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Abstract. We formalize the notion ofVerifiable Oblivious Storage (VOS),
where a client outsources the storage of data to a server while ensuring
data confidentiality, access pattern privacy, and integrity and freshness
of data accesses. VOS generalizes the notion of Oblivious RAM (ORAM)
in that it allows the server to perform computation, and also explicitly
considers data integrity and freshness.

We show that allowing server-side computation enables us to construct
asymptotically more efficient VOS schemes whose bandwidth overhead
cannot be matched by any ORAM scheme, due to a known lower bound
by Goldreich and Ostrovsky. Specifically, for large block sizes we can con-
struct a VOS scheme with constant bandwidth per query; further, an-
swering queries requires only poly-logarithmic server computation. We
describe applications of VOS to Dynamic Proofs of Retrievability, and
RAM-model secure multi-party computation.

1 Introduction

Oblivious RAM (ORAM) is a notion first proposed by Goldreich and Ostro-
vsky [20] in the context of protecting software from piracy. They consider an
application in which a trusted CPU wishes to hide its memory-access patterns
from an attacker who can view (and possibly modify) the entire contents of
memory. Recently, as cloud computing has gained in popularity, ORAM has
been recast as a means to securely outsource storage to an untrusted server,
while hiding access patterns from the server.

In this paper, we propose Verifiable Oblivious Storage (VOS), which general-
izes the notion of ORAM by allowing the storage medium to perform computa-
tion. In addition, it also explicitly incorporates notions of integrity and freshness.
We will refer to integrity and freshness as verifiability in this paper.

Formally Defining VOS. Our first contribution is to formally define VOS,
and to differentiate the notion of VOS from ORAM. While we are the first to
formalize the VOS notion, VOS has implicitly been used by other researchers
earlier, often being referred to as ORAM. For example, Williams and Sion [35]
recently proposed a scheme that improves round-complexity to O(1) — since
their scheme leverages server-side computation, it is implicitly a VOS scheme.

An important difference between VOS and ORAM schemes is that VOS
schemes can be constructed to achieve asymptotically better bandwidth over-
head than what can be achieved by any ORAM scheme. This is because all
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ORAM schemes are subject to a well-known lower bound result by Goldreich
and Ostrovsky [20]. This result, however, does not apply to VOS.

Several applications where ORAM was previously employed can immediately
achieve asymptotic bandwidth savings if we simply replace the ORAM with
a VOS construction. For example, we know from prior work that RAM-model
secure multi-party computation [24] and Dynamic Proofs of Retrievability [9] can
be built using ORAM as a building block. In both these applications, the party
storing data (or a share of the data) can perform computation. By replacing the
underlying ORAM with a VOS in these constructions [9,24], we can immediately
obtain asymptotic bandwidth savings as illustrated in Section 5.

Asymptotically Efficient VOS Construction. We show that, by allowing
server-side computation, VOS schemes can be constructed that beat the known
logarithmic lower bound on the bandwidth cost for any ORAM scheme [20].
Specifically, we show that there exists a VOS scheme with block size β = Ω̃(λ)
(where λ is the security parameter) having O(β) bandwidth cost for reading or
writing a block; this scheme has O(β) client-side storage, and uses only O(1)
roundtrips and requires only O(β · poly logn) · poly(λ) server-side computation
per data access. This is asymptotically better than what any ORAM scheme can
hope to achieve since, due to the lower bound by Goldreich and Ostrovsky, any
ORAM scheme must have bandwidth cost Ω(β logn) to read or write a block of
β bits. Note that this lower bound holds regardless of the block size β.

1.1 Technical Highlight

Generic ORAM-to-VOS Compiler in the Semi-honest Model. To con-
struct efficient VOS schemes, we rely on fully homomorphic encryption (FHE)
to encrypt and outsource the entire ORAM memory, as well as the ORAM
client’s secret state. The server can now perform computation on behalf of the
client, without learning any secrets. The only occasion when the server needs
to contact the client is to seek the client’s help to decrypt the next physical
address or sequence of physical addresses to read or write. The use of FHE or
PIR to outsource the ORAM client’s computation has been mentioned in earlier
works [16, 26]. The main challenge, however, is how to ensure security when the
server is malicious, and may arbitrarily deviate from the prescribed computation.

Generic ORAM-to-VOS Compiler in the Malicious Model. Achieving
security against a malicious server is much trickier in the VOS setting than in
ORAM. While ORAM achieves integrity and freshness in a straightforward way
by employing standard storage integrity techniques such as message authentica-
tion codes and Merkle hash trees, in VOS, we need to worry about a server that
can arbitrarily deviate from the prescribed computation.

Naive applications of well-known techniques such as SNARKS [3,4,15] result
in server computation that is linear in the size of the dataset. Instead, we lever-
age efficient Verifiable RAM computation (VC-RAM) to enforce honest server
behavior. This allows us to achieve sublinear server computation. In VC-RAM,
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a client outsources a large memory array to a server in a preprocessing step.
Afterwards in an online stage, the client specifies a sequence of inputs, and
asks the server to compute a RAM program over the outsourced memory array
and the inputs. Each query made by the client can result in updates to the
server’s memory array. VC-RAM allows a client to verify the result of these RAM
computations, and meanwhile, the server’s computation overhead is sublinear (in
the data size) for sublinear-time queries.

Although VC-RAM has been informally mentioned in earlier works [2,4,7], we
make the contribution of explicitly formalizing stateful VC-RAM (for repeated
queries) and its security. We also present an efficient VC-RAM scheme with
constant proof size and prover computation that is comparable to the run-time
of the RAM program (as opposed to the dataset size).

Non-generic Optimizations for Specific Schemes. We then apply these
techniques to two existing ORAM schemes, the Path ORAM [33] and the Hier-
archical ORAM by Goodrich and Mitzenmacher [21] that was later improved by
Kushilevitz et al. [25]. The resulting VOS schemes are referred to as Path VOS
and Hierarchical VOS respectively.

Applying Verifiable RAM Computation (VC-RAM) straight out-of-the-box
is not sufficient to achieve the claimed asymptotic bounds for the Path VOS.
We show how to tailor our VC-RAM techniques for the Path VOS to shave a
O(log n) factor off the server computation. Similarly, for the hierarchical VOS,
we propose rebalancing techniques that can shave poly log logn to logn factors
from the bandwidth cost, at increased (but still sublinear) server computation.

While the Path VOS is asymptotically better than the hierarchical VOS, the
hierarchical VOS is necessary for our dynamic PoR application, since the Path
VOS does not satisfy the next-read pattern hiding property [9].

1.2 Related Work

Oblivious RAM (ORAM) was first proposed by Goldreich and Ostrovsky [20],
and later improved in a series of works [13, 14, 16, 19, 21–23, 25, 27–30, 32–36].
Recently, ORAM has been used in outsourcing storage [21,34,36], and in secure
two-party computation to achieve sublinear amortized cost [16, 24].

ORAM with implicit server computation has appeared in several works [16,
35], while still being referred to as ORAM. Williams and Sion rely on server-side
computation to achieve a single-round ORAM scheme [35]. Their scheme en-
sures privacy against a malicious server but not integrity and freshness and has
an asymptotic bandwidth cost of Õ(β log2 n). In comparison, our VOS scheme is
asymptotically more efficient, and ensures both privacy and integrity/freshness
against a malicious server. Gentry et al. [16] proposed using homomorphic en-
cryption to improve ORAM bandwidth cost. However, their scheme is only secure
in the semi-honest model, and is also asymptotically more expensive in band-
width than our construction. Mayberry et al. also proposed to leverage PIR
techniques in combination with ORAM [26]. They too are implicitly using VOS;
their scheme is not secure in the malicious model, and is asymptotically less
efficient than our construction.
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Private Information Retrieval (PIR) [6, 11, 12, 18] allows a client to access a
dataset on the server obliviously. Single-server PIR techniques can achieve O(β)
bandwidth cost per query using FHE techniques [6] for large enough block sizes
β. However, single-server PIR requires server computation that is linear in the
size of the dataset. Also, PIR works for public datasets; in VOS, we consider a
private dataset owned by the client, which is not exposed to the server.

2 Definitions of Verifiable Oblivious Storage

Weuse ((c out, c state), (s out, s state)) ← protocol((c in, c state), (s in, s state))
to denote a (stateful) protocol between a client and server, where c in and c out
are the client’s input and output; s in and s out are the server’s input and out-
put; and c state and s state are the client and server’s states before and after the
protocol.

We define the notion of Verifiable Oblivious Storage (VOS), in which a client
outsources the storage of data to a server while ensuring privacy of the data and
verifiability and obliviousness of access to that data.

Definition 1 (Verifiable Oblivious Storage). A Verifiable Oblivious Storage
(VOS) scheme consists of the following interactive protocols between a client and
a server.

((⊥, z), (⊥, Z)) ← Setup(1λ, (D,⊥), (⊥,⊥)): An interactive protocol where the
client’s input is a memory array D[1..n] where each memory block has bit-
length β; and the server’s input is ⊥. At the end of the Setup protocol, the
client has secret state z, and server’s state is Z (which typically encodes the
memory array D).

((data, z′), (⊥, Z ′)) ← Access((op, z), (⊥, Z)): To access data, the client starts in
state z, with an input op where op := (read, ind) or op := (write, ind , data);
the server starts in state Z, and has no input. In a correct execution of
the protocol, the client’s output data is the current value of the memory D
at location ind (for writes, the output is the old value of D[ind ] before the
write takes place). The client and server also update their states to z′ and Z ′

respectively. The client outputs data := ⊥ if the protocol execution aborted.

We say that a VOS scheme is correct, if for any initial memory D ∈ {0, 1}βn,
for any operation sequence op1, op2, . . ., opm where m = poly(λ), an op :=
(read, ind) operation would always return the last value written to the logical
location ind (except with negligible probability).

2.1 Security Definition

We adopt a standard simulation-based definition of secure computation [8], re-
quiring that a real-world execution “simulate” an ideal-world (reactive) function-
ality F . At an intuitive level, our definition captures the privacy and verifiability
requirements for an honest client, in the presence of a malicious server.
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Ideal World. We define an ideal functionality F that maintains an up-to-date
version of the data D on behalf of the client, and answers the client’s access
queries.

– Setup. An environment Z gives an initial database D to the client. The client
sends D to an ideal functionality F . F notifies the ideal-world adversary
S (of the setup operation, but not of the data contents D). The ideal-world
adversary S says ok or abort to F . F then says ok or⊥ to the client accordingly.

– Access. In each time step, the environment Z specifies an operation op :=
(read, ind) or op := (write, ind , data) as the client’s input. The client sends
op to F . F notifies the ideal-world adversary S (without revealing to S the
operation op). If S says ok to F , F sends D[ind ] to the client, and updates
D[ind ] := data accordingly if this is a write operation. The client then forwards
D[ind ] to the environment Z. If S says abort to F , F sends ⊥ to the client.

Real World. In the real world, an environment Z gives an honest client a
database D. The honest client runs the Setup protocol with the server A. Then
at each time step, Z specifies an input op := (read, ind) or op := (write, ind , data)
to the client. The client then runs the Access protocol with the server. The
environment Z gets the view of the adversary A after every operation. The
client outputs to the environment the data fetched or ⊥ (indicating abort).

Definition 2 (Simulation-based security: privacy + verifiability). We
say that a protocol ΠF securely computes the ideal functionality F if for any
probabilistic polynomial-time real-world adversary (i.e., server) A, there exists an
ideal-world adversary S, such that for all non-uniform, polynomial-time
environment Z, there exists a negligible function negl such that

|Pr [RealΠF ,A,Z(λ) = 1]− Pr [IdealF ,S,Z(λ) = 1]| ≤ negl(λ)

This definition is simulation-based [8] where the client is honest, and the server
is corrupted. (The client is never malicious in our setting.) The definition also si-
multaneously captures privacy and verifiability. Intuitively, privacy ensures that
the server cannot observe the data contents or the access pattern. Verifiability
ensures that the client is guaranteed to read the correct data from the server —
if the server happens to cheat, the client can detect it and abort the protocol.

3 ORAM to VOS: Generic Compilation Techniques

In this section, we describe how to generically transform any given ORAM
scheme to an efficient VOS scheme. In Section 4, we give two specific VOS
schemes - Path VOS and Hierarchical VOS. These are derived from the two
classes of ORAM schemes, the hierarchical construction [20] and its variants [21,
23, 25, 29, 34–36], and the binary-tree scheme [30] and its variants [13, 16, 33].
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3.1 Preliminary: Oblivious RAM

In this paper, we use a slightly different formalization of ORAM from that of
Goldreich-Ostrovsky [20] to make notation simpler for our generic compiler.

An ORAM can be defined by a pair of algorithms ORAM := (Init,Next):

– (Do, st) ← Init(1λ, D): Takes in storage array D containing n blocks each of
bit length β, produces storage array Do, and initial ORAM client state st.

– (out, {raddr}, {waddr}, {data}, st) ← Next(op, st, {fetched}): Each ORAM op-
eration op := (read, ind) or op := (write, ind , data) will proceed in multiple
rounds. Each round will invoke the ORAM.Next algorithm with the following
inputs: 1) current read/write operation op; 2) the (secret) ORAM client state
st; and 3) a set of blocks {fetched} fetched from the last round. If this is the
first round for an operation op, this fetched set is empty by convention. The
ORAM.Next function in turn outputs a set of addresses to read in the next
round denoted {raddr}; a set of addresses {waddr} and data {data} to write
in the next round; updates the client state st; and if this is the last round,
ORAM.Next also outputs the block read out.

The Next algorithm performs one round of the ORAM client computation.

Our notation is explained in the table below:

st secret ORAM client state {raddr} physical addr to read from

ind logical index of a block {waddr} physical addr to write to

op := (read, ind) or
a read/write operation

{fetched} data blocks
op := (write, ind , data) fetched from storage

out the last logical block read {data} data blocks to be written

Security is defined in terms of the inability of any PPT adversary to dis-
tinguish the access patterns generated by an honest execution of the ORAM
client, from those output by a simulator that does not see the sequence of logical
operations.

Definition 3 (ORAM security). We say that an ORAM scheme is secure, if
there exists a stateful simulator Sim, such that for any PPT adversary A,

∣
∣
∣Pr

[

AO[st](·)(1λ) = 1
]

− Pr
[

ASim(1λ,m)(1λ) = 1
]∣
∣
∣ ≤ negl(λ) (1)

where m is the number of oracle queries made by the adversary A; and O[st](·)
denotes a stateful oracle O, with secret state st. The oracle O takes in an oper-
ation op and outputs a sequence of read and write physical addresses. Formally,
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Oracle O:

Initialization. On input D containing n blocks each of β bits, initialize a
storage arrayDo containing no blocks each of size βo. Initialize the set {fetched}
to be an empty set. Run st := ORAM.Init(1λ, n, β).

Data Access. On the j-th input opj , j ∈ N, perform the following:

– First, initialize the output array Γ := ∅.
– For rnd = 1 to Rj where Rj is the total number of rounds for the j-th

operationa:
• Run (out, {raddr}, {waddr}, {data}, st) ←ORAM.Next(op, st, {fetched})
• Let Do[{waddr}] := {data}, and let {fetched} := Do[{raddr}].
• Append {raddr} and {waddr} to the output set Γ .

– Finally, output Γ .

a In all known ORAM constructions, due to the obliviousness requirement, Rj is
a public value determined by the ORAM scheme description itself, and does not
depend on the input sequence.

We use Do[{waddr}] := {data} and {fetched} := Do[{raddr}] to denote writ-
ing {data} to a set of write addresses {waddr}, and reading from a set of read
addresses {raddr} respectively. We assume that {waddr} and {data} are ordered
sets, and we simply write each block data into each waddr in the specified order.

Deterministic vs. Randomized ORAM. In general, the ORAM client algo-
rithms Init and Next can be randomized. However, the Next algorithm can be
made deterministic by choosing a PRF key k at random and including it in the
client state st. Whenever Next requires random bits, this can be generated pseu-
dorandomly from key k. If the randomized ORAM is secure, then the resulting
ORAM with a deterministic Next algorithm is also secure due to the security of
the PRF. Therefore, without loss of generality, in our generic ORAM-to-VOS
compiler, we will assume an ORAM scheme with a deterministic Next algorithm.

3.2 Compilation in the Semi-honest Model

Intuition. The intuition is to have the client outsource the ORAM memory
encrypted under an FHE scheme to the server. The client can then outsource
all its computation to the server as well, since the server can homomorphically
operate over the encrypted data. In this manner, the server only contacts the
client whenever it is necessary for interaction during the computation.

ORAM-to-VOS Compiler in the Semi-honest Model. Figure 1 describes
how to transform an ORAM scheme to a VOS scheme that is secure under a
semi-honest server.

Theorem 1. Let FHE = (KeyGen,Enc,Dec,Eval) be a semantically secure FHE
scheme and let ORAM = (Init,Next) be a secure ORAM scheme. Then, the
generic compiler in Figure 1 gives a Verifiable Oblivious Storage (VOS)
construction secure under a semi-honest server.
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– Setup: Client runs (pk , sk) ← FHE.KeyGen(1λ). Client runs (Do, st) ←
ORAM.Init(1λ, D).
For i = 1 to |Do|, the client computes Do[i] := FHE.Encpk (Do[i]). The client also
computes st := FHE.Encpk (st). Finally, the client sends

(
pk, {Do[i]}i∈|Do|, st}

)
to

the server.
– Access: For the j-th operation op, let Rj denote the number of ORAM rounds

necessary for the j-th operation.
First, the client encrypts op := FHEpk (op) and sends it to the server.
For rnd = 1 to Rj :
• If this is not the first round, i.e., if rnd �= 1, the server performs memory

reads and writes: Do[{waddr}] := {data}, and {fetched} := Do[{raddr}], where
{raddr} and {waddr} are the read and write addresses returned by the client
in the previous round, and data is the part of the FHE evaluation outcome
in the previous round.

• The server homomorphically evaluates the ORAM.Next circuit oncea:
(out, {raddr}, {waddr}, {data}, st) ← FHE.Eval(ORAM.Next(op, st , {fetched}))

• Server sends client {raddr}, {waddr}. The client decrypts them using sk , and
sends the clear-text {raddr}, {waddr} to the server.

Finally, server sends out to the client, and the client decrypts it.

a The first round of the first operation does not depend on {fetched}. Therefore
{fetched} need not be provided as an input.

Fig. 1. ORAM-to-VOS generic compiler: semi-honest model

The proof of Theorem 1 reduces to the security of the encryption scheme and the
ORAM scheme in a straightforward manner. We refer the reader to our online
technical report [1] for a detailed proof.

Optimization: Handling Addresses Independent of Secret
Information. In the construction above, the server performs as much compu-
tation as possible and only seeks the client’s help when it needs to decrypt the
next set of physical addresses to read from or write to. In many ORAM schemes,
there are read/write operations whose physical addresses do not depend on se-
cret client state, memory contents, or the logical addresses accessed. Examples
are the reshuffling operations of the hierarchical ORAM scheme [20] and its
variants [21–23, 25, 34, 36] and the eviction operations of the binary-tree based
ORAM [30] and its variants [33]. To achieve better efficiency, such reshuffling
and eviction operations, can be performed by the server (on its own) homomor-
phically, without seeking the client’s help to decrypt the physical addresses.

3.3 Handling Malicious Servers

One way to handle a malicious server is to rely on a Succinct Non-Interactive
Argument of Knowledge (SNARK). However, if done naively, the circuit for the
SNARK will have size that is at least linear in n, i .e., the size of the outsourced
memory D. This requires the server to perform a linear amount of computation
to produce a proof of correctness.
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Instead, we rely on efficient Verifiable RAM Computation (VC-RAM) to en-
force honest server behavior. Verifiable RAM computation has been informally
introduced in the literature by Ben-Sasson et al. [2] and Bitansky et al. [4]. We,
however, need a stateful version of verifiable RAM computation. Braun et al.
also informally proposed and implemented verifiable RAM computation [7].

We define a stateful version of verifiable RAM computation, where each query
can result in updates to the outsourced dataset. Below, we explicitly formalize
this notion of stateful, multi-query VC-RAM. Relying on the same ideas as Ben-
Sasson et al. [2] and Bitansky et al. [4], we show that verifying RAM computation
can be done efficiently, resulting in server computation that is comparable to the
run-time of the RAM program (as opposed to the size of the memory); succinct
proofs of size O(λ); and efficient client verification time that is not too much
worse than simply reading the input and output.

Verifiable RAM Computation. Consider a scenario where a client outsources
a memory arrayD to a server. Let f denote a RAM program agreed upon by the
client and the server. At each time step t, the client supplies a small input xi,
and the server computes the RAM program f over xi and the current state of
memory D. The RAM program produces an answer which is sent to the client.
It may also update the memory contents outsourced to the server – hence our
notion of VC-RAM is stateful. Verifiability requires that the client be able to
check that the RAM computation results returned by the server are correct.

Definition 4 (Verifiable RAM Computation). A (non-interactive) Verifi-
able RAM Computation (VC-RAM) scheme consists of the following algorithms:

(z, Z) ← Setup(1λ, D, f): Given an initial memory arrary D[1..n] where each
memory word has bit-length �, a RAM program description f , output initial
server state Z (which typically encodes D), and the initial client state z.

(y, Z ′) ← Compute(x, Z): Given a small input x to the RAM program f , the
server’s current state Z, output an encoded answer y, and updated server
state Z ′. 1

(y, b, z′) ← Verify(x, y, z): Given the input x, the client’s current state z, an
encoded answer y, output a decoded answer y, a bit b indicating whether to
accept this answer, and updated client state z′.

Correctness is defined as usual. We require that for any parameters n and �, for
any initial memory array D ∈ {0, 1}�n, for any polynomial-sized RAM program
f which terminates in polynomial time, for any query sequence x1, x2, . . . , xm

where m = poly(λ),

Pr

⎡

⎢
⎢
⎣∃i :

(yi �= f(D, x1, x2, . . . , xi))
∨(bi = 0)

∣
∣∣
∣
∣
∣
∣
∣

(z,Z0) ← Setup(1λ, D, f)
∀i ∈ {1, 2, . . . ,m} :

(yi, Zi) ← Compute(xi, Zi−1)
(yi, bi, z) ← Verify(xi, yi, z)

⎤

⎥
⎥
⎦ ≤ negl(λ)

1 In the specific VC-RAM construction we describe, the encoded answer y includes
the answer itself y, a proof vouching for its correctness, and an updated digest of
the outsourced memory.
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In particular, we use the notation yi := f(D, x1, x2, . . . , xi) to denote the out-
come of the i-th query, starting with an initial memory array of D, and after
computing the RAM program f on queries x1, x2, . . . , xi. Note that each query
is stateful, i.e., may result in updates to the memory array D.

Definition 5 (Verifiability of VC-RAM). We say that a VC-RAM scheme
is verifiable, if for any polynomial time (stateful) adversary A the following holds.

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∃i : (bi = 1)∧
(yi 	= f(D, x1, x2, . . . , xi))

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(D, f) ← A(1λ)
(z, Z) ← Setup(1λ, D, f)
(x1, y1) ← A(Z)
∀i ∈ {1, 2, . . . ,m} :

(yi, bi, z) ← Verify(xi, yi, z)
(xi+1, yi+1) ← A(yi, bi)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ negl(λ)

Note again that the adversary A is stateful, and we do not write its state ex-
plicitly for simplicity.

Theorem 2. There exists a non-interactive VC-RAM scheme such that for each
query: the server runs in time Õ(τ logn)poly(λ) where τ is the run-time of the
RAM program in the unauthenticated setting; the verifier runs in time O((|x|+
|y|)λ); and the client-server bandwidth cost is |x|+ |y|+O(λ).

Note that the client-server bandwidth cost has to be at least |x| + |y|, i.e., the
number of bits necessary to transmit the query x and the answer y. Therefore, the
only additional cost is O(λ) for transmitting an updated digest of the outsourced
memory and a proof vouching for the correctness of the result.

We explain the intuition for the VC-RAM construction. The full construction
can be found in our online technical report [1]. The high level idea is to build a
Merkle tree over all outsourced memory, such that the client keeps the up-to-date
root digest. To verify a RAM computation, we build a “verifier circuit” which
takes in a trace of the computation, including 1) the CPU states before and after
every computation step; 2) the memory contents fetched in every computation
step; and 3) the Merkle-tree digest before and after each computation step.
This verifier circuit checks the trace of the computation: 1) it checks that every
memory read and write is correct using memory checking; and 2) it checks that
every CPU computation step is correct. The server then constructs a SNARK
for this “verifier circuit”. Since this verifier circuit has size that is roughly the
time of the RAM computation, we can achieve prover efficiency, i.e., the prover
time is roughly the time of the RAM computation rather than the size of the
entire dataset.

Relying on VC-RAM to Enforce Honest Server Behavior. In our semi-
honest VOS construction described in Section 3.2, the client essentially out-
sources all of its ORAM memory (encrypted under FHE) to the server, as well
as the ORAM’s secret client state (also encrypted under FHE).
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During each data access operation, in every round of interaction, the server
performs some RAM computation on behalf of the client, and sends a message
to the client to seek its help decrypting certain physical addresses. Using VC-
RAM, the server can attach a succinct proof along with every message sent to
the client, vouching for the correctness of the message. If the message sent to
the client deviates from correct message, the client will surely detect it (except
with negligible probability).

Due to space limits, we state the theorem below, and give the formal presen-
tation of the malicious-model ORAM-to-VOS compiler in our online technical
report [1].

Theorem 3. Assuming existence of SNARKs, collision resistant hash func-
tions, and a semantically secure FHE scheme, the aforementioned VOS con-
struction (described in detail in our online technical report [1]) is secure against
a malicious server.

Proof. (sketch.) Due to the proof of the semi-honest model compiler (Theo-
rem 1), it suffices to show that a malicious server cannot deviate from the pro-
tocol without being detected — this is ensured by the security of the VC-RAM
scheme.

4 Optimizations for Specific ORAM Schemes

4.1 Background on Path ORAM

Stefanov et al. recently proposed the Path ORAM [33]. They formally prove
that to achieve n−α(n) failure probability, the (recursive) Path ORAM construc-
tion achieves O(α(n)β log2 n/ logχ) client-side storage, and O(β log2 n/ logχ)
bandwidth cost — χ is a term related to the block size where the block size
β = χ logn bits. Specifically, to make the failure probability negligible, we can
use any α(n) := ω(1).

Of particular interest is the case when the block size is Ω(λ) — in practical
storage outsourcing applications, this is typically the case. Since n = poly(λ),
the number of recursions would be O(1).

Lemma 1 (Path ORAM [33]). For reasonably large block sizes β = Ω(λ),
Path ORAM achieves bandwidth cost of O(β logn), a client-side storage of
O(α(n)β logn), and O(1) rounds, with a failure probability of n−α(n). Specifi-
cally, to achieve negligible failure probability, it suffices to use any α(n) := ω(1).

We briefly introduce the Path ORAM algorithm below.

Server Data Layout. The blocks on the server are organized into a binary tree.
of height roughly logn. Each node in the tree is a bucket of O(1) capacity. We
use the notation P(x) to denote the path from the leaf node x to the root node,
containing all buckets on the path. Additionally, P(x, �) denotes the bucket in
P(x) at level � in the tree.
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Access(op):

Let op := (read, ind) or op := (write, ind , data) denote the current operation.

1. Set x := pos[ind ]. Pick a fresh new leaf xn. Store pos[ind ] = xn.
2. Request all blocks in the path P(x) from the server.
3. Set stash := stash ∪ P(x).
4. Let data∗ be the current block in stash with index ind .

If op is a write operation, set stash := (stash−{(ind , x, data∗)})∪{(ind , xn, data)}.
Else let stash := (stash− {(ind , x,data)}) ∪ {(ind , xn, data)}.

5. For � = L to 0 (where L is the leaf level, and 0 is the root), do:
Let S be the set of all {(ind ′, x′, data′)} ∈ stash such that P(x, �) = P(x′, �).
S := Select min(|S|, bucketsize) blocks from S.
Set stash := stash − S.
If |S| < bucketsize, pad S with dummy blocks to bucketsize.
Client sends S to the server to write in bucket P(x, �).

The output to the client is data∗, plus the updated position map pos.

Fig. 2. Access protocol for Path ORAM (non-recursive)

Client Data Layout. The client holds a position map where pos[ind ] records
the up-to-date designated leaf node for block ind . A block ind ’s designated leaf
node is x implies that the block resides somewhere along the path P(x).

The client also holds a small stash of size O(α(n) log n) for overflowing blocks,
where any α(n) := ω(1) allows us to achieve negligible failure probability.

Data Access. To perform any data access operation op, where op := (read, ind)
or op := (write, ind , data), the client runs the Access protocol described in Fig-
ure 2. At Step 1, the block being read or written to is randomly remapped to
a new leaf. At Step 2, the client requests a path of data blocks from the server.
At Step 3, the local is merged with the data received from the server. At Step 4,
the read/write operation is performed. At Step 5, the stash is written back into
the tree, greedily pushing data blocks as close to the leaves as possible.

Recursive Path ORAM. The Path ORAM construction above requires the
client to store a position map of O(n logn) bits. However, the client can store
the position map on the server in a smaller ORAM. This is called the recursive
Path ORAM. Particularly, if the block size β := Ω(λ), and n = poly(λ), then
the depth of the recursion is constant.

4.2 Path VOS

We can use the generic compilation techniques described in Section 3 to com-
pile Path ORAM to a VOS scheme — henceforth referred to as the Path VOS
algorithm.
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Path VOS (non-recursive, semi-honest model)

Setup. Given a memory array D, client lays out D into an initial ORAM-tree as in
the Path ORAM algorithm, and creates an initial position map accordingly. The client
encrypts the initial ORAM-tree under FHE, and an empty stash, and outsources both
the FHE-encrypted ORAM-tree and stash to the server. The client keeps the position
map locally.

Access. Let op := (read, ind) or op := (write, ind , data) denote the current operation.

– Client: Looks up its local position map x := pos[ind ]. Pick a fresh random new
leaf x′. Compute op := FHE.Enc(op), x′ := FHE.Enc(x′). Send (op, x, x′) to the
server.

– Server: Let WritePath(P , stash, op, x′) denote the circuit (Steps 3 to 5 in Figure 2)
that on inputting a path P , a stash stash, and the current operation op, returns
the current value of the requested block ind , overwrites the block ind ’s designated
leaf tag to x′, overwrites the block ind with new data if this is a write operation,
and write back blocks in P∪stash to the path P , greedily packing them as close to
the leaf as possible. The server homomorphically computes (out,P(x), stash) ←
FHE.Eval(WritePath(P(x), stash, op, x′)). The server sends to the client the FHE-
encrypted result of the read out.

Fig. 3. Path VOS (non-recursive, semi-honest model)

The semi-honest version of the Path VOS protocol is described in Figure 3.
We can use the VC-RAM techniques described in Section 3.3 to compile the
semi-honest protocol to one that is secure against a malicious server.

Recursive Path VOS. In the above (non-recursive) Path VOS protocol, the
client needs to store a position map of size O(n logn) bits. This client-side stor-
age may be avoided by recursively outsourcing the position map to the server
in a smaller VOS scheme. When the block size is β = Ω(λ), the depth of recur-
sion is O(1). The resulting recursive Path VOS scheme will therefore have O(1)
roundtrips for each data access.

Tailored VC-RAM Techniques for Path ORAM. Based on the semi-honest
protocol described above, and the VC-RAM techniques described in Section 3.3,
we immediately obtain a Path VOS protocol with Õ(β log2 n)poly(λ) server com-
putation per data access2, for block sizes β = Ω̃(λ). (The small increase in block
size is due to FHE.)

We observe that by overlaying the Path ORAM tree structure on top of the
Merkle tree, we can shave a logarithmic factor off the server computation. Re-
call that in our VC-RAM construction, the client maintains a Merkle-hash tree
digest of the ORAM-memory outsourced to the server. To prove that any RAM
computation is correct, the server computes a SNARK for a “verifier circuit”
which verifies 1) that every memory access is correct (through the Merkle tree);
and 2) every step of CPU computation is correct. In particular, the extra logn
factor comes from the cost.

2 Throughout this paper, the notation Õ(f(n)) hides log(f(n)) factors.
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In the case of Path ORAM, since Path ORAM itself is a tree structure, we
can overlay the Merkle tree on top of Path ORAM’s tree structure. In this way,
when Path ORAM accesses a path from the root to a leaf, the underlying memory
checking scheme can vouch for the correctness of the entire path with O(log n)
hashes. This can allow us to shave a O(log n) factor off the server computation
for Path VOS.

Theorem 4 (Path VOS). Assume collision resistant hash functions, the ring
LWE assumption with suitable parametrization [5, 17], and the q-PDH and q-
PKE assumptions [15]. Let α(n) denote any function such that α(n) := ω(1).

There exists a secure VOS scheme for reasonably large block size β = Ω̃(λ),
with O(β) bandwidth cost, Õ(α(n) · β logn)poly(λ) server computation per data
access, O(βn) server-side storage, O(β) client-side storage, and O(β+λ2) client
computation per data access. Furthermore, the failure probability is n−α(n), i.e.,
negligible in n for any α(n) := ω(1).

Proof of security follows in a similar manner as the security proof for the generic
compiler in the malicious model (Theorem 3).

4.3 The Hierarchical VOS

Wepropose a hierarchicalVOS construction based on theGoodrich-Mitzenmacher
ORAM (GM-ORAM) scheme [21] and its variants [25]. Although this hierarchical
VOS construction achieves worse asymptotics than the Path VOS mentioned in
the previous section, it is necessary later for our dynamic proofs of retrievability
scheme — since the Path VOS scheme does not satisfy the next-read pattern hid-
ing property (NRPH) proposed by Cash et al. [9]. (All of our VOS compilers are
NRPH-preserving since they do not alter the sequence of accesses as dictated by
the underlying ORAM.)

Although the basic idea is similar as before, to use FHE to outsource com-
putation to the server, and use SNARK to enforce honest server behavior, we
propose a “read/write (un)balancing” trick that allows us to reduce the band-
width cost. The idea is that if we apply the generic ORAM-to-VOS compiler on
the GM-ORAM scheme, reads will require more bandwidth than writes, since
write is basically a homomorphic shuffling operation which the server can per-
form all on its own without interacting with the client. Therefore, we adjust
the scheme to penalize writes while reducing the cost of reads. Note that in
the traditional ORAM setting, writes cost more bandwidth, and that is why
Kushilevitz et al. [25] propose a read/write balancing trick where they penalize
reads to save on writes — our trick is the opposite of theirs since the read/write
cost comparison is reverse in the VOS setting. Due to space constraints, we only
give our main theorem for the Hierarchical VOS below, and defer the detailed
construction to our online technical report [1].

Theorem 5. Let g(n) denote some function on n. Assume collision resistant
hash functions, the ring LWE assumption with suitable parametrization [5, 17],
and the q-PDH and q-PKE assumptions [15]. Then, there exists a VOS scheme
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for a reasonably large block size β = Ω̃(λ), with O(β log n/ log g(n)) bandwidth
cost, and Õ(βg(n) log3 n/ log g(n))poly(λ) server computation (per data access),
where n is the total number of blocks and λ is the security parameter.

The following table shows some interesting special cases of Theorem 5.

g(n) server computation bandwidth overhead

nε for constant ε < 1 Õ(βnε log2 n)poly(λ) O(β)

logn Õ(β log4 n/ log logn)poly(λ) O(β logn/ log logn)

constant c > 1 Õ(β log3 n)poly(λ) O(β logn)

5 Applications: Efficient Dynamic Proofs of Retrievability

For applications such as Dynamic Proofs of Retrievability, and RAM-model se-
cure multi-party computation where the party storing the data (or a share of the
data) can perform computation, often, just directly replacing the ORAM scheme
with a VOS scheme can reduce the asymptotic communication overhead.

We show how VOS can be useful in Dynamic Proofs of Retrievability, based on
the results of Cash et al. [9]. We note that two recent results have yielded more
practical dynamic PoR schemes [10, 31]. Our dynamic PoR description helps
demonstrate why distinguishing between VOS and ORAM can aid theoretical
understanding. For a practical implementation, the recent schemes by Shi et
al. [31] and Chandran et al. [10] are recommended.

Recently Cash et al. [9] show how to leverage a blackbox ORAM scheme to
construct a dynamic proof of retrievability (PoR) scheme with O(βλ log2 n) cost
(both in terms of bandwidth and server computation) per data access. They
require the underlying ORAM to have a special property which they call “next-
read pattern hiding” (NRPH).

In the dynamic PoR scheme by Cash et al., they assume a passive server which
does not perform any active computation. We observe that if we replaced the
ORAM scheme in their construction with a VOS scheme (which also needs to
satisfy the NRPH property), we would be able to obtain a dynamic PoR scheme
(with server computation), which achieves smaller asymptotic bandwidth cost
than Cash et al. [9].

The Path ORAM algorithm (and hence Path VOS too), however, does not
satisfy the NRPH property, as pointed out by Cash et al. [9]. However, they
showed that the GM-ORAM scheme and its variants indeed satisfy the NRPH
property. Therefore, we rely on the hierarchical VOS described in Section 4.3 to
build our dynamic PoR scheme.

Theorem 6. Let g(n) denote some function on n. Assume collision resistant
hash functions, the ring LWE assumption with suitable parametrization [5, 17],
and the q-PDH and q-PKE assumptions [15]. Then, there exists a dynamic
proof of retrievability scheme for reasonably large block size β = Ω̃(λ), with
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O(β logn/ log g(n)) bandwidth cost and O(βg(n) log3 n/ log g(n))poly(λ) server
computation for each read operation; O(βλ log n/ log g(n)) bandwidth cost and
O(βλg(n) log3 n/ log g(n))poly(λ) server computation for each write or audit op-
eration; with O(β) client-storage and O(βn) server storage. In the above, n is
the total number of blocks and λ is the security parameter.

Below are some interesting special cases of the above theorem. “R:” stands for
read cost, and “W/A:” stands for write/audit cost.

g(n) server computation bandwidth overhead

nε for constant ε < 1
R: Õ(βnε log2 n)poly(λ) R: O(β)

W/A: Õ(βλnε log2 n)poly(λ) W/A: O(βλ)

log n
R: Õ(β log4 n/ log log n)poly(λ) R: O(β log n/ log log n)

W/A: Õ(βλ log4 n/ log log n)poly(λ) W/A: O(βλ log n/ log log n)

constant c > 1
R: Õ(β log3 n)poly(λ) R: O(β log n)

W/A: Õ(βλ log3 n)poly(λ) W/A: O(βλ log n)

In comparison to Cash et al. [9], using Verifiable Oblivious Storage (VOS),
we can reduce the bandwidth cost to O(β logn/poly log logn) for reads, and
O(βλ log n/poly log logn) for writes, with poly-logarithmic server computation.
Furthermore, we can reduce the bandwidth cost to O(β) for reads, and O(βλ) for
writes, with O(βnε)poly(λ) amount of server computation for a constant ε < 1.

Other Applications. Gordon et al. recently proposed to use ORAM to achieve
amortized sublinear-time secure two-party computation [24]. In their setting,
Alice’s input is a large database, and Bob repeatedly makes queries over the
database. Alice wishes to protect the privacy of her database, while Bob wishes
to protect the privacy of his query. Using ORAM, Gordon et al. show that
the cost of securely querying the database can be sublinear when amortizing
the ORAM setup cost over all future queries. Since both parties (each storing a
share of the data) perform computation in this setting, we can simply replace the
ORAM with VOS, and asymptotically, this gives savings in terms of bandwidth
overhead.

6 Conclusion and Open Problems

This paper separates VOS from ORAM, and shows that VOS need not be subject
to ORAM’s lower bounds, since it is a different model where server computation
is allowed. The constructions proposed in this paper use general primitives such
as FHE and SNARKs. An interesting open question is to see how to construct
a practically efficient VOS scheme (potentially without FHE or SNARKs) that
outperforms the best known ORAM in terms of bandwidth overhead. It would
also be interesting to consider how to construct VOS schemes that are asymp-
totically more bandwidth efficient than ORAM from weaker assumptions, e.g.,
without SNARKs or non-falsifiable assumptions.
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