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Privacy in secret-ballot elections has traditionally been attained by using a

ballot box or voting booth to disassociate voters from ballots. Although such

a system might achieve privacy, there is often little con�dence in the accuracy

of the announced tally. This thesis describes a practical scheme for conducting

secret-ballot elections in which the outcome of an election is veri�able by all

participants and even by non-participating observers. All communications are

public, yet under a suitable number-theoretic assumption, the privacy of votes

remains intact.

The tools developed here to conduct such elections have additional indepen-

dent applications. Cryptographic capsules allow a prover to convince veri�ers

that either statement A or statement B is true without revealing substantial in-

formation as to which. Secret sharing homomorphisms enable computation on

shared (secret) data and give a method of distributing shares of a secret such

that each shareholder can verify the validity of all shares.
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Chapter 1

Introduction and Overview

Over the last decade, the �eld of public-key cryptography has ourished within

theoretical computer science. Techniques based upon infeasible computations

now exist which allow one to perform tasks that seem to defy intuition.

This thesis broadens the scope of some known techniques and develops a

number of new ones. Some of the methods given here also greatly simplify many

previous cryptographic protocols.

Although there are many applications for the tools presented here, there is

one common thread throughout this work. Virtually all of the tools described are

incorporated to construct a schema for holding secret-ballot elections in which

the outcome of an election is veri�able by all participants and observers. This

schema has a number of desirable properties.

� The schema is practical. The necessary protocols can be run in reasonable

time with current technology. In addition, the protocols contain a large

amount of intrinsic parallelism. Expected future technologies can make

these protocols extremely fast.

� Every participant (and even mere observers) can verify the tally of an elec-

tion. They can be convinced that, with extremely high probability, the

election tally given represents the true tally of the election.

� The schema is robust. No action can be taken by any voter or set of voters

which will corrupt or disrupt the election in any way. Failure of up to

half of the appointed \tellers" (or vote counters) can be withstood without

corrupting or disrupting the election.

1



2 CHAPTER 1. INTRODUCTION AND OVERVIEW

� The secrecy of legitimate votes remains intact (under a cryptographic as-

sumption to be described later) even if up to half of the tellers and an ar-

bitrary set of voters collude. This number can be increased up to the point

where if even one teller remains honest, then privacy of votes is maintained,

but there is a corresponding decrease in the number of teller failures which

an election can survive.

One of the additional applications developed here arises from the notion of

secret sharing homomorphisms. Secret sharing (as developed by Blakley and

Shamir) allows shares of a secret to be distributed to many shareholders in such

a way that any subset of shareholders of size beyond a predetermined threshold

can reconstruct the secret. Smaller subsets, however, can obtain no information

whatsoever about the secret.

It is shown that in many secret sharing schemes, computations on a secret or

set of secrets can be accomplished by computing directly upon the corresponding

shares. Thus, for a wide variety of simple arithmetic functions, shares of the

result of applying the function to the secret(s) can be obtained by applying

related functions directly to shares of the secret(s).

When secret sharing homomorphisms are combined with certain encryption

methods described in this work, some powerful new tools can be created. One

of these tools gives a practical mechanism whereby the holder of a secret can

distribute shares to a number of agents in such a way that each agent can be

convinced that it holds a legitimate share of the secret. This task, called veri�able

secret sharing, has been studied in existing literature, but this is the �rst practical

construction of a veri�able secret sharing scheme.

The notion of cryptographic capsules is another tool which has applications

beyond elections. Capsules provide a simple mechanism which allows one agent to

convince a second that one of two (or more) statements is true without revealing

which is the case. This tool is useful in a wide variety of interactive protocols,

some of which will be described.

Structure of this Thesis

Chapter 2 develops the theory of higher residues and an encryption mechanism

based on this theory. The chapter concludes with an oversimpli�ed �rst pass at

veri�able secret-ballot elections.
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Chapter 3 gives an overview of interactive proofs and introduces the notion

of cryptographic capsules. It is shown how capsules can be used to enhance the

capabilities and simplify many uses of interactive proofs. This chapter concludes

with a second pass at elections which shows how to use interactive proofs and

cryptographic capsules to plug some of the gaps left by the �rst pass.

Chapter 4 describes the concept of secret sharing (or threshold) schemes and

the rather surprising homomorphism properties which allow direct computations

on shares to be performed in many such schemes. As an application of secret

sharing homomorphisms, this chapter describes a simple and practical method of

veri�able secret sharing. Those already familiar with interactive proofs can read

this chapter independently of chapter 3.

Chapter 5 ties together the ideas of the previous three chapters by using

them to construct a general schema for practical, robust, and (most importantly)

veri�able secret-ballot elections. The properties claimed are carefully delineated,

and rigorous proofs are given that these properties are actually attained.
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Chapter 2

The Election Encryption

Function and its Properties

Since 1976, when Di�e and Hellman �rst published their landmark paper New

Directions in Cryptography ([DiHe76]), public-key cryptography has blossomed

into a major discipline within theoretical computer science. In 1978, Rivest,

Shamir, and Adleman published the �rst true public-key cryptosystem ([RSA78]).

Their system was based upon Euler's theorem and the security of their scheme

relies upon the di�culty of factoring large integers. From that time on, number-

theoretic methods have been closely associated with public-key cryptography.

In order to proceed, a small amount of background and notation is necessary.

De�nition We say that a j b (read \a divides b") if and only if there exist an

integer m such that am = b. We write a

 

j b to indicate that it is not the case

that a divides b.

De�nition We say that a �

n

b (read \a is equivalent to b modulo n") if and

only if n j (a � b).

De�nition We use a mod n to denote the unique integer b such that 0 � b < n

and a �

n

b.

De�nition Let Z

�

n

= fintegers x : 0 < x < n; gcd(x; n) = 1g denote the multi-

plicative subgroup of integers modulo n.

De�nition Denote by '(n) the size of the group Z

�

n

. ('(N) is often called the

Euler totient function.) It is well known that if the prime decomposition of n is

5



6 CHAPTER 2. THE ELECTION ENCRYPTION FUNCTION

given by n = p

e

1

1

p

e

2

2

� � � p

e

k

k

, then

'(n) = p

e

1

�1

1

(p

1

� 1)p

e

2

�1

2

(p

2

� 1) � � � p

e

k

�1

k

(p

k

� 1):

2.1 Probabilistic Encryption

In 1984, Goldwasser and Micali ([GoMi84]) introduced the notion of probabilistic

encryption. A probabilistic encryption method allows one to encrypt a �xed

value in many di�erent ways. Thus, even when given the encryption of a value

and details of the encryption mechanism, it is not necessarily possible for an

adversary to determine whether or not the encryption represents the encryption

of a chosen value.

Goldwasser and Micali develop a bit encryption function based on the problem

of quadratic residuosity.

De�nition An integer y is a quadratic residue modulo an integer n if and only

if there exists an integer x such that y �

n

x

2

. Let Z

2

n

denote the set of quadratic

residues modulo n which are relatively prime to n.

Let n be an integer which is the product of two distinct odd primes p and q.

An integer z which is relatively prime to n is said to be of Jacobi symbol +1 if

z 2 Z

2

p

and z 2 Z

2

q

or if z =2 Z

2

p

and z =2 Z

2

q

. Otherwise, z is said to be of Jacobi

symbol �1. Every quadratic residue in Z

�

n

clearly has Jacobi symbol +1.

There is a simple e�ective polynomial time procedure originally due to Gauss

([Gaus01]) which computes the Jacobi symbol of an integer with respect to a given

modulus. There is, however, no known polynomial time procedure to, without

the factorization of n, determine whether or not an integer with Jacobi symbol

+1 is a quadratic residue modulo n. In addition, given a single integer y of Jacobi

symbol +1 which is not in Z

2

n

, it is possible to uniformly select quadratic residues

or quadratic non-residues modulo n, even if the factorization of n is not known.

Thus, a probabilistic public-key bit encryption function proposed by Gold-

wasser andMicali can be de�ned by a user by selecting an n of known factorization

n = pq where p and q are distinct odd primes and releasing this n together with a

y of Jacobi symbol +1 which is not in Z

2

n

. An encrypted bit may be sent to this

user by releasing a quadratic residue to indicate a zero or a quadratic non-residue

of Jacobi symbol +1 to indicate a one. The user which possesses the factorization

of n can easily determine which is the case (see [NiZu72], for instance). Without
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the factorization, however, distinguishing between the two cases is an apparently

di�cult problem of unknown complexity.

Goldwasser and Micali show that any non-trivial information that an adver-

sary can e�ectively derive from even the repeated use of such a function would

yield an e�ective procedure for distinguishing residues from non-residues, and no

such procedure is known.

2.2 Higher Residues

For the purposes of this work, it is useful to generalize the Goldwasser and Micali

encryption function to a function which can encrypt more than one bit at a time.

To accomplish this, higher residues are used.

De�nition For a given integer n, an integer z is said to be an r

th

residue modulo

n if and only if there exists some integer x such that z �

n

x

r

. Let Z

r

n

denote the

set of r

th

residues modulo n which are relatively prime to n, and denote by Z

r

n

the set of z 2 Z

�

n

which are not r

th

residues modulo n.

Lemma 2.1 Z

r

n

is a subgroup of Z

�

n

.

Proof:

To see that Z

r

n

is a closed, consider z

1

; z

2

2 Z

r

n

with z

1

�

n

x

r

1

and z

2

�

n

x

r

2

.

The product z

1

z

2

�

n

x

r

1

x

r

2

�

n

(x

1

x

2

)

r

is an r

th

residue modulo n and is relatively

prime to n since both z

1

and z

2

are by de�nition relatively prime to n.

To see that inverses exist, simply note that if z �

n

x

r

, then (x

�1

)

r

2 Z

r

n

is

the inverse of z.

Of course, 1

r

�

n

1 so 1 2 Z

r

n

for all r.

Finally, associativity is inherited from the group Z

�

n

which in turn inherits its

associativity from integer multiplication.

Lemma 2.2 Given a �xed r and n, every integer z 2 Z

r

n

has the same number

of r

th

roots.

Proof:

Let �

1

; �

2

; : : : ; �

k

be the distinct r

th

roots of 1. Since 1

r

�

n

1, 1 2 Z

r

n

and

k � 1. Next consider a z 2 Z

r

n

. By de�nition, there exists some x 2 Z

�

n

such that z �

n

x

r

. Since Z

�

n

is a group, x�

i

are distinct for distinct i. Also,

(x�

i

)

r

�

n

x

r

�

r

i

�

n

z. Thus, the x�

i

form k distinct r

th

roots of z. If z had some
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additional r

th

root x not among the x�

i

, then (xx

�1

)

r

�

n

x

r

x

�r

�

n

zz

�1

�

n

1.

Thus, xx

�1

is an r

th

root of 1 and must be congruent to some �

i

. But if xx

�1

�

n

�

i

,

then x �

n

x�

i

, and this violates the assumption on x. Thus, every z 2 Z

r

n

has

the same number of r

th

roots as does 1.

Lemma 2.3 If r and '(n) are relatively prime, then every integer z 2 Z

�

n

is an

r

th

residue modulo n (i.e. Z

r

n

= Z

�

n

), and an r

th

root of z is given by z

A

mod n

where A satis�es Ar �B'(n) = 1.

Proof:

Since r and '(n) are relatively prime, the Diophantine equation Ar�B'(n) =

1 has integral solutions A and B which can easily be computed by the extended

Euclidean algorithm when the factorization of n (and hence '(n)) is known.

Since z is relatively prime to n, z

'(n)

�

n

1 (by Euler's theorem). Therefore,

(z

A

)

r

�

n

z

B'(n)+1

�

n

(z

'(n)

)

B

z �

n

z:

Thus, z

A

is a r

th

root of z modulo n.

Lemma 2.3 serves as the basis for the RSA public-key cryptosystem (see

[RSA78]).

2.3 Residue Classes

De�nition Let r, n, and y be �xed integers. If w 2 Z

�

n

is expressible as w �

n

y

c

z

for some z 2 Z

r

n

, then w is said to be of residue class c with respect to r, n, and

y. The set of all elements of Z

�

n

which are of residue class c (again with respect

to a �xed r, n, and y) is denoted by RC[c]

(r;n;y)

(or simply RC[c] when r, n, and

y are understood). In particular, it is clear that for all y 2 Z

�

n

, RC[0]

(r;n;y)

= Z

r

n

.

Lemma 2.4 Let (r; n; y) be integers with y 2 Z

�

n

. If RC[c

1

]\RC[c

2

] is not empty,

then RC[c

1

] = RC[c

2

].

Proof:

Let w 2 RC[c

1

] \ RC[c

2

]. By de�nition, w �

n

y

c

1

z

1

�

n

y

c

2

z

2

for z

1

; z

2

2 Z

r

n

.

Since Z

r

n

is a group, this implies that y

c

1

�c

2

�

n

z

2

z

�1

1

2 Z

r

n

.

Let w

0

2 RC[c

1

]. By de�nition, w

0

�

n

y

c

1

z

0

1

for some z

0

1

2 Z

r

n

. Let z

0

2

�

n

z

0

1

y

c

1

�c

2

2 Z

r

n

. Thus, z

0

1

�

n

y

c

2

�c

1

z

0

2

. Now,

w

0

�

n

y

c

1

z

0

1

�

n

y

c

1

y

c

2

�c

1

z

0

2

�

n

y

c

2

z

0

2

:
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Since z

0

2

2 Z

r

n

, w

0

2 RC[c

2

]. Thus, RC[c

1

] � RC[c

2

]. By symmetry, therefore,

RC[c

1

] = RC[c

2

], as desired.

Lemma 2.4 implies that for a given r, n, and y, any two residue classes either

coincide or are disjoint.

De�nition Given a triple of integers (r; n; y), the norm of (r; n; y) (written

j(r; n; y)j) is the least positive integer m such that y

m

2 Z

r

n

. If no such inte-

ger exists, then j(r; n; y)j =1.

When y =2 Z

�

n

, then j(r; n; y)j =1 since Z

r

n

consists of only those r

th

residues

which are relatively prime to n. Whenever y 2 Z

�

n

, however, j(r; n; y)j is bounded

by r since y

r

2 Z

r

n

.

Lemma 2.5 Let (r; n; y) be integers with y 2 Z

�

n

. The norm m = j(r; n; y)j is a

divisor of r.

Proof:

Since y

r

2 Z

r

n

, m � r. By de�nition, y

m

2 Z

r

n

. Let g = gcd(m; r). There

exist integral solutions to the diophantine equation Am+Br = g. Thus,

y

g

�

n

y

Am+Br

�

n

(y

m

)

A

(y

r

)

B

2 Z

r

n

:

Since g is a positive integer and g � m, it must be the case that g = m (since m

is the least positive integer such that y

m

2 Z

r

n

). Thus, since g j r, it is true that

m j r, as desired.

The next lemma describes the number of distinct residue classes.

Lemma 2.6 Let (r; n; y) be integers with y 2 Z

�

n

, and letm = j(r; n; y)j. RC[c

1

] =

RC[c

2

] if and only if c

1

�

m

c

2

.

Proof: By de�nition, y

c

1

2 RC[c

1

] and y

c

2

2 RC[c

2

]. If c

1

�

m

c

2

, then there

exists some integer a such that am = c

1

� c

2

. Since m = j(r; n; y)j and y 2 Z

�

n

,

y

m

2 Z

r

n

, and therefore, y

am

2 Z

r

n

. Thus,

y

c

1

�

n

y

c

2

y

c

1

�c

2

�

n

y

c

2

y

am

2 RC[c

2

]

since y

am

2 Z

r

n

. Hence y

c

1

2 RC[c

1

] \RC[c

2

]. So by lemma 2.4, RC[c

1

] = RC[c

2

].

Conversely, if RC[c

1

] = RC[c

2

], then since y

c

1

2 RC[c

1

], y

c

1

2 RC[c

2

]. Thus,

there exists a z 2 Z

r

n

such that y

c

1

�

n

y

c

2

z. Therefore, y

c

1

�c

2

2 Z

r

n

. Let
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g = gcd(m; c

1

�c

2

). There exist integers A and B such that g = Am+B(c

1

�c

2

).

Now,

y

g

�

n

y

Am+B(c

1

�c

2

)

�

n

(y

m

)

A

(y

c

1

�c

2

)

B

2 Z

r

n

since y

m

2 Z

r

n

by de�nition and y

c

1

�c

2

2 Z

r

n

by the above argument. Thus, since

g jm and y

g

2 Z

r

n

, it must be the case that g = m. But it is also the case that g

(and hence m) divides c

1

� c

2

. Therefore, c

1

�

m

c

2

, as desired.

Thus, given a triple (r; n; y) with y 2 Z

�

n

, there are exactly m = j(r; n; y)j

distinct residue classes and they are given by

Z

r

n

= RC[0];RC[1]; : : : ;RC[m� 1]:

This justi�es the terminology of a \residue class".

The following lemma gives a method for selecting uniformly from elements of

a given residue class c.

Lemma 2.7 Let (r; n; y) be integers with y 2 Z

�

n

. If x is chosen uniformly from

Z

�

n

, then w = y

c

x

r

mod n represents a uniformly chosen member of RC[c].

Proof:

Since Z

�

n

is a group and c is �xed, y

c

is �xed and w �

n

y

c

z

1

�

n

y

c

z

2

if and

only if z

1

�

n

z

2

. Therefore, each w 2 RC[c] is expressible as w �

n

y

c

z for exactly

one z 2 Z

r

n

. (Recall that, by de�nition, there must be at least one such z.) By

lemma 2.2, every z 2 Z

r

n

has exactly has the same number of distinct r

th

roots

in Z

�

n

. Thus, if x is chosen uniformly from Z

�

n

, x

r

is a uniformly chosen element

of Z

r

n

, and y

c

x

r

is a uniformly chosen element of RC[c].

The essence of Lemma 2.7 is captured in more general terms by Angluin and

Lichtenstein in [AnLi83] as the so called property of random self-reducibility.

They point out that this property is common to a wide variety of number-

theoretic problems and \can be used to show a problem is uniformly hard if

it is hard at all".

The following lemmas give some important properties of residue classes.

Lemma 2.8 Let (r; n; y) be integers with y 2 Z

�

n

. If w

1

2 RC[c

1

] and w

2

2

RC[c

2

], then the product w

1

w

2

2 RC[c

1

+ c

2

].
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Proof:

Each w

i

2 RC[c

i

] if and only if it is expressible as w

i

�

n

y

c

i

z

i

for some

z

i

2 Z

r

n

. Thus, w

1

w

2

�

n

(y

c

1

z

1

)(y

c

2

z

2

) �

n

y

c

1

+c

2

z where z �

n

z

1

z

2

2 Z

r

n

. Thus,

w

1

w

2

2 RC[c

1

+ c

2

].

Lemma 2.9 Let (r; n; y) be integers with y 2 Z

�

n

. If w 2 RC[c], then w

�1

2

RC[�c].

Proof:

w 2 RC[c] if and only if it is expressible as w �

n

y

c

z for some z 2 Z

r

n

.

Since w 2 Z

�

n

, w

�1

is well-de�ned and w

�1

�

n

y

�c

z

�1

. But since Z

r

n

is a group,

z

�1

2 Z

r

n

. Thus, by de�nition, w

�1

2 RC[�c].

The following lemma shows how two integers can be shown to be of the same

residue class.

Lemma 2.10 Let (r; n; y) be integers with y 2 Z

�

n

. Two integers w

1

and w

2

are

of the same residue class with respect to r, n, and y if and only if w

1

w

�1

2

2 Z

r

n

.

Proof:

If w

1

and w

2

are both in RC[c], then by lemma 2.9, w

�1

2

is in RC[�c] and by

lemma 2.8, w

1

w

�1

2

is in RC[0]. But this implies that w

1

w

�1

2

2 Z

r

n

, as desired.

Conversely, assume that w �

n

w

1

w

�1

2

2 Z

r

n

= RC[0]. Since w 2 Z

r

n

, so is

w

�1

and so w

�1

2 RC[0]. If w

2

2 RC[c], then w

1

�

n

w

2

w is also in RC[c] by

lemma 2.8. Similarly, if w

1

2 RC[c], then w

2

�

n

w

1

w

�1

2 RC[c].

Thus, to prove that two integers are of the same residue class, it is necessary

only to exhibit an r

th

root of their quotient.

2.4 The Consonance Property

De�nition A triple of positive integers (r; n; y) is said to be consonant (or simply

r, n, and y are consonant) if j(r; n; y)j = r.

The most important feature of a consonant triple (r; n; y) is that the residue

classes RC[0];RC[1]; : : : ;RC[r � 1] are all distinct.

Lemma 2.11 Let y 2 Z

�

n

. There exist r distinct residue classes if and only if

(r; n; y) is consonant. In addition, if (r; n; y) is not consonant, then the number

of distinct residue classes is at most r=2.
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Proof:

By lemma 2.6 and the de�nition of consonant, when (r; n; y) is consonant,

there exist r distinct residue classes.

Conversely, since y 2 Z

�

n

, y

r

2 Z

r

n

, and the norm and hence the number of

distinct residue classes is bounded by r. If the norm were exactly r, then (r; n; y)

would be consonant. If (r; n; y) is not consonant, then by lemma 2.5, the norm

must be a proper divisor of r. This implies that the norm of (r; n; y) (and hence

the number of distinct residue classes) is bounded by r=2.

2.4.1 Characterizations of Consonance

We now begin to characterize what it means for a triple to be consonant.

Lemma 2.12 A triple (r; n; y) is consonant if and only if the following condition

holds for all integers c:

y

c

2 Z

r

n

() c �

r

0:

Proof:

If (r; n; y) is consonant, then by lemma 2.6,

c �

r

0 ) RC[c] = RC[0] = Z

r

n

:

Thus, in particular, y

c

2 Z

r

n

.

Also, if (r; n; y) is consonant, then

y

c

2 Z

r

n

) y

c

2 RC[c] \RC[0] ) RC[c] = RC[0] ) c �

r

0

by lemmas 2.4 and 2.6.

Conversely, assume that

y

c

2 Z

r

n

() c �

r

0:

Since this condition must hold for all c, consider the case of c = r. Here, y

r

2 Z

r

n

.

But Z

r

n

is de�ned to be a subset of Z

�

n

. Thus, y

r

2 Z

�

n

, and therefore, y 2 Z

�

n

.

This implies that the norm m = j(r; n; y)j is �nite. Next, by lemma 2.6, it is true

that for all integers c

c �

m

0 ) RC[c] = RC[0] ) y

c

2 Z

r

n

:
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But the premise gives that

y

c

2 Z

r

n

) c �

r

0:

Thus,

c �

m

0 ) c �

r

0:

Hence r jm must be true. But by lemma 2.5, m j r must also be true. Therefore,

m = r, as desired.

We now give necessary conditions for a triple (r; n; y) to be consonant.

Theorem 2.13 If (r; n; y) is consonant, then the following are true.

(a) y 2 Z

�

n

.

(b) If q is a prime such that q j r, then y =2 Z

q

n

.

(c) If q is a prime such that q

�

j r, then there exists a prime power

p

e

j n such that q

�

j '(p

e

) and y =2 Z

q

p

e

.

Proof:

(a) When y =2 Z

�

n

, j(r; n; y)j =1. Thus, j(r; n; y)j = r implies that y 2 Z

�

n

.

(b) If q is a prime such that q j r, then if y 2 Z

q

n

were true, there would exist

some x 2 Z

�

n

such that y �

n

x

q

. This would imply that y

r=q

�

n

(x

q

)

r=q

�

n

x

r

,

and therefore that y

r=q

2 Z

r

n

. But this would violate lemma 2.12. Hence, y =2 Z

q

n

.

(c) Fix q

�

to be a prime power such that q

�

j r and consider y

r=q

. If for each

prime power p

e

j n, it were true that y

r=q

2 Z

r

p

e

, then (by the de�nition of Z

r

p

e

)

y

r=q

would have an r

th

root modulo each p

e

. The Chinese Remainder Theorem

would then imply that y

r=q

would have an r

th

root modulo n, and therefore that

y

r=q

2 Z

r

n

. But this contradicts lemma 2.12, and hence there must be at least

one prime power p

e

j n such that y

r=q

=2 Z

r

p

e

.

Now, �x p

e

to be a prime power divisor of n such that y

r=q

=2 Z

r

p

e

, and let

g = gcd(r; '(p

e

)). Let A and B be integers such that g = Ar +B'(p

e

). Then

y

g

�

p

e

y

Ar+B'(p

e

)

�

p

e

(y

A

)

r

2 Z

r

p

e

:

If q

�

 

j '(p

e

) were true, then (since q

�

j r) g = gcd(r; '(p

e

)) = gcd(r=q; '(p

e

)) and

hence g would be a divisor of r=q. But this would imply that y

r=q

2 Z

r

p

e

. Hence,

q

�

j '(p

e

) and y

r=q

=2 Z

r

p

e

.
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Finally, if y 2 Z

q

p

e

were so, then (since a q

th

root of y is an r

th

root of y

r=q

)

y

r=q

2 Z

r

p

e

would also be true. But this cannot be the case. Hence, y =2 Z

q

p

e

.

Two important corollaries to theorem 2.13 will be given. The �rst follows

easily from theorem 2.13(c) and the second from theorem 2.13(b). However in

both cases, direct proofs seem to be even simpler.

Corollary 2.14 If (r; n; y) is consonant, then r j '(n).

Proof:

Let g = gcd(r; '(n)) There exist integers A and B such that g = Ar+B'(n).

y

g

�

n

y

Ar+B'(n)

�

n

(y

A

)

r

2 Z

r

n

:

Thus, since (r; n; y) is consonant, g �

r

0. This implies that g = r and hence that

r j '(n).

Corollary 2.15 If (r; n; y) is consonant and r > 1, then y =2 Z

r

n

.

Proof:

y 2 Z

r

n

) 1 �

r

0 ) r = 1:

We now show that conditions (a){(c) of theorem 2.13 together with one added

condition are su�cient for a triple (r; n; y) to be consonant.

Theorem 2.16 A triple of positive integers (r; n; y) is consonant if all of the

following are true.

(a) y 2 Z

�

n

:

(b) If q is a prime such that q j r, then y =2 Z

q

n

.

(c) If q is a prime such that q

�

j r, then there exists a prime power

p

e

j n such that q

�

j '(p

e

) and y =2 Z

q

p

e

.

(d) r and n are not both even.
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Proof:

By lemma 2.12, a triple (r; n; y) is consonant if and only if for all integers c,

y

c

2 Z

r

n

() c �

r

0:

Thus, to show that (r; n; y) is consonant, it is su�cient to show that

c �

r

0 ) y

c

2 Z

r

n

and

y

c

2 Z

r

n

) c �

r

0:

If c �

r

0, then c = ar for some integer a, and therefore y

c

�

n

(y

a

)

r

2 Z

r

n

.

We must now show only that conditions (a){(d) together with the assumption

that y

c

2 Z

r

n

imply that c �

r

0. Suppose that there exists a triple (r; n; y) such

that conditions (a){(d) are true, that y

c

2 Z

r

n

, but that c 6�

r

0. Since r

 

j c, there

exists some prime q and a positive integer � such that q

�

j r, but q

�

 

j c. By

condition (c), there exists a prime power p

e

j n such that q

�

j '(p

e

) and y =2 Z

q

p

e

.

If n is odd, then since p

e

j n, p is odd. If n is even, then by condition (d), r

is odd and therefore since q

�

j r, q is odd. But the fact that q is an odd prime

which divides '(p

e

) implies that p is odd (since '(2

e

) = 2

e�1

). Thus, whether n

is even or odd, we may assume that p is an odd prime and therefore that Z

�

p

e

is

cyclic. Let g be a generator of this group.

Write y as y �

p

e

g

a

, for some integer a. y

c

2 Z

r

n

by assumption, and therefore

y

c

2 Z

r

p

e

. Therefore, g

ac

�

p

e

y

c

2 Z

q

�

p

e

. Thus, since q

�

j '(p

e

), q

�

j ac. But since

q

�

 

j c and q is prime, q j a. Therefore, y �

p

e

g

a

2 Z

q

p

e

. But we have already

shown (under the assumption that c 6�

r

0) that y =2 Z

q

p

e

. This is a contradiction,

and hence, c �

r

0 as desired.

We have not completely characterized the cases when (r; n; y) is consonant.

When r and n are both even, we have not seen the precise properties necessary

and su�cient for (r; n; y) to be consonant. Although this case is not of great in-

terest, the results are stated for completeness. The proofs are somewhat complex

and are omitted.

Claim If r is even but 4

 

j r, then (r; n; y) is consonant exactly when the con-

ditions (a){(c) of theorems 2.13 and 2.16 are met.
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Similarly, if n is even but 8

 

j n, then (r; n; y) is consonant exactly when the con-

ditions (a){(c) of theorems 2.13 and 2.16 are met.

If 4 j r and 8 j n, then let � be the greatest integer such that 2

�

j r. In this case,

(r; n; y) is consonant exactly when 2

�+2

jn, the conditions (a){(c) of theorem 2.13

and 2.16 are met, and y �

8

�3.

In particular, (2; n; y) is consonant whenever y 2 Z

�

n

and y =2 Z

2

n

. This is the

case used in the Goldwasser{Micali probabilistic encryption method ([GoMi84])

described in section 2.1.

Theorem 2.17 If (r; n; y) is consonant, then each w 2 Z

�

n

is expressible as

w �

n

y

c

z for at most one integer c such that 0 � c < r and at most one z 2 Z

r

n

.

Proof:

Suppose w �

n

y

c

1

z

1

�

n

y

c

2

z

2

for 0 � c

1

; c

2

< r and z

1

; z

2

2 Z

r

n

. Since

y; z

1

; z

2

2 Z

�

n

, we can form y

c

1

�c

2

�

n

z

2

z

�1

1

, and since z

1

; z

2

2 Z

r

n

and Z

r

n

is a

group, y

c

1

�c

2

�

n

z

2

z

�1

1

2 Z

r

n

. Since 0 � c

1

; c

2

< r, jc

1

� c

2

j < r. Since (r; n; y) is

consonant, r j (c

1

� c

2

) and hence c

1

= c

2

. Finally, since Z

�

n

is a group, c

1

= c

2

implies that z

1

�

n

z

2

.

Thus, when (r; n; y) is consonant the residue classes

RC[0];RC[1]; : : : ;RC[r � 1]

are all distinct and, by lemma 2.11, represent the entire set of residue classes.

2.4.2 Prime Consonance

A particularly useful special case of consonance occurs when the �rst component

r of a consonant triple (r; n; y) is prime.

De�nition A triple (r; n; y) is said to be prime consonant if r is prime and if

(r; n; y) is consonant.

Theorem 2.18 A triple (r; n; y) is prime consonant if and only if r is a prime

and y 2 Z

r

n

.
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Proof:

If (r; n; y) is prime consonant, then r is prime (by de�nition). Also, y 2 Z

�

n

(by theorem 2.13(a)), and y =2 Z

r

n

(by theorem 2.13(b)). Thus, y 2 Z

r

n

.

Conversely, if r is prime then either r j'(n) or r and '(n) are relatively prime.

If r and '(n) were relatively prime, then by lemma 2.3 Z

�

n

= Z

r

n

would be true.

But the assumption that y 2 Z

r

n

implies that y 2 Z

�

n

and y =2 Z

r

n

. Thus, r j'(n).

If r is odd the conditions of theorem 2.16 are easily satis�ed. If r = 2, then since

y =2 Z

r

n

and y

2

2 Z

r

n

, j(r; n; y)j = 2, and therefore (r; n; y) is consonant.

2.4.3 Perfect Consonance

The next lemma shows how r

th

roots modulo n can be computed when r j '(n),

r and '(n)=r are relatively prime, and the factorization of n is known.

Lemma 2.19 If r j'(n), r and '(n)=r are relatively prime, and z 2 Z

r

n

, then an

r

th

root of z modulo n is given by z

A

mod n where A satis�es Ar�B'(n)=r = 1.

Proof:

Since r j '(n) and since r and '(n)=r are relatively prime, the Diophantine

equation Ar�B'(n)=r = 1 has integral solutions A and B, and such solutions can

easily be computed by the extended Euclidean algorithm when the factorization

of n (and hence '(n)) is known.

Since z 2 Z

r

n

, z �

n

x

r

for some x 2 Z

�

n

. Therefore,

(z

A

)

r

�

n

(x

Ar

)

r

�

n

(x

B'(n)=r+1

)

r

�

n

x

B'(n)+r

�

n

x

r

�

n

z

since a

'(n)

�

n

1 for all a 2 Z

�

n

.

Thus z

A

is an r

th

root of z.

Theorem 2.20 If r j '(n), r and '(n)=r are relatively prime, and z 2 Z

r

n

, then

z has exactly r distinct r

th

roots.

Proof:

Let n = p

e

1

1

p

e

2

2

� � � p

e

k

k

be the prime factorization of n. The multiplicative

property of the Euler totient function gives '(n) = '(p

e

1

1

)'(p

e

2

2

) � � � '(p

e

k

k

). Let

h

i

= gcd('(p

e

i

i

); r). We will �rst show that modulo each p

e

i

i

there are exactly h

i

r

th

roots of 1.
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When p is an odd prime, Z

�

p

e

is cyclic. Let g be a generator of this group.

Thus, the '(p

e

) elements of Z

�

p

e

are expressible as g

a

as a ranges in 0 � a < '(p

e

).

Now, an element g

a

is an r

th

root of 1 if and only if g

ar

�

p

e

1 which is the case

if and only if '(p

e

) j ar. But this is the case precisely when a is a multiple of

'(p

e

)= gcd('(p

e

); r). Thus, the number of integers a in the range 0 � a < '(p

e

)

for which g

a

is an r

th

root of 1 is exactly gcd('(p

e

); r). Hence, when p

i

is odd,

the number of r

th

roots of 1 modulo p

e

i

i

is exactly h

i

.

When p = 2 and 2

e

is the largest power of 2 which divides n, then there

are two cases. If r is even, then the fact that r and '(n)=r are relatively prime

implies that '(n)=r is odd. Since ' is multiplicative and '(2

e

) = 2

e�1

, 2

e�1

j'(n)

and therefore 2

e�1

j r. Thus, by Euler's theorem, x

r

�

2

e

1 for all 2

e�1

distinct

x 2 Z

�

2

e

. Thus, there are 2

e�1

= '(2

e

) distinct r

th

roots of 1 modulo 2

e

, and

since 2

e�1

= '(2

e

) divides r, there are gcd('(2

e

); r) distinct r

th

roots of 1 modulo

2

e

.

When r is odd, x

r

�

2

e

1 implies that x

r

�1 �

2

e

0 and therefore that 2

e

j(x

r

�1).

But (x

r

�1) = (x�1)(x

r�1

+x

r�2

+ � � �+x+1), and the right hand term contains

r summands each of which is odd (since all elements of Z

�

2

e

are odd). Thus, the

right hand term is odd. This implies that 2

e

j(x�1) and hence that x �

2

e

1 is the

only r

th

root of 1 modulo 2

e

. Therefore, there are once again gcd('(2

e

); r) = 1

distinct r

th

roots of 1 modulo 2

e

. Thus, for any prime p

i

, the number of distinct

r

th

roots of 1 is exactly h

i

.

By the Chinese Remainder Theorem, since all of the p

e

i

i

are relatively prime,

the total number of r

th

roots of 1 modulo n isH =

Q

i

h

i

. Now write r = q

1

q

2

� � � q

`

where the q

j

are not necessarily distinct primes. Since each prime q

j

j r, since

r j '(n), and since '(n) =

Q

i

'(p

e

i

i

), then each prime q

j

j '(p

e

i

i

) for some i.

Since r =

Q

j

q

j

and '(n)=r = '(n)=(

Q

j

q

j

) are relatively prime, each q

j

can be

associated with an h

i

such that r =

Q

j

q

j

=

Q

i

h

i

= H. Thus, there are exactly

r distinct r

th

roots of 1 modulo n.

Finally, by lemma 2.2, there are exactly r distinct r

th

roots of z for each

z 2 Z

r

n

.

Corollary 2.21 If r j'(n) and if r and '(n)=r are relatively prime, then jZ

r

n

j =

'(n)=r.
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Proof:

jZ

�

n

j = '(n) and every x 2 Z

�

n

is an r

th

root of some z 2 Z

r

n

(namely

z �

n

x

r

). Since, by theorem 2.20, every z 2 Z

r

n

has exactly r distinct r

th

roots,

jZ

r

n

j = '(n)=r, as desired.

De�nition The triple (r; n; y) is said to be perfect consonant if (r; n; y) is con-

sonant and if r and '(n)=r are relatively prime.

The following theorem characterizes the cosets of Z

r

n

in Z

�

n

when (r; n; y) is

perfect consonant.

Theorem 2.22 Let (r; n; y) be a perfect consonant triple and let w 2 Z

�

n

. w is

expressible as w �

n

y

c

z for a unique integer c in the range 0 � c < r and a

unique z 2 Z

r

n

.

Proof:

A simple counting argument su�ces here. By corollary 2.21, jZ

r

n

j = '(n)=r,

and since there are r integers c in the range 0 � c < r, there are exactly '(n)

pairs (c; z). Since for every pair (c; z), y

c

z 2 RC[c] (by de�nition), and since (by

theorem 2.17) no two distinct pairs correspond to the same y

c

z 2 Z

�

n

, there are

at least '(n) distinct y

c

z 2 Z

�

n

. But jZ

�

n

j = '(n). Thus for every w 2 Z

�

n

, there

exists exactly one pair (c; z) with 0 � c < r and z 2 Z

r

n

such that w �

n

y

c

z.

Therefore, when (r; n; y) is perfect consonant, the residue classes

RC[0];RC[1]; : : : ;RC[r � 1]

form a partition of Z

�

n

.

2.5 Deciding Residue Classes

Theorem 2.22 shows that when (r; n; y) is perfect consonant, then every w 2 Z

�

n

is a member of RC[c] for exactly one integer c in the range 0 � c < r.

De�nition Let (r; n; y) be a triple of integers. For each w 2 Z

�

n

, de�ne [[w]]

(r;n;y)

(or simply [[w]] when (r; n; y) is understood) to be the smallest non-negative

integer c such that w is expressible as w �

n

y

c

z, for some z 2 Z

r

n

. When

there is no such c, [[w]] =1.
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By theorem 2.17, when (r; n; y) is consonant, [[w]]

(r;n;y)

is the unique c such

that 0 � c < r and w 2 RC[c] when such a c exists and is 1 otherwise. By

theorem 2.22, when (r; n; y) is perfect consonant and w 2 Z

�

n

, then [[w]]

(r;n;y)

is

always de�ned.

In the case that (r; n; y) is perfect consonant, we would like to be able to,

when given a w 2 Z

�

n

, determine [[w]]

(r;n;y)

. This will be shown to be e�ciently

computable when

p

r is of moderate size and when the factorization of n (and

therefore the value of '(n)) is known.

We begin this task with the following lemma.

Lemma 2.23 If r j '(n), r and '(n)=r are relatively prime, and w 2 Z

�

n

, then

w 2 Z

r

n

if and only if w

'(n)=r

�

n

1.

Proof:

If w 2 Z

r

n

then there exists an x 2 Z

�

n

such that w �

n

x

r

. Thus, w

'(n)=r

�

n

(x

r

)

'(n)=r

�

n

x

'(n)

�

n

1 by Euler's theorem.

Conversely, if w

'(n)=r

�

n

1, then since r and '(n)=r are relatively prime, there

exist integers A and B such that Ar +B'(n)=r = 1. Thus,

w �

n

w

Ar+B'(n)=r

�

n

(w

r

)

A

(w

'(n)=r

)

B

�

n

(w

r

)

A

1

B

2 Z

r

n

as desired.

Therefore, given a w 2 Z

�

n

, one can e�ectively determine the residue class of

w by checking w;wy

�1

; wy

�2

; : : : until a wy

�c

is found such that wy

�c

2 Z

r

n

. This

c will be the [[w]] and will be found after at most r trials since [[w]] is bounded by

r.

This method is not impractical for moderately sized r; however, certain meth-

ods may be employed to make this process more e�cient.

Lemma 2.24 Let (r; n; y) be a perfect consonant triple. Let w 2 Z

�

n

and let A

and B be integers such that Ar � B'(n)=r = �1. Then � �

n

w

B'(n)=r

is the

unique value such that �

r

�

n

1 and [[�]]

(r;n;y)

= [[w]]

(r;n;y)

.

Proof:

Since r and '(n)=r are relatively prime, there exist integers A and B such

that Ar � B'(n)=r = �1.

By theorem 2.22, since w 2 Z

�

n

, w can be written as w �

n

y

c

z for some

z 2 Z

r

n

; and by lemma 2.23, z

'(n)=r

�

n

1. Thus,
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� �

n

w

B'(n)=r

�

n

y

cB'(n)=r

z

B'(n)=r

�

n

y

c(Ar+1)

�

n

(y

cA

)

r

y

c

�

n

y

c

z

where z �

n

(y

cA

)

r

2 Z

r

n

. Thus, [[�]] = [[w]].

Also,

�

r

�

n

(w

B'(n)=r

)

r

�

n

w

B'(n)

�

n

1

B

�

n

1:

Thus, �

r

�

n

1 and � is of the same residue class as w.

Since, by theorem 2.20, there are exactly r integers �

i

which are r

th

roots of 1

modulo n; and since, by the above, there is a �

i

in each of the r distinct residue

classes. Thus, the � of any given residue class must be unique.

De�nition We call the � of lemma 2.24 the canonical root of class c.

If we are to decide the residue class of many distinct integers with respect to

a given r, n, and y, lemma 2.24 allows us to, in one preprocessing phase, compute

the canonical root of each residue class. Afterwards, we may determine the class

of a given w by computing the canonical root � of its class and looking up the

class of this � in the precomputed list.

A somewhat more e�cient method of determining residue classes can be

achieved by using the so called \big step { little step" method.

1

Let �

�

be

the canonical root of the same class as a given y. In O(

p

r) computations, the

list �

1

; �

2

; : : : ; �

b

p

rc

can be constructed where �

i

�

n

�

bi

p

rc

�

. Thus, by taking \big"

steps, markers can be placed throughout the cyclic group of r

th

roots of 1 modulo

n. Once the list is constructed, a given � can be \looked up" by computing the

sequence �; ��

�

; ��

2

�

; : : : until a ��

j

�

is found which is on the previous list. Such an

entry will be found by the time j reaches j = b

p

rc. Hence, it takes O(

p

r log r)

modular operations to compute and sort the initial list and O(

p

r log r) modular

operations to compute and search the list to �nd the residue class of a given

element.

The reader may observe the similarity between the problem of determining

the residue class of a canonical root � and that of evaluating discrete logarithms

modulo a prime. Techniques for the latter problem can be applied directly to

the former. (See [PoHe78], [Adle79], [COS86] for work on the discrete logarithm

problem.)

1

Thanks to Joe Kilian for pointing out this trick.
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One �nal point to be made here is that if r, rather than being prime, is a

product of small primes (in particular, r = 3

k

), then the class of a given w with

respect to a given r, n, and y can be computed in time polynomial in log r. This

can be done by (assuming r = 3

k

) �rst deciding which of w, wy

�1

, and wy

�2

is a

cube (3

rd

residue) modulo n. Let i

i

2 f0; 1; 2g be the (unique) integer such that

wy

�i

is a cube. Let i

2

2 f0; 1; 2g be the (unique) integer such that wy

�3i

2

�i

1

is

a 9

th

residue. Continue for k iterations. It is not hard to see that each choice

taken gives a digit in the ternary representation of [[w]].

2.6 Evaluations and Decompositions

De�nition For a given r, let Z

r

= fintegers c : 0 � c < rg denote the set of

non-negative integers less than r. For y 2 Z

�

n

, de�ne D

r

(n;y)

= Z

r

� Z

�

n

be the

product group with the following somewhat unusual operation �:

[c; x] 2 D

r

(n;y)

if and only if c 2 Z

r

and x 2 Z

�

n

[c

1

; x

1

]� [c

2

; x

2

] =

(

[c

1

+ c

2

; x

1

x

2

mod n]; if c

1

+ c

2

< r;

[c

1

+ c

2

� r; x

1

x

2

y mod n]; if c

1

+ c

2

� r.

The rational for this rather bizarre operation shall become clear shortly. First,

however, we shall see that D

r

(n;y)

is a group.

Lemma 2.25 D

r

(n;y)

is a commutative group.

Proof:

It is easy to see that the element [0; 1] 2 D

r

(n;y)

is an identity.

By the de�nition of the � operator, the �rst component is in Z

r

, and since

y 2 Z

�

n

, the second component is in Z

�

n

. Hence, D

r

(n;y)

is closed.

It is not hard to see that the inverse of [c; x] (denoted by 	[c; x]) is given by

	[c; x] =

(

[0; x

�1

mod n]; if c = 0;

[r � c; x

�1

y

�1

mod n]; if 0 < c < r.

Here, if c = 0,

[0; x]� (	[0; x]) = [0; x]� [0; x

�1

mod n] = [0; 1];

and if 0 < c < r, then

[c; x]� (	[c; x]) = [c; x]� [r � c; x

�1

y

�1

mod n]
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= [c+ (r � c)� r; x(x

�1

y

�1

)y mod n]

= [0; 1]:

To see that D

r

(n;y)

is associative, we need only observe that

([c

1

; x

1

]� [c

2

; x

2

])� [c

3

; x

3

]

= [c

1

+ c

2

+ c

3

mod r; x

1

x

2

x

3

y

b(c

1

+c

2

+c

3

)=rc

mod n]

= [c

1

; x

1

]� ([c

2

; x

2

]� [c

3

; x

3

]):

Finally, the commutativity of addition and multiplication of integers and the

symmetry in the de�nition of � imply that D

r

(n;y)

is commutative.

We can begin to understand why D

r

(n;y)

is de�ned as it is by considering the

following evaluation function.

De�nition De�ne  : D

r

(n;y)

! Z

�

n

by  ([c; x]) = y

c

x

r

mod n.

Lemma 2.26  is a homomorphism.

Proof:

Let [c

1

; x

1

]; [c

2

; x

2

] 2 D

r

(n;y)

.

If c

1

+ c

2

< r, then

 ([c

1

; x

1

]� [c

2

; x

2

])

=  ([c

1

+ c

2

; x

1

x

2

mod n])

= y

c

1

+c

2

(x

1

x

2

)

r

mod n

= (y

c

1

x

r

1

mod n)(y

c

2

x

r

2

mod n) mod n

=  ([c

1

; x

1

]) ([c

2

; x

2

]):

If c

1

+ c

2

� r, then

 ([c

1

; x

1

]� [c

2

; x

2

])

=  ([c

1

+ c

2

� r; x

1

x

2

y mod n])

= y

c

1

+c

2

�r

(x

1

x

2

y)

r

mod n

= y

c

1

+c

2

(x

1

x

2

)

r

mod n

= (y

c

1

x

r

1

mod n)(y

c

2

x

r

2

mod n) mod n

=  ([c

1

; x

1

]) ([c

2

; x

2

]):

Thus,  is a homomorphism.
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De�nition Given [c; x] 2 D

r

(n;y)

,  ([c; x]) is called the evaluation of [c; x]. Given

w 2 Z

�

n

, a [c; x] such that  ([c; x]) = w is called a decomposition of w.

Remarks

1. A given w 2 Z

�

n

may have multiple decompositions in a given D

r

(n;y)

. It is

clear, however, that when 0 � c < r, then w has a decomposition of the

form [c; x] if and only if w 2 RC[c].

2. For a given r, n, and y, it is easy to evaluate  ([c; x]) | even if the fac-

torization of n is unknown. It may, however, be far more di�cult to �nd

even a single decomposition of a given w. In fact, simply computing [[w]] or

determining some c such that w 2 RC[c] may be hard.

3. It should now be somewhat clearer why the awkward operation� is used. If

the normalization of the �rst component were not accompanied by normal-

ization of the second component, then  would not be a homomorphism.

If neither component were normalized, then it would not be possible to

restrict the �rst component to elements of Z

r

, and without this restriction,

it is very di�cult to de�ne D

r

(n;y)

so that  is a homomorphism (unless

'(n) is used, and it may be desirable to keep '(n) private).

By disclosing a decomposition [c; x] of a given w, it is easy to show that

w 2 RC[c]. It will also be important to be able to show how the residue classes

of two given integers relate without giving their individual residue classes.

De�nition For convenience, we de�ne the binary di�erence [c

1

; x

1

] 	 [c

2

; x

2

] of

two elements [c

1

; x

1

]; [c

2

; x

2

] 2 D

r

(n;y)

by

[c

1

; x

1

]	 [c

2

; x

2

] = [c

1

; x

1

]� (	[c

2

; x

2

]) :

The relevant feature of this operation is that given decompositions [c

1

; x

1

]

of w

1

and [c

2

; x

2

] of w

2

, one can show the residue class of w

1

w

�1

2

by giving

[c

1

; x

1

]	 [c

2

; x

2

] which is a decomposition of w

1

w

�1

2

without directly revealing the

individual residue classes of w

1

and w

2

.
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2.7 The Election Encryption Function E

At this point, we may begin the task of de�ning the election encryption function

E .

De�nition For each positive integer n, de�ne the size of n by jnj = dlog

2

ne.

De�nition A pair of positive integers (r; n) is said to be exact consonant if r is

prime and if n is the product of two distinct primes n = pq with jpj = jqj = djnj=2e

such that r j (p� 1), r

2

 

j (p� 1), and r

 

j (q � 1).

De�nition A triple of positive integers (r; n; y) is said to be exact consonant if

the pair (r; n) is exact consonant and if y 2 Z

r

n

. Note that an exact consonant

triple is both prime consonant and perfect consonant.

We would now like to show that exact consonant pairs and triples are plentiful,

easy to �nd, and can be generated uniformly.

Lemma 2.27 Given any odd prime r, an exact consonant pair (r; n) with jnj =

N together with the factors of n can be selected uniformly in expected time poly-

nomial in N .

(Note that there exist no exact consonant triples (r; n; y) with r = 2.)

Proof:

We begin by noting that there exist practical random tests to determine

whether or not a given integer is prime. The probabilistic primality tests of

Solovay and Strassen ([SoSt77]) and Miller ([Mill76]) are quite practical and

well suited for these purposes and run in time polynomial in the length of the

prospective prime. The probability that these algorithms will, when given a

composite, assert that the integer is prime is exponentially small in the number

of polynomial time iterations performed. Newer primality tests which never give

a \false" prime have been developed by Goldwasser and Kilian ([GoKi86]) and

Adleman and Huang ([AdHu87]). These tests run in expected polynomial time

in the length of the prospective prime, but they are far less practical than the

earlier methods.

The prime number theorem asserts that for x > 100, the number of primes

less than x is at least x= log

e

x. A generalization of the prime number theorem

asserts that in any arithmetic sequence ax+b with x a positive integer and a and

b relatively prime, the density of primes within this sequence is roughly the same

as within the integers. More precisely, the probability that an element of size jpj
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randomly chosen from within this sequence is prime is greater than p= log

e

p (see

[Kran86]).

An integer q with jqj = N such that r

 

j (q � 1) can be uniformly chosen by

randomly selecting an integer b 6= 1 with 0 � b < r and selecting q of size N from

the sequence rx + b. Similarly, an integer p with jpj = N such that r j (p � 1)

and r

2

 

j (p� 1) can be uniformly chosen by randomly selecting an integer b with

0 < b < r and selecting p of size N from the sequence r

2

x+ br + 1.

An exact consonant pair can therefore be generated by choosing p and q as

prescribed above and checking for primality. If p and q are not prime, they are

discarded and another pair is chosen. The general form of the prime number the-

orem ensures that at least a 1=N fraction of such p and of such q are prime. Since

the selection and testing is polynomial time and the number of pairs which must

be examined is expected to be polynomial in N , this process requires expected

polynomial time in N .

Lemma 2.28 Given any exact consonant pair (r; n) together with the factors of

n, an exact consonant triple (r; n; y) can be selected uniformly in expected time

polynomial in N = jnj.

Proof:

When (r; n) is exact consonant, by corollary 2.21, precisely 1 out of r of the

members of Z

�

n

are r

th

residues. Therefore uniform selection of y from Z

�

n

will

yield a y which is not an r

th

residue with probability (r � 1)=r. Whether or

not a given y is an r

th

residue can be quickly tested (given the factors of n) by

lemma 2.23. Thus, exact consonant triples can be uniformly selected in expected

polynomial time in N by uniformly selecting among possible values of y until one

is found which is not in Z

r

n

. The expected number of trials to �nd such a y is

just r=(r � 1).

Note that lemmas 2.27 and 2.28 do not together imply that, for �xed r,

an exact consonant triple (r; n; y) can be selected uniformly from among those

with jnj = N . This is because the number of exact consonant triples associated

with a given exact consonant pair (r; n) is directly proportional to n. Thus,

even among the exact consonant pairs (r; n) with jnj = N , larger values of n

will yield more exact consonant triples. Thus for �xed r, uniform selection of n

followed by uniform selection of y does not give uniform selection of an consonant
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triple (r; n; y). A weighted selection scheme could yield such a uniform selection

process. Fortunately, however, the process of �rst uniformly selecting n such that

(r; n) is exact consonant and then uniformly selecting y such that (r; n; y) is exact

consonant will be suitable for the purposes given here.

We are now ready to de�ne an election encryption function.

De�nition Given an exact consonant triple (r; n; y), an election encryption func-

tion E

(r;n;y)

is de�ned to take a secret value s and a random value x and produce

E

(r;n;y)

(s; x) = y

s

x

r

mod n. When there is no ambiguity, the (r; n; y) will be

omitted.

Note that where E is de�ned, E(s; x) =  ([s; x]).

It is clear from lemma 2.7 that if x is selected uniformly from Z

�

n

, then E(s; x)

is a uniformly selected member of RC[s]. Thus, E(s; x) serves as an encryption

of the secret value s which can be decrypted by any agent which possesses the

factorization of n (see section 2.5).

This encryption method serves as a means of probabilistic encryption which

is very similar to that given in [GoMi84]. However, since each encrypted value

represents the encryption of a message from a message space of size r (instead

of size 2 as in the [GoMi84] scheme), the size of a message which is represented

by a single encryption can be much larger, and therefore the ratio of plaintext to

ciphertext is much larger. In fact, for a given security parameter N , the density

in the [GoMi84] scheme is only 1=N while in this scheme it is (log r)=(N + log r)

and thus can be made arbitrarily close to 1 by increasing r.

This approach is described in the appendix of [BeYu86].

2.8 The Prime Residuosity Assumption

Section 2.7 describes how values may be encrypted using an election encryption

function E , and section 2.5 shows how such an encryption function can be de-

crypted when the factorization of the associated n is known. We want it to be

the case that it is di�cult to decrypt an election encryption function when the

factorization of its n is unknown.

Since the problem of distinguishing between residue classes, together with all

problems which have been used as the basis for public-key cryptography, are in

the class of NP-functions, no non-trivial lower bounds on their computational
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complexity are known. The best that we are able to do is to make an assumption

about the di�culty of some mathematical problem and prove theorems relative to

this assumption. The assumption used here is the Prime Residuosity Assumption.

De�nition LetA be a (possibly probabilistic) algorithm with input s and binary

output. Let S

0

and S

1

be sets and let p

i

be the probability that output(A) = 1

given that s 2 S

i

. A is said to distinguish between S

0

and S

1

with " advantage

if

jp

1

� p

0

j > ":

A is said to distinguish between S

0

and S

1

with con�dence 1�� if A distinguishes

between S

0

and S

1

with 1� � advantage.

The terms \advantage" and \con�dence" are technically interchangeable.

They do, however, have di�erent connotations. The term \" advantage" will

be used when " is presumed to be near 0 and indicates a slight advantage at

distinguishing between sets. The term \con�dence 1� �" will be used when � is

near 0 and indicates a large advantage at distinguishing between sets.

De�nition A (possibly probabilistic) algorithm A is said to decide r

th

residues

in polynomial time if there exists some polynomial P and in�nitely many pos-

itive integers N such that A distinguishes between Z

r

n

and Z

�

n

with a 1=P (N)

advantage for at least 1=P (N) of the exact consonant pairs (r; n) with N = jnj

in time bounded by P (N).

The Prime Residuosity Assumption

The prime residuosity assumption asserts that for every prime r, there ex-

ists no probabilistic or deterministic algorithm A which decides r

th

residues in

polynomial time.

Although we cannot prove the prime residuosity assumption we can argue

about its plausibility. We begin by showing that the ability to distinguish between

some pair of residue classes implies the ability to distinguish between every pair

of residue classes.

Lemma 2.29 Let (r; n; y) be prime consonant. If one can distinguish between

the members of some pair of classes with an " advantage in time polynomial in

jnj, then one can distinguish between the members of any pair of classes with

con�dence 1�� (i.e. with 1�� advantage) in time polynomial in jnj, r, 1=", and
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1=�. In fact, the class of any element can be determined with con�dence 1� � in

this time.

Proof:

Assume there exists such an algorithm A which distinguishes between two

(possibly unknown) classes with " advantage in time polynomial in jnj. Let p

i

be

the probability that output(A) = 1 when the input to A is of RC[i]. We begin by

extensively sampling the output of A when given elements chosen uniformly from

each of the r possible residue classes. By lemma 2.7, we can uniformly select the

elements of any given class, so this is not a problem.

Suppose that we run A on k uniformly selected elements of a given class

RC[i]. The Chebyshev inequality implies that for a given ", the probability that

the observed fraction of trials for which output(A) = 1 di�ers p

i

by more than

" is less than

1

4k"

2

. Thus, if we sample the output of A on k randomly selected

elements ofRC[i], we can determine p

i

to within

"

4r

with a probability of error less

than

4r

2

k"

2

. Let Q

i

be the number of times output(A) = 1 when given an element of

class i, and let q

i

=

Q

i

k

. That is, q

i

is the observed probability that output(A) = 1

when given an element of class i. Thus, jq

i

� p

i

j <

"

4r

with probability greater

than 1�

4r

2

k"

2

.

By repeating this process for each class, we can construct an entire table of

A's performance on each residue class. We say that such a table is correct if for

each q

i

in the table, jq

i

� p

i

j <

"

4r

. Since each of the individual entries exceeds

this bound with probability less than

4r

2

k"

2

, k trials on each of the r residue classes

produces a table which is correct with probability greater than 1�

4r

3

k"

2

.

By assumption, there exists at least one pair of classes i and j which is

distinguished by A with " advantage. That is, for at least one pair i, j, jp

i

�p

j

j >

". Thus, given a correct table, there exists at least one pair of entries (q

i

; q

j

) such

that jq

i

� q

j

j > " �

"

2r

. Fix i and j such that q

i

and q

j

are one such pair.

Since jq

i

� q

j

j > "�

"

2r

, and since the table contains a total of r values, there

must be some interval I of size

"

r

de�ned by I = [m�

"

2r

;m+

"

2r

] with m between

q

i

and q

j

such that no entry of the table falls in I. Mark all of the table entries

which are below I (less than m) with a 0. Mark all of the table entries which are

above I (greater than m) with a 1.

An integer w whose class c is unknown will be tested as follows. Since Z

r

n

is a group, lemma 2.7 ensures that given an element w 2 RC[c], an element z
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uniformly selected from RC[c] can be generated by selecting a random x 2 Z

�

n

and forming wx

r

mod n. Similarly (since w 2 RC[c]) an element of RC[c+ i] can

be selected uniformly by selecting a random x 2 Z

�

n

and forming wy

i

z

r

mod n.

A statistical \�ngerprint" of w will be produced by sampling k elements from

each of RC[c];RC[c + 1];RC[c + 2]; : : : ;RC[c + (r � 1)]. A new set of observed

probabilities q

0

`

is obtained. This �ngerprint is said to be correct if none of these

values di�ers from the associated actual probability p

`

by more than

"

4r

. (Note

that the values p

`

are simply a reordering | actually just a rotation | of the

original probabilities p

i

, while the q

0

`

represent a di�erent set of observations and

therefore may have no relationship to the original q

i

.) The probability, for a given

`, that jp

`

� q

0

`

j >

"

4r

is less than

4r

2

k"

2

. Thus, the probability that the �nger print

is correct is greater than 1�

4r

3

k"

2

. Each entry of w's �ngerprint which is less than

m is marked with a 0, and each entry which is greater than m is marked with a

1.

When given a correct table and a correct �ngerprint, neither the table entry

nor the �ngerprint entry for a given pair will vary from the actual value by more

than

"

4r

. Hence, they will not vary from each other by more than

"

2r

. Thus,

since the interval I = [m �

"

2r

;m +

"

2r

] contains no table entries, no entry from

the �ngerprint of w will \span" I and be marked with a 0 (resp. 1) when the

corresponding table entry is marked with a 1 (resp. 0).

Now, if the table and �ngerprint are correct, there is exactly one rotation of

the �ngerprint such that its marks will match those of the table. There is at least

one matching because rotating the �ngerprint by c positions causes the classes

(and hence the markings) to match. If there were some other matching (say a

rotation of c

0

positions), then the markings would repeat every g = gcd(r; jc�c

0

j)

positions. But r is prime, thus either c �

r

c

0

(giving a unique residue class c),

or g = 1. This latter case would imply that the marking sequence is constant

(since it repeats every g = 1 positions). But this is impossible since it contains

(by construction) a 0 in either the i or the j position and a 1 in the other. Hence,

this process determines c accurately when the table and �ngerprint are correct,

and this will occur with probability at least 1�

8r

3

k"

2

.

To ensure that the con�dence is at least 1� �, we simply choose k such that

� �

8r

3

k"

2

. This is true when k �

8r

3

�"

2

. Thus, since (by assumption) each of the

2kr trials can be performed in time polynomial in jnj, the entire process can be

completed in time polynomial in jnj, r, 1=", and 1=�, as desired.
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In particular, an algorithm which can gain an inverse polynomial advantage at

distinguishing between some pair of residue classes can be made to gain an inverse

polynomial advantage at distinguishing between every pair of residue classes.

Corollary 2.30 Let r be a �xed prime, and let P be a polynomial. Let A be

an algorithm which for some given prime consonant triples (r; n; y) distinguishes

between the members of some pair of classes (with respect to r, n, and y) with an

advantage of at least 1=P (jnj) in time polynomial in jnj. On those same prime

consonant triples, one can distinguish between the members of any pair of classes

with con�dence 1 � � in time polynomial in jnj, r, and 1=�. In particular, Z

r

n

and Z

�

n

can be distinguished with a 1=P (jnj) advantage in this time.

Proof:

Apply lemma 2.29 with " = 1=P (N).

Adleman and McDonnell in [AdMc82] (see also [APR83], [Adle80]) show that

an oracle which takes an r and a z and determines whether or not z is an r

th

residue (modulo n) can be used to generate an e�cient (although not quite

polynomial time) algorithm to factor n. The problem of deciding r

th

residuosity

(for a �xed r) is certainly no harder than factoring. The result of Adleman

and McDonnell leads us to believe that the problems may be of comparable

complexity.

When n is the product of two distinct primes, computing '(n) is computa-

tionally equivalent to factoring n. Miller shows in [Mill75] that for general n, the

two problems are polynomial time equivalent (assuming the Extended Riemann

Hypothesis).

One further lemma helps to argue that the special conditions of r

th

residuosity

and exact consonance are closely related to other problems. As in the quadratic

case, the ability to extract roots is equivalent to the ability to split n as shown

by lemma 2.31.

Lemma 2.31 If there exists some prime divisor p of n such that r and '(p) =

(p � 1) are relatively prime, and if x

r

1

�

n

x

r

2

for distinct x

1

; x

2

2 Z

�

n

, then

gcd(x

1

� x

2

; n) is a non-trivial factor of n.

Proof:

Since x

r

1

�

n

x

r

2

, x

r

1

� x

r

2

�

n

0. Since x

r

1

�

n

x

r

2

and p j n, x

r

1

�

p

x

r

2

, and

therefore, by lemma 2.3, x

1

�

p

x

2

. x

1

and x

2

are, however, distinct modulo n.
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Hence, p j (x

1

�x

2

) and n

 

j (x

1

�x

2

). Thus, gcd(x

1

�x

2

; n) is a non-trivial divisor

of n.

In particular, when (r; n; y) is prime consonant, the ability to either compute

'(n) or to extract r

th

roots is computationally equivalent to the ability to factor

n.

2.9 Elementary Elections

We are now ready to describe an oversimpli�ed method by which veri�able secret-

ballot elections can be held. The scheme presented here is riddled with cracks

and should not be read as a claim of a secure method of holding veri�able secret-

ballot elections. Instead, the aim of this section is to provide an overview of

the method of elections that will be described in greater detail in subsequent

chapters.

The scheme described in this section will be centralized. A central government

is assumed to exist. The government prepares an election encryption function

E as described in section 2.7 with r greater than the number of eligible voters.

The government releases to the public the triple (r; n; y) allowing everyone to

compute E of any chosen values, but keeps secret the factors of n.

Each voter selects a random x

i

2 Z

�

n

and a vote s

i

. When s

i

= 0 it denotes

a \no vote" and when s

i

= 1 it denotes a \yes vote". Each voter then publically

releases the result w

i

= E(s

i

; x

i

). By lemma 2.7, w

i

will be a uniformly chosen

member of RC[0] for those voters who cast no votes and a uniformly chosen

member of RC[1] for those voters who cast yes votes.

By lemma 2.8, the product W =

Q

i

w

i

mod n will be a member of a RC[c]

where c is equivalent modulo r to the sum of the classes of the released votes w

i

.

Furthermore, by theorem 2.17, this c is unique in the range 0 � c < r. But the

number of voters is less than r, and each vote is either of class 0 or of class 1.

Thus, the sum of these classes, c, is precisely equal to the number of yes votes

among the votes cast.

The government can compute c = [[W ]], (recall that W is public) as in sec-

tion 2.5 and prove to the voters that W 2 RC[c] by releasing a c and x such that

W �

n

y

c

x

r

where x is an r

th

root of Wy

�c

computed as in lemma 2.19.

The government thereby convinces all participants and observers that the c
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it releases is, in fact, the number of yes votes cast, and is therefore the tally of

the election.

There are, of course, many problems with this scheme. These include, but

are not limited to the following.

� There is no reason to believe that the government chose its election encryp-

tion function as speci�ed in section 2.7.

In fact, if r and '(n) are chosen to be relatively prime, then every W 2 Z

�

n

can be expressed as W �

n

y

c

x

r

for any c of the government's choosing.

Thus, the government can claim any tally it desires.

� There is no reason to believe that the votes (w

i

) cast by the voters are

chosen only from among elements of RC[0] or RC[1].

If a single voter casts as its vote a w

i

2 RC[1; 000; 000], for instance, then

this one vote increments the tally of the election by 1,000,000. Of course

the government could detect this digression, but it may not wish to reveal

it.

� The government may, even if honest, unwittingly reveal information which

may allow some voters to determine the votes of others.

For example, the schema described above requires the government to reveal

an r

th

root of a quantity with which it is presented. It may be possible for

one or more voters to force the product W towards a value for which a

root of Wy

�c

is already known (and thus, a distinct root would allow the

factorization of n to be determined). In this schema, it is not di�cult for

the last voter of an election to direct things this way.

� The government knows how every voter voted.

This information could be revealed to others or used in an improper manner.

It is certainly undesirable for any agent to know the private information of

others.

� The government may halt the election at any time.

If the government sees that the tally of an otherwise proper election is not

to its liking, it may refuse to reveal [[W ]]. Thus, the tally of the election

remains unknown to its participants.
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The �rst three problems described here will be addressed by the methods of

chapter 3. The �nal two problems will be managed by the techniques of chapter 4.

Chapter 5 will tie these approaches together and give a complete fault-tolerant

schema for holding veri�able secret-ballot elections. The schema is proven to

not only allay the concerns expressed above, but also to produce a tally which

is correct with extremely high probability. It is also proven that distinguishing

between the votes of proper voters who follow their protocols is as di�cult a

problem as deciding between residue classes. It is thusly shown that the existance

of any algorithm which can, even with the assistance of colluding participants,

gain even an inverse polynomial advantage at deciding between possible votes

among proper voters is su�cient to violate the prime residuosity assumption.



Chapter 3

Interactive Proofs and the use of

Cryptographic Capsules

This chapter describes a deceptively (almost embarrassingly) simple technique,

that of cryptographic capsules, which allows Alice to convince Bob that either X

or Y is true without giving Bob any information as to which is the case. Capsules

are used in and further the capabilities of so called interactive proofs.

The notion of interactive proofs was introduced and �rst used by Goldwasser

and Micali in [GoMi83]. The ideas were further developed by the original authors

together with Fischer and Racko� in [FMR84] and [GMR85]. The fundamental

idea is an extension of the notion of a formal proof to what might be called a

convincing argument.

Traditionally, if Alice wants to convince Bob that a certain property holds

(say that a given y is a quadratic residue modulo a given n) she could write out

a formal proof of the fact (which would likely include the factorization of n) and

send the proof to Bob. This procedure is quite e�ective at giving Bob the desired

information, but it might have an unwanted side e�ect of giving Bob additional

information (such as the factorization of n).

Instead, Alice might be able to convince Bob of some property through an

interactive conversation|perhaps by answering a number of challenges put for-

ward by Bob. In this way, it may be possible for Alice to convince Bob of the

validity of her claim without surrendering additional information.

35
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3.1 Some Interactive Proofs

Interactive proofs are a kind of electronic shell game. Suppose there is a ball

hidden under one of two shells. Alice is allowed to scramble the shells and Bob

is then allowed to look beneath one of the two shells. If this process is repeated

inde�nitely, and if Bob each time randomly selects the shell to look beneath,

then Bob will, in all probability, eventually �nd the ball. In fact, it may be

said that Bob will, with extremely high probability, �nd the ball within a fairly

small number of trials. If, after many tries, Bob has not found a ball, he may

reasonably conclude that neither shell has a ball beneath it. This is true even

though Bob may never have looked beneath both shells simultaneously.

A more substantive example can be drawn from the domain of chapter 2.

Suppose that Alice wants to select and reveal to Bob an n such that n = pq where

p and q are distinct primes and jpj = jqj. Alice may proceed as in �gure 3.1.

Con�dence Parameter: N

Alice selects N pairs of distinct primes (p

i

; q

i

) such that jp

i

j = jq

i

j

and reveals the n

i

= p

i

q

i

to Bob.

Bob selects a random index j and reveals j to Alice.

For i 6= j, Alice reveals p

i

and q

i

.

Con�dence: 1� 1=N

Figure 3.1: Interactive proof that an n = pq where p and q are distinct primes

such that jpj = jqj.

If for all i 6= j, Alice has released p

i

and q

i

such that n

i

= p

i

q

i

, p

i

and q

i

are

prime, and jp

i

j = jq

i

j, then it may be said that Bob is \convinced" that it is also

the case that n

j

= p

j

q

j

where p

j

and q

j

are distinct primes with jp

j

j = jq

j

j.

Alice could only have \defeated" Bob by successfully predicting which j Bob

would select. Since Bob selects j randomly, and since there were N possible

values of j to choose from, this could only be done with probability 1=N . Thus,

Bob may be said to be \convinced" that Alice could have only cheated him with

probability 1=N . Thus, Bob is said to have \con�dence 1� 1=N".

Once this interactive proof has been completed, Alice and Bob share a value

n for which only Alice possesses the factors but for which Bob is convinced that
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certain properties hold. It may be claimed that Bob has \learned" nothing from

the interactive proof other than the fact that n satis�es these properties. In

particular, Bob has not been given the factors of n.

The approach used in this interactive proof is very general, and it may be used

by Alice in many situations to convince Bob that an object has a given property

which is feasibly computable by Alice but not by Bob. There are, however, two

principal shortcomings of this approach.

First, although Bob's con�dence may be high, it is di�cult to make it very

high, as is necessary for many applications. The probability that Bob is fooled

decreases only in inverse linear proportion to the number of objects prepared by

Alice.

Second, it is di�cult to use this technique to show that a property holds

about a speci�c object. For instance, it may still be di�cult for Alice to convince

Bob that a speci�ed z is in Z

r

n

for �xed n and r unless Alice is willing to reveal

to Bob the factors of n or an r

th

root of the speci�ed z.

We shall show here some relevant interactive proofs which remedy these short-

comings. The �rst is intended to be somewhat introductory.

3.1.1 An Interactive Proof that z 2 Z

r

n

It is shown in chapter 2 that possession of two distinct r

th

roots of a given r

th

residue z is often su�cient to split n into non-trivial factors. In particular when

(r; n) is exact consonant, lemma 2.31 shows that possession of two distinct r

th

roots is su�cient to completely factor n. In addition, in such an elementary

election scenario of section 2.9, the last voter could direct the outcome so as to

force the government to produce an r

th

root of any desired r

th

residue. Thus, the

�nal voter could select a random x and force the government to release an r

th

root x

0

of z �

n

x

r

. Since x is chosen randomly and not revealed, and since there

are r distinct r

th

roots of z, the probability that x 6�

n

x

0

is (r � 1)=r. Since r is

greater than the number of voters, this probability is quite high. Hence, the �nal

voter could manipulate the election in such a way as to, with high probability,

determine the factors of n and thereby determine the votes of other voters.

In order to avoid this and related di�culties, it is desirable that the gov-

ernment have some means of convincing others that a given z is in Z

r

n

without

revealing an r

th

root of z or the factors of n. We will limit ourselves here to
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an intuitive argument as to why this approach does not reveal undue informa-

tion. The formal proof that privacy is not in any way compromised is deferred

to chapter 5.

The essence of the interactive proof of �gure 3.2 relies on two properties:

�rst, the group structure of Z

r

n

; and second, the fact that random pairs of the

form (x; z) where x is an r

th

root of z can be easily generated by anyone with or

without the factors of n.

Con�dence Parameter: N

Alice prepares N random pairs of the form (x

i

; z

i

) where each x

i

is

randomly chosen from Z

�

n

and each z

i

�

n

x

r

i

.

Alice reveals the z

i

to Bob but keeps the corresponding x

i

concealed.

Bob selects a random subset S of the indices.

For each i 2 S, Alice reveals to Bob x

i

.

For each i =2 S, Alice reveals to Bob xx

i

where x is a �xed r

th

root

of the z in question.

Con�dence: 1� 1=2

N

Figure 3.2: Interactive proof that z 2 Z

r

n

.

It can be argued here that Bob has received no information since he has seen

only random (x

i

; z

i

) pairs which he could have generated for himself. It is also the

case that it has been proven to Bob that for each i 2 S, z

i

2 Z

r

n

; and therefore,

since Alice could not have foreseen which subset of indices Bob would choose,

Bob can be said to have been \convinced" that z

i

2 Z

r

n

for at least one i =2 S. If

this were not the case, then it would have to be true that z

i

2 Z

r

n

for every i 2 S

and z

i

=2 Z

r

n

for every i =2 S. Thus, Alice would have to have either known or

guessed the precise subset S to be selected by Bob before revealing the z

i

to Bob.

Alice could guess such a subset of the N indices with probability only 1=2

N

.

In the last step, Alice reveals the xx

i

to Bob. Each such xx

i

is an r

th

root of

zz

i

, but because of the group structure of Z

r

n

, an r

th

root of zz

i

can only exist if

either both z and z

i

are in the group Z

r

n

or if neither z nor z

i

is in this group.

Thus, having been previously convinced that at least one of these latter z

i

for

i =2 S is in the group Z

r

n

, Bob must conclude that z also is in Z

r

n

.
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The only place where it appears that Bob might gain some undue information

from Alice is in this last step. This concern is, however, alleviated by again

appealing to the group structure of Z

r

n

. Since Z

r

n

is a group, the pairs (xx

i

; zz

i

)

are, to Bob, random elements of Z

�

n

together with their r

th

powers. Once again,

Bob could have generated such pairs for himself. Thus, it can be argued that,

beyond being convinced that z 2 Z

r

n

, Bob has learned nothing from the exchange.

The limited disclosure of information seen in the interactive proof of �gure 3.2

is the essence of \zero-knowledge" as de�ned by Goldwasser, Micali, and Racko�

in [GMR85]. The notion of zero-knowledge stems from the attempt to capture

the intuition that Bob has learned nothing from the interactive proof besides that

which is entailed by the claim of the proof itself.

One way in which to capture this intuition is to assert that it must be possible

to \simulate" Alice's actions in such a way that Bob's conversations with Alice

are indistinguishable from simulated conversations. If this property is true of all

possible agents who might take Bob's place in an interactive proof with Alice,

then, in some sense, no agent could learn anything from these conversations and

the interaction is deemed zero-knowledge.

In the interactive proof of �gure 3.2, for example, Bob is convinced of the

claim that z 2 Z

r

n

as well as of consequences of this claim. It is possible, more-

over, to simulate Alice's actions in this protocol, since all of Alice's actions are

indistinguishable from the release of randomly chosen pairs of the form (x; x

r

).

A simulator could therefore be constructed which �rst selects the set S of

indices exactly as Bob would. Note that a dishonest agent in Bob's place might

not select S randomly, but rather use some other means. This does matter as

long as S is generated exactly as the agent would. The simulator then randomly

generates pairs (x

i

; x

r

i

) with each x

i

2 Z

�

n

. For all i 2 S, the simulator releases

z

i

= x

r

i

mod n, and for all i =2 S, the simulator releases z

i

= z

�1

x

r

i

mod r. The

simulator then releases the set S. Finally, the simulator releases all x

i

. By

construction, for all i 2 S, x

i

is an r

th

root of z

i

, and for all i =2 S, x

i

is an r

th

root of zz

i

, as desired.

Thus, no outside observer would be able to distinguish the simulation from

an actual conversation between Alice and Bob. This zero-knowledge property

ensures, in particular, that Alice is not giving information to Bob which could

assist Bob in constructing an r

th

root of z.

It should once again be emphasized that although this is an appealing ar-
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guement, it is not a formal proof. We neither prove that z 2 Z

r

n

must be the

case nor that Bob has \learned" nothing he shouldn't have in the exchange. In

this chapter, the interactive proofs presented will not be accompanied by formal

proofs that they achieve the desired properties. Instead, arguments like the pre-

ceding intuitive appeal will be given. The formal proofs that are required will be

given as part of the full veri�able secret-ballot election schema of chapter 5.

3.1.2 An Interactive Proof that w 2 RC[c]

Given the interactive proof method of section 3.1.1, it is now easy to see how to

show that w 2 RC[c]

(r;n;y)

.

By de�nition, w 2 RC[c]

(r;n;y)

if and only if there exists some z 2 Z

r

n

such

that w �

n

y

c

z. Thus, showing that w 2 RC[c] is equivalent to showing that

wy

�c

2 Z

r

n

. Hence, w 2 RC[c] can be shown by using the interactive proof

method of section 3.1.1 to show that wy

�c

2 Z

r

n

.

In particular, theorem 2.17 tells us that if (r; n; y) is consonant, there exists at

most one integer c with 0 � c < r such that w is expressible as w �

n

y

c

z for some

z 2 Z

r

n

. This c, when de�ned, is [[w]]

(r;n;y)

. Thus, when (r; n; y) is consonant, this

method can be used to show that [[w]]

(r;n;y)

= c.

3.1.3 An Interactive Proof that [[w

1

]] = [[w

2

]]

It will soon become important to enable Alice to convince Bob that, under the

assumption that (r; n; y) is consonant, [[w

1

]] = [[w

2

]] without revealing to Bob the

values of [[w

1

]] and [[w

2

]]. This capability will be used extensively as a component

of subsequent interactive proofs.

Lemma 2.10 tells us that [[w

1

]] = [[w

2

]] if and only if w

1

w

�1

2

2 Z

r

n

. Thus, an

interactive proof that [[w

1

]] = [[w

2

]] may be achieved by using the interactive proof

technique of section 3.1.1 to show that w

1

w

�1

2

2 Z

r

n

.

A uniform indistinguishability argument can be used to show that this in-

teractive proof method gives an adversary no substantial information about the

value of [[w

1

]] and [[w

2

]]. There are, however, subtleties to this argument since the

phrase \gives an adversary no substantial information" has not yet been precisely

de�ned. Once again, these details will be deferred.
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3.1.4 An Interactive Proof that (r; n; y) is consonant

We next give an interactive proof method to show that a triple (r; n; y) is conso-

nant. This interactive proof has an added bene�t since, by corollary 2.15, when

(r; n; y) is consonant and r > 1, then y =2 Z

r

n

. Thus, the methods of this section

can be used in many important cases to show that y =2 Z

r

n

. Section 3.3.1 will give

an improved interactive proof method which can always be used to show that

y =2 Z

r

n

.

The key element of this interactive proof is obtained from lemma 2.11 which

states that when y 2 Z

�

n

, there are r distinct residue classes precisely when

(r; n; y) is consonant and no more than r=2 distinct residue classes otherwise.

Thus, Alice can convince Bob that (r; n; y) is consonant by demonstrating her

ability to distinguish between residue classes. In particular, when Alice is pre-

sented with a w randomly chosen from one of the r residue classesRC[0];RC[1]; : : : ;RC[r�

1], she should always be able to determine to which class w belongs and give a

response which matches Bob's expectation.

This suggests the interactive proof that (r; n; y) is consonant given in �g-

ure 3.3. Note that if y =2 Z

�

n

, then by theorem 2.13(a), (r; n; y) is not consonant.

This condition is easily tested, so we may assume that y 2 Z

�

n

.

Con�dence Parameter: N

Bob prepares N pairs [c

i

; x

i

], where c

i

is uniformly chosen from Z

r

and x

i

is uniformly chosen from Z

�

n

, and sends Alice the values w

i

=

 ([c

i

; x

i

]) = y

c

i

x

r

i

mod n.

Alice computes the c

i

from the w

i

and sends the c

i

to Bob.

Con�dence: 1� 1=2

N

Figure 3.3: Interactive proof that (r; n; y) is consonant.

Lemma 2.7 guarantees that each w

i

is a uniformly selected member of RC[c

i

].

Lemmas 2.5 and 2.11 guarantee that if (r; n; y) were not consonant, then w

i

would

also be a member of RC[c

0

i

] for some c

0

i

6= c

i

with 0 � c

0

i

< r and that therefore

(by lemma 2.4) RC[c

i

] = RC[c

0

i

]. Since c

i

was chosen by Bob uniformly from Z

r

,

Alice could only guess which of c

i

or c

0

i

(or possibly other values) was chosen

by Bob. She would therefore have a probability of at most 1=2 of guessing the
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correct c

i

on each of N trials. Thus, Alice would not be able to duplicate the c

i

expected by Bob with probability greater than 1=2

N

.

Despite its simplicity, there is a problem here. Alice is e�ectively acting as a

residue class oracle for Bob and may be giving Bob useful information about the

class of one or more w

i

for which Bob did not already know the class. Thus, there

is no hope that this interactive proof could satisfy the zero-knowledge criterion.

To handle this problem, we add an additional phase to the interactive proof

whereby Bob convinces Alice that he already \knows" the class of an element

before Alice gives it.

The interactive proof of �gure 3.4 can be used by Bob to convince Alice that

he \knows" the residue class of a chosen element.

Con�dence Parameter: N

Bob prepares a pair [c; x] and sends w =  ([c; x]) = y

c

x

r

mod n to

Alice.

Bob also prepares N pairs [c

i

; x

i

], where c

i

is uniformly chosen from

Z

r

and x

i

is uniformly chosen from Z

�

n

, and sends w

i

=  ([c

i

; x

i

]) =

y

c

i

x

r

i

mod n to Alice.

Alice selects a random subset S of the indices.

For each i 2 S, Bob sends [c

i

; x

i

] to Alice.

For each i =2 S, Bob sends Alice [c; x]� [c

i

; x

i

].

Con�dence: 1� 1=2

N

Figure 3.4: Interactive proof that a decomposition of w is \known".

For any i, if one is given both [c

i

; x

i

] and [c; x] � [c

i

; x

i

], then one can easily

compute [c; x]. Thus, Alice is convinced that Bob can compute [c; x]. Because

of the group structure of D

r

(n;y)

, however, all that Alice sees are N completely

random elements of D

r

(n;y)

. Thus, it can be argued that this interaction is of no

help to Alice in attempting to compute c.

A complete interactive proof that (r; n; y) is consonant which is satisfactory

to both Alice and Bob can now be given in �gure 3.5.

Notice the notion of \security" added here. Informally, the con�dence mea-

sure indicates the level of faith of the veri�er (Bob) that it has not been deceived

by the prover (Alice). The security measure indicates the level of faith of the
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Con�dence Parameter: N

Security Parameter: N

0

Bob uniformly selects N elements [c

i

; x

i

] 2 D

r

(n;y)

.

Bob sends Alice  ([c

i

; x

i

]) for all such [c

i

; x

i

].

For each i, Bob uniformly selects N

0

additional elements [c

i;j

; x

i;j

] 2

D

r

(n;y)

and sends  ([c

i;j

; x

i;j

]) to Alice for all (i; j).

Alice selects a random subset S of the (i; j) indices.

For each (i; j) 2 S, Bob sends [c

i;j

; x

i;j

] to Alice.

For each (i; j) =2 S, Bob sends Alice [c

i

; x

i

]� [c

i;j

; x

i;j

].

Alice sends Bob c

i

for all i.

Con�dence: 1� 1=2

N

Security: (1� 1=2

N

0

)

N

> 1�N=2

N

0

Figure 3.5: \Secure" interactive proof of consonance.

prover (Alice) that it has not been deceived by the veri�er (Bob). Note that the

veri�er is deceived if it is convinced of a claim which is not true, while the prover

is deceived if the veri�er is able to gain information beyond that which is entailed

by the claim.

In the above interactive proof, Bob could only gain additional information

by, in one of N instances, guessing (in advance) a subset of N

0

elements selected

by the Alice. Each subset could be guessed with probability 1=2

N

0

. Thus, the

probability that none of the N subsets is guessed is (1� 1=2

N

0

)

N

. This gives the

\security" level of the interactive proof.

Once again it is emphasized that these notions are not meant to be formal.

Formal de�nitions of con�dence and security will be given as needed in chapter 5.

Remark In most cases where Alice generates a triple (r; n; y) for use in an

interactive protocol, it is su�cient that Alice convince Bob that (r; n; y) is con-

sonant. A protocol may specify that Alice select a perfect consonant or even an

exact consonant triple. This is generally to enable Alice to easily decide residue

classes or to make deciding classes di�cult on average for Bob (by making n

di�cult to factor, for instance). Thus, in these cases, Alice need not convince
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Bob of perfect consonance or exact consonance, as it is only to her disadvantage

to violate these conditions. It is, however, necessary for Alice to convince Bob of

consonance since violation of this property may allow Alice to cheat Bob.

3.2 Cryptographic Capsules

A cryptographic capsule (or simply capsule) is a randomly ordered collection of

objects, each of which is of some speci�ed form. The order of the elements of

the capsule is randomly permuted to hide which element is of which type; or,

alternately, some easily computable ordering function (such as �) can be applied

to the capsule to obscure the original ordering.

A simple example of a capsule is a pair of integers | one of which is even and

one of which is odd, e.g. (4; 13). This capsule, however, is not very interesting

because it is readily apparent which is the odd integer and which is the even

integer.

A somewhat more useful capsule may be an (unordered) pair of integers

fn

1

; n

2

g with n

1

= p

1

q

1

where p

1

and q

1

are each primes congruent to 1 modulo

4 and n

2

= p

2

q

2

where p

2

and q

2

are each primes congruent to 3 modulo 4.

If we assume that distinguishing between these two cases is hard, then this

suggests a simple method for ipping a coin over a telephone. Alice prepares

such a pair and transmits it to Bob; Bob then selects one element from the pair

and transmits his choice to Alice; �nally, Alice reveals the factors of both n

1

and

n

2

to Bob. We may say that the coin ip is heads if Bob chose the element with

factors congruent to 1 modulo 4 and tails otherwise.

This is not an ideal example, since Alice could have simply transmitted a

single integer of one of the two preceding classes and asked Bob to guess which

class it was from. The real power of capsules comes from the ability to prove

interactively that a capsule is of the required form without the need to later

reveal secret information about its contents.

3.3 Capsules and Residues

Many of the interesting uses of cryptographic capsules are found when their con-

tents consist of members of two or more residue classes as described in chapter 2.
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3.3.1 An Interactive Proof that y =2 Z

r

n

Section 3.1.4 gave an interactive proof method to show that a triple (r; n; y) is

consonant. This has the fringe bene�t of also showing that y =2 Z

r

n

since this is

always the case when (r; n; y) is consonant and r > 1. It is, however, not always

the case that y =2 Z

r

n

implies that (r; n; y) is consonant. We want, therefore,

to give a somewhat more general interactive proof method which can always be

used to show that y =2 Z

r

n

whenever it is, in fact, true.

There is another reason for which we would like to reexamine the interactive

proof method of section 3.1.4. With that method, Alice must decide the residue

class of many distinct values. This may be a cumbersome task for Alice since she

has r distinct classes to choose from and even the best methods use O(

p

r log r)

operations.

The burden on Alice can be eased substantially by limiting the possibilities

to two. Alice is presented either with a member of RC[0] or a member of RC[1]

and asked to decide which is the case. This is su�cient to show that y =2 Z

r

n

since when y 2 Z

r

n

, RC[0] = RC[1].

As in the interactive proof of section 3.1.4, Bob could simply present Alice

with randomly chosen members of RC[0] and RC[1] and ask her to distinguish

between them. Once again, however, by doing this Alice could be acting as a

residuosity oracle for Bob and might be giving Bob undue information.

To alleviate this problem, Bob must convince Alice that he \knows" the

class of a w before presenting it to Alice without giving away the class to Alice.

Furthermore, Bob must prove to Alice that [[w]]

(r;n;y)

2 f0; 1g, again without

giving away which is the case. If Bob fails to do this and presents Alice with a w

for which [[w]] > 1, then Alice may be forced to search for [[w]] or to go through

a cumbersome procedure to accuse Bob of cheating.

To accomplish these tasks, cryptographic capsules can be used as in �gure 3.6.

Unless Bob were able to guess, in advance, the subset of capsules which Alice

designates to be opened, Bob would not be able to perform the required decom-

positions without being able to determine the class of w by himself. Bob's chance

of guessing such a subset is only 1=2

N

.

The importance of Bob being able to demonstrate that his value is a legitimate

member of RC[0] or RC[1] without revealing which should not be lost here, as

this is one of the fundamentals which will be used later to enable secret-ballot
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Con�dence Parameter: N

Bob prepares a pair [c; x] such that c 2 f0; 1g and x 2 Z

�

n

and sends

w =  ([c; x]) = y

c

x

r

mod n to Alice.

Bob also selects N additional values �

i

and �

i

and sends to Al-

ice N capsules each consisting of (in random order) the pair u

i

=

 ([0; �

i

]) = �

r

i

mod n and v

i

=  ([1; �

i

]) = y�

r

i

mod n.

Alice designates a random subset of the capsules and demands that

they be opened.

Bob opens these capsules by presenting Alice with a decomposition

of each component of the capsule.

For each remaining capsule, Bob selects

!

i

=

�

u

i

if c = 0;

v

i

if c = 1.

and shows that !

i

is of the same residue class as w by presenting

Alice with a decomposition of the quotient !

i

w

�1

.

Con�dence: 1� 1=2

N

Figure 3.6: Interactive proof that [[w]] 2 f0; 1g.

elections to be made veri�able.

Once Bob has completed the interactive proof of �gure 3.6, Alice should be

convinced that Bob knows [[w]] and that [[w]] 2 f0; 1g. Thus, Alice should be

willing to provide [[w]] to Bob.

If RC[0] = RC[1] were true, then Alice would only have a 1=2 chance of

presenting Bob with the class he expects. Thus, by repeating the entire process

N times, Bob's con�dence can be elevated to 1 � 1=2

N

. Therefore, both Alice

and Bob should be satis�ed by the interactive proof of �gure 3.7.

An important special case occurs when r = 2. Here Alice interactively proves

to Bob that a given y is not a quadratic residue modulo n. In this case, in fact,

there is a symmetry between multiplication and division, so the entire interactive

proof can be completed without computing inverses. The interactive proof given

here represents a signi�cant simpli�cation of the original interactive proof of

quadratic non-residuosity given in [GMR85].
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Con�dence Parameter: N

Security Parameter: N

0

Bob randomly selects N values c

i

2 f0; 1g and x

i

uniformly from Z

�

n

and sends Alice the N values w

i

=  ([c

i

; x

i

]) = y

c

i

x

r

i

mod n.

With each w

i

, Bob randomly selects N

0

additional values �

i;j

and

�

i;j

and sends to Alice N

0

capsules each consisting of (in random

order) the pair u

i;j

=  ([0; �

i;j

]) = �

r

i;j

mod n and v

i;j

=  ([1; �

i;j

]) =

y�

r

i;j

mod n.

Alice designates a random subset of the capsules and demands that

they be opened.

Bob opens these capsules by presenting Alice with a decomposition

of each component of the capsule.

For each remaining capsule fu

i;j

; v

i;j

g, Bob selects

!

i;j

=

�

u

i;j

if c

i

= 0;

v

i;j

if c

i

= 1.

and shows that !

i;j

is of the same residue class as the associated w

i

by presenting Alice with a decomposition of the quotient !

i;j

w

�1

i

.

Alice tells Bob to which class each w

i

belongs.

Con�dence: 1� 1=2

N

Security: (1� 1=2

N

0

)

N

> 1�N=2

N

0

Figure 3.7: Interactive proof that y =2 Z

r

n

.
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3.3.2 An Interactive Proof of Prime Consonance

The interactive proof that y =2 Z

r

n

given in the previous section can also to used to

show that a triple (r; n; y) is prime consonant. This is true since, by theorem 2.18,

when r is prime and y 2 Z

�

n

, then y =2 Z

r

n

is su�cient to imply that (r; n; y) is

prime consonant. The �rst two of these conditions are easily veri�able, so by

entering into the interactive proof of section 3.3.1, Alice can convince Bob that

a triple (r; n; y) is prime consonant.

This interactive proof technique can be more e�cient than the general in-

teractive proof of consonance given in section 3.1.4. This is because, for each

challenge w presented to Alice by Bob, Alice need only decide the class of w from

among two possible residue classes (RC[0] and RC[1]) instead of from among all

r possible residue classes.

3.3.3 Result-indistinguishable Residuosity

[GHY85] generalizes the result of [GMR85] in such a way that an observer, Carol,

watching the protocol between Alice and Bob gains no information from the

protocol as to whether Alice convinced Bob that a given z was or was not a

quadratic residue. The key addition to the protocol of [GMR85] is the inclusion

of a third set of possibilities. Instead of choosing w from among just the two sets

X = RC[0] and Y = RC[1], Bob may select from an additional set Z. Z consists

of elements of the same class as z, and members of Z can be randomly generated

by multiplying z by randomly chosen members of Z

2

n

.

By using three-component capsules, the protocol given in [GHY85] can be

simpli�ed tremendously. Bob simply prepares N master capsules C

i

, each con-

sisting of one member of each of X, Y , and Z. For each C

i

, Bob also prepares

N

0

additional scratch capsules of the same form. Alice designates some subset of

the scratch capsules, and Bob opens these. Bob then matches the components of

each scratch capsule with C. That is, on each scratch capsule, Bob links element

of X with the element of X in capsule C, the element of Y with the element of

Y in capsule C, and the element of Z with the element of Z in capsule C. Bob

does not tell Alice which link is which. Bob then demonstrates that each link is

valid by decomposing the quotient of each pair of linked elements to show that

each such quotient is a residue. Alice (now convinced that C was generated as

required) tells Bob which capsule component is of a class di�erent from the other
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two | thus transmitting to Bob the class of z.

The chance of Alice being fooled into revealing excessive information to Bob

is only 1 in 2

N

0

. The chance of Alice fooling Bob in one iteration of this protocol

is 1=2, so by iterating the process N times, Bob can obtain 1� 1=2

N

con�dence

that he has not been misled. Finally, a symmetry argument shows that Carol

receives absolutely no information from watching this protocol that she could not

have obtained on her own.

3.3.4 Graph Non-isomorphism

One example in which capsules are useful without the aid of residue classes is

seen in a protocol for graph non-isomorphism given in [GMW86]. Their original

protocol closely followed the non-residuosity protocol of [GMR85]. In [GMW86],

a prover designates a graph H given by the veri�er as either a permutation of

graph G

1

or of graph G

2

after being convinced that the veri�er already holds

such a permutation.

A simpler protocol is obtained by incorporating capsules in a manner similar

that described in section 3.3.1. Residue classes are replaced by the equivalence

classes induced by graph isomorphism, and class equivalence is demonstrated by

exhibiting permutations. Thus, capsules | each consisting of a permutation of

G

1

and a permutation of G

2

| are used to interactively prove that a given graph

H is a permutation of either G

1

or G

2

.

3.3.5 Boolean Circuit Satis�ability

Recently (also in [GMW86]), Goldreich, Micali, and Wigderson gave a simple and

elegant zero-knowledge interactive protocol (as de�ned in [GMR85]) to prove for

any k that a graph is k-colorable without revealing any information about a

speci�c coloring (assuming that the prover possesses a k-coloring of the graph).

Because k-colorability isNP-complete, this implies that any positive instance of a

problem in NP for which a prover holds a certi�cate (e.g. a satisfying assignment

for a Boolean formula) can be reduced to graph colorability and shown, in a zero-

knowledge fashion, to be a positive instance. The only assumption made is the

existence of a probabilistic cryptosystem, and this is implied by the existence of

a one-way permutation (see [GoMi84] and[Yao82b]).
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In this section, we shall examine an alternate approach which gives the same

result by a very di�erent method. The method uses capsules to give a zero-

knowledge protocol to interactively prove that a given Boolean formula (or arbi-

trary Boolean circuit with in-degree 2) has a satisfying assignment. Brassard and

Crepeau in [BrCr86] independently of both this work and [GMW86] have achieved

the same result, and Chaum in [Chau86a] has also independently achieved a very

similar result.

The major advantage of this method over the original is e�ciency. When

a Boolean formula or circuit is reduced to a colorability graph, the number of

vertices and edges in the resulting graph is linear in the size of the Boolean

formula. Each stage of the interactive proof protocol of Goldreich, Micali, and

Wigderson, however, requires a new encryption of the entire graph; and for any

�xed con�dence level desired, their protocol requires a number of stages which

is linear in the number of edges in the graph. Thus, the number of probabilistic

encryptions required by this protocol grows quadratically with the size of the

graph (or circuit). Because of the local nature of the method presented below, re-

encryption is not necessary, and the number of probabilistic encryptions required

grows only linearly with the size of the circuit (or graph).

The major disadvantage of this method compared to the original method is

that the new procedure requires a (seemingly) stronger cryptographic assump-

tion. Although both methods require a probabilistic encryption function such as

the residue class based probabilistic encryption of [GoMi84], the method given

here requires a probabilistic encryption function for which two encrypted values

can be proven, in a zero-knowledge manner, to be encryptions of the same value.

Although this property is easily achieved by the residue class based probabilistic

encryption (Lemma 2.10), it is not at all obvious that every probabilistic en-

cryption function has this property. However, by observing that the problem of

inverting a probabilistic encryption function is itself in NP , the original Goldre-

ich, Micali, and Wigderson result can be applied to show that the cryptographic

assumption required here is, in fact, no stronger than the assumption of the

existence of an arbitrary probabilistic cryptosystem.

The Satis�ability Scheme

The basic idea of the scheme is again deceptively simple. If Alice wants

to prove to Bob that a given formula is satis�able (and Alice has a satisfying
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assignment), Alice begins by choosing an n which is the product of two large

primes and providing Bob with n and a y (with Jacobi symbol 1) which is not a

quadratic residue modulo n. This is merely the establishment of a Goldwasser{

Micali probabilistic encryption function. The fact that y has Jacobi symbol 1

(with respect to n) can be veri�ed by Bob without Alice's assistance. Alice

can convince Bob that y =2 Z

2

n

by engaging in the non-residuosity protocol of

section 3.3.1.

Alice then draws a circuit to compute the Boolean function (in the obvi-

ous way), selects a satisfying assignment and sends Bob an encryption of this

assignment. For each variable, Alice sends Bob a random member of RC[0] if

that variable is False/0/O� and a random member of RC[1] if that variable is

True/1/On. Alice then encrypts the output of each gate of the circuit in the

same manner and sends Bob these encrypted values as well.

For each gate in the circuit, Alice then interactively proves to Bob that the

gate computes the required function. The computation of an AND gate will be

shown here, and other Boolean functions should become apparent.

To prove that a given gate computes an AND on its inputs, a full truth table

for AND is used. There are, of course, four possibilities: either both inputs and

the output are 0; the �rst input is 0, the second is 1, and the output is 0; the �rst

input is 1, the second is 0, and the output is 0; or both inputs and the output are 1.

Four-component capsules are prepared such that each of these four input/output

cases is represented by one of the four components of each capsule. Each case

is represented by an ordered triple containing random members of the residue

classes corresponding to these values. A capsule for AND would be a four-element

(unordered) set consisting of four (ordered) triples whose elements are members

of residue classes (RC[0];RC[0];RC[0]), (RC[0];RC[1];RC[0]), (RC[1];RC[0];RC[0]),

and (RC[1];RC[1];RC[1]).

Let G be an arbitrary gate with inputs marked with � and � and an output

marked with . Each of �, �, and  is a random member ofRC[c] if and only if the

actual value of the input/output is c. Let f be the function computed by gate G.

To prove that a gate G = (�; �; ) computes the claimed function f , Alice must

show that f([[�]]; [[�]]) = [[]]. To accomplish this, Alice prepares many capsules

of the form described for an AND gate above and Bob selects an arbitrary subset

to be opened. Alice opens these capsules by giving Bob a decomposition of each

element of each triple of each component of each capsule. Alice then proves that
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each unopened capsule matches G by selecting one of its four components (call it

(�

0

; �

0

; 

0

)) and presenting Bob with a square root of each of the three quotients

�

0

�

�1

, �

0

�

�1

and 

0



�1

.

Finally, Alice interactively proves that the output of the circuit is 1 by proving

that this value is a non-residue as in section 3.3.1.

Remark Some gates may be computed without the need for an interactive

proof. For example, an encrypted value may be complemented simply by multi-

plying it by y, and the XOR of two or more encrypted values is represented by

their product.

If it were also possible to compute AND gates or OR gates without interactive

proofs, then the satis�ability of any given circuit could be demonstrated with a

single interactive proof that the value of the circuit output is 1. Unfortunately,

no encryption homomorphism is known which allows the direct computation of

an expressively complete set of boolean functions.

3.4 Basic Elections

We are now ready to make our second pass at secret-ballot elections. Most of the

problems raised in the elementary election scenario of section 2.9 are addressed

here. The centralized government does, however, remain. As an additional con-

venience, we assume here the existence of a universally trusted source of random

bits | a so-called beacon (see [Rabi83a]). Although it will not be necessary to

use a beacon, it is a simpler mechanism than that which will ultimately be given.

A beacon may be produced as the outcome of some natural event which de�es

prediction such as the low order bit of a geiger-counter sampling in a radio-active

environment, a measurement of sun-spot activity, or a seismographic reading.

In this scheme, V is the set of eligible voters, and r is a �xed prime chosen

such that r > jVj.

The improvements over the elementary election scenario exhibited here are

mainly due to the incorporation of interactive proofs to give con�dence that,

at various stages, agents are performing as required. In particular, votes are

prepared by forming a capsule (or \ballot") consisting of a \no vote" and a \yes

vote".
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In this schema, an integer w is said to be a no vote if w 2 RC[0] and a

yes vote if w 2 RC[1]. A capsule can be interactively proven to consist of a no

vote and a yes vote by an interactive proof method which is nearly identical to

the interactive proof that [[w]] 2 f0; 1g from section 3.3.1. Recall that in that

interactive proof method, an integer w is chosen uniformly from either RC[0] or

RC[1] and interactively proven to be of that form by relating w to capsules each

of which contains one element from each of RC[0] and RC[1].

We could simply use the same interactive proof method and allow such a w

to then be used as the vote, but we wish to allow the interactive proof to be

performed before the voter is forced to decide which way to vote. To do this

easily, we allow each voter to prepare a \master" ballot (capsule) consisting of a

no vote and a yes vote and many similar \scratch" ballots to be used in the inter-

active proof. A random subset of these capsules are demanded to be \opened"

(decomposed), and each remaining scratch ballot is related to the master ballot

by demonstrating that their components are of the same residue classes (either

matched directly or matched in reverse order).

After this interactive proof is complete, the voter may select one of the two

votes from the master ballot as the vote to be cast in the election. Other partic-

ipants should be convinced that the vote cast is legitimate (either a no vote or a

yes vote) without discovering which is the case.

The basic election schema is given in �gure 3.8.

The function check used in the schema is de�ned to be good exactly when

agents' actions are super�cially consistent with their protocols. In particular,

check

V

(`) is de�ned to be good if and only if a voter successfully completes the

interactive proof in phase 2 to show the legitimacy of its master ballot and then

selects a vote from its master ballot as the vote to be cast in phase 3. We do

not want to include in the tally votes cast by voters who have not demonstrated

their legitimacy.

The check function is simple for all agents to compute and can be precisely

de�ned. Its precise de�nition is, however, quite cumbersome and will not be

given here. A complete speci�cation of the more general check function used in

the full veri�able secret-ballot election schema will be given along with the full

schema in chapter 5.

The advantages achieved by this election schema over the schema outlined

in section 2.9 are mainly in the area of veri�ability. The interactive proofs en-
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Phase 1 executed by government:

1. Release a randomly chosen pair (n; y) such that (r; n; y) is exact con-

sonant. Voters may challenge the consonance of (r; n; y) by engaging

the government in the interactive proof of section 3.3.2 up to jnj times

each.

Phase 2 steps executed by each voter V

`

2 V:

2a. Let � = djnj log

2

jVje. For 0 � i � �, randomly select �

i

; �

i

2 Z

�

n

and release as ballot B

i

the capsule consisting of the two numbers

u

i

=  ([0; �

i

]) = �

r

i

mod n and v

i

=  ([1; �

i

]) = �

r

i

mod n in random

order.

2b. Use beacon to generate random bits b

i

for1 � i � �.

2c. For all i such that b

i

= 0, reveal �

i

and �

i

. For all i such that b

i

= 1,

reveal �

i

� �

�1

0

and �

i

� �

�1

0

mod n.

Phase 3 executed by each voter V

`

2 V:

3. Select one element of its B

0

as its actual vote w

`

. To vote \yes", select

w

`

= y�

r

0

. To vote \no", select w

`

= �

r

0

.

Phase 4 executed by government:

4. Compute G = f` : check

V

(`) = goodg and W =

Q

`2G

w

`

mod n.

Reveal t = [[W ]] and use the interactive proof method of section 3.1.2

to show that t 2 RC[W ].

The value of t represents the number of yes votes cast in the election.

Figure 3.8: The schema for elections with a government.
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sure the legitimacy of the government's encryption function and the votes cast

and, ultimately, the correctness of the tally. Even collusion between dishonest

voters and a corrupt government is not su�cient to convince honest voters of an

incorrect tally.

There is also some measure of privacy since the vote cast by each voter is

indecipherable by other voters. Thus, if the government can be trusted to main-

tain the privacy of votes, then the schema given here is su�cient to enable the

conducting of veri�able secret-ballot elections.

The main di�culty left to be addressed is the government's ability to see

how each voter voted. This alone gives a government extraordinary power to

compromise privacy, to apply coercion to voters, or to halt elections which would

yield an \undesirable" tally.

The methods of chapter 4 will show how to divide an entity such as a gov-

ernment into many constituent components such that no set of fewer than a

pre-determined number of the components can obtain any useful information

about a given process. Chapter 5 will show how this method can be applied to

elections in order to prevent deciphering of individual votes.
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Chapter 4

Secret Sharing Homomorphisms

In 1979, Blakley and Shamir independently proposed schemes by which a secret

can be divided into many shares which can be distributed to mutually suspicious

agents. If at least some pre-determined number of these agents pool their shares,

they can reconstruct the secret. If, however, fewer than this number of agents

pool their shares, they obtain no information whatsoever about the secret.

This chapter describes a homomorphism property attained by these and sev-

eral other secret sharing schemes which allows multiple secrets to be combined

by direct computation on shares. This property reduces the need for trust among

agents and allows secret sharing to be applied to many new problems. One ap-

plication described here gives a method of veri�able secret sharing which is much

simpler and more e�cient than previous schemes. A second application gives the

�nal piece which allows the construction of a fault-tolerant method of holding

veri�able secret-ballot elections.

4.1 Threshold Schemes

In 1979, Shamir in [Sham79] de�ned the notion of a threshold scheme (often

called a secret sharing scheme).

Shamir de�nes a (k; n) threshold scheme to be a division of a secret D into n

pieces D

1

; : : : ; D

n

in such a way that:

(1) knowledge of any k or more D

i

pieces makes D easily computable;

57
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(2) knowledge of any k� 1 or fewer D

i

pieces leaves D completely undetermined

(in the sense that all its possible values are equally likely).

The pieces of a secret are often called shares.

Since 1979, several di�erent threshold schemes have been proposed (see [Blak79],

[AsBl80], and [Koth84] for some examples), and they have proved to be useful in

a wide variety of interactive protocols. The threshold scheme originally proposed

by Shamir in [Sham79] is the best known and is very simple and elegant. It is

based on polynomial interpolation and evaluation, and for completeness it will

be sketched here.

Shamir's Threshold Scheme

It is well known that given any �eld F, any set of k distinct values

x

1

; x

2

; : : : ; x

k

2 F;

and k additional values

y

1

; y

2

; : : : ; y

k

2 F;

there exists a unique polynomial P of degree at most k � 1 with coe�cients in

F such that for all i, P (x

i

) = y

i

. This unique polynomial P is said to be the

interpolation of the points (x

i

; y

i

).

Shamir's threshold scheme �xes F to be a �nite �eld and enables the sharing

of a secret s 2 F. To accomplish this, a polynomial of degree up to k � 1 with

constant term s is randomly selected. This can be done by randomly selecting

k � 1 coe�cients c

i

2 F and forming

P (x) = c

k�1

x

k�1

+ � � � + c

1

x+ s:

The i

th

share of s is then computed as t

i

= P (i).

It is not hard to see that (as long as the number of shares is less than jFj)

the following conditions hold: (1) any k shares are su�cient to interpolate the

polynomial P and thereby construct the secret s; and (2) k � 1 or fewer shares

leave s completely undetermined since for any set of k�1 shares and any possible

secret s

0

2 F, there exists exactly one polynomial P

0

which interpolates the k�1

known shares together with the point (0; s

0

) and which has degree at most k� 1.
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De�nition For convenience, we use the notation jjht

1

; t

2

; : : : ; t

n

ijj to denote the

secret de�ned by the shares t

1

; t

2

; : : : ; t

n

in Shamir's scheme. That is, jjht

1

; t

2

; : : : ; t

n

ijj

is the value at 0 of the minimum degree polynomial P passing through the points

(i; t

i

).

We may now begin to formally de�ne a threshold scheme.

De�nition We say that G : A! B is a random function if for each a 2 A, G(a)

is a random variable with a given probability distribution over B.

De�nition Let a 2 A and b 2 B be elements of A and B, respectively. We

write Prob(a

G

7!b) (read \the probability that a yields b under G") to denote

Prob(G(a) = b).

Let S be the domain of possible secrets, and let T be the share domain. The

following de�nition asserts that given some partial set of shares, a given secret

yields this set with a probability equal to that with which the secret yields some

set of shares containing the partial set.

De�nition Given a set I = fi

1

; i

2

; : : : ; i

`

g � f1; 2; : : : ; ng together with values

�

i

1

; �

i

2

; : : : ; �

i

`

such that the value �

i

j

represents the i

th

j

value of an n-tuple in T

n

,

we de�ne

Prob(a

G

7!�

i

1

; �

i

2

; : : : ; �

i

`

) =

X

Prob(a

G

7!(t

1

; t

2

; : : : ; t

n

))

where the sum is taken over all n-tuples in T

n

such that for all i 2 I, �

i

= t

i

.

We are now ready to de�ne a (k; n) threshold scheme.

De�nition A (k; n) threshold scheme consists of a random function G : S ! T

n

and a collection of functions F

I

: T

k

! S de�ned for each I � f1; 2; : : : ; ng with

jIj = k.

These functions satisfy the following three properties:

(1) The functions G and F

I

for all I are computable in polynomial time.

(2) Let (t

1

; t

2

; : : : ; t

n

) be a value of G(s) for some s 2 S. Then for all I =

fi

1

; i

2

; : : : ; i

k

g � f1; 2; : : : ; ng with jIj = k,

F

I

(t

i

1

; t

i

2

; : : : ; t

i

k

) = s:

(3) Let t

i

1

; t

i

2

; : : : ; t

i

k�1

be a collection of k � 1 shares. Then for all s; s

0

2 S,

Prob(s

G

7!t

i

1

; t

i

2

; : : : ; t

i

k�1

) = Prob(s

0

G

7!t

i

1

; t

i

2

; : : : ; t

i

k�1

):
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The �rst condition implies that secrets can be e�ciently divided into shares

and reconstructed from the shares. The second implies that any subset consisting

of k of the n shares determines the same secret as does any other subset. Finally,

the third condition implies that no set of fewer than k shares gives any information

whatsoever about the secret|even if partial a priori information about the secret

exists.

4.2 The Homomorphism Property

De�nition Let � and 
 be arbitrary binary functions on elements of the secret

domain S and of the share domain T , respectively. We say that a (k; n) threshold

scheme has the (�;
)-homomorphism property (or is (�;
)-homomorphic) if for

all I, whenever

s = F

I

(t

i

1

; t

i

2

; : : : ; t

i

k

)

and

s

0

= F

I

(t

0

i

1

; t

0

i

2

; : : : ; t

0

i

k

);

then

s� s

0

= F

I

(t

i

1


 t

0

i

1

; : : : ; t

i

k


 t

0

i

k

):

This property implies that the compositions of the shares of the secrets are

shares of the composition of the secrets.

The following diagram shows how a set of m secrets s

1

; s

2

; : : : ; s

m

can be

divided into shares such that t

i;j

represents the i

th

share of the j

th

secret s

j

.

s = s

1

� s

2

� � � � � s

m

t

1

= t

1;1


 t

1;2


 � � � 
 t

1;m

t

2

= t

2;1


 t

2;2


 � � � 
 t

2;m

.

.

.

.

.

.

.

.

.

.

.

.

t

n

= t

n;1


 t

n;2


 � � � 
 t

n;m

Each t

i

is computed as the composition (under 
) of all of the i

th

shares.

The value s is computed as the composition (under �) of the secrets s

j

, and this

value is also computable as the secret de�ned by the \composite shares" t

i

.

De�nition The value s formed as the composition (under �) of the secrets

s

1

; s

2

; : : : ; s

m

is called the composite secret and the secrets s

1

; s

2

; : : : ; s

m

are called
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constituent secrets. The shares t

i;j

of the constituent secrets are called constituent

shares, and the values t

i

formed as the compositions (under 
) of the constituent

shares are called composite shares.

The homomorphism property can now be restated as \the composite shares

are shares of the composite secret."

Lemma 4.1 Shamir's threshold scheme is (+;+)-homomorphic where the addi-

tion is de�ned over the integers modulo p.

Proof:

Let P

1

(x) and P

2

(x) be two polynomials each of degree at most k�1 for some

positive integer k. Recall that with Shamir's scheme, these polynomials de�ne

the secrets P

1

(0) and P

2

(0), respectively, and the i

th

shares of these secrets are

given by P

1

(i) and P

2

(i), respectively.

Now, consider the polynomial P (x) = P

1

(x) + P

2

(x). Since both P

1

(x) and

P

2

(x) are of degree at most k � 1, their sum P (x) is also of degree at most

k � 1. Also, for all i, P (i) = P

1

(i) + P

2

(i). By the interpolation theorem, for

any subset of k of the points (i; P (i)), there is a unique polynomial of degree at

most k � 1 which interpolates these points. Since P (x) is of the proper degree

and passes through these points, every set of k points (i; P (i)) interpolates to the

polynomial P (x). This polynomial determines the secret P (0) which is equal to

P

1

(0) + P

2

(0). Thus, Shamir's scheme is (+;+)-homomorphic.

4.3 Composite Security

One use for the homomorphism property of section 4.2 is to allow for the com-

putation of a composite secret without ever revealing the constituent secrets.

This may be desirable in a number of circumstances in which computation on

secret data is desired. [RAD78], [Yao82a], [Feig85], and [GMW87] discuss prob-

lems of this sort, and it will be seen that veri�able secret sharing and veri�able

secret-ballot elections can be modeled in this way.

It seems, however, that the homomorphism property is not strong enough for

these applications. We want it to also be the case that up to k� 1 complete sets

of constituent shares together with all of the composite shares (and therefore the

composite secret) give no more information about the constituent secrets than
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does the composite secret alone. Thus, if a (�;
)-homomorphic threshold scheme

is used to generate a composite secret from the shares of constituent secrets, then

no set of up to k � 1 dishonest shareholders could gain any information at all

about the constituent secrets other than that which is given by the composite

secret alone. Since it is assumed that the composite secret is to be given (and

that it might give some partial information about the constituent secrets), this

is the best that could be hoped for.

Without this property, it is conceivable that conspiring shareholders could

gather the information released by honest shareholders (i.e. the composite shares)

and use this information in order to construct at least partial information about

the constituent secrets. If conspirators could accomplish this, then there is no

point to composing the shares and releasing only a composite share, as the only

purpose of this composition is to protect the constituent secrets.

Assume without loss of generality that the �rst k � 1 shareholders wish to

conspire in order to obtain additional information about the constituent secrets

s

1

; s

2

; : : : ; s

m

. The following diagram shows all of the values directly available to

the conspiring shareholders.

s

t

1

= t

1;1


 t

1;2


 � � � 
 t

1;m

t

2

= t

2;1


 t

2;2


 � � � 
 t

2;m

.

.

.

.

.

.

.

.

.

.

.

.

t

k�1

= t

(k�1);1


 t

(k�1);2


 � � � 
 t

(k�1);m

t

k

t

k+1

.

.

.

t

n

We want it to be the case that these values do not assist the conspirators in

gaining information about the values s

1

; s

2

; : : : ; s

m

beyond that which is given by

s alone.

De�nition We say that a (�;
)-homomorphic threshold scheme is (�;
)-

composite if for every table of the above form and for all values s

j

, the probability

that the s

j

represent the constituent secrets is the same as this probability when

given only the value of the composite secret s.
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The following theorem is somewhat surprising,

Theorem 4.2 If the secret domain S and the share domain T are �nite and of

the same cardinality, then every (�;
)-homomorphic (k; n) threshold scheme is

a (�;
)-composite (k; n) threshold scheme.

Proof:

Consider the following diagram of values available to the �rst k � 1 share-

holders.

s

t

1

= t

1;1


 t

1;2


 � � � 
 t

1;m

t

2

= t

2;1


 t

2;2


 � � � 
 t

2;m

.

.

.

.

.

.

.

.

.

.

.

.

t

k�1

= t

(k�1);1


 t

(k�1);2


 � � � 
 t

(k�1);m

t

k

t

k+1

.

.

.

t

n

By the de�nition of a threshold scheme, the k � 1 sets of constituent shares

t

i;j

, for 1 � i < k, give no information about the constituent secrets s

j

even

though partial a priori information about the s

j

exists because the value of the

composite secret s is given.

Now, the constituent shares t

i;j

allow the computation of the composite shares

t

i

, for 1 � i < k since each t

i

is given by

t

i

= t

i;1


 t

i;2


 � � � 
 t

i;m

:

Thus, these composite secrets give no additional information about the con-

stituent secrets s

j

.

Finally, we observe that when the secret domain and the share domain are

both �nite and of the same cardinality, then the secret together with any set

of k � 1 shares completely determine the remaining shares. This is so because

every secret is completely consistent with any set of k � 1 shares. Thus, for

each remaining share, there must be at least one value which would yield each

possible secret. Therefore, there must be exactly one value of each remaining

share associated with each possible secret. Hence, the secret together with k� 1

shares completely determine the remaining shares. This then implies that the
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remaining composite shares t

i

, for i � k � n, are also computable by the �rst

k � 1 shareholders (when given the composite secret s). Hence, the composite

shares also give no additional information about the constituent secrets s

j

.

Remark The condition that the secret domain S and the share domain T are of

the same �nite cardinality was not strictly required. In fact, almost any domain

with a group structure would su�ce. For simplicity of exposition (and to keep

the notation under control), this generalization has not been incorporated into

the theorem.

4.4 Some Examples

Lemma 4.1 shows that Shamir's (k; n) threshold scheme is (+;+)-homomorphic

over the integers modulo p and since the secret domain and the share domain

consist of the same �nite set (the integers modulo p), theorem 4.2 implies that

Shamir's scheme is (+;+)-composite.

Many other known threshold schemes are also (+;+)-homomorphic. The

threshold schemes found in [Blak79], [AsBl80], and [Koth84], for example, are all

(+;+)-homomorphic.

What if the desired composite secret is not the sum of the constituent secrets?

Shamir's scheme is not (�;�)-composite. This is because the product of two

non-constant polynomials is of higher degree than the factors.

By using a homomorphism between addition and discrete logarithms, for ex-

ample, it is possible to transform Shamir's scheme into a (�;+)-homomorphic

(k; n) threshold scheme. Thus, if the desired composite secret is the product of

the constituent secrets, Shamir's scheme can still be used. This method can be

summarized by the following statement. The sums of the shares of the discrete

logs of the secrets are shares of the discrete log of the product of the secrets.

In general, discrete logarithms may be di�cult to compute. However, if p

is small or of one of a variety of special forms, the problem is tractable (see

[PoHe78], [Adle79], [COS86]). It should be emphasized that such special cases

for p do not in any way weaken the security of our schemes. The security is not

cryptographic, but rather is information theoretic. Therefore, there need be no

assumptions about the di�culty of solving any special problems.
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There is, however, a subtlety here, since discrete logarithms are only de�ned

within multiplicative groups and the multiplicative subgroup Z

�

n

has order '(n)

which is not prime for prime n > 4. Polynomial interpolation, however, is only

well-de�ned over a �eld which, if �nite, must be of prime order.

To alleviate this di�culty, we let the secret domain S be the set of r

th

roots

of 1 modulo n where r is prime, r j '(n), and r and '(n)=r are relatively prime.

By theorem 2.20, this is su�cient to ensure that S has exactly r members, and

since r is prime, discrete logarithms over S will yield values in Z

r

which is a �eld.

4.5 Veri�able Secret Sharing

An important application of secret sharing homomorphisms provides a simple and

e�cient method for veri�able secret sharing. This problem was �rst described

by Chor, Goldwasser, Micali, and Awerbuch in [CGMA85] and the application

of secret sharing homomorphisms to this problem was developed as a result of

an observation made by Oded Goldreich.

De�nition We say that a set of n shares t

1

; t

2

; : : : ; t

n

is k-consistent if every

subset of k of the n shares de�nes the same secret.

The problem of veri�able secret sharing is to convince shareholders that their

shares (collectively) are k-consistent. This task usually falls upon the holder of

the initial secret s, and this agent is usually referred to as the dealer.

In Shamir's threshold scheme, the shares t

1

; t

2

; : : : ; t

n

are k-consistent if and

only if the interpolation of the points (1; t

1

); (2; t

2

); : : : ; (n; t

n

) yields a polynomial

of degree at most d = k � 1. It is useful to observe that if the sum of two

polynomials is of degree at most d, then either both are of degree at most d or

both are of degree greater than d.

This suggests the following outline of an interactive proof that a polynomial

P , given by its (encrypted) values at n distinct points, is of degree at most d.

1. Encryptions of the values of the points that describe P are released by the

prover.

2. Encryptions of many additional random polynomials, again of degree at

most d, are also released by the prover.

3. A random subset of the random polynomials is designated by the veri�er(s).
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4. The polynomials in the chosen subset are decrypted by the prover. They

must all be of degree at most d.

5. Each remaining random polynomial is added to P . (Note that pointwise

addition gives the same polynomial as the coe�cientwise addition.) Each

of these sum polynomials is decrypted by the prover. They must also all

be of degree at most d.

Since the encryptions of shares are made public, the security is no longer

information theoretic, but rather depends upon a cryptographic assumption. The

encryption of the values of each point must be probabilistic to prevent guessing

of values, and it must satisfy a homomorphism property so that an encryption of

the sum of two values can be developed directly from the encryptions of the two

values. These properties are satis�ed by the encryption function E of section 2.7.

An e�cient veri�able secret sharing scheme can thus be given as follows.

Let r be a �xed prime, and suppose the secret value s is to be drawn from Z

r

.

Suppose further that each (future) shareholder has developed a public election

encryption function E

i

by releasing a pair (n

i

; y

i

) such that (r; n

i

; y

i

) is prime

consonant, and has interactively proven that (r; n

i

; y

i

) is prime consonant using

the interactive proof method of section 3.3.2.

The dealer divides a secret s into n shares t

1

; t

2

; : : : ; t

n

using Shamir's secret

sharing scheme. That is, coe�cients c

1

; c

2

; : : : ; c

k�1

are randomly selected from

Z

r

, P (x) = c

k�1

x

k�1

+ � � �+ c

2

x

2

+ c

1

x+s is formed, and the shares t

i

= P (i) are

computed. The i

th

share, t

i

, is transmitted to the i

th

shareholder by releasing a

randomly chosen member ofRC[t

i

]

(r;n

i

;y

i

)

. This is done by selecting a random x

i

2

Z

�

n

i

and releasing E

i

(t

i

; x

i

) = y

t

i

i

x

r

i

mod n

i

. Thus for each i, the pair (i; E

i

(t

i

; x

i

))

is made public.

To convince a participant that the (encrypted) points (i; E

i

(t

i

; x

i

)) describe a

polynomial with degree no more than d = k � 1, the dealer can engage in the

interactive proof of �gure 4.1.

By construction, each pair [t

0

i

; x

0

i

] is a decomposition of the corresponding

public value E

i

(t

0

i

; x

0

i

). By releasing all i decompositions (for each polynomial

P

0

2 A), the dealer allows the polynomial P

0

de�ned by the points (i; t

0

i

) to be

interpolated.

By lemma 2.8 and by the de�nition of the � operator, each of the pairs

[t

i

; x

i

]�[t

0

i

; x

0

i

] is a decomposition of the publically computable product of encryp-
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Dealer:

Select m random polynomials P

0

, each of degree at most d. The val-

ues of these random polynomials at 0 (the secrets they describe) are

also selected randomly. This is accomplished by selecting, for each ran-

dom polynomial P

0

, k coe�cients c

0

; c

1

; : : : ; c

k�1

uniformly from Z

r

and

forming P

0

(x) = c

k�1

x

k�1

+ � � �+c

1

x+c

0

. For each of these polynomials

P

0

, select random values x

0

i

2 Z

�

n

i

and set t

0

i

= P

0

(i). Reveal to the

public the pairs (i; E

i

(t

0

i

; x

0

i

)).

Veri�er(s):

Randomly select a subset A of these random polynomials.

Dealer:

Each polynomial in P

0

2 A is opened by revealing, for all i, the de-

composition [t

0

i

; x

0

i

]. For each polynomial P

0

=2 A, the (pointwise) sum

P + P

0

mod r is opened by releasing, for all i, the pair [t

i

; x

i

] � [t

0

i

; x

0

i

]

(as de�ned in section 2.6).

Figure 4.1: Interactive proof that P (x) is of degree at most d.

tions given by E

i

(t

i

; x

i

)E

i

(t

0

i

; x

0

i

). Recall that the �rst component of [t

i

; x

i

]� [t

0

i

; x

0

i

]

is simply t

i

+ t

0

i

mod r. Thus, the �rst component of this decomposition of

E

i

(t

i

; x

i

)E

i

(t

i

; x

0

i

) gives the sum t

i

+t

0

i

mod r = P (i)+P

0

(i) mod r. Since Shamir's

scheme is (+;+)-homomorphic (i.e., since the pointwise sum of polynomials

matches the coe�cientwise sum), the dealer, by releasing each of the n pointwise

sums P (i) + P

0

(i) mod r (for each polynomial P

0

=2 A), allows the polynomial

P + P

0

mod r to be interpolated.

Any veri�er(s) can then con�rm that all polynomials P

0

2 A and all polyno-

mials P +P

0

mod r for P

0

=2 A are of degree at most d. This should be su�cient

to convince the veri�er(s) with con�dence 1� 1=2

m

that P , too, is of degree at
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most d, as desired.

If there is more than one veri�er (in particular if each shareholder is to be

convinced of the consistency of the shares), then each veri�er can enter into such

an interactive proof with the dealer, or the veri�ers may all take part in the

interactive proof by jointly selecting the subset of random polynomials to be

opened by the dealer.

It is not hard to see that a set of random polynomials of degree at most d

together with a set of sums of P with other random polynomials of degree at

most d gives no useful information about P beyond the degree bound. This is,

in fact, a special case of theorem 4.2.

Thus, by combining Shamir's secret sharing scheme with the results of this

chapter and chapter 2 (and using the interactive proof methods given in chap-

ter 3), a simple and e�cient veri�able secret sharing scheme can be produced.



Chapter 5

Secret-Ballot Elections

We are now ready to combine the tools described in the preceding chapters and

produce a schema for veri�able secret-ballot elections. In the schema described

in this chapter, voters cast their votes in encrypted form, and a \government"

or a set of constituent \tellers" releases a tally and a proof of its correctness

which can be veri�ed by all. It is proven that if a set of conspiring voters can,

in polynomial time, obtain more than a small advantage at compromising the

privacy of the honest voters, then the prime residuosity assumption of chapter 2

is false.

5.1 Overview of Secret-Ballot Elections

The major shortcomings of the basic election schema described in section 3.4 can

be summarized by the fact that the central government is too powerful. The

government can tell how individual voters cast their votes and can, if it wishes,

halt an election any time it likes. To alleviate these problems, the basic election

schema can be embedded within a (+;+)-composite (J;K) threshold scheme (in

particular, in Shamir's scheme) as suggested by the outline below.

Instead of a single government, K sub-governments (or tellers) each hold a

\sub-election". Each voter chooses either 0 or 1 as a secret value (0 indicating a

no vote, 1 indicating a yes vote) and distributes one share of the secret vote to

each of the K tellers. The tally of the election is given by the sum of the voters'

secrets.

Since the (J;K) threshold scheme has the (+;+)-homomorphism property,

69
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the sum of \vote-shares" is itself a share of the sum (tally) of the votes. Thus,

once J or more tellers release their \tally-shares", the overall election tally can be

determined. Furthermore, since the secret domain and the share domain consist

of the same �nite set, the conditions of theorem 4.2 are satis�ed, and fewer than

J conspiring tellers are unable to determine any individual voter's secret vote.

In order to maintain privacy of the vote-shares (and hence the votes them-

selves) while allowing the accuracy of the tally-shares (the sums of the vote-

shares) to be veri�ed, the single-government veri�able selection schema of sec-

tion 3.4 is used. Each teller selects an election encryption function E

i

, and each

voter transmits the i

th

share of its vote by revealing an encryption of this share

under the i

th

teller's encryption function E

i

. Each teller then computes the sum

of the vote-shares it receives and (while keeping the actual vote-shares secret)

interactively proves that the tally-share it releases represents the sum of these

vote-shares by decrypting the product of the encrypted vote-shares. Thus, even

though the vote-shares cast by each voter are no longer constrained to being

0 or 1, each teller can produce a veri�able sum of these by shares as in the

single-government election schema of section 3.4.

The interactive proof techniques used in section 4.5 can be generalized slightly

to allow veri�cation of the vote-shares. Here, each voter participates in an inter-

active proof to demonstrate to all participants that the vote-shares it distributes

are legitimate in the sense that every set of J of its vote-shares derives the same

secret vote (the set of vote-shares is J-consistent) and that this vote is either a

0 or a 1.

Thus, as long as at least J of the K designated tellers participate through

to conclusion, an election can be conducted such that each participant has very

high con�dence in the accuracy of the resulting tally and no set of fewer than J

tellers, together with any number of conspiring voters, can gain as much as an

inverse polynomial advantage at distinguishing between possible votes of honest

voters without breaking the underlying cryptosystem and thereby violating the

prime residuosity assumption.

A \normal" threshold which may be used for an election might set J to be

about 90%-95% of K. In this scenario, a small fraction (5%-10%) of tellers could

fail without causing the election to fail, and a large fraction (90%-95%) of the

tellers would have to collude to resolve individual votes.
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5.2 Related Work

Various cryptographic schemas have been proposed for boardroom voting in

which participants pass encrypted messages from one to another while performing

encryption and decryption operations until a certain point is reached at which all

are con�dent of the outcome of the vote (see [DLM82], [Merr83], and [Yao82a]).

These all share the problems that the active participants must be known in ad-

vance and if one participant stops following its protocol during the election, the

election cannot continue. Thus these boardroom schemas are not well suited for

large-scale elections.

Chaum ([Chau81]) proposes the use of a trusted \mix" (similar to a \gov-

ernment") to scramble pairs of votes and digital pseudonyms. The votes are

publicly revealed, but the identity of the corresponding voters is protected by

the mix. This mix schema seems to have properties very similar to those of the

single-government election schema presented in section 3.4, but the approach is

very di�erent. Instead of hiding voters, the schemas presented in this thesis hide

the actual values of the votes. Chaum also suggests the use of multiple mixes

cascaded to improve the privacy of individual voters. The properties obtained

with the cascaded mix schema appear to be similar to those proven for the mul-

tiple teller schema presented in this chapter when no faulty tellers are allowed.

If one mix fails, however, the election collapses whereas the failure of any prede-

termined number of tellers can be tolerated in the secret-ballot election schema

presented here.

Very recently, Chaum ([Chau86b]) has given another method of holding veri�-

able secret-ballot elections which obviates the need for a mix. The work is similar

to boardroom voting in that failure of a single voter causes an election to fail;

however, Chaum's method ensures that such failures can be traced. This allows

an election to be restarted without the faulty voter. This approach, however,

still does not seem practical for large-scale elections since the election protocols

might have to be repeated once for each faulty or malicious voter in the system

until an election with no improper voters can be completed.

Also very recently, Goldreich, Micali, and Wigderson ([GMW86]) found a

method to show that all NP predicates can be proven in a \zero-knowledge"

fashion. With respect to secret-ballot elections, their result can be used to give

a method of veri�able secret-ballot elections, but there are limitations. Firstly,



72 CHAPTER 5. SECRET-BALLOT ELECTIONS

their result can only tolerate failure of half of the participants, whereas any

number of dishonest or faulty tellers can be tolerated by the schema presented

here. Secondly, the methods of Goldreich, Micali, and Wigderson are, although

polynomially bounded, far beyond practicality, while the given schema is shown

to be within the bounds of practicality with current technology.

The �rst version of this work was given by Cohen (Benaloh) and Fischer in

[CoFi85]. Various improvements and extensions were given by Cohen (Benaloh)

in [Cohe86] and by Benaloh and Yung in [BeYu86]. The veri�able secret-ballot

election schema to be presented in this chapter incorporates most of the ideas

presented in these previous versions and adds new methods which both improve

the results and simplify the presentation.

5.3 Election De�nitions

We now give a formal model of the veri�able secret-ballot election problem and

the properties that we want a solution to have.

5.3.1 Veri�able Elections

A J-threshold K-teller L-voter election system (or simply a (J;K;L) election

system) E is a synchronous system of communicating processes. The processes

may be thought of as probabilistic Turing machines extended with operations for

communication. The program run by such a process is called a protocol. K of the

processes, T

1

; : : : ; T

K

are designated as tellers, and L of the processes V

1

; : : : ; V

L

are designated as (potential) voters. We denote the set of teller processes by T

and the set of voter processes by V. T and V are �xed in advance, and each

process knows the designation of every process.

Communication is via bulletin boards which can be thought of as restricted

shared memories. Each process controls one bulletin board, which it is said

to own. The correspondence between bulletin boards and processes is �xed in

advance and known to all processes. Each bulletin board can be read by every

process, but it can only be written by its owner, and then only by appending

new messages, not by altering old ones. In practice, implementing such bulletin

boards may be a problem unto itself. See [Fisc83] for a survey of the literature on

this problem as well as [BenO83] and [Rabi83b] for some probabilistic approaches.
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In addition, there is a publicly-readable number N called a security parameter

which serves as the (only) input to each process. N controls the likelihood that

the election is correct and that privacy is maintained.

De�nition A (J;K;L) election schema S consists of a collection of protocols

for use by a (J;K;L) election system and a function check. The function check

returns either good or bad and depends on N and the messages posted to the

public bulletin boards. check must be computable in time polynomial in N .

S prescribes a protocol �

T

for each teller process and two possible protocols

for each voter: �

yes

to be used to cast a \yes" vote and protocol �

no

to be used

to cast a \no" vote.

De�nition An election under S consists of a run of a (J;K;L) election system

E for which check returns good. Any process of E which follows (one of) its

protocol(s) prescribed by S is said to be proper; otherwise it is improper. We

say that a voter casts a valid \yes" vote (respectively \no" vote) if the messages

it posts are consistent with the protocol �

yes

(respectively �

no

). We say it votes

properly if it casts a valid \yes" or \no" vote; otherwise it votes improperly. Note

that a proper voter by de�nition always votes properly, but an improper voter

may or may not vote properly, and if it votes improperly, that fact may or may

not be detectable by others.

De�nition The tally of an election is the pair (t

yes

; t

no

) where t

yes

and t

no

are

the number of voters who cast valid \yes" and \no" votes, respectively. As part of

its protocol, each teller T

k

releases a value �

k

. For some pre-determined function

�, if �(�

1

; : : : ; �

K

) = (t

yes

; t

no

), then the tally of the election is said to be correct.

Let � be a function of N . The schema S is said to be veri�able with con�dence

1 � � if, for any election system E , check satis�es the following properties for

random runs of E using security parameter N :

1. If at least J tellers are proper in E , then, with probability at least 1��(N),

check returns good and the tally of the election is correct.

2. The joint probability that check returns good and the election tally is not

correct is at most �(N) .

S is said to be veri�able if for every inverse polynomial function �(N) = 1=P (N),

there exists an integer N

0

such that S is veri�able with con�dence 1 � �(N)

whenever N � N

0
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5.3.2 Public Voting

A simple example of a veri�able election schema is one in which each voter

publicly posts a single \yes" or \no" vote. Each teller T

k

then counts the \yes"

and \no" votes and announces the totals as �

k

. If at least J of the K tellers post

totals �

k

which match the number of yes and no votes posted, then �(�

1

; : : : ; �

K

)

is de�ned to be this value �

k

. Otherwise, � is unde�ned.

check returns good if and only if the totals of the valid votes are the same as

those announced by at least J of the tellers. Thus, by computing the function

check, any participant can verify the accuracy of the announced tally.

5.3.3 Privacy

The trivial example above shows that a veri�able election schema is not very

interesting without the incorporation of some notion of privacy. Preserving pri-

vacy in an election does not always imply the inability of one voter to determine

another's vote. For example, in the case of a unanimous mandate, every voter

knows every other voter's vote. More generally, any coalition of voters can de-

termine the sub-tally of the votes cast by voters outside of the coalition simply

by subtracting their own votes from the released totals. We say that privacy is

maintained if any conspiracy of voters and tellers which does not include at least

J tellers has at most a small advantage at distinguishing between any two vote

assignments that have the same sub-tally on a set of proper voters. In particular,

if there exist two proper voters of which one casts a yes vote and one casts a no

vote, then no conspiracy of fewer than J tellers and any number of remaining

voters can attain more than a small advantage at deciding which of these two

votes is the yes vote.

In order to account for the possibility of a collection of improper voters acting

in concert, we augment our model to permit private communication channels

between improper processes. However, we do not want to assume that private

channels are always available, so we do not permit their use in the protocols

prescribed by a veri�able election schema. In other words, the adversaries can

communicate secretly among themselves but the proper processes cannot.

To formalize the privacy requirement, let C

T

� T (the conspiring tellers)

such that jC

T

j < J , and let C

V

� V (the conspiring voters). Let C = C

T

[C

V

be

the set of conspiring processes, and let c

0

2 C. We de�ne a (c

0

; C)-conspiracy C
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to consist of an assignment of protocols to processes in C (possibly with private

communication among themselves) such that c

0

produces an output in f0; 1g

which we denote \output(C)". We require the running time of each process in C

to be polynomial in N .

We now de�ne what it means for a conspiracy C to compromise privacy of

an (J;K;L) election schema S. Let H = V � C

V

(the honest voters), and let h

0

and h

1

be assignments of votes to voters in H such that the sub-tally of votes

in h

0

is the same as that in h

1

. For each i 2 f0; 1g, de�ne an election system E

i

as follows. Every process in C runs the protocol assigned to it by C, every voter

process V

`

2 H runs protocol �

h

i

(`)

, and every teller process T

k

not in C

T

runs its

proper protocol �

T

. For a �xed security parameter N , let p

i

be the probability

that output(C) = 1 on a random run of E

i

, and let " be a real number. We say

that C distinguishes h

0

from h

1

with " advantage if

jp

1

� p

0

j > ":

In other words, the conspiracy has an " advantage in determining whether the

votes correspond to assignment h

0

or to h

1

in a given election with security

parameter N .

De�nition We say that C compromises the privacy of (h

0

; h

1

) in S if, for some

inverse polynomial function " = 1=P (N), C distinguishes h

0

from h

1

with "(N)

advantage on in�nitely many values of N . Finally, we say that S is secure if for

every (c

0

; C)-conspiracy C and every pair of vote assignments h

0

; h

1

to voters in

H that have the same sub-tally, C does not compromise the privacy of (h

0

; h

1

) in

S.

The election problem is to �nd, for each triple (J;K;L), a (J;K;L) election

schema that is veri�able and secure.

5.4 An Election Paradigm

The election paradigm upon which the schema presented here is based operates

in four phases and is shown in Figure 5.1. The participants are a set of tellers

T = fT

1

; T

2

; : : : ; T

K

g and a set of voters V = fV

1

; V

2

; : : : ; V

L

g. Implicit in the

paradigm is that each phase must be completed by all participants before the
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1. Each T

k

: Select and reveal a set of parameter values S to be used

in the election and interactively prove that S conforms to

certain speci�cations.

2. Each V

`

: Select and reveal an unmarked ballot B

`

consisting of an

encrypted yes vote and an encrypted no vote in random

order and interactively prove that B

`

is of this form.

3. Each V

`

: Select one vote as the actual vote on the ballot B

`

.

4. Each T

k

: Release �

k

| a composition of the values received by T

k

and interactively proof that �

k

is this composition.

The tally of an election is �(�

1

; : : : ; �

K

) where � is a pre-

determined function.

Figure 5.1: The election paradigm.

next begins. This is achieved by setting deadlines in advance for the completion

of each phase.

The four phases of an election correspond in a fairly natural way to aspects of

actual elections. The �rst phase is an announcement phase in which the election

is announced, perhaps dates are selected, and parameters and rules which will

guide the election are set. The second phase consists of voter registration in which

eligible voters identify themselves and register for the election. The third phase

is the actual voting phase in which voters select their votes. The fourth phase

is the tally phase in which the election tally is compiled and revealed. Notice

that the four phases do not have to take place in rapid succession. In particular,

registration may be done well before the actual voting, and the decision of how

(or whether) to cast a vote need not be made until the voting phase.

The basic election schema of section 3.4 is a special case of this paradigm.

In the basic election schema, there is only one teller (called the government).

In this case, the tally function � can be simply the identity function. Such a

government is, of course, able to determine how every voter votes in an election.

It is, however, still useful to see how a government can convince voters of the

correctness of a tally without releasing the actual votes.

In the more general \teller schema" to be presented next, each teller functions
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essentially as an autonomous \sub-government". However, the \tally-shares"

released by the tellers are not meaningful until they are combined by �.

5.5 Votes and Ballots

Section 2.9 (Elementary Elections) presented the notion of using a random mem-

ber of residue class 0 to denote a no vote and a random member of residue class 1

to denote a yes vote. This notion was maintained in section 3.4 (Basic Elections)

where elections still required only a single government entity. Generalizing to the

case of multiple tellers, however, requires a corresponding change to the notion

of a vote.

Suppose we are to hold an election with K tellers such that the election can

withstand up to F teller faults. We embed the basic election schema of section 3.4

within a (J;K) Shamir secret sharing scheme where J = K�F . Let r be a �xed

prime greater than the number of eligible voters and suppose each teller T

k

has

selected election parameters (n

k

; y

k

) such that (r; n

k

; y

k

) is consonant.

De�nition Given a prime r, we say that a vector

P = h(n

1

; y

1

); (n

2

; y

2

); : : : ; (n

�

; y

�

)i

of parameters is r-proper if for every k, (r; n

k

; y

k

) is a prime consonant triple.

This condition is satis�ed whenever y

k

2 Z

r

n

k

(see theorem 2.18).

De�nition Given a prime r and an r-proper parameter vector

P = h(n

1

; y

1

); (n

2

; y

2

); : : : ; (n

�

; y

�

)i;

de�ne

Z

�

P

= Z

�

n

1

� Z

�

n

2

� � � � � Z

�

n

�

to be the direct product of the groups Z

�

n

k

. As the direct product of groups, Z

�

P

is itself a group.

De�nition Given a prime r and an r-proper parameter vector

P = h(n

1

; y

1

); (n

2

; y

2

); : : : ; (n

�

; y

�

)i;

de�ne

D

r

P

= D

r

(n

1

;y

1

)

�D

r

(n

2

;y

2

)

� � � � �D

r

(n

�

;y

�

)
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to be the direct product of the decomposition setsD

r

(n

k

;y

k

)

de�ned in section 2.6.

Of course, since (by lemma 2.25) each D

r

(n

k

;y

k

)

is a group, the direct product

D

r

P

is also a group with the straightforward generalization of � as its operation.

As in section 2.6, we are able to de�ne an evaluation function

	 : D

r

P

! Z

�

P

:

De�nition Let P = h(n

1

; y

1

); (n

2

; y

2

); : : : ; (n

�

; y

�

)i be an r-proper parameter

vector. De�ne 	 : D

r

P

! Z

�

P

by

	(h[c

1

; x

1

]; [c

2

; x

2

]; : : : ; [c

�

; x

�

]i)

= hy

c

1

1

x

r

1

mod n

1

; y

c

2

2

x

r

2

mod n

2

; : : : ; y

c

�

�

x

r

�

mod n

�

i:

As a direct product of homomorphisms, 	 is a homomorphism.

De�nition Given a D 2 D

r

P

, 	(D) is called the evaluation of D. Given a

W 2 Z

�

P

, a D 2 D

r

P

such that 	(D) =W is called a decomposition of W .

As in the scalar case, every D 2 D

r

P

has a unique evaluation, but a W 2 Z

�

P

may have multiple decompositions.

De�nition Given an r-proper parameter vector

P = h(n

1

; y

1

); (n

2

; y

2

); : : : ; (n

�

; y

�

)i

and a vector W = hw

1

; w

2

; : : : ; w

�

i 2 Z

�

P

, the disclosure of W (with respect to r

and P ) denoted by [[W ]]

(r;P )

(or simply [[W ]] when r and P are understood) is the

�-component vector C = hc

1

; c

2

; : : : ; c

�

i where each c

k

= [[w

k

]]

(r;n

k

;y

k

)

. Note that

since each (r; n

k

; y

k

) is only required to be prime consonant and not required to

be perfect consonant, it is possible that [[w

k

]]

(r;n

k

;y

k

)

=1.

5.5.1 Votes

De�nition Given a vector C = hc

1

; c

2

; : : : ; c

�

i and a threshold J , let jjCjj

J

(or

simply jjCjj when J is understood) denote the value at 0 of the minimum degree

polynomial passing through the points (k; c

k

) if this polynomial is of degree less

than J . That is, jjCjj is the secret de�ned by the shares c

1

; c

2

; : : : ; c

�

. If any of

the c

k

= 1 or if the minimum degree polynomial passing through the points

(k; c

k

) is of degree J or greater, then jjCjj

J

=1.
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De�nition Given J , K, with 0 < J � K, a prime r, and a K-component, r-

proper parameter vector P , we say the type of a W 2 Z

�

P

is the secret de�ned

by the disclosure of W , i.e. type(W ) = jj[[W ]]jj. If any element of the disclosure

of W is unde�ned (1), or if the disclosure of W does not de�ne a unique secret,

then type(W ) =1.

De�nition Given J , K, with 0 < J � K, a prime r, and a K-component,

r-proper parameter vector P , a vote is de�ned to be a K-component vector of

integers W = hw

1

; w

2

; : : : ; w

K

i such that jj[[W ]]jj is �nite. A vote of type 0 is

called a no vote, and a vote of type 1 is called a yes vote. A vote which is either

a no vote or a yes vote is said to be valid. Let 
(J;K; r; P ) (or simply 
 when

J , K, r, and P are understood) denote the set of votes with respect to J , K, r,

and P .

De�nition Given two votes U = hu

1

; u

2

; : : : ; u

K

i and V = hv

1

; v

2

; : : : ; v

K

i in


(J;K; r; h(n

1

; y

1

); (n

2

; y

2

); : : : ; (n

K

; y

K

)i), we de�ne their product U � V to be

the vector U � V = hu

1

v

1

; u

2

v

2

; : : : ; u

K

v

K

i where each product u

k

v

k

is taken

modulo n

k

.

We begin by giving generalizations of lemmas 2.8 and 2.9 of section 2.3.

Lemma 5.1 If U = hu

1

; u

2

; : : : ; u

K

i and V = hv

1

; v

2

; : : : ; v

K

i are votes of type u

and v, respectively, then the product U � V is a vote of type u+ v mod r.

Proof:

By de�nition, U is of type u if and only if the secret de�ned by the disclosure

of U is u. Similary, V is of type v if and only if jj[[V ]]jj = v. Now

[[U � V ]] = h[[u

1

v

1

]]

(r;n

1

;y

1

)

; [[u

2

v

2

]]

(r;n

2

;y

2

)

; : : : ; [[u

K

v

K

]]

(r;n

K

;y

K

)

i:

But, by lemma 2.8, this is equal to

h [[u

1

]]

(r;n

1

;y

1

)

+ [[v

1

]]

(r;n

1

;y

1

)

mod r;

[[u

2

]]

(r;n

2

;y

2

)

+ [[v

2

]]

(r;n

2

;y

2

)

mod r;

: : : ;

[[u

K

]]

(r;n

K

;y

K

)

+ [[v

K

]]

(r;n

K

;y

K

)

mod ri:

That is to say, the disclosure of U � V is the componentwise sum of the dis-

closures of U and V . By lemma 4.1, Shamir's secret sharing scheme is (+;+)-
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homomorphic. Thus, the sum of the shares

h [[u

1

]]

(r;n

1

;y

1

)

+ [[v

1

]]

(r;n

1

;y

1

)

mod r;

[[u

2

]]

(r;n

2

;y

2

)

+ [[v

2

]]

(r;n

2

;y

2

)

mod r;

: : : ;

[[u

K

]]

(r;n

K

;y

K

)

+ [[v

K

]]

(r;n

K

;y

K

)

mod ri

constitute shares of the sum u + v of the original secrets. The secret domain,

however, is limited to Z

r

. Hence, U � V is a vote of type u+ v mod r.

De�nition Given a vote W = hw

1

; w

2

; : : : ; w

K

i in


(J;K; r; h(n

1

; y

1

); (n

2

; y

2

); : : : ; (n

K

; y

K

)i);

we de�ne their product W

�1

to be the vector W

�1

= hw

�1

1

; w

�1

2

; : : : ; w

�1

K

i where

each inverse w

�1

k

is taken modulo n

k

.

Lemma 5.2 If W = hw

1

; w

2

; : : : ; w

K

i is a vote of type t, then W

�1

is a vote of

type �t mod r.

Proof:

Since W is a vote, each w

k

is relatively prime to its corresponding n

k

. Thus,

W

�1

is well-de�ned. Let C = hc

1

; c

2

; : : : ; c

K

i = [[W ]] be the disclosure of W .

[[W

�1

]] = �C mod r = h�c

1

mod r;�c

2

mod r; : : : ;�c

K

mod ri

since, by lemma 2.9, if w

k

is of class c

k

then w

�1

k

is of class �c

k

. Also, the

properties of polynomials readily imply that jj � Cjj = �jjCjj mod r. Thus, W

�1

is a vote of type �t mod r.

It is now easy to show that the set 
 is a group.

Lemma 5.3 Given J , K, with 0 < J � K, a prime r, and a K-component,

r-proper parameter vector P , the set 
(J;K; r; P ) is a commutative group under

the � operation.
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Proof:

The element 1 = h1; 1; : : : ; 1i is clearly an identity for 
.

Lemma 5.1 shows that 
 is closed under multiplication.

By lemma 5.2,W

�1

is a well-de�ned vote, and clearlyW �W

�1

�W

�1

�W �

1, so W

�1

is an inverse of W . Finally, associativity and commutativity are

inherited from integer multiplication.

We are now able to give a generalization of lemma 2.10 of section 2.3.

Lemma 5.4 Two votes U = hu

1

; u

2

; : : : ; u

K

i and V = hv

1

; v

2

; : : : ; v

K

i are of the

same type (with respect to a given parameter vector) if and only if there exists a

vote W = hw

1

; w

2

; : : : ; w

K

i of type 0 such that U � V �W .

Proof:

Assume there exists a vote W of type 0 such that U = V � W . Then, by

lemma 5.1, the type of U is equal to the sum of the types of V and W . But the

W is of type 0. Thus, the type of U must equal the type of V .

Conversely, letW = U �V

�1

. Since, 
 is a commutative group, U = V �W . If

U and V are both of type t, then, by lemma 5.2, V

�1

is a vote of type �t mod r.

Thus, by lemma 5.1, W = U � V

�1

is a vote of type 0.

5.5.2 Decompositions of Votes

De�nition Let � � D

r

P

be de�ned by � = fD 2 D

r

P

: 	(D) 2 
g. In

other words, � is the set of D = h[c

1

; x

1

]; [c

2

; x

2

]; : : : ; [c

K

; x

K

]i 2 D

r

P

such that

jjhc

1

; c

2

; : : : ; c

K

ijj is �nite.

Lemma 5.5 � is a subgroup of D

r

P

.

Proof:

The identity of D

r

P

is the element h[0; 1]; [0; 1]; : : : ; [0; 1]i, which describes

the secret value 0. Thus, the identity of D

r

P

is in �. If D

1

; D

2

2 �, then

	(D

1

� D

2

) = 	(D

1

) � 	(D

2

), and by de�nition, each 	(D

i

) is in 
. Hence,

	(D

1

�D

2

) 2 
, so D

1

�D

2

2 �. Finally, if D 2�, then 	(	D) = 	(D)

�1

2


, so (	D) 2 �.

Thus, in particular, the binary operation 	 de�ned by

D

1

	D

2

= D

1

� (	D

2

)
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is well-de�ned on �; and given D

1

and D

2

such that 	(D

1

) =W

1

and 	(D

2

) =

W

2

,

type(	(D

1

	D

2

)) = type(	(D

1

) �	(D

2

)

�1

)

= type(W

1

�W

�1

2

)

= type(W

1

)� type(W

2

):

Therefore, the di�erence between the types of W

1

and W

2

can be shown by

revealing D

1

	D

2

which is a decomposition of W

1

�W

�1

2

.

This property, which is a consequence of lemma 5.4, can, in analogy with

lemma 2.10, be used as the basis for an interactive proof almost identical to that

of section 3.1.3 to show that two votes are of the same type.

Remark It is possible to de�ne votes as a single integer rather than a vector.

The Chinese Remainder Theorem de�nes an isomorphism between the group Z

�

P

where P = h(n

1

; y

1

); (n

2

; y

2

); : : : ; (n

K

; y

K

)i and the group Z

�

N

where N =

Q

k

n

k

.

All of the operations on votes can be rede�ned to conform to this viewpoint

without any loss of functionality. Although there are some advantages to de�ning

a vote to be a single integer, the size of the integer is, of course, comparable to

the size of the vector of integers used. For purposes of clarity, the components

have been kept separate here.

5.5.3 Ballots

De�nition A capsule consisting of a pair of votes is called a ballot.

De�nition A ballot consisting of a no vote and a yes vote (in either order) is

called a valid ballot.

De�nition A ballot consisting of two no votes (i.e two votes of type 0) is called

a zero ballot.

De�nition The type of a ballot B = (W

1

;W

2

) is the ordered pair

(type(W

1

); type(W

2

)):

Two ballots are said to be of equivalent type if their types are the same or the

reverse of each other.
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We also de�ne two quotient operators on ballots.

De�nition If B = (W

1

;W

2

) and B

0

= (W

0

1

;W

0

2

) are ballots, then the forward

quotient B

0

=B is de�ned to be the ballot (W

0

1

�W

�1

1

;W

0

2

�W

�1

2

), and the reverse

quotient B

0

nB is de�ned to be the ballot (W

0

1

�W

�1

2

;W

0

2

�W

�1

1

).

Note that two ballots B and B

0

are of equivalent type if and only if at least

one of B=B

0

and BnB

0

is a zero ballot. In particular, if B and B

0

are both valid

ballots, then exactly one of B=B

0

and BnB

0

is a zero ballot.

5.6 A Veri�able Secret-Ballot Election Schema

Here, at last, are the protocols for the full fault-tolerant veri�able secret-ballot

election schema. With the machinery that has been constructed, the schema can

be described fairly simply.

Besides the sets T of tellers and V of voters, we introduce two additional sets

of participants. These additional sets may be drawn from T [ V or they may

consist of independent participants.

The �rst of these additional sets is the set of bit generators denoted by G.

Let M = jGj. The sole responsibility of the bit generators is to generate random

bits at various times to facilitate interactive proofs. If a single trusted random

source (known as a beacon | [Rabi83a]) is available, then G can be the singleton

set containing just this beacon. In general, G should be chosen to be a set of

random sources such that each participant is con�dent in the integrity and the

unpredictability of at least one member of G.

The second additional set is the set of inspectors denoted by I. Let I = jIj.

The mission of the inspectors will be to engage the tellers in a set of interac-

tive proofs to ensure the validity of the election parameters. As with the bit

generators, the inspector set I should be chosen such that each participant is

con�dent in the integrity of at least one member of I. The inspector set I may

consist of the bit generators G, the tellers T themselves (challenging each other),

or the entire set of voters V. The reasons for selecting one of these sets over

another are dictated by the assumed capabilities of the agents and by e�ciency

considerations. This is discussed further in section 5.11. It should be emphasized

that the inspectors are not able to \oversee" an entire election. They (even as a

set) are not able to read voters' private votes nor obtain any special information
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about the election parameters from the tellers. Their role is quite limited and

their introduction is merely a notational convenience which adds exibility to the

election schema.

We assume that a prime r which is larger than the number of eligible voters

has been �xed in advance and that a security parameter N has also been selected.

The election schema consists of four basic phases according to the paradigm

described in section 5.4. Within each of these phases there may be several sub-

phases.

In the announcement phase, each teller T

k

2 T randomly selects a pair (n

k

; y

k

)

such that the triple (r; n

k

; y

k

) is prime consonant. Each teller uses the interactive

proof technique of section 3.3.2 to convince each member of the inspector set I

that (r; n

k

; y

k

) is, in fact, prime consonant (see �gure 5.2).

In the registration phase, each voter V

`

2 V that wishes to vote prepares a

valid ballot as described in section 5.5.3. A slightly generalized version of the

interactive proof of section 3.1.3 is then used to demonstrate the validity of the

ballot (see �gure 5.3).

In the voting phase, each voter V

`

2 V that has satisfactorily completed its

interactive proof may then cast a vote by designating one of the two votes on its

ballot as the vote to be cast (see �gure 5.4).

In the tally phase, the (�) product of the votes cast is computed. (These votes

are completely public | although the secrets they represent are not | and the

(�) product can be computed by anyone and everyone.) The type of this product

is the tally of the election. Each teller T

k

2 T releases the type of its component

of this vote product. An interactive proof using the technique of section 3.1.2 is

used by each teller to demonstrate the class of its component (see �gure 5.5).

Once a su�cient number of tellers have produced these \tally-shares", the

overall tally can be computed as the secret de�ned by the set of tally-shares.

The tally function � is de�ned to be the secret determined by any J or more

values �

k

for which check

T

(k) = good.

5.7 The function check

In order to gain con�dence that the tally is correct, it is necessary to evaluate

the check function. The check function does not require computation of residue
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(A) Each teller T

k

2 T uniformly selects an n

k

with jn

k

j = N such that the

pair (r; n

k

) is exact consonant (with error probability at most 1=(K2

N

)) as

in lemma 2.27. Each teller then uniformly selects a y 2 Z

�

n

k

such that the triple

(r; n

k

; y

k

) is exact consonant as in lemma 2.28. Teller T

k

posts the pair (n

k

; y

k

)

as its election parameters.

(B) Let �

1

= d(log

2

jIj)(log

2

log

2

jT j)Ne and let �

2

= d(log

2

jT j)Ne.

Each inspector I

s

selects, for each teller T

k

, �

2

values c

i

2 f0; 1g and x

i

uniformly

from Z

�

n

and posts the �

2

values w

i

=  ([c

i

; x

i

]) = y

c

i

k

x

r

i

mod n

k

.

With each w

i

, inspector I

s

randomly selects �

1

additional values �

i;j

and �

i;j

, all

relatively prime to n

k

and posts �

1

capsules each consisting of (in random order)

the pair u

i;j

=  ([0; �

i;j

]) = �

r

i;j

mod n

k

and v

i;j

=  ([1; �

i;j

]) = y

k

�

r

i;j

mod n

k

.

(C) Each teller T

k

, for each inspector I

s

, selects �

1

�

2

random bits b

i;j

, 1 � i � �

2

and 1 � j � �

1

.

(D) For each pair (i; j) such that b

i;j

= 0, I

s

releases the values [0; �

i;j

] and [1; �

i;j

].

For each pair (i; j) such that b

i;j

= 1, I

s

selects and posts

w

i;j

=

�

u

i;j

if c

i

= 0;

v

i;j

if c

i

= 1.

Let [c

i;j

; x

i;j

] be a decomposition of w

i;j

. That is, [c

i;j

; x

i;j

] is either [0; �

i;j

] or

[1; �

i;j

]. Inspector I

s

then releases the decomposition of w

i;j

w

�1

i

given by

[c

i;j

; x

i;j

]	 [c

i

; x

i

] =

�

[c

i;j

� c

i

; x

i;j

x

�1

i

mod n

k

; if c

i;j

� c

i

� 0;

[c

i;j

� c

i

+ r; x

i;j

x

�1

i

y

�1

k

mod n

k

; if c

i;j

� c

i

< 0.

(E) Each teller T

k

then releases [[w

i

]]

(r;n

k

;y

k

)

for all i.

(F) Each challenger I

s

releases [c

i

; x

i

] for all i.

Figure 5.2: Phase 1: The announcement phase.
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(A) Let �

3

= d(log

2

jVj)Ne.

Each voter V

`

prepares as (unmarked) ballots, �

3

M +1 capsules B

i

each consist-

ing of a no vote and a yes vote as described in section 5.5. One of these capsules

is designated as the master ballot B

0

, and �

3

of these capsules are associated

with each of the M bit generators.

(B) Each bit generator G

m

produces, for each voter V

`

, bits b

i

, 1 � i � �

3

.

(C) For all i such that b

i

= 0, voter V

`

decomposes its associated B

i

. For all i such

that b

i

= 1, voter V

`

decomposes either B

i

=B

0

or B

i

nB

0

| whichever of the

two is a zero ballot.

Figure 5.3: Phase 2: The registration phase.

Each voter V

`

designates one of the two votes of its master ballot B

0

as the actual

vote to be cast in the election.

Figure 5.4: Phase 3: The voting phase.

(A) Let �

4

= d(log

2

jT j)Ne.

Each teller T

k

computes the set of \correct" voters V

`

for which check

V

(`) =

good and then computesW

k

which is the product modulo n

k

of the k

th

compo-

nent of all votes cast by the correct voters.

Each teller T

k

reveals �

k

= [[W

k

]]

(r;n

k

;y

k

)

.

Each teller T

k

selects �

4

M random values s

i

2 Z

�

n

k

and reveals S

i

�

n

k

s

r

i

.

From these �

4

M values of S

i

, �

4

of the S

i

are associated with each of theM bit

generators.

(B) Each bit generator G

m

produces, for each teller T

k

, bits b

i

associated with the

S

i

.

(C) For all i such that b

i

= 0, teller T

k

reveals its associated s

i

. For all i such that

b

i

= 1, teller T

k

reveals s

i

x

k

, where x

k

is an r

th

root of W

k

y

��

k

k

.

Figure 5.5: Phase 4: The tally phase.
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classes or examination of challenges, but it does require that each vote cast be

checked for consistency. The function check is de�ned in terms of a function

check

T

. The function check

T

is in turn de�ned in terms of check

I

and check

V

.

5.7.1 check

I

The value of the function check

I

(s; k) is de�ned to be good if and only if

1. In phase 1(B), inspector I

s

has posted up to �

2

complete sets each con-

taining an element w

i

and �

1

capsules. Each w

i

and the elements of each

capsule must all be relatively prime to n

k

.

2. In phase 1(D), for each capsule with which teller T

k

associates a 0, inspector

I

s

posts a decomposition showing one component to be of RC[0] and the

other to be of RC[1].

3. In phase 1(D), for each capsule with which teller T

k

associated a 1, inspector

I

s

chooses a component w

i;j

and gives a decomposition of w

i;j

w

�1

i

. Each

such decomposition must show w

i;j

w

�1

i

to be in RC[0].

4. In phase 1(F), inspector I

s

posts a decomposition of w

i

.

5.7.2 check

V

The value of the function check

V

(`) is de�ned to be good if and only if

1. In phase 2(A), voter V

`

posts a master ballot and M sets consisting of �

3

ballots each. Every element of every component of every ballot posted must

be relatively prime to its associated modulus n

i

. Let B denote this master

ballot.

2. In phase 2(C), for each ballot with which the corresponding bit generator

has associated a 0, voter V

`

posts a complete decomposition of the ballot.

These decompositions must show these ballots to be valid ballots.

3. In phase 2(C), for each ballot B

0

with which the corresponding bit gener-

ator has associated a 1, voter V

`

posts a complete decomposition of either

B

0

=B or B

0

nB. These decompositions must show these quotients to be zero

ballots.
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4. In phase 3, voter V

`

designates one of the two votes of its master ballot as

the vote to be cast.

5.7.3 check

T

The value of the function check

T

(k) is de�ned to be good if and only if

1. In phase 1(A), teller T

k

posts a pair (n

k

; y

k

) such that y

k

is relatively prime

to n

k

.

2. In phase 1(C), teller T

k

associates a bit with each capsule presented to it

by an inspector.

3. In phase 1(E), for each w

i

presented by an inspector I

s

for which the value

of check

I

(s; k) is good, teller T

k

associates a bit designating to which of

RC[0] and RC[1] w

i

belongs.

4. No inspector for which check

I

(s; k) = good posts a decomposition in phase

1(F) which contradicts a residue class claimed by teller T

k

.

5. In phase 4(A), teller T

k

posts a \tally-share" �

k

.

6. In phase 4(A), teller T

k

posts �

4

M values w, each relatively prime to n

k

.

7. In phase 4(C), for each value w with which the corresponding bit generator

has associated a 0, teller T

k

posts an r

th

root of w.

8. In phase 4(C), for each value w with which the corresponding bit generator

has associated a 1, teller T

k

posts an r

th

root of W

k

y

��

k

w, where W

k

is the

product modulo k of the k

th

component of all votes cast by voters V

`

for

which check

V

(`) = good.

5.7.4 check

The value of check is de�ned to be good if and only if check

T

(k) = good for at

least J tellers T

k

.

We shall show in section 5.9 that the probability that check = good while the

tally is incorrect decreases exponentially as the security parameter N increases.
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5.8 Time and Space Requirements

It is important to analyze the resources used in the election schema of section 5.6.

Recall that K = jT j is the number of tellers, L = jVj is the number of voters,

M = jGj is the number of bit generators, I = jIj is the number of inspectors,

and N is the security parameter.

5.8.1 Time Requirements

Although the election schema has many complicated aspects, almost all of the

computation times are bounded by the cost of performing gcd operations. When

selecting a random x 2 Z

�

n

, gcd(x; n) is computed to verify that x is, in fact,

relatively prime to n. When N = jnj, such a gcd requires O(N) N -bit multiplica-

tion/division operations. Once such an x has been chosen, computing y

c

x

r

mod n

(for 0 � c < r) requires only O(log r) N -bit multiplication/division operations.

Thus (since r < n), the cost of selecting a random member of residue class c is

dominated by the cost of the gcd and is O(N) times the cost of performing an

N -bit multiplication or division.

Voter Protocols

In the registration phase of the election schema, each voter prepares O(�

3

M) =

O((logL)MN) ballots each consisting ofK pairs of integers selected from speci�c

classes. Thus, each voter requires O((logL)KMN

2

) N -bit multiplications and

divisions to complete phase 2.

Phase 3 only requires each voter to designate one bit of information, and

phase 4 requires no voter participation. Thus, the total time required for each

voter protocol is the time needed to perform

O((logL)KMN

2

)

N -bit multiplications and/or divisions. That is, the number of N -bit multiplica-

tions and divisions required of a voter is proportional to the square of the security

parameter (N), the number of tellers (K), the number of bit generators (M), and

the logarithm of the number of voters (L).
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Teller Protocols

The �rst step required of each teller is the selection of a pair (n; y) such that

(r; n; y) is prime consonant. The method of lemmas 2.27 and 2.28 require the

selection of primes p and q such that r j (p � 1), r

2

 

j (p � 1), and r

 

j (q � 1).

Such a p can be randomly chosen by selecting an A of size roughly O(n) and a

B uniformly selected among integers from 1 to r � 1, inclusive, and computing

p = Ar

2

+ Br + 1. The general form of the prime number theorem used in

lemma 2.27 (see [Kran86]) ensures that such integers have roughly the same

density of primes as integers in general. Thus, approximately 1 out of N of

such integers p are prime. Probabilistic primality tests can be used to test such

p. These tests can verify primality with con�dence 1 � 2

�

using O(�N) N -

bit multiplications and divisions. Composite N can be discovered with O(N)

expected N -bit multiplications and divisions. Thus, the total expected time to

�nd such a p is O(�N+N

2

)) times the time for an N -bit multiplication/division,

and the probability of producing a \false" prime is bounded by T=2

�

, where T is

the number of trials and is O(N). Similarly, a prime q of the required form can

be generated by selecting an A of roughly the size of n and a B uniformly selected

among integers from 2 to r � 1, inclusive, and computing q = Ar + B. Once

again, integers of this form have roughly the same density of primes as integers

in general. Thus, such a q can be found in expected time O(�N + N

2

)) times

the time for an N -bit multiplication/division with a comparable error bound.

Thus, selecting an exact consonant pair with error probability less than 1=(K2

N

)

is accomplished by setting � = d(log

2

K)N(log

2

N)e and requires the same time

as is required to perform O((logK)N

2

(logN))) N -bit multiplication/division

operations.

Next, given n such that (r; n) is exact consonant, lemma 2.28 asserts that

a (r � 1)=r fraction of the y 2 Z

�

n

are not in Z

r

n

. Thus, the expected number

of such y which must be tested is constant. Such a test requires a gcd and (by

Lemma 2.23) a modular exponentiation. Thus, an expected O(N) N -bit mul-

tiplications/divisions are used to generate the required y. Hence, selection of a

suitable (n; y) pair requires an expected O((logK)N

2

(logN)) N -bit multiplica-

tions and divisions.

The remaining obligations of the tellers consist almost entirely of determining

the residue classes of various integers. Each teller must do this once for every
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challenge it receives (up to �

2

= d(log

2

K)eN challenges per inspector) and once

more to tally its vote-shares by computing the residue class of their product.

Thus, up to O(I(logK)N) decodings (class determinations) are required of each

teller.

The teller challenges are constrained to be elements of either RC[0] or RC[1].

By lemma 2.23, these two cases can be distinguished with a single modular

exponentiation (requiring at most O(N) N -bit multiplications and divisions).

Therefore, the total number of N -bit multiplications and divisions necessary to

answer the challenges is O(I(logK)N

2

)

Each teller must also compute the product of its component of the up to L

votes cast. This requires O(L) N -bit multiplications and divisions.

The \big step { little step" method of section 2.5 can be used to compute the

residue class of the single value which gives the teller's share of the tally. This

requires O(

p

r log r) N -bit multiplications and divisions.

Finally, the interactive proof that the teller's share of the tally is correct re-

quires O(�

4

M) = O(logK)MN) N -bit multiplications, divisions, and r

th

power

computations. Thus, the total number of N -bit multiplications and divisions

required is O((logK)MN(log r)).

Hence, the total time needed by each teller protocol is the time required to

perform

O((logK)N

2

(logN) + I(logK)N

2

+ L+

p

r log r + (logK)MN(log r))

N bit multiplication/division operations.

Inspector Protocols

In the announcement phase of the schema, each inspector may challenge each

teller. A challenge requires the preparation of O(�

1

) = O((log I)(log logK)N)

random members of known residue classes, and each inspector may challenge each

of the K tellers up to �

2

= d(log

2

K)Ne times. Thus, each inspector may pre-

pare up to O((log I)K(logK)(log logK)N

2

) random members of known residue

classes. Since each random selection requires O(N) N -bit multiplications and

divisions, each inspector requires

O((log I)K(logK)(log logK)N

3

)

N -bit multiplication/divisions.
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Bit Generator Protocols

The bit generator protocols consist entirely of providing random bits when re-

quired to do so. Each bit generator must provide �

3

= d(log

2

L)Ne bits to each

of the L voters to form the interactive proofs of vote validity. Also, each bit

generator must provide �

4

= d(log

2

K)Ne bits to each of the K tellers to form

the interactive proofs of the accuracy of the sub-tallies. Thus, each bit generator

must produce a total of

(dlog

2

LeL+ dlog

2

KeK)N

bits.

Computing check

Almost all of the work required to compute check consists of computing greatest

common divisors, inverses, and modular exponentiations. Each of these opera-

tions requires at most O(N) N -bit multiplications and divisions. For each of the

I inspectors and each teller, check

I

(s; k) requires

O(�

1

�

2

) = O((log I)(logK)(log logK)N

2

)

gcd, inverse, and modular exponentiation computations. For each of the up

to L voters, check

V

requires O(�

3

KM) = O(K(logL)MN) gcd, inverse, and

modular exponentiation computations. For each of the K tellers, check

T

requires

O(�

4

M +L)O((logK)MN +L) gcd and modular exponentiation computations.

Thus, computing check requires

O((I(log I)K(logK)(log logK)N

3

+KL(logL)MN

2

+K(logK)MN

2

)

N -bit multiplication and division operations.

In particular, note that computing check requires time proportional to L logL

rather than just logL. This is explained by the fact that in order to verify the

results of an election, one must \look over" the votes cast by all voters to ensure

their validity.

5.8.2 Space Requirements

What is meant by space requirements here is the amount of permanent space

which is required to hold the messages which must be posted. The amount of
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internal space required to perform the secret computations is quite small.

Each voter must post �

3

M + 1 ballots each consisting of two vectors which

contain K N -bit integers. Each voter must then post �

3

M decompositions each

consisting of two vectors which contain K pairs consisting of an N -bit integer

and a (log r)-bit integer. Finally, each voter posts one additional bit | thereby

indicating its vote. Thus, each of the L voters may post up to 2KN(�

3

+ 1) +

2KM�

3

(N + log r) + 1 bits of information on its message board.

Each teller must post an n and y of N bits each and for each inspector

up to �

1

�

2

bits and up to �

2

bits to answer each of the up to I challenges.

Later, each teller must post a (log r)-bit tally-share and 2�

4

M N -bit integers to

prove the validity of its tally-share. Thus, each of the K tellers may post up to

2N + (�

1

+ 1)�

2

+ log r + 2M�

4

bits of information on its message board.

Each inspector may post up to �

2

N -bit challenge messages for each of the

K tellers. To interactively prove the validity of each of these challenges, each

inspector posts up to and �

1

capsules each containing two N -bit messages. For

each challenge, an inspector must then post decompositions of up to 2�

1

values

each consisting of a (log r)-bit message and an N -bit message. Each inspector

must then post a decomposition (again consisting of a (log r)-bit message and an

N -bit message) for each challenge. Thus, each of the I inspectors may post up

to KN�

2

+2KN�

1

�

2

+2K�

1

�

2

(N + log r) + 2K�

2

(N + log r) bits of information

on its message board.

The bit generators must each post a total of �

3

L+ �

4

K bits.

5.9 Correctness

In this section, we give the proof that the scheme S presented in section 5.6 is a

veri�able (J;K;L) election scheme as de�ned in section 5.3.

The main tool in showing that the announced tally is correct is the use of

interactive proofs. The basic idea of these interactive proofs is to force an agent

who would produce fraudulent information to \outguess" the bit generators. As

long as at least one of the generators and one of the inspectors is honest, this

can be done successfully with only low probability.

The interactive proofs completed between the inspectors and the tellers give

extremely high con�dence that each y is not an r

th

residue modulo n. By theo-
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rem 2.18, this implies that each (r; n; y) triple is prime consonant and therefore

that each w 2 Z

�

n

is expressible as w �

n

y

c

z with z 2 Z

r

n

for at most one integer

c such that 0 � c < r.

The remaining interactive proofs give extremely high con�dence that each

vote cast is valid and that the tally-share released by each teller represents the

actual residue class of the teller's component of the product of the votes cast.

Since, by lemma 5.1, the product of valid votes yields a vote whose type is

the sum of the types of the votes, this type represents the number of yes votes

cast in the election; and once at least J tellers have released (and interactively

proven) their tally-shares, this election tally can be computed. This is used to

derive the following lemma.

Lemma 5.6 If at least one bit generator is honest and at least one inspector is

honest, then with probability at least (1�1=(L2

N

)), check

V

(`) = good if and only

if voter V

`

votes properly.

Proof:

If V

`

votes properly, then by construction check

V

(`) = good, and by the timing

analysis of section 5.8.1, V

`

can complete its protocol in polynomially bounded

time. If V

`

does not vote properly, then by de�nition V

`

posts some message

which is inconsistent with its following either of its two prescribed protocols.

Such a digression will be caught by the interactive proof of vote validity and

therefore check

V

(`) = bad unless the interactive proof fails. But this occurs with

probability at most 2

��

3

� 1=(L2

N

).

Lemma 5.7 If at least one bit generator is honest and at least one inspector is

honest, then with probability at least (1 � 3=(K2

N

)), check

T

(k) = good if and

only if teller T

k

acts properly.

Proof:

If T

k

acts properly, then by construction check

T

(k) = good unless teller T

k

selects a \false" prime as a factor of its �rst parameter N

k

. By construction,

this can only happen with probability less than 1=(K2

N

). By the timing analysis

of section 5.8.1, T

k

can complete its protocol in polynomially bounded time.

Thus, the probability that teller T

k

acts properly and check

T

(k) = bad is at most

1=(K2

N

).

If T

k

does not act properly, then the digression could occur in one of several

places. T

k

could post a pair of election parameters (n

k

; y

k

) such that (r; n

k

; y

k

)
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is not consonant. T

k

could fail to answer one or more of the valid inspector

challenges to its pair. T

k

could post an invalid tally-share. Finally, T

k

could fail

to complete the interactive proof of the validity of its tally-share. If T

k

posts

a pair which does not meet the consonance criterion, then it will not be able

to correctly answer the challenges of the (at least one by assumption) honest

inspector, and this will cause check

T

(k) = bad. If (r; n

k

; y

k

) were not conso-

nant, then T

k

could answer these challenges correctly with probability no greater

than 2

��

2

� 1=(K2

N

). If T

k

fails to answer a valid inspector challenge, then

check

T

(k) = bad by construction. Similary, check

T

(k) = bad if T

k

fails to com-

plete the interactive proof of the validity of the tally-share. If T

k

completes the

interactive proof of the tally-share and (r; n

k

; y

k

) is consonant, then the tally-

share could only be invalid if its interactive proof failed which can happen with

probability no more than 2

��

4

< 1=(K2

N

). Thus, the probability that a teller T

k

acts improperly while check

T

(k) returns good is at most 2=(K2

N

).

Therefore, with probability at least 1 � 3=(K2

N

), check

T

(k) = good if and

only if teller T

k

acts properly.

By lemmas 5.6 and 5.7, if at least one bit generator is honest and at least one

inspector is honest, then even if none of the tellers and none of the voters are

proper, the joint probability is at most 4=2

N

that check returns good and the

election tally is not correct.

This is su�cient to give the following theorem.

Theorem 5.8 The election schema of section 5.6 is veri�able.

Proof:

It can only be the case that check = good and the election tally is incorrect if

at least one teller T

k

for which check

T

(k) = good releases an incorrect tally-share

�

k

or if the vote of a voter which did not vote properly was counted towards the

tally. By lemma 5.7 and since there are K tellers, the probability of the former

case is bounded by 3K=(K2

N

) = 3=2

N

; and by lemma 5.6 and since there are at

most L voters, the probability of the latter case is bounded by L=(L2

N

) = 1=2

N

.

Thus, the probability that the election tally is incorrect and �=good is bounded

by 4=2

N

= 1=2

N�2

, and therefore the election schema of section 5.6 is veri�able

with con�dence 1� 1=2

N�2

.

Since the function 2

N�2

grows faster than any polynomial function P (N), the

election schema of section 5.6 is veri�able.
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5.10 Security

It remains to be shown that compromising the votes of proper voters is hard. Un-

fortunately, signi�cant lower bounds have been very scarce in theoretical com-

puter science. The nature of public-key cryptography, in particular, makes it

di�cult to imagine a schema for which a super-polynomial lower bound on secu-

rity would not immediately separate P and NP. We must therefore be willing to

settle for an equivalence result | a result that proves, by a rigorous reduction,

that any breach of security would yield an e�cient algorithm to solve a natural

problem which is believed to be hard. Not surprisingly, the problem of compro-

mising an election is closely related to the problem of deciding residuosity and

the prime residuosity assumption.

It is easy to see that an oracle with the ability to decide residuosity can

determine how individual voters voted in an election. It will, however, require

far more e�ort to show that any oracle which, in possible collusion with voters,

tellers, inspectors, and bit generators, can gain even a small advantage beyond

chance at deciphering votes of honest voters, can itself be used to gain non-trivial

information about deciding residues.

5.10.1 An Overview of the Reduction

The formal reduction is quite tedious; however, the basics are reasonably palat-

able. To begin with, we shall assume that we have a minimal set of honest agents

at our disposal. In order to maintain any privacy of votes, we require at least one

honest bit generator, at least � = K�J+1 honest tellers, and a set of honest vot-

ers which contains at least two opposing voters. Without some opposition among

the honest voters, the dishonest voters could subtract their sub-tally from the

election tally and see that all honest voters cast the same votes. The remaining

agents may all conspire, or some may just run their usual assigned protocols.

We will see that whenever the conspirators are able to gain better than chance

information about the votes of honest voters, the conspirators may themselves

be used to give information about residues.

Assume, without loss of generality, that the honest tellers are denoted by

T

1

; T

2

; : : : ; T

�

and that bit generator G

1

is honest. Consider elections in which

each teller T

�

has selected parameters (n

�

; y

�

). We will see that for any such
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parameter sets on which the conspirators have an advantage at distinguishing

between votes, the conspirators may be used to, with a comparable advantage,

decide residuosity modulo n

�

for at least one �, 1 � � � �. Intuitively, with

this minimal set of honest election functionaries, an election is only as strong as

the weakest of the n

�

chosen. It will then be seen that obtaining even an inverse

polynomial advantage at distinguishing between votes in an inverse polynomial

fraction of all elections is su�cient to violate the prime residuosity assumption.

The reduction will show that if we are given a set of such n

�

for which we do

not know the factorizations, we can decide residuosity modulo at least one of the

n

�

with the same advantage as that with which the conspirators can distinguish

between votes.

To accomplish this, we start by simulating an election with the given n

�

as

parameters. It will be shown that it is possible, by repeatedly starting, stopping,

and restarting an election, to simulate an election with the same distribution that

honest elections would have if the factors of the n

�

were known. By assumption,

therefore, the conspirators will demonstrate some advantage at distinguishing

between votes in this case.

We next repeat the process except with y

1

changed from a random non-residue

(as speci�ed by the protocol) to a random residue modulo n

1

. We continue

changing the y

�

, one at a time, from non-residues to residues until, for all � such

that 1 � � � �, the y

�

are r

th

residues modulo n

�

.

It will be shown that when all y

�

are residues modulo their respective n

�

, a

perfect symmetry exists, and that the conspirators will be completely unable to

gain an advantage at distinguishing between votes since every vote could equally

well represent a yes or a no. Since this is so, the initial " advantage of the

adversaries must have dropped by at least "=� on some ip of a y

�

from non-

residue to residue. For this n

�

, we are able to decide residuosity by substituting

unknown quantities for y

�

and measuring the advantage attained.

5.10.2 Simulating Elections

The �rst task of the reduction is to show how to simulate elections, i.e. to simulate

the duties of honest tellers when, in fact, the factors of their moduli are unknown.

This puts us as the simulators in the somewhat odd situation of controling the

\honest" agents and perhaps causing them to stray from their proper protocols
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while the \dishonest" agents are out of our control and may very well run proper

protocols.

To begin with, each \honest" teller T

�

posts its parameters (n

�

; y

�

) and sub-

mits itself to challenges from inspectors which it must answer correctly. The

\honest" inspectors are not a problem since they may transmit the correct chal-

lenge responses directly to the teller.

To answer the challenges of the \dishonest" inspectors, we must employ a

technique which is common in proofs of interactive protocols. We observe that

even probabilistic machines may be viewed as deterministic machines with access

to random stimuli (usually a Turing machine with a random tape). If the machine

is given the same stimuli, it will act in the same way. Thus, it is possible to run

an adversary to a certain point multiple times | each time leaving the adversary

in the same state. By altering later external inputs, it is possible to observe an

adversary's responses to a variety of inputs at this point of the protocol.

To answer the challenges put forth by dishonest inspectors, a teller need only

�nd, for each challenge w

i

, one value w

i;j

for which the inspector will decom-

pose both w

i;j

and w

i;j

w

�1

i

. (Recall that the interactive proof associated with

the challenges requires the inspector to decompose one or the other of w

i;j

and

w

i;j

w

�1

i

and that the teller decides which of the two is to be decomposed.) With

decompositions of both w

i;j

and w

i;j

w

�1

i

, a teller can easily compute a decompo-

sition of w

i

and thereby successfully answer the challenge. Thus, by stopping and

restarting the adversary, each teller can answer the challenges to its parameters

from any and all inspectors | even though it can not factor its own parameters.

When the \dishonest" voters cast their votes, each \honest" teller must de-

termine its component of the vote cast. Without this information, the teller

would not be able to complete the election by producing its tally-share in the

�nal phase. In order to accomplish this a similar trick is used, but there is a catch

here. The bits which are generated for the voter this time are not produced by

the teller in question but rather by the bit generators. (If this were not so, others

would have no con�dence in the legitimacy of the vote.) This is where the one

\honest" bit generator G

1

becomes involved. Since we, the election simulators,

control G

1

, we can change the value produced by G

1

at various times in order to

change some of the bits to which voters must respond.

By changing the value of G

1

's bit, we are able to force each dishonest voter V

`

to reveal a decomposition of the vote which it cast. With these decompositions
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in hand, each teller T

�

is easily able to complete the election simulation.

Note that after each stopping and restarting operation, the election state is

restored and the election is then continued from that point. Thus, if all simula-

tions were successful, the distribution of simulated elections would be identical to

that of actual elections. Unfortunately, it may not always be possible to simulate

an election.

De�nition Formally, we say that an algorithm A is an (r;N) election simulator

with 1� 1=P (N) success if for every parameter set

h(n

1

; y

1

); (n

2

; y

2

); : : : ; (n

�

; y

�

)i

such that for each �, (r; n

�

; y

�

) is exact consonant and each jn

�

j = N , A can

(without access to the factorization of one of the n

�

) run T

1

; T

2

; : : : ; T

�

, G

1

, and

a set H of honest voters \properly" in the sense that the actions produced by

A are identical to those that would be produced by T

1

; T

2

; : : : ; T

�

, G

1

and H

given that each T

�

selected (n

�

; y

�

) as its parameters. (Note that this is true

even though A does not possess the factorization of one of the n

�

.)

In this de�nition of an election simulator, it is assumed that the simulator

is given the factorizations of all but one of the parameters n

�

for the tellers T

�

which it must simulate. Although it is possible to simulate elections in which the

factors of n

�

are not known for any �, it will be seen that for the reduction it is

su�cient to simulate elections in which the factors of all but one n

�

are known.

Lemma 5.9 For every prime r and every polynomial P (N), there exists an in-

teger N

0

such that for all integers N � N

0

there exists a polynomial time (r;N)

election simulator A with 1� 1=P (N) success.

Proof:

Let P (N) be an arbitrary polynomial. We give a constructive proof which

de�nes an election simulator A which runs tellers T

1

; T

2

; : : : ; T

�

, bit generator

G

1

, and the voters in H properly in polynomial time with probability greater

than 1� 1=P (N).

Since we are only assuming control of the \honest" tellers T

1

; T

2

; : : : ; T

�

, the

\honest" bit generator G

1

, and the \honest" voters H, we may assume that all

other agents are \dishonest" and part of the conspiracy C.

A begins by instructing each honest teller T

�

to announce (n

�

; y

�

) as its

election parameters. All tellers T

�

for which A possesses the factors of n

�

can be
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simulated by A by executing the teller protocol precisely from this point on.

Denote the one teller T

�

for which the factorization of n

�

is not available as

T

�

and denote its parameters by (n

�

; y

�

). Simulating the actions of T

�

will require

a signi�cantly greater e�ort.

First, Amust have T

�

answer each challenge satisfactorily. For each challenge,

an inspector will prepare for teller T

�

a challenge value (a w which is in either

RC[0]

(r;n

�

;y

�

)

or RC[1]

(r;n

�

;y

�

)

for which the T

�

is supposed to be able to tell which)

and a set of �

1

capsules each consisting of one element from each of RC[0]

(r;n

�

;y

�

)

and RC[1]

(r;n

�

;y

�

)

.

Once all of the inspectors have prepared and posted all of their challenge

capsules, teller T

�

is instructed by A to randomly select a subset of each of these

sets of capsules.

Inspectors must then begin decomposing their subsets. Each subset must be

decomposed by the inspector and one element of each remaining capsule must

be \matched" with the corresponding w

i

. (The match is accomplished by taking

an element w

i;j

from each associated capsule and decomposing w

i;j

w

�1

i

mod n.)

Consider one such subset of capsules to be opened. If the inspector does not give

these decompositions, then the challenge is invalid and should be ignored by T

�

.

If the inspector does present T

�

with appropriate decompositions, then A \backs

up" the simulation and continues again from the point at which T

�

selected the

subset of these capsules. Here, A instructs T

�

to select another random subset

of the capsules. The simulation is continued until these capsules are dealt with.

There are two possibilities here. The inspector may, once again, present T

�

with

appropriate decompositions. In this case, if the subset of capsules is di�erent,

there must be at least one capsule which the inspector both decomposed and

matched with w

i

. This is su�cient for A to determine [[w

i

]] and thereby instruct

T

�

as to the proper answer to the challenge. If the inspector this time refuses

to present T

�

with appropriate decompositions, then A once again backs up the

simulation and instructs T

�

to try another subset. Let �

1

= 2I�

2

P (N). This

process is repeated up to �

1

times or until A is able to get each inspector to

present a second set of decompositions for each challenge and thereby allow A to

compute each [[w

i

]]. If after �

1

attempts, A is unable to get an inspector to present

a second set of decompositions for a given challenge, then the simulation fails. If,

however, the appropriate decompositions are obtained, then the simulation can

continue.
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Once the challenge phase of the election is completed, the ballot preparation

phase can begin. A instructs each \honest" voter in H to execute its normal

protocol. A must then prepare to deal with the \dishonest" voters.

Each dishonest voter prepares a master ballot B and �

3

additional \scratch"

ballots for each bit generator. Once all ballots are prepared, A instructs bit

generator G

1

to select a random subset of the scratch ballots associated with

it. (Other bit generators will also select subsets of the scratch ballots associated

with them). Voters must then decompose their ballots. Each voter decomposes

the designated ballots (those in the selected subset) and for each remaining ballot

B

0

must decompose either B

0

=B or B

0

nB. If the voter does not present these

decompositions, it is acting improperly and should be ignored. Once the de-

compositions are obtained, A backs up the simulation and instructs G

1

to select

another random subset of the ballots associated with it. For each voter, if this

second subset is decomposed appropriately, then (if the subset is di�erent), there

must be some ballot B

0

for which the voter has presented decompositions of both

B

0

and either B

0

=B or B

0

nB. This is su�cient for A to completely decompose

B. Let �

2

= 2LP (N). This process is repeated up to �

2

times or until A is able

to get every voter to present a second set of decompositions and thereby allow

A to compute a decomposition of B. If A is unable to obtain a second set of

decompositions for some voter, the simulation fails. If, however, a decomposition

of B is obtained for all voters, then the simulation can continue.

In the voting phase, A simply instructs the set H of honest voters to vote

according to either assignment h

0

or h

1

depending upon the desired simulation.

Since the evaluation function 	 is a homomorphism, the (�) sum of the

decompositions of the votes cast is a decomposition of the (�) product of the

votes cast. Thus, if there has been no failure up to this point, A has a complete

decomposition of the vote product and can complete the election directly. A

simply instructs each honest teller T

�

to release as its tally-share the class of

�

th

component of the vote product as given by the decomposition. Since A

has a complete decomposition, the interactive proof of these tally-shares can be

completed normally.

It is clear that with the choices of �

1

and �

2

given, this simulation process is

polynomial in K, L, M , and N .

We must now analyze the probability of a successful simulation. The simu-

lation succeeds unless one of the inspectors or voters gives a proper �rst set of
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decompositions but fails to give a second set of decompositions on any of the

subsequent tries. Since these cases are indistinguishable to the conspirators, we

may assume that all trials are independent.

It is the \goal" of the conspirators to keep A from simulating an election

successfully. Therefore, we may assume that the conspirators will try to maximize

the probability of causing at least one inspector or voter to decompose the �rst

set of capsules/ballots and to decompose no further sets. This probability is,

of course, maximized by maximizing the probability of each inspector and each

voter of achieving this goal.

Let p

I

be the probability that an inspector will decompose a given subset of

capsules (remember that p

I

is independent of the iteration, since each iteration

looks like the �rst, and that p

I

is independent of the inspector, since each is

trying to maximize the probability that it will cause the simulation to fail). The

probability that a given inspector will, on a given challenge, decompose the �rst

subset and none of the �

1

subsequent subsets is

p

I

(1� p

I

+ 2

��

1

)

�

1

:

(The 2

��

1

term accounts for the possibility that the same subset is chosen since

this will not allow the challenge to be answered.) Each of the I inspectors can

challenge the honest teller T

�

up to �

2

times. Thus, the total number of challenge

responses which must be successfully simulated is bounded by I�

2

.

Similarly, let p

V

be the probability that a voter will decompose a given subset

of ballots. The probability that a given voter will decompose the �rst subset and

none of the �

2

subsequent subsets is

p

V

(1� p

V

+ 2

��

3

)

�

2

:

There are L eligible voters, so the total number of ballots which must be success-

fully decomposed is bounded by L.

Now, to see where the function f(p) = p(1� p+ 2

��

)

�

reaches its maximum

value, we may di�erentiate:

f

0

(p) = (1� p+ 2

��

)

�

� �p(1� p+ 2

��

)

��1

:

Therefore f

0

(p) = 0 when

p = 1 + 2

��

or p =

1 + 2

��

� + 1

:
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Clearly, the maximum is achieved at p = (1+ 2

��

)=(� +1). Thus, the maximum

value attained by the function f(p) is

f

 

1 + 2

��

� + 1

!

=

�

1 + 2

��

�

�+1

�

�

(� + 1)

�+1

=

�

1 + 2

��

�

�+1

1

�

 

�

� + 1

!

�+1

=

1

�

�

1 + 2

��

�

�+1

 

1�

1

� + 1

!

�+1

<

1

�

�

e

2

��

(�+1)

e

�1

�

;

where e is Euler's constant. In particular, when 2

�

� � + 1, then f(p) <

1

�

.

Thus, with

�

1

= d(log

2

I)(log

2

log

2

K)Ne

and

�

1

= 2I�

2

P (N) = 2Id(log

2

K)NeP (N);

2

�

1

� �

1

for su�ciently large N . Also, with �

3

= d(log

2

L)Ne and �

2

= 2LP (N),

2

�

3

� �

2

for su�ciently large N .

Thus, the probability of at least one inspector challenge causing the simulation

to fail is less than

I�

2

�

1

=

1

2P (N)

and the probability of at least one voter causing the simulation to fail is less than

L

�

2

=

1

2P (N)

:

Therefore, the probability of a successful simulation is greater than

1� 1=P (N)

for su�ciently large N .

Remark Such a simulation could be accomplished even if factorizations of none

of the n

�

were available. This would simply require increasing �

1

by a factor of

logK and �

1

by a factor of K to account for the additional challenges which

would have to be answered by the back up and repeat process.
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5.10.3 The Symmetry Condition

It is not at all hard to see that in \pseudo-elections" in which the \honest" tellers

T

1

; T

2

; : : : ; T

�

(� = K�J +1) select parameters (n

�

; y

�

), 1 � � � �, where each

y

�

is an r

th

residue modulo n

�

, distinct vote assignments are indistinguishable

in an information theoretic sense. This is so because every vote assignment with

the proper sub-tally among the honest voters is completely consistent with such

a pseudo-election!

When y 2 Z

r

n

, then all of the residue classes RC[c] are identical. Thus,

if x is chosen randomly from Z

�

n

, then for every integer c, w = y

c

x

r

mod n

represents a uniform selection from among the elements of Z

r

n

. Thus, each w

could equiprobably be used to indicate any class. Hence, any vote could just as

easily represent any other, and all consistent vote assignments become equally

meaningful. Therefore in this case, no possible adversary could do better than

chance at distinguishinging between vote assignments.

De�nition A ((n

1

; y

1

); (n

2

; y

2

); : : : ; (n

�

; y

�

)) pseudo-election is a transcript of an

election for which check = good and for each teller honest teller T

�

has selected

parameters (n

�

; y

�

).

Lemma 5.10 Let H be a set of honest voters and let h

0

and h

1

be two as-

signments of votes to voters in H which have the same sub-tally over H. Let

((n

1

; y

1

); (n

2

; y

2

); : : : ; (n

�

; y

�

)) be such that each y

�

is in Z

r

n

�

. Every pseudo-

election transcript in which the voters in H vote according to h

0

could also be

obtained by the voters in H voting according to h

1

, and vice-versa.

Proof:

A vector C = hc

1

; c

2

; : : : ; c

K

i such that jjCjj

J

= t can be uniformly selected

by selecting J � 1 random values uniformly from Z

r

and by �lling the remaining

� = K � (J � 1) values with the unique elements of Z

r

such that jjCjj

J

= t is

true. Thus, in a J-threshold K-teller L-voter election, a vote of type t can be

generated uniformly by �rst selecting J � 1 random values uniformly from Z

r

and � additional values to form a vector C with jjCjj

J

= t and then uniformly

selecting a vote W with disclosure C.

Thus, being given J�1 components of the disclosure of a uniformly generated

vote of any type t, gives no information as to the type t. If each y

�

2 Z

r

n

�

, then

for each (n

�

; y

�

), the residue classes RC[c]

(r;n

�

;y

�

)

coincide for all integers c. Thus,

if a \vote" is formed by uniform selection with election parameters which include
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these (n

�

; y

�

), then the � components corresponding to these parameters will

simply consist of random r

th

residues. Since the remaining J � 1 components,

although they have well-de�ned disclosures, are selected completely uniformly

and independently of the intended type, a uniformly generated \pseudo-vote"W

will be perfectly consistent with any intended type.

Thus, all \votes" in such an election are completely consistent with all types,

and pseudo-elections in which the honest voters in H vote according to assign-

ment h

0

are identical to pseudo-elections in which the honest voters in H vote

according to assignment h

1

.

5.10.4 The Formal Reduction

De�nition A vector � = hn

1

; n

2

; : : : ; n

�

i is said to be (r;N)-legitimate if for

every n

�

2 �, jn

�

j = N and the pair (r; n

�

) is exact consonant.

De�nition An election is said to be (r;N; �)-honest if � = hn

1

; n

2

; : : : ; n

�

i is

(r;N)-legitimate and if there exists a set T

1

; T

2

; : : : ; T

�

of honest tellers such that

each n

�

is the �rst component of the election parameters selected by the teller

T

�

.

The object now is to see how to take a speci�c given n and gain an advantage

at deciding residuosity modulo this n. For many such n, no advantage will

be attained; but if it is possible to attain an inverse polynomial advantage at

compromising elections with security parameter N , then, when N is su�ciently

large, an inverse polynomial advantage will be obtained at deciding residuosity

modulo n for a polynomially sized fraction of the possible values of n of size N .

Recall from section 5.3 that a conspiracy C is said to compromise privacy if

there exists some polynomial P (N) such that for in�nitely many values of N ,

C can gain a 1=P (N) advantage at distinguishing between some pair of vote

assignments in random elections with security parameter N in time P (N).

Theorem 5.11 The prime residuosity assumption implies that there exists no

conspiracy C that compromises privacy.

Proof:

We prove the theorem by contraposition.

Fix r to be a prime and assume that there exists some conspiracy C that

compromises privacy. By assumption, C is able to gain a 1=P (N) advantage at
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distinguishing between some pair vote assignments in (r;N; �)-honest elections

for in�nitely many N .

Consider �rst the \randomizing function" f

n

(y) which is de�ned to select

an integer c uniformly with 0 < c < r and an x uniformly from Z

�

n

and yield

f

n

(y) = y

c

x

r

mod n. This randomizing function has the interesting property

that when (r; n) is exact consonant then if y 2 Z

r

n

, f

n

(y) is a uniformly selected

member of Z

r

n

, and if y 2 Z

r

n

, then f

n

(y) is a uniformly selected member of Z

r

n

.

We now de�ne the family of algorithms B

i

. For 1 � i � �, let B

i

be an

algorithm which takes as input the pair (n; y) and acts as follows. B

i

uniformly

selects for 1 � � � �, � 6= i, values n

�

such that each jn

�

j = N and each

pair (r; n

�

) is exact consonant (as in lemma 2.27). Then, for 1 � � < i, B

i

uniformly selects y

�

2 Z

r

n

�

, and for i < � � �, B

i

uniformly selects y

�

2 Z

r

n

�

.

(Note that B

i

can retain the factorizations of these n

�

, so generating these y

�

as prescribed is not a problem.) B

i

also selects a random bit b 2 f0; 1g. B

i

then sets n

i

= n and y

i

= f

n

(y) and (by lemma 5.9) simulates an election with

parameters h(n

1

; y

1

); (n

2

; y

2

); : : : ; (n

�

; y

�

)i and with an assignment h

b

of votes

to honest voters in H where h

0

and h

1

are assignments of votes to voters in H

which C is assumed to distinguish between with an inverse polynomial advantage.

Unless the simulation fails, the output of C is a bit c 2 f0; 1g. If the simulation

fails, we set c = 0. The output of B

i

is the exclusive-or b � c. Thus, (except

in the case where the simulation fails) output(B

i

) = 0 precisely when output(C)

matches the choice of the vote assignment h

b

on which C is run.

For the most part, there is no guarantee that C will do anything at all with

these simulated elections (i.e. the output of C could always be 0) since a powerful

C may be able to detect that some of the y

�

are r

th

residues and might therefore

refuse to participate in an election or cause the simulation to always fail. There

are, however, some constraints that can be placed on C. Let p

0

be the probability

that C outputs 1 given that b = 0. Let p

1

be the probability that C outputs 1

given that b = 1. Let q

i

denote the probability that output(B

i

) = 1,

First of all, as n varies among values such that (r; n) is exact consonant and

y 2 Z

r

n

, then the simulated elections represent a uniform sampling of actual

elections with N = jnj. By assumption, C gains a 1=P (N) advantage at distin-

guishing between h

0

and h

1

for in�nitely many N . By de�nition, this implies

that jp

1

� p

0

j > 1=P (N). By lemma 5.9, we may run the simulator B

1

such that

it succeeds with probability greater than 1 � 1=(2P (N)). Therefore, when y is
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not an r

th

residue, jq

1

� 1=2j > 1=(2P (N)).

Next, when B

�

is given an n such that the pair (r; n) is exact consonant

and a y 2 Z

r

n

, then lemma 5.10 applies and hence C can attain no advantage

whatsoever at distinguishing between h

0

and h

1

. Thus, in this case, q

�

= 1=2.

Finally, as n varies among values such that (r; n) is exact consonant, B

i

, when

given a y 2 Z

r

n

, will be indistinguishable from B

i+1

, when given a y 2 Z

r

n

. Thus,

the same advantage at distinguishing between h

0

and h

1

will be obtained in both

of these cases.

For a �xed N , let a

i

denote the overall value jq

i

� 1=2j when the input (n; y)

to B

i

is such that (r; n) is exact consonant, jnj = N , and y 2 Z

r

n

; and let b

i

denote the overall value jq

i

�1=2j when the input (n; y) to B

i

is such that (r; n) is

exact consonant, jnj = N , and y 2 Z

r

n

. The above arguments give the following

chain.

1=(2P (N)) = a

1

; b

1

= a

2

; : : : ; b

��1

= a

�

; b

�

= 0

This implies that, for each of the in�nitely many N for which C gains a 1=P (N)

advantage at distinguishing between h

0

and h

1

, there exists some i such that

ja

i

� b

i

j � 1=(2�P (N)). Let � denote a value for which ja

�

� b

�

j � 1=(2�P (N))

for in�nitely many values of N . (There must exist at least one such �.)

We now have that for in�nitely many values of N , the algorithm B

�

when

given inputs n with jnj = N and y with y 2 Z

r

n

has a probability of outputting 1

which di�ers by at least 1=(2�P (N)) from the probability of outputting 1 when

jnj = N and y 2 Z

r

n

. This B

�

will be used to develop an algorithm which decides

r

th

residues.

Let A be an algorithm which takes as input integers n and y with y 2 Z

�

n

.

A runs B

�

on the pair (n; y). For in�nitely many values of N , B

�

distinguishes

between the case y 2 Z

r

n

and the case y 2 Z

r

n

with a 1=(2�P (N)) advantage

when jnj = N and (r; n) is an exact consonant pair.

For convenience, we say that a given n is decided if for that n, B

�

gains

more than a 1=(4�P (N)) advantage at distinguishing between residues and non-

residues. We will see that at least a 1=(4�P (N)) fraction of the n of size N such

that (r; n) is exact consonant are decided by B

�

.

The worst case occurs when, for as many n as possible, B

�

gains exactly a

1=(4�P (N)) advantage. The overall advantage, however, must be 1=(2�P (N)).

To further the worst-case scenario, assume that each n which is decided is decided
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with certainty (i.e. with advantage 1). If only a 1=(4�P (N)) fraction of the n

were decided, it would still not raise the overall advantage to quite 1=(2�P (N)).

Thus, at least a 1=(4�P (N)) fraction of the n of size N such that (r; n) is exact

consonant are decided by B

�

.

Hence, for in�nitely many N , A decides r

th

residues with a 1=(4�P (N))

advantage for at least a 1=(4�P (N)) fraction of the n of size N such that the

pair (r; n) is exact consonant, and this advantage is achieved in time polynomial

in N . This violates the prime residuosity assumption, and therefore the theorem

is proven.

5.11 Usage and Optimizations

For a relatively large election | perhaps L = 100; 000; 000 voters, K = 100

tellers, M = 100 bit generators, I = 100 inspectors, and con�dence 1� 2

�100

|

the computations required by the election schema given here are near the edge

of feasibility on powerful machines. There are several approaches to making the

entire process more managable.

5.11.1 Parallelization

First, the entire schema is massively parallelizable. All of the repeated steps

in every sub-phase can be performed in parallel, and with a large number of

processors, each voter protocol can be performed with only O(N) sequential

N -bit multiplications and divisions. The time to complete the teller protocols is

dominated by the time to determine residue classes. Besides being able to handle

separate inspector challenges in parallel, the compilation of a residue class table

of r

th

roots of unity or the search for a recognized r

th

root of unity can easily

be parallelized. Finally, the check function can also easily be run with very few

sequential dependencies.

5.11.2 Asynchrony

Although the de�nitions of an election system given in section 5.3 require that

the processors be synchronous, it does not seem that this is necessary for the

election schema given in section 5.6. Within each of the four election phases,
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there are as many as six major steps to be performed. The processors need

not run synchronously as long as all processors have completed each step before

beginning the next.

5.11.3 Other Streamlining

Even when run sequentially, there are several variants which may be used to make

the election schema more e�cient. First, if an unpredictable random source can

be found and agreed upon, then the set G of bit generators can be reduced to

size M = 1. As mentioned earlier, a bit generator of this form is often called a

beacon ([Rabi83a]).

Even when no beacon is available, the bit generators may use the exclusive-or

of their individual bits to form a simulated beacon. In order to accomplish this,

the bit generators select parameters and answer challenges from inspectors just

as do the tellers. Each generator then can use its parameters to encrypt each

bit as it is released. When all bit generators have released an encrypted bit,

the decryptions are revealed and the exclusive-or of the decrypted bits is used

as a simulated beacon bit. This prevents the last generator from deciding the

outcome of the simulated beacon bit.

To take this approach a step further, the tellers can be the bit generators.

Tellers can use their (already chosen and tested) parameters to encrypt bits to

simulate a beacon. This combination is quite appealing since the security of the

election already assumes that at least K � J +1 tellers are honest, and only one

honest bit generator is needed to ensure correctness.

The choice of the inspector set I can play a large role in the e�ciency of

an election. The inspector set can consist of the entire electorate (all voters),

but this can be very expensive. Instead of each voter challenging each teller,

each bit generator can challenge each teller. (In the case where the tellers and

the bit generators are the same set, each teller tests every other.) Since it is

necessary to trust at least one bit generator anyway, the bit generators can act

as surrogates for the purpose of testing the tellers. This does not work, however, if

the bit generators are natural sources (or a beacon) rather than generators, since a

challenge requires computation and the maintainance of secret information. The

tellers themselves can, of course, act as the inspectors and challenge each other.

This makes good sense if the tellers are already acting as the bit generators, as



110 CHAPTER 5. SECRET-BALLOT ELECTIONS

mentioned previously.

5.12 Extensions and Variations

The secret-ballot election schema described in this chapter is quite exible and

adaptable to a variety of purposes and changing circumstances. Some of these

variations will be described below.

5.12.1 Multiway Elections

So far, we have considered only elections with two possible choices|\yes" and

\no". The schema presented extends easily to elections where many choices are

allowed.

One method to hold a three-way election, for example, would be to select an

integer

e

r greater than the number of eligible voters and to choose the election

prime r to be greater than

e

r

2

(rather than just greater than the number of eligible

voters). Votes cast by voters would be constrained to one of the following three

types: choice (A) { type

e

r; choice (B) { type 1; and choice (C) { type 0. Three

component capsules are used to constrain the votes to be of one of these three

forms. Since

e

r is greater than the number of eligible voters and r >

e

r

2

, the

product of the votes will be of a type t which is unique modulo r, and this t

in turn is uniquely expressible as t = a

e

r + b for 0 � b <

e

r. The values of a

and b respectively denote the number of votes for choices (A) and (B), and the

remaining valid votes are for choice (C). It is easy to see how to extend this

approach to elections with more than three choices.

Moti Yung has suggested an alternative method for holding multiway elec-

tions. The approach is somewhat similar to the Boolean circuit satis�ability

scheme described in section 3.3.5. For a three-way election, three component

capsules are again used. Each component of the (unordered) three component

capsules would consist of an ordered triple of votes. The ordered triple would con-

sist of one yes vote and two no votes. The yes would appear in each of the three

ordered positions exactly once in each capsule. That is, a capsule would look

like f(no; no; yes); (no; yes; no); (yes; no; no)g, and the actual \vote" cast would be

a triple of one of these three forms. Three separate counters are maintained |

one corresponding to each of three choices (A), (B), and (C). A vote triple of the
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form (no; yes; no), for example, would put a no vote into the (A) counter, a yes

vote into the (B) counter, and a no vote into the (C) counter. The product of

the votes in each of the three counters is taken separately, and a tally of each of

the three counters is formed as in the general schema. Each counter tally then

represents the number of votes cast for the corresponding choice. Once again,

it is easy to see how this method can be extended to elections with more than

three choices.

5.12.2 Preferential Voting

The previous methods enable the production of tallies in elections with more

than two choices, but they do not indicate how to make use of these tallies to

decide an issue such as which of three candidates will win an elective o�ce.

One may, of course, simply declare the candidate with the largest number of

votes to be the winner. This so called plurality rule su�ers from several serious

problems. It is possible with plurality voting, for instance, to elect a candidate

who has only minority support (and, in fact, strong majority disapproval).

Additional exibility can be obtained by allowing each voter one of six choices.

These choices would correspond to the six possible preference rankings among

the three candidates. The number of voters who select each of the six preference

lists could then be determined, and a preferential voting method could be applied

to these results.

Unfortunately, the results of Kenneth Arrow ([Arro63]) indicate that, even

with a complete list of voter preferences, no voting method exists which will

always choose a winner which satis�es a small number of highly desirable criteria.

Even though Arrow's work shows that no voting method is perfect, there are

alternatives to plurality voting, and once the list of voter preferences has been

compiled, any voting rule can be used to determine a winner.

One quite interesting rule is called approval voting (see [Stra80]). With ap-

proval voting, each voter can cast one or zero votes in favor of each candidate, and

the candidate who receives the most votes is the winner. It can be shown that,

with approval voting, it is in each voter's interest to cast votes for all candidates

above a certain threshold of acceptability. Approval voting is particularly useful

when there are several identical electoral positions to be �lled (such as at-large

seats on a city council). Here the candidates with the most votes �ll the seats.
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Approval voting can be implemented quite easily within the general secret-

ballot election schema. Each voter prepares a ballot for each candidate (exactly

as ballots were prepared before). Then each voter casts one vote from each ballot

for each candidate. In this way, each candidate's tally can be computed.

5.12.3 Giving the Winner without the Tally

Adi Shamir suggested the problem of holding a secret-ballot election in which

all participants are con�dent of the winner, but in which the actual tally of

the election is not released. Shamir, together with Oded Goldreich and Ron

Rivest, o�ered ideas which led to a solution limited to the single teller (centralized

government) case.

The idea is to hold an election as usual except for the release of the tally. At

this point, instead of showing that a speci�c tally is the case, the government

shows that all possible tallies which would cause the losing choice to win are

not the case. This can be accomplished by using the interactive proof method of

section 3.3.1 up to r=2 times to show that the vote product is not a member of

any of the up to r=2 possible residue classes which would cause the losing choice

to win. This solution is described in somewhat greater detail in [Cohe86].

5.12.4 Related Schemas

In addition to the election schema presented in this chapter, a number of related

schemas which all conform to the election paradigm of Figure 5.1 can be devised.

One of these schemas is based upon the di�culty of computing the discrete

logarithm modulo a known prime ([Adle79], [PoHe78], [COS86]). Another is

based upon the di�culty of determining the order of an element modulo the

product of two unknown primes. A third proposed schema encrypts a vote using

the low order bit of a message encrypted by RSA [RSA78].

The major requirement of such a schema seems to be the existance of a

function that can be computed on a set of encrypted data which preserves the sum

of the unencrypted components (see [RAD78]). The variety of number theoretic

problems on which such schemes can be based and the ease with which they have

been found gives additional reason to believe in the usefulness of the general

paradigm.
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Conclusions

It does not seem likely that the methods for holding a veri�able secret-ballot

election presented in this thesis will be used in actual elections in the near future.

The schema is reasonably practical, and advances in technology can be expected

to make the schema quite fast; however, public acceptance and the wide-scale

availability of the required technology seem to be some distance away.

The process of implementing a schema such as this is political and not tech-

nical, and in some regions it is not in the interests of those in power to have

veri�able elections. There are many aspects of elections which are simply beyond

the scope of this work. The maintainance of eligible voter rolls, for instance, is

not addressed at all. In fact, all public aspects of elections are completely inde-

pendent of this work. The results given in this thesis merely allow the private

component of secret-ballot elections to be managed as though it, too, were public.

It is also true in our current society that distrust of science and scientists

is widespread. It does not seem to be satisfactory to implement a \veri�able"

secret-ballot election schema that will only serve to convince a select few who

understand the mathematics. Fortunately, the mathematics in this schema is,

although somewhat detailed, accessible at the undergraduate level or even con-

ceivably the high school level. If an election schema such as this were to be

adopted for large-scale use, it could be accompanied by an e�ort to educate peo-

ple about the mechanism involved. A short undergraduate mathematics course

or even an advanced high school course should be su�cient for this purpose.

One of the motivations for this work has been the desirability for preferential

elections. The current \plurality" voting rules most frequently used seem all too

113
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often to place a candidate with a minority mandate into o�ce. The addition of

run-o� elections which are used in some areas improve the prospects slightly, but

they still leave much to be desired.

Although Kenneth Arrow has shown that no voting rule can be completely sat-

isfactory, the implementation of an (albeit imperfect) preferential voting system

could improve current systems tremendously. It seems, however, that large-scale

preferential voting is beyond our ability to implement with paper or mechani-

cal voting technology. Electronic technologies could, however, be used for this

purpose.

In fact, it is ever more the case that current elections are begin conducted with

electronic technologies. This is especially true for the process of vote counting.

As the electronic component to elections becomes more pronounced, our con-

�dence in both the privacy of our votes and the accuracy of the tally should wane.

It is generally felt that small-scale corruption or errors in manual or mechanical

voting systems would lead to only a small number of erroneous votes or violated

privacies. Such is not the case, however, with electronic systems where small

\bugs" (intential or unintentional) can easily lead to huge shifts of votes or the

public disclosure of large numbers of votes. It seems evident that if we are to

bring computerization into our electoral processes, then we must do it in such a

way as to preserve the integrity of the process and to prevent the concentration

of power into the hands of the few who control the process. The adoption of a

schema of the sort presented here could do much towards serving these ends.

It is possible to envision a society in which small voting devices or voting

software are available from a variety of vendors. Such devices or software could

perhaps be \plugged" into voting \outlets" at various centers or even in the home.

The advantages that could be attained by implementing such a system are

numerous. They include the possibility of preferential voting (perhaps made

simple through an interactive system), con�dence in the outcome, con�dence in

privacy, greater ease and exibility in voting, and far greater speed in computing

results. It would even be possible (although probably not e�ective) to implement

a modern Athenian democracy in which major issues are brought before the

public for a rapid vote.

Many of these ideas may seem overly ambitious and unrealistic, but we should

be aware that the technology exists to make them possible. If the will of society

were to shift towards these goals, the technology required to achieve them could
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be ready.

Of more immediate interest are the tools that have been built which allow

for the construction of veri�able secret-ballot elections. The election encryption

function gives a high-density method of probabilistic encryption which has a

wide variety of applications. Cryptographic capsules have applications to current

needs in user authentication and in electronic funds transfer, for example. Secret

sharing homomorphisms have applications in many instances where computing of

shared, encrypted data arises. And, even if it is somewhat wistful, an important

application of all of these methods makes possible the holding of large-scale,

robust, and veri�able secret-ballot elections.
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