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● Modern Computing                                              
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y = f(x), Π

 Verify(x,f,y,Π) = accept/reject 



● Untrusted prover – server can arbitrarily cheat

 Verify(x,f,y,Π) = accept/reject 

  x, f
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Verifiable Computation (VC) Protocol

Soundness: Verify accepts with negligible probability if y ≠ f(x) 



Soundness: Verify accepts with negligible probability if y ≠ f(x) 
Efficiency: Verification should be faster than computation

● Untrusted prover – server can arbitrarily cheat

 Verify(x,f,y,Π) = accept/reject 

  x, f

y = f(x), Π

Verifiable Computation (VC) Protocol
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● Client runs expensive pre-processing for f  once
● Amortizes cost over multiple executions

● Pre-processing not inherently necessary 
– [Bitansky,Canetti,Chiesa,Tromer'13]  
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● Studied in existing work
– memory delegation [Chung,Kalai,Liu,Raz'11]
– outsourced datasets [Backes,Fiore,Reischuk'13] 
– authenticated data structures [Nissim,Naor'98][Tamassia'03]
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digest d

● Dual of the classic model
– fix function / fix data

● Additional query type: updates in D
– handle updates efficiently

VC with Outsourced Storage
dataset D

 query Q

y = Q(D), Π  Setup(sk,D) = auth(D)  
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Security Game
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,auth(D
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),d, Q, A*, Π}

     Adv wins if A* is not the correct answer but Verify accepts

Finally:

for 0 ≤  i ≤  t



Known Solutions
(in this model and others)

● Theoretical Results
[Micali'00],[Ishai,Kushilevitz,Ostrovsky'08],
[Goldwasser,Kalai,Rothblum'08],
[Applebaum,Ishai,Kusilevitz'10],
[Gennaro,Gentry,Parno'10]
[Chung,Kalai,Vadhan'10],
[Canetti,Riva,Rothblum'11],
[Gennaro,Gentry,Parno,Raykova'13],
[Bitansky,Canetti,Chiesa,Tromer'13],...

● Implementation Works
[Cormode,Mitzenmacher,Thaler'12]
[Setty,Braun,Vu,Blumberg,Parno,Walfish'13],
[Parno,Gentry,Howell,Raykova'13]
[Ben-Sasson,Chiesa,Genkin,Tromer,Virza'13]...



State of the art

✔ Excellent asymptotic behavior
– non-interactive 
– general (i.e. for any language in NP)
– verification cost O(|input| + |output|)
– O(1) proof size
– poly-log overhead for proof computation



State of the art

✔ Excellent asymptotic behavior
– non-interactive 
– general (i.e. for any language in NP)
– verification cost O(|input| + |output|)
– O(1) proof size
– poly-log overhead for proof computation

✗ High concrete overhead
– server's cost prohibitive for general functions



● Delegation in the circuit-based model of computation
– reduce concrete functions to circuit problems

● Prover's overhead should be query-specific
– not determined by “largest” query
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● Delegation in the circuit-based model of computation
– reduce concrete functions to circuit problems

● Prover's overhead should be query-specific
– not determined by “largest” query

Recent works explore alternative models
– [Goldwasser,Kalai,Popa,Vaikuntanathan,Zeldovich'13]
– [Gentry,Halevi,Raykova,Wichs'14]

Examples of Practical Issues
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● Focus on specific class of functions
– exploit algebraic structure for practical solutions
– existing works

● [Benabbas,Gennaro,Vahlis'11],[Backes,Fiore,Reischuk'13],
[Papamanthou,Tamassia,Triandopoulos'11] ...

● Functionality:
Nested Intersections, Unions and Set Differences
 

● Applications 
– A rich class of SQL queries
– Keyword search
– Similarity Measurements (e.g. Jaccard distance)
– Set Membership
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Our Result

● VC with outsourced storage for sets:
– query-specific proof-construction cost
– efficient non-interactive updates
– circuit-independent 
– public verifiability
– concrete complexity analysis

● low involved constants



Our Result

● Setup cost:
– client's pre-processing cost → O(|D|)

● Given query Q computable in O(N) with answer A:
– verification time O(|Q| + |A|)                                         
– proof size O(|Q|)
– proof construction O(N)

● Update cost:
– O(1) operations for client and server



Our Result

● Setup cost:
– client's pre-processing cost → O(|D|)

● Given query Q computable in O(N) with answer A:
– verification time O(|Q| + |A|)                                         
– proof size O(|Q|)
– proof construction O(N)

● Update cost:
– O(1) operations for client and server

independent of 
cardinalities of
other sets



Large Intermediate Results
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 Verification cost and proof size should be oblivious   
      to the set cardinalities (except for answer set)

Note
Circle size 
denotes set 
cardinality
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– construct adversary for a single operation



Security Proof

X
1

X
3X

2
X

4
X

5
X

6

∩ U

∩

∩

.

.

Y

X
6

.

. Π = { Π
1 
, Π

2 
, ..., Π

n
 }

● Soundness?
– construct adversary for a single operation



Security Proof

X
1

X
3X

2
X

4
X

5
X

6

∩ U

∩

∩

.

.

Y

X
6

A B

∩

C

.

. Π = { Π
1 
, Π

2 
, ..., Π

n
 } Π

i

● Soundness?
– construct adversary for a single operation



X
1

X
3X

2
X

4
X

5
X

6

∩ U

∩

∩

...

Y

X
6

Security Proof



X
1

X
3X

2
X

4
X

5
X

6

∩ U

∩

∩

...
A B

∩

Y

X
6

C

● Exists operation with 
honest input A,B, cheating output C and proof Π

i

Security Proof



X
1

X
3X

2
X

4
X

5
X

6

∩ U

∩

∩

...
A B

∩

Y

X
6

C

● What is the value of set C?
– even the adversary may not know!
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● Replace proofs Π
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● Proof of Knowledge (PoK)
– For any convincing (cheating) prover 
Ǝ extractor that outputs witness

● Witness  → cheating sets
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PoK for Sets

● Construction based on q-Knowledge of 
Exponent assumption [Groth'10]

● Constant size 
– only two additional group elements on Π

i
 

● Matches nicely with bilinear accumulators
– “accumulators with knowledge”
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– asymptotically excellent but not practical for general 
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● Our work: a protocol for specific functions
– sacrifice generality for practicality
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– constant-size proofs
– extends the Quadratic Span Program framework
– server cost ~30x smaller than [PGHR'13]
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