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With the development of mobile network, lots of people now have access to mobile phones and the mobile networks give users
ubiquitous connectivity. However, smart phones and tablets are poor in computational resources such as memory size, processor
speed, and disk capacity. So far, all existing rational secret sharing schemes cannot be suitable for mobile networks. In this paper,
we propose a veri�able rational secret sharing scheme in mobile networks. 
e scheme provides a noninteractively veri�able proof
for the correctness of participants’ share and handshake protocol is not necessary; there is no need for certi�cate generation,
propagation, and storage in the scheme, which is more suitable for devices with limited size and processing power; in the scheme,
every participant uses her encryption on number of each round as the secret share and the dealer does not have to distribute any
secret share; every participant cannot gain more by deviating the protocol, so rational participant has an incentive to abide by the
protocol; �nally, every participant can obtain the secret fairly (means that either everyone receives the secret, or else no one does)
in mobile networks. 
e scheme is coalition-resilient and the security of our scheme relies on a computational assumption.

1. Introduction

1.1. Background. Secret sharing is playing a more and more
important role in modern cryptography. In classical (�, �)
secret sharing schemes [1, 2], a secret can be shared among �
participants. At least � or more participants can reconstruct
the secret, but � − 1 or fewer participants cannot obtain
anything about the secret. Recently, a series of secret sharing
schemes were proposed in [3–6]. However, the works in [1–
6] cannot prevent the dealer or players from cheating. For
example, in Shamir’s scheme, we assume that one party does
not broadcast his share, while exactly �−1 other players reveal
their shares. He can still reconstruct the secret although his
cheating can be detected by the scheme [7–9].

Motivated by the desire to develop more realistic mod-
els, the cryptographic community has signi�cant interest
in exploring protocols for rational secret sharing. Halpern
and Teague [10] �rstly introduced the notion of rational
secret sharing. 
ey pointed out that there exist many

Nash equilibriums which, in some sense, are unreasonable.

erefore, they focus on one particular re�nement of Nash
equilibrium that is determined by iterated deletion of weakly
dominated strategies. However, their protocols cannot work
for 2 out of 2 secret sharing and require the online dealer.
Later, a series of rational secret sharing schemes [11–20]
were proposed. However, none of them are fully satisfactory.

e works in [11–13] rely on secure multiparty computation
which is strong. Kol and Naor’s scheme [14] has information
theoretic security.However, their scheme fails to resist against
coalitions. 
e works in [15, 16] require the involvement of
some trusted external parties during the reconstruction phase
which is di�cult to �nd. 
e solution in [17] constructs a
rational scheme based on repeated games. However, every
player has high probability to learn the secret in his last
round. 
e works of Lepinski et al. [19, 20] and Izmalkov
et al. [15, 18] can guarantee fairness, prevent coalitions, and
eliminate side information. However, their solutions rely on
physical assumption such as secure envelopes and ballot
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boxes. 
e works in [10–14, 17, 21–25] assume the existence
of broadcast channel which is not realistic. 
e works in
[11–13, 19–27] need to exchange public keys associated with
certi�cate management, including revocation, storage and
distribution, and the computational cost of certi�cate veri�-
cation. Nowadays, with the development of mobile network,
a large percent of the world’s population now has access to
mobile phones and incredibly fast mobile networks give users
ubiquitous connectivity. New devices like smart phones and
tablets are providing users with a lot of applications and
services and have fundamentally changed our lives. However,
smart phones and tablets are poor in computational resources
such as processor speed, memory size, and disk capacity.
A drawback of public key infrastructure (PKI) is that they
are computationally very intensive, which makes them less
suitable mobile phones. From the discussion above, it seems
clear that all of above schemes cannot work in a mobile
system.

1.2. Our Results. In this paper, we propose a veri�able
rational secret sharing scheme inmobile networks.
emajor
contribution of this work is as follows. We present a new
veri�able random function for multiparty case, which pro-
vides a noninteractively veri�able proof for the correctness of
participants’ share and handshake protocol is not necessary;
there is no need for certi�cate generation, propagation, and
storage in the scheme, which is more suitable for devices
with limited size and processing power; the public key in
our approach is based on each participant’s identity (e.g.,
telephone number or email address), which can be very
much shorter as compared to the 1024 bits public key in
RSA cryptosystem; in the scheme, every participant uses
her/his encryption on number of each round as the secret
share and the dealer does not have to distribute any secret
share, which reduce the computational consumption and
communicational overhead; the participants do not know
whether the current round is a test round or not, and every
participant cannot gain more by cheating. Finally, every
player can obtain the secret fairly (means that either everyone
receives the secret, or else no one does) in mobile networks.
To the best of our knowledge, we propose the �rst rational
secret sharing scheme over mobile networks.

1.3. Overview. 
e rest of this paper is organized as follows.
In Section 2, the preliminary of game theory and cryptog-
raphy for rational secret sharing are introduced. Section 3
introduces the rational secret scheme in mobile networks. In
Section 4, we analyze the new scheme. Finally, we present our
conclusions in Section 5.

2. Preliminaries

2.1. Basics of Game 
eory. We begin by introducing some
basic terminology of game theory in this section. For more
details, please refer to [28].

Game theory aims to help us understand situations in
which decision-makers interact. A strategic game consists of
three components: (a) a set of players; (b) a set of actions for

each player; (c) for each player, preferences over the set of
action pro�les.

Let � = (�1, . . . , ��) be pro�le of players, �� denote
the strategy employed by player ��, �−� be a strategy pro�le
of all players except for the player ��, and (��� , �−�) =
(�1, . . . , ��−1, ��� , ��+1, . . . , ��) denote the strategy vector � with
��’s strategy changed to ��� ; ��(�) represents ��’s preferences,
which rational players wish to maximize.

De�nition 1 (Nash equilibrium). Let Γ = ({� �}, {��}��=1) be
a game presented in normal form. A strategy pro�le � =
(�1, . . . , ��) ∈ � is Nash equilibrium if, for all 
 and every
��� ∈ � �, it holds that

�� (��� , �−�) ≤ �� (�) . (1)

Generally speaking, Nash equilibrium holds the idea
that no rational party has an incentive to deviate from the
protocol. Everyone is playing a best response to everyone else
and no individual can do strictly better by moving away. 
e
de�nition of Nash equilibrium is designed to model a steady
state among experienced players. In a steady state, no player
wishes to change her behavior, considering the other players’
behavior.

In a traditional secret sharing scheme, a player is thought
as either honest or malicious. However, in a rational secret
sharing scheme, it may make more sense to view the players,
not as good or bad, but as rational individuals trying to
maximize their own utility [10]. For any player��, assume that
any rational player prefers to get the secret rather than miss
it. And secondarily, prefer that as few as possible of the other
players get it.

Now, let we introduce the de�nition of computational
�-immune [13] in which utility functions take the security
parameter � as input.

De�nition 2 (computational�-immune). Let� be an e�cient
protocol for a computing game and C be a set of coalitions
(subsets of players). Let �� be the set of sequences of random
tapes for the �rst � iterations that do not cause � to end.
A sequence � ∈ �� is of the form � = (�1, . . . , ��) where
�� = (��1, . . . , ���) and ��� is the random tape used by player �
in iteration �.


e protocol � is computational �-immune if, for every
coalition � ∈ C and every sequence of tapes �0 =
(�10 , . . . , ��0) ∈ �� used by the players in the �rst � round, there
exists a negligible function �(�) such that, for every player

 ∈ �, every e�cient (deviating) joint strategy ��� for players
in �, and every e�cient joint strategy �−� for players in�/�
implementing �−�, it holds that

� [�� (�−� (�) , �� (�))] + � (�)

≥ � [�� (�−� (�) , ��� (�))] .
(2)

2.2. Cryptographic Terminology

De�nition 3 (bilinear pairing). Let  1 and  2 be multiplica-
tive groups of prime order !. " is the generator of  1.
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A bilinear pairings is a map # :  1 ×  1 →  2 with the
following properties.

(1) Bilinear: for all �, V ∈  1 and all �, % ∈ &, one has
#(�	, V
) = #(�, V)	
.

(2) Nondegenerate: #(", ") ̸= 1.

(3) Computable: there is an e�cient algorithm to com-
pute #(�, V) for all � and V ∈  1.

We describe decisional bilinear Di�e-Hellman inversion
assumption below.

Given (", "�, . . . , "(��)) as input, to distinguish #(", ")1/�
from random. An algorithm� has advantage � in solving the
*-DBDHI problem if

------Pr [� (", "
�, . . . , "(��), # (", ")1/�) = 1]

−Pr [� ("�, . . . , "(��), Γ) = 1]------ ≤ �,
(3)

where 5 ∈ &∗ and Γ ∈  2.

We say that the (�, *, �)-DBDHI assumption holds in  1,
if no �-time algorithm� has advantage at least � in solving the
*-DBDHI problem in  1.

2.3. Veri�able Random Function from Identity-Based Key
Encapsulation (IB-KEM). Veri�able random function (VRF)
was �rstly introduced byMicali et al. [29]. AVRF is a pseudo-
random function that provides a noninteractively veri�able
proof for the correctness of its output, and the VRF has
many useful applications. References [29–32], respectively,
constructed a VRF. Next we brie�y recall the VRF from a
VRF-suitable IB-KEM [32].


e IB-KEM Scheme. An identity-based key encapsulation
mechanism (IB-KEM) scheme allows a sender and a receiver
to agree on a random session key 6. And it is de�ned by

four algorithms: Setup(1�) takes a security parameter as input
and outputs a master key pairs (mpk, msk); KeyDer(msk,
ID) uses the master secret key to compute skID for identity
ID; Encap(mpk, ID) computes a random session key 6
and a ciphertext �; Decap(�, skID) allows the receiver to
decapsulate � to get back a session key 6. An VRF-suitable
IB-KEM scheme [33] is de�ned by the following algorithms.

(i) Setup(1�) is a probabilistic algorithm that takes in
input a security parameter � and outputs a master
public key mpk and a master secret key msk. Let
 1,  2 be bilinear groups of prime order *. Addition-
ally, let #: 1× 1 →  2 denote the bilinear map.
e
description of  1 contains a generator " ∈  1. 
en
the algorithm picks a random � ← &∗, sets ℎ = "�,
and outputs a master key pairs (mpk = (", ℎ),msk =
�).

(ii) KeyDer(msk, ID): the key derivation algorithm uses
the master secret key to compute a secret key skID =
"1/(�+ID) for identity ID.

(iii) Encap(mpk, ID): the encapsulation algorithm picks a
random � ← &� and computes a random session key

6 = #(", ")� using (mpk, ID). Moreover it uses (mpk,

ID) to computes a ciphertext � = ("�"ID)� encrypted
under the identity ID.

(iv) Decap(C, skID) allows the possessor of skID to com-
pute a session key 6 from a ciphertext � as follows:
6 = #(�, skID).


e VRF (Gen, Func, and Ver) Construction Is as follows

(i) Gen(1�) runs (mpk,msk) ← Setup(1�), chooses an
arbitrary identity ID0 ∈ ID, where ID is the identity
space, and computes �0 ← Encap(mpk, ID0). 
en it
sets vpk = (mpk, �0) and vsk = msk.

(ii) Funcvsk(5) computes 9� = (sk�, aux�) =
KeyDer(msk, 5) and ; = Decap(�0, 9�). It returns
(;, 9�) where ; is the output and 9� is the proof.

(iii) Ver(vpk, 5, ;, 9�) �rst checks if 9� is a valid proof
for 5 by computing (�,6) = Encap(mpk, 5, aux�)
and checking if 6 = Decap(�, 9�). 
en it checks
the validity of ; by testing if Decap(�0, 9�) = ;. If
both the tests are true, then the algorithm returns 1,
otherwise it returns 0.

With a modi�cation, we extend the VRF from a VRF-
suitable IB-KEM [32] to multiparty case, and this can be used
in our rational secret sharing schemes. Let !1, . . . , !� be �
participants, ID� ∈ ID (
 = 1, . . . , �) be the identity of !�,
where ID is the identity space, and <� be the private key of !�.

(i) Gen(1�) takes a security parameter �, returns mpk�,
msk� and computes ��0 ← Encap(mpk�, ID�). 
en it

sets vpk� = (mpk�, ��0) and <� = msk�.

(ii) Func��(5) computes 9��(5) = (sk��, aux��) =
KeyDer(msk�, 5) and ���(5) = Decap(��, 9�). It
returns (���(5), 9��(5)) where the VRF output is
���(5) and 9��(5) is the proof.

(iii) VER(vpk�, 5, ���(5), 9��(5)) checks if 9��(5) is a valid
proof by computing (��, 6�) = Encap(mpk�, 5, aux��)
and checking if 6� = Decap(��, 9��(5)). 
en it

checks the validity of ; by testing if Decap(��0,
9��(5)) = ���(5). If both the tests are true, then the
algorithm returns 1, otherwise it returns 0.

2.4. 
e Model of Security

Init. 
e adversary declares the identity set > = (ID1, ID2,
. . . , ID�) that he wants to be challenged.

Setup. 
e challenger runs the setup phase of the algorithm
and tells the adversary the public parameter.

Phase 1. 
e adversary is allowed to issue queries for private
keys for many identities ?�, where |?� ∩ >| < �.

Challenge.
eadversary output amessage 5∗.
e challenger
�ips a random coin % and obtains a session key 6
. If % = 0,
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then 6
 is a correct form, otherwise 6
 is random. Finally, it
sends 6
 to the adversary.

Phase 2.
is goes exactly as phase 1.

Guess. 
e adversary outputs a guess %� of %. 
e adversary
wins if %� = %.

We de�ne the advantage of an adversary in this game as
Pr[%� = %] − 1/2.

3. The Rational Secret Sharing Scheme

3.1. System Parameters. Let !1, . . . , !� be � participants and B
be the secret. Assume ID� ∈ ID (
 = 1, . . . , �) is the identity of
!�, where ID ∈ &∗ is the identity space and ℎ : {0, 1}∗ → &∗
is a collision resistance hash function. Let <� be the private
key of !�.

3.2. Protocol for Sharing Phase

Step 1. 
e dealer chooses an integer �real ∈ &∗ according to
a geometric distribution with parameter C. We discuss how

to set C below. 
e dealer computes Gen(1�) and obtains <�.

Step 2. Choose a prime ! and construct two (� − 1) degree
polynomials. One is D(5) with the knowledge of � pairs of
(ID1 ‖ �real, ��1(�

real)), . . . , (ID� ‖ �real, ���(�
real)) as (4). 
e

other isD�(5)with the knowledge of � pairs of (ID1 ‖ (�real +
1), ��1(�

real + 1)), . . . , (ID� ‖ (�real + 1), ���(�
real + 1)) as (5):

D(5) =
�
∑
�=1
��� (�

real)

⋅
�
∏
�=1,� ̸=�

5 − ℎ (ID� ‖ �real)
ℎ (ID� ‖ �real) − ℎ (ID� ‖ �real)

mod !,
(4)

D� (5) =
�
∑
�=1
��� (�

real + 1)

⋅
�
∏
�=1,� ̸=�

5 − ℎ (ID� ‖ (�real + 1))
ℎ (ID� ‖ (�real + 1)) − ℎ (ID� ‖ (�real + 1))

mod !

= ��real+10 + ��real+11 5+ ��real+12 52 + ⋅ ⋅ ⋅ + ��real+1�−1 5�−1,

(5)

let I�real = D(0) , (6)

value = B ⊕I�real . (7)

Step 3. 
e dealer chooses the � − � minimum integers

K1, . . . , K�−� from [!, * − 1] − (ID� ‖ �) for � = 1, 2, . . . , �real
and computesD(K�) andD�(K�) for � = 1, 2, . . . , � − �.
Step 4. 
e dealer publishes the values ((K�,D(K�),
(K�,D�(K�)) for � = 1, 2, . . . , � − �, value and ℎ(��real+1� ) for
� = 0, 1, . . . , � − 1), and sends <� to !�.

3.3. Protocols for Reconstruction Phase. Let L = {!	1 , !	2 , . . . ,!	�} be the set of the � active participants and (���� (�), 9��� (�))

be the share of !	� (1 ≤ 
 ≤ �). In each iteration (� = 0, 1, . . .)
the players execute the following steps.

Step 1. When � ≡ 
(mod �), each of the � active partic-
ipants sends her share in the order !	�+1 , !	�+2 , . . . , !	� , !	1 ,!	2 , . . . , !	� for 0 ≤ 
 ≤ � − 1.

Step 2. !	� ∈ L receives the share from !	� ∈ L. If VER(vpk�,
�, ���� (�), 9��� (�)) = 0, 9��� (�) is an invalid proof of ���� (�),
then, with the knowledge of � pairs of (ID	1 ‖ (� −
1), ���1 (� − 1)), . . . , (ID	� ‖ (� − 1), ���� (� − 1)) and � − �
pairs of (K1,D(K1)), . . . , (K�−�,D(K�−�)), the (� − 1) degree
polynomial N(5) can be uniquely determined as follows:

N (5) =
�
∑
�=1
���� (� − 1)

⋅
�
∏
�=1,� ̸=�

5 − ℎ (ID	� ‖ (� − 1))
ℎ (ID	� ‖ (� − 1)) − ℎ (ID	� ‖ (� − 1))

⋅
�−�
∏
�=1

5 − K�
ℎ (ID	� ‖ (� − 1)) − K�

+
�−�
∑
�=1
D(K�)

⋅
�−�
∏
�=1,� ̸=�

5 − K�
K� − K�

�
∏
�=1

5 − ℎ (ID	� ‖ (� − 1))
K� − ℎ (ID	� ‖ (� − 1))

mod !.

(8)

We let I�−1 = N(0). 
e secret can be obtained as B� =
value ⊕I�−1 and then output B� and terminate the protocols.
If VER(vpk�, �, ���� (�), 9��� (�)) = 1, 9��� (�) is a valid proof of

���� (�), then the protocol continues.

Step 3. With the knowledge of � pairs of ((ID	1 ‖
�), ���1 (�)), . . . , ((ID	� ‖ �), ���� (�)) and � − � pairs of

(K1,D�(K1)), . . . , (K�−�,D�(K�−�)), the (� − 1) degree poly-
nomial N�(5) can be uniquely determined as follows:

N� (5) =
�
∑
�=1
���� (�)

�
∏
�=1,� ̸=�

5 − ℎ (ID	� ‖ �)
ℎ (ID	� ‖ �) − ℎ (ID	� ‖ �)

⋅
�−�
∏
�=1

5 − K�
ℎ (ID	� ‖ �) − K�

+
�−�
∑
�=1
D� (K�)

⋅
�−�
∏
�=1,� ̸=�

5 − K�
K� − K�

�
∏
�=1

5 − ℎ (ID	� ‖ �)
<	� − ℎ (ID	� ‖ �)

mod ! = %�0

+ %�15+ %�252 + ⋅ ⋅ ⋅ + %��−15�−1.

(9)

Step 4. If ℎ(%�� ) ̸= ℎ(��real+1� ) for � = 0, 1, . . . , � − 1 then

the protocol goes to next iteration, else if ℎ(%�� ) = ℎ(��
real+1
� ),

then � = �real + 1, with the knowledge of � pairs of ((ID	1 ‖
�real), ���1 (�

real)), . . . , ((ID	� ‖ �real), ���� (�
real)) and � − �
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pairs of (K1,D(K1)), . . . , (K�−�,D(K�−�)), the (� − 1) degree
polynomial Nreal(5) can be uniquely determined as follows:

Nreal (5) =
�
∑
�=1
���� (�

real)

⋅
�
∏
�=1,� ̸=�

5 − ℎ (ID	� ‖ �
real)

ℎ (ID	� ‖ �real) − ℎ (ID	� ‖ �real)

⋅
�−�
∏
�=1

5 − K�
ℎ (ID	� ‖ �real) − K�

+
�−�
∑
�=1
D(K�)

⋅
�−�
∏
�=1,� ̸=�

5 − K�
K� − K�

�
∏
�=1

5 − ℎ (ID	� ‖ �
real)

<	� − ℎ (ID	� ‖ �real)
mod !.

(10)

LetI�real = Nreal(0). 
e secret can be obtained as B = value⊕
I�real . 
en output B and terminate the protocols.

4. Proof of Security

In this section, the poof of the security is discussed.

�eorem 4. If an adversary can break our scheme, then one
can build a simulator to solve the *-DBDHI assumption with a
nonnegligible advantage.

Proof. We assume there exists an adversary � that has
nonnegligible advantage �(�) into breaking the protocol.

en we can build a simulator N which is able to break the
*-DBDHI assumption with nonnegligible advantage.

Input to the Reduction. Algorithm N receives a tuple (", "�,
. . . , "(��), Γ) ∈  �+11 ×  2, and output 1 if Γ = #(", ")1/�, or 0
otherwise.

Key Generation. Assume that � tries to guess the challenge
message 50 ∈ &∗. Let � = O − 50. Using the binomial

theorem, it computes (", "�, . . . , "(��)). 
en N de�ne P(Q) =
∏�∈��� ̸=�0(Q + S) = ∑�−1�=0 U�Q� and compute the new base "� =
"�(�) = ∏�−1�=0 "�

��� . Finally it computes ℎ = ("�)� = ∏�−1�=1 "�
���−1 ,

picks a random �, and sets �0 = ("�)�. 
en it gives "�, ℎ, �0

as the public key to �.

Phase 1. 
e adversary � is allowed to issue queries for
private keys for many identities ?�, where |?� ∩ >| < �
and > = (ID1, ID2, . . . , ID�). Consider the 
th query (1 ≤

 < *) on message 5�. If 5� = 50, then N fails. Otherwise
N can compute the secret key as follows. Firstly it de�nes

P�(Q) = P(Q)/(Q + 5�) = ∑�−2�=0 Q�]�. 
en it computes

sk�� = ("�)1/(�+��) = "��(�) = ∑�−2�=0 "�
�
V� and returns it to

� as the private key of ?�. With the knowledge of � pairs
of ((ID	1 ‖ �), ���1 (�)), . . . , ((ID	� ‖ �), ���� (�)) and � −
� pairs of (K1,D�(K1)), . . . , (K�−�,D�(K�−�)), the simulator
can construct the (�−1) degree polynomialN�(5) by using the

Lagrange interpolation polynomial. However, the coe�cient
of the N�(5) is identical to that of the original scheme.

Challenge. 
e adversary � output a message 5∗. If 5∗ ̸=
50, then N fails. Otherwise, the challenger can compute a
session key 6
 in the following way. Let P�(Q) = P(Q)/(Q +
50) − V/(Q + 50) = ∑�−2�=0 Q�V� and compute &0 =
(∏�−1�=0∏

�−2
�=0#("�

� , "��))(∏�−2�=0#(", "�
�)���) = #(", ")(�(�)−�2)/�.


e simulator �ips a random coin, %, and sets a session key

6
 = (&�2 ⋅ &0)�, if % = 0, then & = #(", ")1/� and 6
 =
#("�, "�)�/(�+��) is a correct form. Otherwise & is a random,
and so is 6
. Finally, it sends 6
 to the adversary.

Phase 2. 
is goes exactly as phase 1.

Guess.
e adversary� outputs a guess %� of %. N returns %� as
its guess as well.

For the sake of contradiction, suppose there exists a
probabilistic polynomial time attacker � can break the
protocol with probability 1/2 + �(�). 
en we can build a
simulator N which is able to break the *-DBDHI assumption
with probability 1/2 + �(�). (
e output of N is the same as
the output of�.) Because the *-DBDHI assumption is hard to
be solved, there is no any adversary � that has nonnegligible
advantage �(�) into breaking the protocol.
is completes the
proof.

�eorem 5. 
e above rational secret sharing scheme is
computational �-immune, and rational participant has an
incentive to abide by the protocol.

Proof. Given the � − � public values D(K�),D�(K�), the
two (� − 1) degree polynomialsD(5),D�(5) cannot be con-
structed by anyone. So, an adversary can learn nothing about
the secret. Any � − 1 or fewer participants cannot obtain the
secret too. In the scheme, any rational participant can detect
and determine who is cheating. Suppose that !	� ∈ L receives

the share from !	� ∈ L. If VER(vpk�, �, ���� (�), 9��� (�)) =
0, 9��� (�) is an invalid proof of ���� (�), and !	� terminates

the protocols. If VER(vpk�, �, ���� (�), 9��� (�)) = 1, 9��� (�)
is a valid proof of ���� (�), and !	� continues the protocols.

Assume that�� who is themember of the collusion� does not

knowwhich round is �real. He can only guess the secret and get
W+� with probability X, if the collusion � does not participate
in the scheme. On the contrary, he can guess a wrong secret
and get W−� with probability 1 − X. So, when the collusion �
does not participate in the protocols, the expected utility of��
is as in

� (Wguess
� ) = X ∗ W+� + (1−X) ∗ W−� . (11)


e participant �� will get utility W+� , if the collusion � par-
ticipates in the protocols and aborts in real round with prob-
ability C. Otherwise, the participant ��’s utility is �(Wguess

� ).

erefore, when the collusion � deviates, the expected utility
of �� is at most

C ∗ W+� + (1−C) ∗ � (Wguess
� ) . (12)
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When the collusion� abides by the protocol, the utility of the
participant �� is W�. So, rational collusion � has an inventive
not to deviate from the protocol if the protocol satis�es

W� > C ∗ W+� + (1−C) ∗ � (Wguess
� ) . (13)

We denote C� the probability that players in� can only have a
negligible advantage over C.
ere exists a negligible function
\(�) such that for every � it holds that

C� ≤ C+ \ (�) . (14)

We letW∗	 denote the utility when allowing for the computa-
tionally secure. 
en

W∗	 = C�W+� + (1−C�) ∗ � (Wguess
� )

= C� (W+� −� (Wguess
� )) + � (Wguess

� )

≤ (C + \ (�)) (W+� −� (Wguess
� )) + � (Wguess

� )

≤ C ∗ W+� + (1−C) ∗ � (Wguess
� )

+ \ (�) (W+� −� (Wguess
� )) < W� + � (�) .

(15)


at is for every iteration and for all � ⊂ [�] with |�| ≤ � − 1,
all 
 ∈ �, and any ��� ∈ Δ(��), no information about the
secret is revealed. So, the scheme is computational�-immune
and rational player has an incentive to abide by the protocol.

5. Comparison

Wecompare the e�ciency and securitywith previous rational
secret sharing scheme as follows.


e work of Halpern and Teague [10] assumes the
existence of simultaneous broadcast channels (SBC). 
eir
schemes fail to resist against coalitions and have expected
round complexity `(5/O3). 
e works in [11–13] rely on
secure multiparty computation which are ine�cient. 
e
works of Kol and Naor [14] have shown how to avoid
simultaneous broadcast, at the cost of increasing the round
complexity. In addition, the scheme is not collusion-free, and
the round complexity is `(�/X) and the works in [15, 16]
require the involvement of some trusted external parties
during the reconstruction phase which is di�cult to �nd.
e
round complexity of Maleka et al. [17] is `(�2). 
e works of
Izmalkov et al. [18] and Lepinski et al. [19, 20] rely on a physi-
cal assumption such as secure envelopes and ballot boxes.
e
works in [10–14, 17, 21–25] assume the existence of broadcast
channel which is not realistic. 
e works in [11–13, 19–27]
need handshake protocol and exchange public keys asso-
ciated with certi�cate management, including distribution,
storage, revocation, and the computational cost of certi�cate
veri�cation, which are relatively expensive and limit their
practical application to mobile networks. In contrast with
prior schemes, the round complexity is `(1/C) (the value of
O, X, and C is roughly the same) in our scheme, and we do
not assume multiparty computations, physical assumption,

or trust party, which is more practical; the scheme provides
a noninteractively veri�able proof for the correctness of
participants’ share and handshake protocol is not necessary;
there is no need for certi�cate generation, propagation, and
storage in the scheme, which is more suitable for devices
with limited size and processing power; the public key in our
approach is based on each participant’s identity which can
be very much shorter as compared to the 1024 bits public
key in RSA cryptosystem; in the scheme, every participant
uses her encryption on number of each round as the secret
share and the dealer does not have to distribute any secret
share, which reduce the computational consumption and
communicational overhead; the scheme can withstand the
conspiracy attack and no player of the coalition � can do
better, even if the whole coalition � cheats.

6. Conclusions

We propose a rational secret sharing scheme in mobile
networks.
e scheme, without needing to resort to broadcast
channel, eliminates the online certi�cate authority and sim-
pli�es key management, which is more practical for devices
of limited size and processing power, such as mobile phones.
In addition, the scheme assumes neither the availability of
a trusted party nor multiparty computations in the recon-
struction phase. Moreover, the scheme can withstand the
conspiracy attack and no player of the coalition � can do
better, even if thewhole coalition� cheats. So, rational players
have no incentive to cheat in the scheme, and, �nally, every
player can obtain the secret fairly in mobile networks.
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