x. Also,
the server computes a BLS signature σ on all counters Tx for 1 ≤ x ≤ q. After
an update on the record vx is accomplished, let Tx ← Tx + 1. Then, the server
computes an incremental BLS signature on the updated counters (note that only
the value of Tx is slightly modified). Given a previous signature σ on the count
Tx, the client can reject it by providing a new signature σ′ on the latest counter
T ′
x since Tx < T ′

x. Note that the server cannot deny his signature, therefore this
is a proof that the server is dishonest when a dispute occurred.

4.2 A Concrete Inc-VDB Scheme

In this section, we propose a concrete Inc-VDB scheme based on the CDH as-
sumption.

– Setup(1k, DB): Let k be a security parameter. Let the database be DB =
(x, vx) for 1 ≤ x ≤ q. Let G1 and G2 be two cyclic multiplicative groups
of prime order p equipped with a bilinear pairing e : G1 × G1 → G2.
Let g be a generator of G1. Let H : G1 × {0, 1}∗ → G1 be a crypto-
graphic hash function. Randomly choose q elements zi ∈R Zp and com-
pute hi = gzi , hi,j = gzizj , where 1 ≤ i, j ≤ q and i �= j. Set PP =
(p, q,G1,G2,H, e, g, {hi}1≤i≤q, {hi,j}1≤i,j≤q,i�=j), and the message space
M = Zp.
Let (α, Y = gα) be the secret/public key pair of the client. Let (β, S = gβ)
be the secret/public key pair of the server. Trivially, the validity of Y and
S are ensured by the corresponding certificate of a trusted third party, i.e,
certificate authority. Let CR =

∏q
i=1 h

vi
i be the root commitment on the

database record vector (v1, v2, · · · , vq). For 1 ≤ x ≤ q, let Tx be a counter

for index x with the initial value 0 and H
(0)
x = H(CR, x, 0)

α. The server
can use the batch verification technique of BLS signatures [14] to ensure the

validity of H
(0)
x for 1 ≤ x ≤ q, which requires only the workload of two

pairings. Then, the server computes a signature σ = H(CR, 0, 0, · · · , 0)β on
CR and all initial counters (0, 0, · · · , 0) (note that all Tx has an initial value

0). Also, set aux = {aux1, · · · , auxq}, where auxx = (H
(0)
x , 0) for 1 ≤ x ≤ q.

Define PK = (PP, CR, aux, DB) and SK = α.

– Query(PK, x): Assume that the current public key PK = (PP, CR, aux, DB).
Given a query index x, the server computes πx =

∏
1≤j≤q,j �=x h

vj
x,j and re-

turns the proofs

τ = (vx, πx, H
(Tx)
x , P (1)

x , · · · , P (Tx)
x , Tx).

– Verify(PK, x, τ): Parse the proofs τ = (vx, πx, H
(Tx)
x , P

(1)
x , · · · , P (Tx)

x , Tx). If
the counter Tx in τ is less than the one in σ that the client stored locally,
the client rejects the proofs τ . Otherwise, the client can verify the validity of
τ by checking whether the following two equations e(CR/h

vx
x , hx) = e(πx, g)

and e(H
(Tx)
x , g) = e(H(CR, x, P

(1)
x , · · · , P (Tx)

x , Tx), Y ) hold. If the proofs τ
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is valid, the verifier accepts it and outputs v
(Tx)
x = (vx, P

(1)
x , · · · , P (Tx)

x ).
Otherwise, outputs an error ⊥.

– Inc-Update(SK, x, P
(Tx+1)
x ): To update the record of index x, the client firstly

retrieves the current record v
(Tx)
x from the server. That is, the client ob-

tains τ ← Query(PK, S, x) from the server and checks that Verify(PK, x, τ) =

v
(Tx)
x �=⊥. Then, the client computes the incremental signature

t′x = H(Tx+1)
x = H(CR, x, P

(1)
x , · · · , P (Tx+1)

x , Tx + 1)α

and then sends (t′x, P
(Tx+1)
x ) to the server. If t′x is valid, then the server

adds P
(Tx+1)
x to the record of index x, and updates auxx in PK, i.e., auxx ←

(t′x, P
(1)
x , · · · , P (Tx+1)

x , Tx + 1). Also, the server computes an updated incre-
mental signature σ = H(CR, T1, T2, · · · , Tx +1, · · · , Tq)

β and sends it to the
client. If σ is valid, the client updates it together with Tx+1 locally. Finally,
set Tx ← Tx + 1.

Remark 2. As pointed out in [6], incremental encryption leaks some infor-
mation that is kept secret when using a traditional encryption scheme. In the
resulting incremental encryption scheme (ENC, P ) in our construction, an adver-
sary can determine where a modification takes place, but still cannot determine
the symbol being modified (i.e., hide details about the data record and its modi-
fications). This is similar to previous incremental encryptions [6, 7, 26]. Actually,
we can prove that the incremental encryption (ENC, P ) is semantically-secure if
and only if the original one ENC is semantically-secure (the formal proof will be
given in the full version of this paper). On the other hand, though we only focus
on the bit flipping operation in the our construction, it can be extended to other
operations such as insert, delete, etc.

Remark 3. The storage overhead of client in our construction is all counters Tx

and the latest BLS signature σ. Note that the number of Tx is dependent of q,
it is highly undesirable when q becomes very large. Trivially, we can still use the
vector commitment to solve this issue. The server computes the signature σ =
H(CR, CT )

β , where CT is the vector commitment on all counters (T1, T2, · · · , Tq).
Therefore, the client only requires to store σ and CT and the storage overhead is
independent of q. Trivially, the server should provide a valid opening of CT as a
proof during the verification phase. Due to the property of vector commitment,
the update of CT is still incremental.

5 Analysis of Our Proposed Inc-VDB Scheme

5.1 Security Analysis

Theorem 1. The proposed Inc-VDB scheme is secure.

Proof. Similar to [13], we prove the theorem by contradiction. Assume there
exists a polynomial-time adversary A that has a non-negligible advantage ε in
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the experiment ExpInc-VDB
A [DB, k] for some initial database DB, then we can

use A to build an efficient algorithm B to break the Squ-CDH assumption. That
is, B takes as input a tuple (g, ga) and outputs ga

2

.
Without loss of generality, we assume that the secret/public key pairs of

B and A are (α, Y = gα) and (β, S = gβ), respectively. First, B randomly
chooses an element x∗ ∈R Zq as a guess for the index x∗ on which A succeeds

in the experiment ExpInc-VDB
A [DB, k]. Then, B randomly chooses zi ∈R Zp and

computes hi = gzi all 1 ≤ i �= x∗ ≤ q. Let hx∗ = ga. Besides, B computes:

hi,j = gzizj for all 1 ≤ i �= j ≤ q and i, j �= x∗;
hi,x∗ = hx∗,i = (ga)zi for all 1 ≤ i ≤ q and i �= x∗.

Set PP = (p, q,G1,G2,H, e, g, {hi}, {hi,j}), where 1 ≤ i �= j ≤ q. Given a
database DB, B computes the commitment CR =

∏q
i=1 h

vi
i . Also, B computes

H
(0)
x = H(CR, x, 0)

α for 1 ≤ x ≤ q. Set aux = {aux1, · · · , auxq}, where auxx =

(H
(0)
x , 0) for 1 ≤ x ≤ q.
Define PK = (PP, CR, aux, DB) and SK = α. Note that PK is perfectly

distributed as the real ones. B sends PK to A and A responds with σ =
H(CR, 0, 0, · · · , 0)β .

To answer the verify and update queries of A in the experiment, B just

simply runs the real Query(PK, x) and Inc-Update(SK, x, P
(Tx+1)
x ) algorithms

and responds with the same value. Note that the Inc-Update(SK, x, P
(Tx+1)
x )

algorithm requires the secret key α of B, and A cannot perform this algo-
rithm without the help of B. After every update query, A responds with σ =
H(CR, T1, T2, · · · , Tx + 1, · · · , Tq)

β .
Suppose that (x̂, τ̂ ) be the tuple returned by A at the end of the experiment,

where τ̂ = (v̂, π̂x̂, H
(Tx̂)
x̂ ) and v̂ = (v̂x̂, P̂

(1)
x̂ , · · · , P̂ (Tx̂)

x̂ , Tx̂). Besides, note that if
A wins with a non-negligible advantage ε in the experiment, then we have v̂ �=⊥,
v̂ �= v

(Tx̂)
x̂ . Since H

(Tx̂)
x̂ is a valid BLS signature generated with the secret key α

of B, we have P̂
(i)
x̂ = P

(i)
x̂ for all 1 ≤ i ≤ Tx̂. Otherwise, A successfully forged a

new BLS signature. Therefore, we have v̂x̂ �= vx̂.
If x̂ �= x∗, B aborts the simulation and fails. Otherwise, note that hx̂ = ga

and e(CR, hx̂) = e(hvx̂
x̂ , hx̂)e(πx̂, g) = e(hv̂x̂

x̂ , hx̂)e(π̂x̂, g), B can compute

ga
2

= (π̂x̂/πx̂)
(vx̂−v̂x̂)−1

.

The success probability of B is ε/q.

Theorem 2. The proposed Inc-VDB scheme is correct.

Proof. If the server is assumed to be honest, then the proofs

τ = (vx, πx, H
(Tx)
x , P (1)

x , · · · , P (Tx)
x , Tx).

Firstly, note that CR/h
vx
x =

∏
1≤j≤q,j �=x h

vj
j and πx =

∏
1≤j≤q,j �=x h

vj
x,j, we have

e(CR/h
vx
x , hx) = e(πx, g). Secondly, sinceH

(Tx)
x = H(CR, x, P

(1)
x , · · · , P (Tx)

x , Tx)
α,
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we have e(H
(Tx)
x , g) = e(H(CR, x, P

(1)
x , · · · , P (Tx)

x , Tx), Y ). Hence, the output of

the verification algorithm is always the value v
(Tx)
x .

Theorem 3. The proposed Inc-VDB scheme is efficient.

Proof. It is trivial that the computational and storage resources invested by the
client in our scheme is independent of the size of the database (except for a one-
time Setup phase). More precisely, in the Verify algorithm, the client requires
the workload of four pairings and an exponentiation in G1 (note that it can
be reduced to two pairings and two exponentiations in G1). Besides, in the
Inc-Update algorithm, the client only requires the workload of computing an
incremental BLS signature. On the other hand, the storage of client is only two
elements in G1 (please refer to Remark 3 for more discussions).

Theorem 4. The proposed Inc-VDB scheme is account.

Proof. Given the proofs τ with the counter Tx for index x, the client firstly
compare it with the latest counter Tc for same index x that he stored locally. If
Tx < Tc, then the client sends the corresponding signature σ on Tc to the judge
as a proof. Otherwise, he sends τ to the judge as a proof since the verification

of τ will fail if the server has tampered with the database (i.e., either vx or P
(i)
x

for 1 ≤ i ≤ Tx).

5.2 Efficiency Analysis

In this section, we present the efficacy analysis of the proposed scheme and give
a comparison with schemes [12, 13]. We compare our scheme with Benabbas-
Gennaro-Vahlis’s scheme and Catalano-Fiore’s scheme.

Firstly, all of the three schemes require a one-time expensive computational
effort in the Setup phase. Secondly, our proposed scheme simultaneously satisfies
the properties of public verifiability and accountability. Besides, our scheme is
efficient since the computational resources invested by the client is independent
on the size of the database. Finally, the server invests almost all of the stor-
age resources in order to store and update the database. Trivially, as shown in
Remark 3, the storage overhead of client is only two elements in G1.

Table 1 presents the comparison among the three schemes. We denote by M
a multiplication in G1 (or G2), by E an exponentiation in G1, by I an inverse
in G1, by P a computation of the pairing2, by F an operation on a pseudo-
random function, by H a regular hashing operation3, by En a regular encryption
operation, and byH an incremental hashing operation. We omit other operations
such as addition in G1 for all three schemes.

2 We argue that the groups G1 and G2 in Benabbas-Gennaro-Vahlis’s scheme are dif-
ferent from those in our scheme since their scheme uses bilinear groups of composite
order. Thus, the operations in the groups require different computational overload
though we use the same notions for both schemes.

3 Note that regular means the output of operation should be computed from scratch.
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In the query algorithm of our scheme, the server does not need to compute
the proof each time. Betises, in the the verify and update algorithms, the client
in our scheme requires less computational overhead since it does not require to
perform the operations of encryption and hashing from scratch. Therefore, our
scheme is much more efficient than schemes [12, 13] in these three algorithms.
On the other hand, the server in update algorithm of our scheme requires a
little more computational overhead, i.e., an incremental BLS signature, in order
to achieve accountability. If we use the incremental hash-then-sign paradigm,
the server only performs the operations of an an exponentiation in G1 and an
incremental hashing.

Table 1. Efficiency Comparison

Scheme Scheme [12] Scheme [13] Our Scheme

Computational Model Amortized Amortized Amortized

ComputationalAssumption Subgroup Member CDH CDH

Public Verifiability No Yes Yes

Accountability No No Yes

Server Computation (q − 1)M + 2P (q − 1)(M + E) /
(Query)

Verifier Computation 4M + 3E + 2F 1M + 1E + 1I 1M + 1E + 1I
(Verify) +1P + 1H +2P + 1H +4P + 1H

Client Computation 2M + 3E + 2F 1M + 1E 1E + 1H
(Update) +1P + 1En+ 1H +1En+ 2H

Server Computation 1M / 1E + 1H
(Update)

6 Conclusion

The primitive of verifiable database with efficient updates is useful to solve the
problem of verifiable outsourcing of storage. However, the existing schemes can-
not satisfy the property of incremental update, i.e., the client must re-compute
the new ciphertext and the updated tokens from scratch each time. In this
paper, we first introduce the notion of verifiable database with incremental
updates (Inc-VDB) that can lead to huge efficiency gain when the database
undergoes frequent while small modifications. Besides, we propose a general Inc-
VDB framework by incorporating the primitive of vector commitment and the
encrypt-then-incremental MAC mode of encryption. We also present a concrete
Inc-VDB scheme based on the computational Diffie-Hellman (CDH) assumption.
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