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behavior.
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ABSTRACT | In this article, we describe an approach

to autonomous system construction that not only sup-

ports self-awareness but also formal verification. This is

based on modular construction where the key autonomous

decision making is captured within a symbolically described

“agent.” So, this article leads us from traditional systems

architectures, via agent-based computing, to explainability,

reconfigurability, and verifiability, and on to applications in

robotics, autonomous vehicles, and machine ethics. Funda-

mentally, we consider self-awareness from an agent-based

perspective. Agents are an important abstraction capturing

autonomy, and we are particularly concerned with inten-

tional, or rational, agents that expose the “intentions” of the

autonomous system. Beyond being a useful abstract con-

cept, agents also provide a practical engineering approach for

building the core software in autonomous systems such as

robots and vehicles. In a modular autonomous system archi-

tecture, agents of this form capture important decision making

elements. Furthermore, this ability to transparently capture

such decision making processes, and especially being able to

expose their intentions, within an agent allows us to apply

strong (formal) agent verification techniques to these systems.

KEYWORDS | Autonomous agents; autonomous systems; for-

mal verification; robot programming.

I. I N T R O D U C T I O N

Autonomous systems, ranging from robots, unmanned

vehicles, “smart” technologies, and on to autonomous soft-

ware, are increasingly popular. For example:
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1) “driverless cars” are being developed and even

deployed on standard highways [1], for example,

Fig. 1(a);

2) robots are being developed for domestic duties, not

just robotic vacuum cleaners [2] [see Fig. 1(b)]

but more complex robotic assistants [3], [4]

[see Fig. 1(c)];

3) unmanned air systems, or “drones,” are available with

varying degrees of autonomous capability not just to

large organizations and the military, but to the public

[see Fig. 1(d)];

4) autonomic systems [5], combining autonomy and

self-awareness in networks/communications struc-

tures, are common;

5) high-frequency or automated trading systems are

available for markets with online access [6], again

with varying degrees of autonomy.

There are many more examples, across industrial,

financial, healthcare, and domestic sectors. Yet most of

these, particularly in safety-critical areas, remain essen-

tially human-controlled: the responsibility for safety in a

“driverless car” remains with the driver; the responsibility

for safety in a remote-controlled “drone” remains with the

remote operator; and so on. Current regulations limit the

amount of true autonomy that such systems can exhibit.

For example, for air vehicles in the United Kingdom, there

are strict regulations [7] ensuring that drones of over

250-g weight must be registered and the operator of such

a drone must pass an appropriate test. Drones are also

restricted in where they can fly, again often relating to their

size. Similarly, there are a range of regulations constraining

the use of “driverless cars,” though these may have local

variations [8].

In what follows, we will describe how we can con-

struct self-aware and increasingly autonomous systems.

Work on self-awareness, particularly introspection and

internal models, has been around for a very long time.
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Fig. 1. Examples of embodied autonomous systems currently available. (a) Waymo self-driving car. Source: Waymo. http://waymo.com.

(b) Roomba vacuum cleaner. Source: iRobot. https://www.irobot.com/for-the-home/vacuuming/roomba. (c) Care-o-Bot 4 robotic home

assistant. Source: Fraunhofer IPA. http://www.care-o-bot.de/en/. (d) Parrot Bebop 2 drone http://www.parrot.com.

Clearly, philosophy and psychology have studied these

aspects for centuries, but logic has also developed (led

by philosophy) to provide a range of formalisms for

capturing these aspects. Once we move on to compu-

tational systems, and in particular AI systems, then all

of the above works become even more relevant. We

would argue that self-awareness is, in fact, crucial for

many aspects of safety, reliability, ethical behavior, and

ongoing verifiability. Any practical system will have a

much clearer and more accurate view of its own capa-

bilities and issues if it is self-aware. Furthermore, there

are many aspects of verification, and particularly valida-

tion, that depend crucially on self-awareness. Providing

explanations for actions or choices, as well as diagnosing

and explaining errors or issues, will be vital to accept-

ability, trust, and, therefore, the widespread adoption of

autonomous systems.

It is important to note that we are considering

autonomous systems here, not just individual subsymbolic

components. An autonomous system, especially a modular

one, will comprise a wide variety of components, not only

image classifiers developed using machine learning tech-

niques, but motor controls, sensors, planners, risk analysis

modules, etc. All these components work together to create

the overall autonomous behavior. However, within the

agent-based view it is the core agent/agents that captures/

capture the essential autonomous decision making (that

used to be undertaken by humans). When we carry out

verification and validation of autonomous systems, there

are a wide range of techniques used across the differing

modular components. We might use physical testing for

physical interactions, approximations for adaptive learn-

ing, and even formal verification for key software compo-

nents [9]. Formally verifying the decision making agent

in such architectures does not require us to enumerate

all possible environments/decisions but to verify the way

decisions are made to ensure that decisions are always

taken for the right reasons. In this way, we can be confident

of the decision making process without knowing about

every detailed situation.

In this article, we will provide an overview not only

of how we can construct self-aware autonomous sys-

tems, but also how we can potentially have verifiable,

self-aware behavior. Throughout, we will provide point-

ers to articles providing much greater detail, but intend

to highlight the key issues developed as part of this

article. The key message here is that, by using such a

modular agent-based approach, not only increased auton-

omy but increased self-awareness can be made avail-

able. Our formal agent verification techniques then allow

us to precisely assess a range of key properties. We

will begin, however, with a brief description of three
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aspects that converge in our work: autonomy; verification;

and self-awareness.

A. Automation, Adaptation, and Autonomy

Although a dictionary definition of (human) autonomy

involves independence, free will, and the ability to make

one’s own decisions, we can take a broad definition of

autonomy in computational systems as:

the ability to make decisions, and potentially take

actions, without direct human intervention.

Although rooted in philosophical views of autonomy [10],

the development of autonomous computational systems

has been taken up, expanding in the 1980s and 1990s,

through control systems [11] and agent-based sys-

tems [12]. This has led to a plethora of variations on

autonomy, and we can refine the above general defini-

tion into further subcategories describing where, and how,

decisions are made.

1) Automatic systems involve a number of fixed,

and prescribed, activities and, while there may be

options that can be taken, these are generally fixed

in advance.

→ Such systems are typically deployed in environ-

ments that are either well-understood and tightly

defined (e.g., factory automation) or where the

poorly understood or undefined parts of the envi-

ronment are not important to system performance

(for example, robot vacuum cleaners).

2) Adaptive systems typically match their activities (and

performance) against a physical environment, often

combining continuous sampling and optimization

through feedback control systems.

→ Here, while the precise nature of the environment

may be unknown, we have a good understanding

of how the robot should detect changes in the

environment and adapt to it in order to achieve

system performance in a reactive fashion.

3) Autonomous systems are neither prescripted nor

driven exclusively by feedback control but can make

their decisions based on a variety of dimensions

including internal state and motivations.

→ These systems are intended for operating environ-

ments that might be complex and unknown, and

so may require variable performance measures or

utilizing a range of adaptation methods depending

upon context (and so, may themselves have to

selecting new goals or modify initial goals).

In devising a range of practical systems and in working

toward strong analysis, such as formal verification, then

distinguishing between these variations is often crucial in

calibrating what analysis techniques should be used and

how much confidence we can place in them.

Since the key new aspect of autonomy is that the system,

rather than any human user/operator/driver, now makes

decisions (and potentially takes actions), it is important

to consider where those decisions are taken. General-

izing about the categories of system above we might

describe how:

1) in automatic systems, the decisions are essentially

precoded by the system developer and are not dra-

matically affected by developments or environments;

2) in adaptive systems, the decisions are essentially

made by the environment with tight feedback

control driving the system through environmental

interaction;

3) in autonomous systems, decisions are taken by the

system software based on internal state (such as

goals or motivations) and context, though informed

by environmental interactions.

As we will see later, the varieties of verification we

might use for each of these classes of system might be

quite different.

Finally, in this section, we note that there is another

dimension regarding autonomy that concerns the level

of human control. Many systems involve some aspects of

human control, and how much of this control there is

is often captured through “levels of autonomy.” Although

there are quite a number of these different classifications,

many being sector-specific, one of the earliest such tax-

onomies captures the spectrum of variable autonomy. This

effort, called “PACT” [13], was developed for aerospace

scenarios and catalog levels of autonomy from level 0

(direct human control) to level 5 (full autonomy), as

follows [13].

Level 0: “No Autonomy”

→ Whole task is carried out by the human except for

the actual operation

Level 1: “Advice only if requested”

→ Human asks system to suggest options and then

human makes selection

Level 2: “Advice”

→ System suggests options to human

Level 3: “Advice, and if authorized, action”

→ System suggests options and also proposes one of

them

Level 4: “Action unless revoked”

4a: System chooses an action and performs it if the

human approves

4b: System chooses an action and performs it unless

the human disapproves

Level 5: “Full Autonomy”

5a: System chooses action, performs it, and informs

the human

5b: System does everything autonomously

The ability to fulfill categorizations such as the above, of

course, depends on the capabilities of the system. A fully

autonomous system might be able to move between the

above levels, whereas an adaptive or automatic system
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might find “suggesting options” or “providing advice” quite

challenging. An interesting aspect of this concerns the

mechanism by which a system changes between these

levels; not only when can the operator/pilot/driver give

the system more control, but when can the system relin-

quish some/all control back to the human? Work on such

variable, shared or adjustable autonomy remains of strong

relevance to practical systems [14]–[16].

B. Verification

The term “verification” covers a range of techniques

that aim to assess whether (and how well) a sys-

tem meets its requirements. A particular subset, termed

“formal verification,” carries out the analysis of precise,

formal requirements, with this analysis comprising strong

mathematical/logical techniques such as formal proof.

This leads us to be able, in some cases, to prove that

a system meets its requirements. Within the umbrella

term “formal verification,” there are many different tech-

niques. One particularly popular technique is model check-

ing [17], [18], where the formally defined requirements

are automatically checked against all possible executions

of the system, as captured within a mathematical model.

Model checking is the variety of formal verification most

widely used for safety critical systems, though its use for

autonomous (robotic) systems is relatively recent [19].

As we will see later, we employ a variety of

model checking to formally verify the behavior of our

practical autonomous systems. In capturing the system’s

core autonomous behavior as a rational agent, we allow

formal agent model-checking techniques to be used as a

route to the verification of autonomous behavior [20].

As we will see in Section IV, the verification of autonomy

should take into account not only what the agent does, but

also why it chooses to do it.

Since autonomous systems typically interact with a com-

plex external environment, we must ensure that verifica-

tion is extended to take this aspect into account. However,

since it is impossible to precisely model the real world in

a finite way, especially with its uncertain and continuous

dynamics, then exploration of all possibilities through

approaches such as model checking is infeasible [21]. This

leads us to several alternatives, such as using abstractions,

verification via testing, and runtime monitoring. In the

first case, we may try to abstract from the complexity

of the real world and provide a finite description of this

abstraction that we can then use in formal verification;

this abstraction is very likely to be incorrect in some way

and will need subsequent refinement [22]. It is important

to note that these abstractions of a complex, continuous

“real world” will necessarily never be correct. A practical

alternative is to use sophisticated coverage-driven test-

ing methods, appealing to Monte Carlo techniques and

dynamic test refinement in order to systematically “verify”

a wide range of practical situations. Such model-based

testing is a key technology but, as we move to more com-

plex robot–human interactions, sophisticated extensions

may be required [23], [24]. Again, testing only provides a

partial verification of the system behavior. In any realistic

system, we cannot test all possible scenarios. Finally, while

techniques such as abstraction and testing are typically

used before system deployment, it is also possible to verify

the system as it executes. There are a range of techniques

capturing runtime verification, dynamic fault monitoring,

and compliance testing [25], [26] that provide mecha-

nisms for assessing if the system has strayed (or is straying)

outside its requirements.

As we will see later, our approach is to apply formal

verification to the components of the system that we must

be certain of (e.g., the process of making decisions in unex-

pected situations) and carry out testing for components

whose behavior is tightly dependent on the (unknown)

environment (e.g., object recognition using reinforcement

learning). Such “corroborative” verification, combining a

variety of techniques for distinct components, is increas-

ingly used in robotic systems [9].

C. Self-Awareness

Work on self-awareness, from philosophy, psychology,

AI, and logic, came together in the 1970s and 1980s,

for example, with “mental models” from cognitive psy-

chology [27], logic [28], and computation [29], all help-

ing start the field of “agents.” Similar activities occurred

across object-based systems in computer science (reflec-

tion, meta-objects, etc.) and control systems in engineering

(hierarchical control, model-predictive control, etc). Since

that time, the field of agents, and multiagent systems, has

become vast linking (through control systems) to robotics

and (through objects) to computation, as well as back

to psychology and philosophy. For example, robots with

internal/self-models are well established [30], [31]; com-

putational introspection (including reflection, awareness,

etc.) is often used [32], [33]; and even hardware compo-

nents may incorporate self-awareness [34]. A variation of

this, specifically targeted at networks, has come through

the development of autonomic computing and then on

to (so-called) Self-* systems, most obviously described

as computational self-awareness. Lewis et al. [35] state

the key idea behind autonomic computing is that

“. . . complexity leaves system managers neither able to

respond sufficiently quickly and effectively at run-time,

nor consider and design for all possible actions of and

interactions between components at design time. Thus,

in response, autonomic systems should instead manage

themselves at run-time according to high level objectives”

(attributed to Kephart and Chess [36]).

In our overview of self-awareness from an agent point

of view, we will revert to earlier work in psychology

where the study of self-awareness and introspection (in a

human context) is a strong and persistent research field.

Leading work by Duval and Wicklund [37] described how

individuals could assess not only what they are doing

and experiencing, but why they are doing these things
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and whether their goals are being achieved. Specifically,

we might focus either on ourselves or on the environment

in which we are situated. In the former, we can assess

the following:

1. What we are thinking?

2. What motives do we have?

3. What we are doing (or at least trying to do)?

4. Why choose this?

We can also go further and, through introspection, assess

our own health and capabilities. So, added to the above we

might have the following questions:

5. What affect this is having on the world?

6. How well we are achieving our goals?

7. How well are we functioning?

8. What current capabilities do we have?

In addition, as we live within a society that provides legal

constraints and ethical norms, we also have the following

questions:

9. Are we acting to legal standards?

10. Are we conforming with ethical/societal norms of

behavior?

There are many other psychological aspects that we are

not concerned with here, for example, emotions such as

happiness or stress. However, the above elements provide

a strong set of requirements for (human) self-awareness

and introspection. These provide us with a framework to

assess how we can design (artificial) autonomous systems

that allow us to implement and expose any, most, or all

of the above and, if so, how strongly can we verify these

aspects in our system?

In this article, we provide an overview of how we

can construct self-aware autonomous systems so as to

expose all the above elements. This will not only facil-

itate explicit self-awareness within the system but will

provide the opportunity for strong, specifically formal,

verification of these aspects. Combining these elements

together, we can potentially have verifiable, self-aware

behavior. In Section II, we address the key aspect of

our approach involving the architectural foundations of

autonomous systems.

II. A R C H I T E C T U R E S

Architectures for autonomous systems, especially for those

systems that have physical embodiment such as vehicles or

robots, require many different functions and functionali-

ties. They need to sense their environment and recognize

objects, communicate with both other systems and people,

move using some form of propulsion mechanism, and

act on their environment, for example, through grippers,

drills, loudspeakers, etc. In many complex autonomous

systems, it makes sense to have all of these aspects,

such as sensors, actuators, and communication as separate

components in a modular architecture. The predominant

modular middleware, at least in academic endeavors,

is provided by the robot operating system (ROS) [38].

Each modular component, together with specific hardware

(cameras, wheels, etc), will incorporate software to control

(or interpret) the activity of the hardware. Consequently,

software control systems are very widely used to manage

and monitor individual hardware components. Each of

these (software controlled) components then forms part of

an architectural scheme linking components together and

providing whole system behavior.

A most obvious architectural approach is to have very

limited modularity and to implement large and complex

monolithic control systems integrating multiple hardware

devices. At this extreme we might, for example, provide a

complex (and deep) neural network to control all aspects

of our system. While this avoids problems with modularity,

it increases the complexity significantly, especially when

we require explainability or verifiability. Such a monolithic

approach is also difficult to engineer and maintain, and

so a more structured architecture, in terms of hierarchical

control is very popular. Here, a particular control system

“manages” subsystems, each with their own control algo-

rithms. Each of the subsystems might, in turn manage

further subsystems. Such a hierarchical tree-like structure

provides natural organization in terms of levels of abstrac-

tion, with the higher levels dealing with more abstract

considerations, and the lower control nodes dealing more

directly with hardware/system control. This hierarchical

type of approach is very popular within cyber–physical

systems such as robots [39].

An alternative, but also hierarchical, approach uses sym-

bolic AI techniques. For example, a planning node within

such an architecture utilizes a symbolic world model and

invokes symbolic planning to provide potential solutions.

Being in symbolic form, often encoded via variations of

formal logic, the representations of world, plan outcomes,

and plan options, are amenable to deductive reason-

ing and sophisticated analysis of various forms. While

such approaches can benefit from analysis and reasoning,

the techniques used are generally much slower than sub-

symbolic algorithms such as provided by neural networks.

This leads on to an obvious compromise involv-

ing hybrid architectures. Developed within control sys-

tems engineering, hybrid architectures provide a mixture

of (continuous) feedback control nodes, often at lower lay-

ers in a hierarchy, together with (discrete) nodes involving

symbolic reasoning at higher levels. The feedback control

nodes are fast and provide rapid interaction and local

optimization, while the discrete symbolic nodes manage

activity across the continuous nodes also providing discon-

tinuous changes in behavior that are difficult to produce

using hierarchies of continuous controllers. Such hybrid

architectures are efficient and flexible yet, in spite of the

discrete nature of higher level nodes, are often opaque in

terms of exposing the reasons for their decisions, etc.

In our work, we go one step further and ensure that

the high-level symbolic nodes are themselves agents.

An “agent” is a key abstraction devised to capture the

concept of “autonomous behavior” [40], and an agent will
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Fig. 2. Hybrid agent architecture.

typically make its own decisions about what to do and

when to do it. Importantly, any high-level decision about

what to do is encapsulated in the agent, corresponding

to our earlier “fully autonomous” categorisation. We take

this yet further and insist that any high-level agent (and

there is often only one) in the architecture is a rational

agent [41]. Alternatively termed as either an “intentional

agent” or “cognitive agent,” this is an agent that not only

makes its own decisions but also:

must have explicit reasons for making the choices

it does, and should be able to explain these if

necessary.

These hybrid agent architectures provide flexibility and

efficiency [42] while, as we will see later, retaining explain-

ability and verifiability [20]. The agents themselves are

symbolic, typically programmed in terms of the so-called

BDI principles [43], [44]: agents contain Beliefs about the

state of the world (and themselves), Desires representing

their long-term goals, and Intentions capturing the goals

that the rational agent is committed to. As we will see

later, these components are crucial in providing a range

of self-aware elements within the autonomous system.

It is useful to note that rational agents in these hybrid

agent architectures collate information from their subsys-

tems, representing them in terms of beliefs. Then, based

on current desires (long-term goals) and beliefs, they

deliberate and decide what activity to undertake, and

finally invoke activity again within their subsystems. The

agent is not driven solely by environmental interaction and

can choose, for example, based on its own motivations,

to undertake very different activities. In such a hybrid

approach, the rational agent is responsible for high-level

autonomous (discrete) decisions, while traditional feed-

back control systems are responsible for low-level (contin-

uous) interactions.

Fig. 2 aims to convey a typical structure for such a

hybrid agent architecture. On the left, there are a range

of feedback control modules, such as:

1) those integrating and assessing perceptions coming

in to the system—for example, object recognition,

sensing, planning, language understanding, etc;

2) those invoking actuation or communication under-

taken by the system—for example, motor control,

language generation, manipulation, etc.

Those modules dealing with perceptions process

data/signals and provide symbolic knowledge to the

rational agent. The agent then makes high-level decisions

given what it has received, combined with its internal

state and representation of context, and then sends

actions/instructions to various control elements that will

invoke the actuation and communication. While there

are some cases where there may be a direct link from

the perception elements to the actuation elements, for

example, in emergency situations requiring immediate

reaction, the general process is to locate all high-level

decisions in the rational agent.

As indicated above, there will likely be very many

feedback control components but typically only one

rational agent per autonomous system. For example,

a “driverless” car will have feedback control components

for object recognition, learning, engine monitoring, etc,

and will have further components controlling motor

speed, lane-following, braking, communication, etc. The

agent will, based on input received from the perception

elements, make decisions about how to proceed and will

then invoke various actuation components, for example,

whether it is safe to turn, what to do if something

unexpected happens, etc.

As we will see later, a key aspect of self-awareness

is for the agent to be aware of the control modules

within the architecture and to have a (hopefully rea-

sonably accurate) view of the capabilities and reliabil-

ity of each. For example, if some sensor fusion module

regularly produces incorrect results, the agent can take

this reliability into account when making decisions (espe-

cially critical decisions) when this node provides it with

some input.

Example: Consider an unmanned air system, or a

“drone,” that is fully autonomous. There will be a variety

of continuous control subsystems such as those involved

in object recognition, communication to authorities, fault

detection, navigation, autopilot, etc. In very specific emer-

gency cases, such as an imminent collision, we might have

direct linkage between these subsystems. For example,

within something like an Airborne Collision Avoidance Sys-

tem, object recognition might be connected directly to the

autopilot. In general flight, however, the sensing/detection

components pass information (such as “air vehicle detected

at 2-km distance, bearing 90◦”) to the agent. The agent

then uses this, combined with its mission goals, safety

requirements, etc., to decide what to do next. The “what to

do next” will rarely be detailed, low-level controls but will

typically be new destination instructions to the autopilot

or an intention to keep monitoring the other air vehicle’s
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position. In such a way, the agent provides separation

of the high-level decisions, from the low-level signals,

reaction, and manipulation.

Work on architectures particularly for self-aware or

autonomic systems are, as we might expect, derived from

work on agent architectures. These were often, in turn,

derived from psychological or philosophical interpreta-

tions of human decision making. Consequently, change in

high-level goals in computational systems can often been

seen as analogous to (interpretations of) humans “chang-

ing their mind.” This article has led on to the development

of a particular branch of “computationally self-aware” sys-

tems. For example, the collection [35] describes the work

from a large EU project tackling self-aware systems, bring-

ing together strands from multiagent systems, autonomy,

philosophy, predictive control, planning, etc. The collec-

tion develops the notion of computational self-awareness,

a development of introspective agents, but is particularly

targeted at networks, as it says it “focuses on architec-

tures and techniques for designing self-aware computing

systems at the node and network levels.” As this traditional

system focus, the techniques utilized are almost exclusively

based on learning, typically online learning, reinforcement

learning, and adaptivity in general. It is notable that, in this

article, the route from psychology and philosophy through

to computation follows a very similar path to that of agents

and multiagent systems and, to a lesser extent, general AI

before that. Although much of such work is focused on

learning, models built through learning, and adaptivity,

reference is made to formal models (though limited to

continuous envelopes), to higher level discrete concepts

such as “knowledge” (though limited to ontologies), and

to the self-models widespread across a range of disciplines.

All of these aspects are relevant to us. However, as high-

lighted in the foreword to [35] “there is still a lack of

formal frameworks for rigorously about the behavior of

such systems.”

III. S E L F - A W A R E N E S S I N H Y B R I D

A G E N T A R C H I T E C T U R E S

We will now go through a range of the self-awareness

attributes expected of humans (as described earlier) and

assess how well we can capture these within autonomous

systems built using the above hybrid agent approach.

Several of the attributes or concepts will merge once

we consider artificial, rather than human, systems but

it is instructive to explore how (and if at all) artificial

autonomous systems can provide what we might consider

to be self-awareness.

Recall that the computational elements we are con-

cerned with are typically termed rational (alternatively,

intentional or cognitive) agents [43], [45], [46]. The core

aspects here are that, as they are autonomous, these agents

should have some “motivation” for acting in the way that

they do. An agent is rational in the sense that the decisions

it makes, often in unpredictable environments, should be

both “reasonable” and “justifiable.”

A. What Is It “Thinking”?

Can we expose the “reasoning” of the agent/system

to show what options there are, where we are in the

execution, and what agent is trying to do? In relation to

human self-awareness, this corresponds to asking:

1. What we are thinking?

2. What motives do we have?

3. What we are doing (or at least trying to do)?

Rao and Georgeff [44] developed a specific agent

framework where agents comprise the “mental attitudes”

of beliefs, desires, and intentions (BDI) that are used to

describe, respectively, the informational, motivational, and

deliberative states of the agent, and together effectively

determine the high-level behavior. Rational agents,

particularly BDI agents have a “reasoning cycle” that

captures the stages of reasoning that the agent will go

through. The particular agent programming language we

have developed and deployed, Gwendolen [47], [48],

exhibits a reasoning cycle typical of many BDI

languages.

1) Get external perceptions/messages—Extract all the new

information received, either from the environment or

from other agents.

2) Generate possible intentions—From the new inputs,

combined with existing intentions, a new set of possi-

ble intentions is generated representing events (new

beliefs) the agent needs to handle, goals the agent

wants to achieve and (where an intention has an

associated plan) the steps that the agent has chosen

for pursuing the intention.

3) Select an intention—Choose one from this set.

4) Where there is no associated plan for handling the

intention’s event or achieving its goal, generate plans

for that intention and select one of these plans and

associate it with the intention.

5) Execute the next step in the plan for the selected

intention.

6) Go back to 1).

If, in 3) no intentions are available, then the agent goes

back to 1) to check its environment for updated percep-

tions and new messages, both of which may then generate

new intentions.

In 3), there is an application-specific function that

selects one intention out of a set of intentions. By default,

intentions are maintained in a first-in–first-out (FIFO)

queue and selected in that order.

Step 4) involves inspecting a plan library and finding

plans that match the current intention. These check both

the event (belief or goal) the intention needs to handle and

that some plan-specific context (a logical expression over

the agent’s beliefs and goals) holds. As with intentions,

application-specific functions for selecting a plan from the

set can be created but, by default, plans are selected in

an order specified by the programmer. Plans specify a

sequence of steps to be taken which can include adding

or removing beliefs and goals and performing actions such
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as sending instructions to other parts of the autonomous

system.

In this sense, the options and motivations are symbol-

ically represented and so can be used in explanations of

what the agent (and, hence, system) is trying to do (see

Section VI-A). So, corresponding to human self-awareness,

we can see agent/system self-awareness as follows.

1. What is it “thinking”? −→ Where are we in the agent’s

reasoning cycle [steps (1)–(6)]?

2. What motives do we have? −→ What are the agent’s

current goals/desires?

3. What are we doing (or at least trying to do)? −→

What is the agent’s currently selected intention?

B. Why Choose That?

As well as exposing the state of internal intentions,

it is important to expose deliberative aspects, in particular,

the reasons for taking certain decisions. Why is one par-

ticular course of action chosen rather than another? What

options are there, what reasons/motivations were used for

selection, and what options were not chosen (and why)?

Again, relating back to human self-awareness, we might

ask the following.

2. What motives do we have? −→ What are the agent’s

current goals/desires?

3. What are we doing (or at least trying to do)? −→

What is the agent’s currently selected intention?

4. Why choose this? −→ Why was this inten-

tion/plan/action selected?

As in Section II, we can expose (and explain, if neces-

sary) exactly what “motives” (i.e., goals/intentions) the

agent/system has, and so what it is “trying” to do. Now we

can also expose the plan selection mechanism (potentially

also intention selection) in order to capture the reasons for

choosing one plan to achieve some goal/intention, rather

than another.

Abstractly, we might have a simple goal to go_to_shop

and have two possible plans:

1) go_to_shop by vehicle;

2) go_to_shop by walking.

Without any further beliefs/motivations we might choose

arbitrarily between these. But if we now add a

goal/motivation to get to the shop quickly, then when

we come to this choice again, we will select the first

option (assuming the vehicle is quicker than walking).

On the other hand, if the agent has a belief that

vehicle_out_of_fuel is true, then the selection will

favor the second plan. In all these cases, the reasons for

choosing one plan over another is explicit and symbolically

represented.

Example: Consider a robot deployed in a search and

rescue situation. It might have a number of roles including

map_area and clear_area. The robot might well be

part of some ad hoc team of robots formed rapidly on

the fly and its role (mapping or clearing) will have been

assigned during team formation and transformed into a

goal. We will represent a plan in the general form

Event: Context <- Action

where Event is the event associated with the current

intention (i.e., the addition or removal of a belief or goal),

Context is the plan-specific context that needs to hold

for the plan to be applicable, and Action is an action to

be taken if the plan applies. We will use B p to indicate

that some predicate p is a belief of the agent and G q to

indicate that some predicate q is a goal of the agent.

In our example, the robot therefore has two plans for

what to do when it enters a location that contains rubble.

1) B contains_rubble(Location): G map_area

<- send_message(contains_rubble

(Location))

Here, the recognition that a particular belief has

become true (B contains_rubble(Location))

acts as a trigger for the behavior. However, there

is a context requirement (or guard) that acts

as a filter on triggered behavior (G map_area).

Then, if the trigger occurs and the guard is

satisfied, the body of the plan can be invoked

(send_message(contains_rubble(Location)).

Consequently, the intuitive representation of the

above is

If you believe the current location contains rubble

and your goal is to map the area then send a

message to the rest of the team informing them

of the location of the rubble.

2) B contains_rubble(Location): G

clear_area <- collect_rubble

This second plan corresponds to

If you believe the current location contains rubble

and your goal is to clear the area then collect the

rubble.

To extend the example the robot might also have a plan

for how to react if it receives an urgent request for help

(e.g., from a trapped person). In a situation where it both

receives a call for help and perceives some rubble, then

its intention selection mechanism can potentially prioritize

handling the call for help.

In summary, in choosing what to do and how to do it, the

agent will use its particular intention selection [49], [50]

and plan selection [51], [52] mechanisms, both of which

can be exposed to scrutiny.

C. What Can It Do?

Systems take actions that impact the real world. If we

are to use a rational agent to reason about these actions

and their effects, then we typically need to model these

actions as capabilities. Essentially, capabilities simply

extend actions with preconditions describing the state

of the world in which the action will be invoked and
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postconditions describing the (expected) change in the

world affected by the action. These preconditions and

postconditions are typically represented in symbolic logic,

allowing the agent to reason about when the actions can

be used and what outcomes from them might be expected.

A capability can thus only be executed when its precon-

ditions are satisfied, and its postconditions will be satisfied

if the action/capability succeeds. This form of capabil-

ity/action theory is widely used in planning systems as

well as agent programming, and corresponds with classical

STRIPS [53] or primitive operations [54], while BDI pro-

gramming languages that explicitly deal with capabilities

include 3APL [55] and GOAL [56]. Once we have such

capabilities, the following questions become clearer.

5. What affect is this having on the world?

6. How well we are achieving our goals?

8. What current capabilities do we have?

Certainly, the answer to 8) is clearly linked to the set

of viable capabilities the agent has. The answer to 5) is

potentially more complex and can involve combining a

tree of capabilities so that the postconditions of all these

combined actions/capabilities describe all the possible

ways in which the system can “impact” the real-world.

Answering 6) requires the agent to monitor its progress

toward its goals.

The inclusion of a perception step in the reasoning cycle

of most BDI agents allows them to monitor the effect of

their actions on the world. At its simplest, the concept

of an achievement goal used in many BDI languages

enables agents to continue attempting some action until

some desired state of the world is achieved. For instance,

an agent could have a goal to clear an area of rubble and a

simple plan

G clear_area:{}<-select_and_remove_debris

interpreted as follows: If your goal is to clear the area select

and remove one piece of debris. Note that this plan has

an empty context, {}, and so it is always applicable if the

agent still has a goal to clear the area.

This plan will continue executing until the goal is

achieved (i.e., clear_area is achieved), so the agent

will continue selecting and removing pieces of debris until

no more remain. More sophisticated plans could track

progress toward achievement of the goal, for instance,

checking in the plan context that the amount of rubble in

the area was reducing. If the amount of rubble was not

reducing, then the system could conclude that something

was wrong with the debris removal capabilities and take

appropriate action.

In principle, we can go beyond the straightforward

modeling of actions and capabilities and bring in much

stronger mechanisms to predict future behavior. There

are many works related to this area, such as in control

engineering through aspects such as predictive control, but

we just mention one stream of work that is very relevant

to our model. This is work by Winfield and colleagues

incorporating self-simulations within an autonomous sys-

tem, particularly a robot. Inspired by the artificial theory of

mind, this article provides (mobile) robots with simulation-

based internal models that the robot can use for the

prediction of outcomes. Thus, at significant moments, the

robot can simulate/predict what might happen if it chooses

various actions, and then can assess the outcomes. This

has been shown to be very useful in predicting both

safe [57] and ethical [58] behavior. Furthermore, this

approach coincides with our work here when we consider

the verification of ethical autonomy in [59] and later in

Section V-B. Finally, while this self-simulation approach is

very appealing it is also very costly since predicting all

possibilities at every execution step is infeasible. However,

just as we humans do, this approach need only be used

at critical or important decision points, thus potentially

limiting the overall cost.

D. How Well Is It Working?

This ability to monitor the affect an agent is having

on the world and, in particular, to reason about success

and failure naturally leads us to consider the following

question:

7. How well are we functioning?

and to a more refined view on:

8. What current capabilities do we have?

The representation of capabilities in an explicit way has a

practical benefit. Representing capabilities in terms of pre

and postconditions allows us to compare the actual effect

an action has in the world with its expected effect. For

instance, in [60], we advocate representing capabilities as

a tuple hC, Pre, Post, φs, φf , φai, where C is an identifier for

the capability; Pre and Post are preconditions and postcon-

ditions; and φs, φf , and φa are logical conditions for when

the capability has “completed and succeeded,” “completed

and failed,” or is “ongoing but in need of an abort.”

Conditions such as φs can be inferred from the agent’s

belief base and so checked after the perception stage has

occurred. This allows the agent to monitor the effect of the

action on the environment and react as appropriate. Action

monitoring and failure for BDI agents is an area of ongoing

research.

If some capability is malfunctioning, for example, due to

failure of a software or hardware component, then it may

be necessary to adapt the plans that use that capability.

We might need to replace either the whole plan, or com-

ponents within it, by alternative actions/capabilities. It is

here that the awareness of the agent is concerned with

what it is trying to do and what capabilities it provides

as benefits. The agent can reason about how to replace

some plan elements by carrying out symbolic reasoning in

order to assess whether the modified plan will achieve less,

more, the same, or just different outcomes. Further work

along these lines, involving a rational agent reasoning

about its explicit capabilities, is given in [61]. As a simple

example of capability representations, the move action of

an autonomous vehicle is represented in [61] as

C = {at(X), not (X = Y )}move(X, Y ){not at(X), at(Y )}
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where X is the current position of the vehicle, and Y

is the destination. The above capability C incorporates a

precondition that the vehicle must be at (X) and a postcon-

dition that (upon successful completion) the vehicle will be

at (Y ). We assume that this simple move capability works

by calculating a plan of waypoints to the desired location

Y , and then calculating the necessary wheel rotations to

navigate between the waypoints.

Now, suppose we have a plan to perform some task

(for instance, some kind of inspection task) at a specific

location. So, we might have a plan

B daily_inspection_time:

B current_location(X)

<- move(X, inspection_point); inspect

When it is the daily inspection time, move from

the current location to the inspection point and

perform the inspection.

If something has gone wrong with one of the

motors or wheels on the robot, then the calculations

needed to navigate between waypoints in move(X,

inspection_point) may no longer be accurate (for

instance, its movement calculations may always result

in the robot slightly missing its target location) and this

plan would start failing. An alternative movement strategy

might be to use a feedback controller to fix on the desired

final location and move there by orienting in that direction

and then activating the motors to keep the robot always

pointing the same way and moving forward. This could be

represented by the capability

C1 = {at(X), not (X = Y )}feedback(Y ) {not at(X), at(Y )}.

It is easy to see that the new action feedback(Y ), invoking

a particular feedback controller, should be substitutable for

move(X, Y ) in the inspection plan.

Potentially, it would also be possible to learn new

postconditions for move(X, Y ) utilizing work on the

learning of action descriptions from the domain of AI

planning [62], [63].

IV. F O R M A L V E R I F I C AT I O N O F

R AT I O N A L A G E N T S

Formal verification is essentially the process of assessing

whether a precise specification, usually given in a formal

logic, is satisfied on the system in question. For a prop-

erty A, given in the relevant logic, there may be many

different approaches to formal verification [64]–[66], from

deductive verification against a logical description of the

system S (i.e., a proof that S implies A) to the algorithmic

verification of the property against a formal model of the

system MS (i.e., MS |= A, meaning that A is true of all

possible routes through MS). This algorithmic approach

has been very successful in both academia and industry,

principally via the technique of model checking [17].

This takes a precise, mathematical model of the system

in question, defining all the system’s possible executions,

and then checks the required logical property against this

model (and, hence, against all possible executions).

While model checking involves assessing a logical for-

mula against all executions of a model of the system,

an alternative approach is to check a logical formula

directly against all actual executions of the system. This

progam model checking approach [67] depends centrally

on being able to determine all true executions of the actual

program. With languages such as Java, this is feasible

since virtual machines are available that can be used

to extract all program executions. Specifically, the Java

Pathfinder (JPF) system carries out formal verification of

Java programs following this approach by assessing all

possible execution paths through the Java program [67].

While sometimes slower than traditional model checking,

this approach avoids the need for an additional level of

modeling (and therefore, justification) and ensures that

the verification results directly apply to the real code.

In examples discussed later, we utilize the MCAPL

framework, which includes a model-checker for our agent

programs built on top of JPF. As the MCAPL framework

is described in detail in [68], we provide only a brief

overview here. MCAPL has two main subcomponents: the

AIL-toolkit for implementing interpreters for BDI agent

programming languages; and the agent JPF (AJPF) model

checker for verifying programs in those languages.

Interpreters for BDI programming languages are pro-

grammed by instantiating the Java-based AIL toolkit [69].

Essentially, an agent system can be programmed in the

normal way for the programming language but then any

program must run within the AIL interpreter, which in turn

runs on top of the JPF virtual machine.

AJPF is a customisation of JPF that is specifically

optimized for AIL-based language interpreters. Agents pro-

grammed in languages that are implemented using the

AIL-toolkit can thus be formally verified via AJPF. The

Gwendolen language we use throughout this article is just

such a language and so AJPF provides a formal verification

route for our rational agents. Furthermore, if agents run

within an environment programmed in Java, then the

whole agent-environment system can be model checked.

Here, symbolic execution of the code is used to generate

all executions, while the modified virtual machine allows

backtracking over various executions generated.

Common to all language interpreters implemented using

the AIL are the AIL-agent data structures for beliefs, inten-

tions, goals, etc., which are subsequently accessed by the

model checker and on which the logical modalities of a

property specification language are defined.

Finally, in our case, the base formal logic used is a tem-

poral logic of belief, intention, and action. This combines

standard (linear time) operators such as “�,” meaning

“always in the future,” and “♦,” meaning “at some point in

the future,” with operators capture the beliefs, intentions,

or actions of various agents. For example, we use the

formulas such as Bx daytime to represent the statement
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that agent x believes it is daytime. Again, we will not

provide detailed description here but point toward articles

such as [68] and [70].

V. V E R I F I C AT I O N A N D

S E L F - A W A R E N E S S

The ability to formally verify an agent’s behavior and deci-

sion making can lead us toward a range of additional ques-

tions concerning self-awareness and autonomous systems.

We begin with a necessary step before any autonomous

system can be deployed in practical scenarios.

A. Is It Legal?

Once we can expose the high-level system decisions,

we can match these against a range of “expected” behav-

iors. In particular, we can match against legal requirements

we might have. This comparison can be made before

system deployment but, as the system is aware of its

own decision making, it can, in principle, carry out this

analysis as it executes. Although this may involve quite

complex, and resource intensive, verification to be carried

out, it does provide increased flexibility in that the system

is able to match its decision making against new, previously

unseen, legal expectations. In order to show how we might

answer the following question.

9. Are we acting to legal standards?

We will consider one exemplar from the field of unmanned

air systems. This work, from [71] and [72], and partic-

ularly [73], shows how we might formally verify that an

agent controlling an unmanned air system makes the same

(high-level) decisions that a human pilot would (or at least

should). The basic idea is that there are rules describing

what a human pilot should do when in control of an air

vehicle and, once we are replacing human control by a

software agent, then the agent must at least abide by the

same rules the human pilot should. Note that this does not

concern low-level flying skills—the aircraft’s autopilot will

take care of those—but addresses the high-level decision

making involved in issues such as what to do in traffic,

what to do if there are problems, what to do with air traffic

control instructions, etc.

Specifically, in [73], the “Rules of the Air” [74] are

considered. Written for human pilots, these provide the

required (legal) behavior of the pilot responsible for the air

vehicle. Any prospective human pilot is examined against

these rules and so we at least wish to know that if we

replace the pilot with a software agent, the agent will

also adhere to the rules. In order to be truly confident

in the autonomous system, the agent must at least be

verified against all the “Rules of the Air,” no doubt with

additional legal requirements. We will not consider these

extra aspects, but just show how some of the “Rules of the

Air” can be formalized and then formally verified on the

rational agent controlling a relevant air vehicle.1 A typical

1In [73], the air vehicle in question is a simulated one, flying in a
realistic but simulated air environment.

rule (from the “Rules of the Air”) that we expect a human

pilot to obey is

when two aircraft are approaching head-on, etc.,

and there is danger of a collision, each shall alter

its course to the right [74].

We would expect a trained pilot to adhere to this; once we

have an autonomous system, it is our rational agent that is

responsible for this.

As we wish to formally verify that the agent conforms to

this “legal” behavior, we need several elements.

1) The agent that is controlling the unmanned air

vehicle.

2) A formal description of the precise requirement, for

example, of the rule above.

The basic agent implemented in [73] is a Gwendolen agent

comprising 36 plans capturing the different phases of the

air mission, such as taxiing to the runway, interacting with

air traffic control, taking off, following a particular route

at selected altitude, emergency avoid, landing approach,

landing, taxiing to parking position, etc. The agent’s plans

interact with a range of subsystems, some providing input

(such as sensors) others providing capabilities (such as

directional change). As with other uses of agents in

autonomous systems, the agent’s beliefs are formed from

sensor readings. In principle, a BDI agent controlling the

air vehicle might have some/all of the following.

Beliefs, for example, concerning:

1) being at the runway;

2) turning right (e.g., during sense & avoid).

. . . . . .

Desires, for example, concerning:

1) completing its mission;

2) avoiding collisions and near-misses.

. . . . . .

and Intentions, for example, concerning:

1) taxiing to runway;

2) turning right to avoid object approaching head-on.

. . . . . .

In addition to the agent, with its plans, beliefs, and deci-

sion making, we also need a formal description of the

rules to be checked. There are very many of these in

the “Rules of the Air,” with many being ambiguous or

imprecise (after all they are intended for human pilots)

meaning that formalization can be quite difficult. However,

for illustration, we just choose a relatively simple detect

and avoid requirement, as described above.

When two aircraft are approaching head-on,

or approximately so, in the air and there is a

danger of collision, each shall alter its course to

the right.

This rule might be formalized in our temporal logic of

belief and intention as

�(Badetected_aircraft ⇒ ♦Baengage(emergency_avoid))
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ensuring that emergency_avoid will be engaged. It is a sep-

arate question, often delegated to nonformal verification

techniques, of how effective emergency_avoid is in ensuring

the aircraft turns to the right, but the expected decision is

nevertheless captured by the above. (There are many more

rules, and formulae derived from the rules, that complete

this formalization—we will not describe them all here, but

see [73] for details.)

Now that we have a suitable Gwendolen agent that

can control, at a high-level, the autonomous air vehicle

together with formalizations of the legal requirements

captured in the “Rules of the Air,” we can carry our formal

verification using AJPF as described elsewhere. Verifying

the above rule is relatively simple, but increasingly com-

plex rules together with a more sophisticated agent, will

lead to complex and time-consuming verification.

If such a verification is carried out before a mission,

then we are likely to be unconcerned with the speed of

verification. In such a case, we know that the unmanned

air vehicle will conform to the legal requirements cap-

tured in the “Rules of the Air.” The agent is aware of

its own decision making and of the rules against which

it has been verified. If the air vehicle moves to a dif-

ferent jurisdiction, then as long as the agent has behav-

ior previously verified to conform to this new context,

it can utilize these. If, however, it comes across a new

set of regulations/rules that it has not seen before, what

should it do? Most likely “stop,” if it can. However, in the

future, we might foresee a situation where the regula-

tions/rules for certain airspaces are available as formal

(in our sense) requirements. Then, there is the possibil-

ity that the agent might invoke formal verification tech-

niques to assess its own plans/behavior against these new

rules, identifying and explaining where mismatches occur.

This, of course, would require much more efficient formal

verification techniques [75].

Finally, while we have concentrated on the rational

agent part of the architecture, an unmanned air system

comprises very many lower level feedback control and sub-

symbolic systems. These range across autopilot functions,

visual recognition, stability management, navigation, sys-

tem health monitoring, etc.

B. Is It Ethical?

While conforming to legal requirements may be suffi-

cient for many autonomous systems, a further question,

particularly for systems deployed in domestic settings is:

10. Are we conforming with ethical/societal norms of

behavior?

Cointe et al. [76] integrate BDI agents and ethical rea-

soning into a comprehensive framework in which agent

reasoning determines sets of desirable, feasible, and moral

actions/plans and then uses context-sensitive ethical prin-

ciples to select one action from these sets. Desirable actions

are those which will advance the agent’s goals (as in the

kinds of reasoning we have already discussed here), feasi-

ble actions are those which can be performed, and moral

actions are those which conform to societal norms. At the

intention/plan selection phase the agent can then con-

sider these sets, selecting from their intersection (if such

exists) or using mechanisms based on some ethical theory

to select them.

In [59], we explore this idea further. We implemented

BDI style reasoning in Python and used Asimov’s Laws

of Robotics as a simple (and well known) example of an

ethical theory that could be used to decide courses of

action. In experiments a robot had a goal to move to a

particular location but through monitoring of its environ-

ment it became aware that a “human” (also represented by

a robot) was moving toward a dangerous area. The robot

could continue moving to its desired location (as ordered)

or choose to intercept the human (and potentially in some

situations could do both). Where the goal-based reasoning

did not produce an ethically acceptable outcome (i.e.,

where harm befell the human) the moral decision making

could override the default choices and would select the

option for intercepting the human.

In performing this reasoning, the Python implementa-

tion used three comparison functions for its options.

1) task1 ≺hd task2—meaning task2 places a human in

more danger (hd) than task1.

2) task1 ≺ro task2—meaning task2 places the robot fur-

ther away from its ordered location (ro) than task1.

3) task1 ≺rd task2—meaning task2 places the robot in

more danger than task1 (rd).

In the case where two options, task1 and task2, are avail-

able, we were able to verify that our implementation of

Asimov’s laws were correct by verifying the properties

�((Ba(current_plan(task1))

→ ¬P(task1 ≺hd task2) (1)

�((Ba(current_plan(task1)) ∧ P(task2 ≺ro task1)

→ P(task1 ≺hd task2) (2)

�((Ba(current_plan(task1)) ∧ P(task2 ≺hd task1)

→ P(task1 ≺ro task2) ∨ P(task1 ≺rd task2). (3)

The three properties state the following.

1) It is always the case that if task1 is believed to be

the current task, then Python has calculated that

task1 either does not place the human in significant

danger or, if it does, then task2 places the human

in greater danger [property 1)—corresponding to

Asimov’s first law].

2) It is always the case that if task1 is believed to

be the current task and Python calculates that it

places the robot further away from its (human

specified) objective than task2, then Python has

calculated that task2 places the human in more

danger than task1 [property 2)—corresponding to

Asimov’s second law].
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3) That if task1 is believed to be the current task

and Python calculates that it places the robot in

more danger than task2, then either task2 places

the robot much further from its objective than task1

or it results in the human being in much closer to

danger than task1 [property 3)—corresponding to

Asimov’s third law].

Similar properties can be constructed to compare groups

of multiple tasks, etc.

Fundamental to this article was both the self-awareness

involved in monitoring the robot’s environment and pre-

dicting the outcomes of its actions, and the explicit internal

representation of Asimov’s laws that allowed it to pick the

most ethically acceptable option.

We have also investigated the use of other theories

to allow BDI agents to reason about the ethical accept-

ability of their actions. In [77], we considered a situa-

tion where ethical reasoning is only invoked when none

of the systems existing plans apply, or a plan is being

applied but is not achieving the robot’s goal—this follows

from the agent having some self-awareness of the effec-

tiveness of its actions and the options it has available.

In this situation, we considered an architecture where

a route planning system is invoked to produce a wider

range of options and they are annotated with the ethi-

cal consequences of selecting that option. We considered

examples from the domain of unmanned air systems and

an ethical theory based on prima facie duties in which

the system has a preference order over its ethical duties

(e.g., its duty to minimize casualties takes precedence

over its duty to obey the laws of the air). In this system,

we were able to prove not only properties such as those

in the Python-based system (i.e., that the implementation

correctly captured the ethical theory) but also “sanity

checking” properties—so, for instance, in specific scenar-

ios we could verify that the aircraft, if forced into an

emergency landing, would always land in a field rather

than on a road.

Clearly, this just “scratches the surface” of the realm of

machine ethics. There is much work in philosophy, AI, and

robotics concerning all these aspects. However, the above

shows, at least for some simple ethical views, that the

combination of self-awareness (“what decisions are made,

and why”) and formal verification (“are all decisions made

in the right way”) gives us a mechanisms for exploring

verifiable robot/machine ethics.

C. Awareness of Acceptable Boundaries

In order to formally verify the agents controlling our

autonomous systems, we have to supply them with all

sequences of all possible incoming perception predicates.

In systems of any complexity, this rapidly becomes imprac-

tical and we are forced to make some assumptions about

the behavior of the environment in order to control the

state space exploration of the verification technique (in our

case, model checking).

Consider, for example, an intelligent cruise control agent

in an autonomous vehicle, that can perceive the environ-

mental predicates safe, meaning that it is safe for the

vehicle to accelerate, at_speed_limit, meaning that

the vehicle reached its speed limit, driver_brakes and

driver_accelerates, meaning that the driver is brak-

ing or accelerating.

The state space explosion problem, occurring when

all executions need to be explored, can be addressed

by making assumptions about the environment. For

instance, we might assume that a car cannot both

brake and accelerate at the same time: subsets of envi-

ronmental predicates containing both driver_brakes

and driver_accelerates therefore need not be sup-

plied to the agent during model-checking, as they do

not correspond to situations that we believe likely (or

even possible) in the actual environment. This structured

abstraction of the world is grounded in assumptions that

help prune the possible perceptions and hence control

state space explosion.

However, these structured abstractions can be a problem

if their assumptions are incorrect. Let us suppose that the

cruise control system crashes if the driver is accelerating

and braking at the same time. If the subsets of environmen-

tal predicates generated to formally verify it never contains

both driver_brakes and driver_accelerates, then

the static formal verification succeeds but if one real driver,

for whatever reason, operates both the acceleration and

brake pedals at the same time, the real system crashes!

In [78] and [79], we investigated the use of runtime

verification in order to monitor whether the system was

operating within the bounds where it had been verified.

In particular, we generate both the structured abstraction

used in model checking and a runtime monitor from the

same specification (in a formalism known as trace expres-

sions [80]). The runtime monitor is used by the agent

to observe the perceptions coming into the system and

check whether they fall within the bounds of the structured

abstraction. If they do not, then the agent can employ

fail-safe procedures having recognized it as now operating

outside its guaranteed safe envelope.

VI. E X P L A I N A B I L I T Y

Although verification is an important part of the devel-

opment process of any safety-critical system, autonomous

systems face an additional barrier to public acceptance,

namely that their behavior can often seem mysterious.

Thus, it is widely recognized that autonomous systems

need to be explainable and self-aware, and agent-based

approaches, such as we have been discussing here, can

help with this.

A. Can It Explain Itself?

Once we have the exposure of mental states such as

beliefs and desires, possibilities, and choices, we are able

to modify the agent/system to explain itself in more under-

standable natural language. In [81], we carry out such an
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extension, providing human-level explanations for the

decisions taken. This effectively provides a “why did you

do that”? button which allows a user to interrogate a robot

about its actions.

Given the symbolic nature of the agent underlying the

autonomous system, this involves utilizing previous work

on debugging cognitive agent programs and extending

it to generate explanations from logs of key events in

the program execution. These logs were represented as a

sequence of numbered states.

In order to make the answers to why-questions com-

prehensible to end users, events must be abstracted from

application-specific predicates. Dictionaries are employed

in order to translate the first-order logic presentation of

concepts within the agent program in natural language.

Typical sample output, from [81], is provided below.

drop was executed because Plan 1: in

response to the event: added the

goal achieve rubble(2,2) do add the

goal achieve “the robot is holding

rubble” THEN move_to(2,2) THEN drop

was selected in state 13 because the event

added the goal achieve rubble(2,2)

was posted in state 9.

This is in contrast to autonomous systems built using more

opaque, subsymbolic AI, where explainability is much

more challenging. In our approach, however, the fact that

we already have explicit representations of beliefs, goals,

selections, and actions, provides a strong basis for a range

of explainability options.

Furthermore, the combination of in-built self simulation

(as outlined in Section III-C) together with the notion of

explainability allows us to move beyond answering just

“why did you do that” questions and on to “what will you

do next, and why” questions.

B. Winfield and Jirotka’s “Ethical Black Box”

In addition to being able to explain its behavior directly

to users/clients, it will be important to provide a clear

and precise record of its behavior, not least for subse-

quent accident investigation or legal action. Winfield and

Jirotka [82] suggested a mechanism analogous to the

“flight data recorder” mandated for all passenger aircraft

but now for robots and designed to record all the deci-

sions made, options available, environmental context, etc.

Once we are able to ensure that any robot can explain

its decisions and options to humans, as in Section V,

then we simply do this at every (or at least every cru-

cial) step but record the explanation in a log rather

than (or possibly as well as) conveying it to the humans

involved.

VII. C O N C L U D I N G R E M A R K S

In this article, we have described a broad theme of work

centered on agent-based architectures for autonomous sys-

tems. With the right type of agent, specifically a rational

agent [41], this not only provides strong self-awareness

capabilities but allows for strong (and formal) verifica-

tion [20]. From a system point of view, separating out

low-level control and high-level decision making in this

way allows diverse verification techniques to be used and

integrated [83].

The approach provides a range of self-awareness

capabilities and capture a diverse range of aspects,

from ethics [59] or self-certification [84] to self-

reconfigurability, [61] and explainability [81]. In addition

to providing a range of capabilities, this approach is being

applied to a range of practical autonomous systems, such

as satellites [70], [85], unmanned air systems [71], [73],

and road vehicle convoys [86]–[88].

Finally, in cases where a distinct agent is not available

within the autonomous system’s architecture, we might

instead add a governor agent to the system to monitor

and regulate actions/decisions the system makes [89],

[90]. Here, we can again use our agent verification

techniques but this time to prove that the governor

agent always regulate the safety/ethics of decisions

correctly [59].
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