
Verifiable Set Operations over
Outsourced Databases

 Ran
Canetti

Boston University
& Tel Aviv University

Omer
Paneth
Boston

University

Nikos
Triandopoulos

 RSA Laboratories
& Boston University

Dimitris
Papadopoulos

Boston
 University

Outsourced Computation

● Powerful Servers ● Multiple types of
“weak” devices

● Modern Computing
→ asymmetric computational environment

Big Data

Outsourced Computation

● Powerful Servers
● Cloud Computing

● Multiple types of
“weak” devices

● Modern Computing
→ asymmetric computational environment

computation

result

Big Data

Outsourced Computation

● Powerful Servers
● Cloud Computing

● Multiple types of
“weak” devices

● Modern Computing
→ asymmetric computational environment

computation

result

● Integrity-of-computation

Big Data

Outsourced Computation

● Powerful Servers
● Cloud Computing

● Multiple types of
“weak” devices

● Modern Computing
→ asymmetric computational environment

Did you do it correctly?

computation

result

● Integrity-of-computation

Big Data

Verifiable Computation (VC) Protocol

Verifiable Computation (VC) Protocol

 x, f

Verifiable Computation (VC) Protocol

 x, f

y = f(x), Π

 Verify(x,f,y,Π) = accept/reject

● Untrusted prover – server can arbitrarily cheat

 Verify(x,f,y,Π) = accept/reject

 x, f

y = f(x), Π

Verifiable Computation (VC) Protocol

Soundness: Verify accepts with negligible probability if y ≠ f(x)

Soundness: Verify accepts with negligible probability if y ≠ f(x)
Efficiency: Verification should be faster than computation

● Untrusted prover – server can arbitrarily cheat

 Verify(x,f,y,Π) = accept/reject

 x, f

y = f(x), Π

Verifiable Computation (VC) Protocol

● Client runs expensive pre-processing for f once

VC with Pre-processing

f

 Setup(sk,f) = f

● Client runs expensive pre-processing for f once

VC with Pre-processing

f

 Setup(sk,f) =

f

f

● Client runs expensive pre-processing for f once
● Amortizes cost over multiple executions

VC with Pre-processing

f

 Setup(sk,f) =

f

f

...

x
1

y = f(x
1
), Π

x
i

y = f(x
i
), Π

● Client runs expensive pre-processing for f once
● Amortizes cost over multiple executions

● Pre-processing not inherently necessary
– [Bitansky,Canetti,Chiesa,Tromer'13]

VC with Pre-processing

f

 Setup(sk,f) =

f

f

...

x
1

y = f(x
1
), Π

x
i

y = f(x
i
), Π

VC with Outsourced Storage
dataset D

VC with Outsourced Storage
dataset D

 Setup(sk,D) = auth(D)

VC with Outsourced Storage

D, auth(D)

digest d

VC with Outsourced Storage
dataset D

 Setup(sk,D) = auth(D)

VC with Outsourced Storage

D, auth(D)

digest d

VC with Outsourced Storage
dataset D

 query Q

y = Q(D), Π Setup(sk,D) = auth(D)

VC with Outsourced Storage

D, auth(D)

digest d

● Studied in existing work
– memory delegation [Chung,Kalai,Liu,Raz'11]
– outsourced datasets [Backes,Fiore,Reischuk'13]
– authenticated data structures [Nissim,Naor'98][Tamassia'03]

VC with Outsourced Storage
dataset D

 query Q

y = Q(D), Π Setup(sk,D) = auth(D)

VC with Outsourced Storage

D, auth(D)

digest d

dataset D

 query Q

y = Q(D), Π Setup(sk,D) = auth(D)

VC with Outsourced Storage

D, auth(D)

digest d

● Dual of the classic model
– fix function / fix data

VC with Outsourced Storage
dataset D

 query Q

y = Q(D), Π Setup(sk,D) = auth(D)

VC with Outsourced Storage

D, auth(D)

digest d

● Dual of the classic model
– fix function / fix data

● Additional query type: updates in D

VC with Outsourced Storage
dataset D

 query Q

y = Q(D), Π Setup(sk,D) = auth(D)

VC with Outsourced Storage

D, auth(D)

digest d

● Dual of the classic model
– fix function / fix data

● Additional query type: updates in D
– handle updates efficiently

VC with Outsourced Storage
dataset D

 query Q

y = Q(D), Π Setup(sk,D) = auth(D)

Security Game

Gen($) → sk,pk

Security Game
pk

Gen($) → sk,pk

Security Game
pk

D
0

auth(D
0

)

Prove and Verify
using pk

Provides oracle
access to

Setup and Update

Gen($) → sk,pk

Security Game
pk

D
0

auth(D
0

)

update u
1

auth(D
0
 , u

1
)

update u
t

auth(D
t-1

 , u
t
)

...Prove and Verify
using pk

Provides oracle
access to

Setup and Update

Gen($) → sk,pk

Security Game

{D
i
,auth(D

i
),d, Q, A*, Π}

 Adv wins if A* is not the correct answer but Verify accepts

Finally:

for 0 ≤ i ≤ t

Known Solutions
(in this model and others)

● Theoretical Results
[Micali'00],[Ishai,Kushilevitz,Ostrovsky'08],
[Goldwasser,Kalai,Rothblum'08],
[Applebaum,Ishai,Kusilevitz'10],
[Gennaro,Gentry,Parno'10]
[Chung,Kalai,Vadhan'10],
[Canetti,Riva,Rothblum'11],
[Gennaro,Gentry,Parno,Raykova'13],
[Bitansky,Canetti,Chiesa,Tromer'13],...

● Implementation Works
[Cormode,Mitzenmacher,Thaler'12]
[Setty,Braun,Vu,Blumberg,Parno,Walfish'13],
[Parno,Gentry,Howell,Raykova'13]
[Ben-Sasson,Chiesa,Genkin,Tromer,Virza'13]...

State of the art

✔ Excellent asymptotic behavior
– non-interactive
– general (i.e. for any language in NP)
– verification cost O(|input| + |output|)
– O(1) proof size
– poly-log overhead for proof computation

State of the art

✔ Excellent asymptotic behavior
– non-interactive
– general (i.e. for any language in NP)
– verification cost O(|input| + |output|)
– O(1) proof size
– poly-log overhead for proof computation

✗ High concrete overhead
– server's cost prohibitive for general functions

● Delegation in the circuit-based model of computation
– reduce concrete functions to circuit problems

● Prover's overhead should be query-specific
– not determined by “largest” query

Examples of Practical Issues

● Delegation in the circuit-based model of computation
– reduce concrete functions to circuit problems

● Prover's overhead should be query-specific
– not determined by “largest” query

Recent works explore alternative models
– [Goldwasser,Kalai,Popa,Vaikuntanathan,Zeldovich'13]
– [Gentry,Halevi,Raykova,Wichs'14]

Examples of Practical Issues

In this Work

● Focus on specific class of functions
– exploit algebraic structure for practical solutions
– existing works

● [Benabbas,Gennaro,Vahlis'11],[Backes,Fiore,Reischuk'13],
[Papamanthou,Tamassia,Triandopoulos'11] ...

In this Work

● Focus on specific class of functions
– exploit algebraic structure for practical solutions
– existing works

● [Benabbas,Gennaro,Vahlis'11],[Backes,Fiore,Reischuk'13],
[Papamanthou,Tamassia,Triandopoulos'11] ...

● Functionality:
Nested Intersections, Unions and Set Differences

In this Work

● Focus on specific class of functions
– exploit algebraic structure for practical solutions
– existing works

● [Benabbas,Gennaro,Vahlis'11],[Backes,Fiore,Reischuk'13],
[Papamanthou,Tamassia,Triandopoulos'11] ...

● Functionality:
Nested Intersections, Unions and Set Differences

● Applications
– A rich class of SQL queries
– Keyword search
– Similarity Measurements (e.g. Jaccard distance)
– Set Membership

Outsourced Sets

● Database D consisting of m sets
X

1
,...,X

m
 with elements from Z

p

Outsourced Sets

● Database D consisting of m sets
X

1
,...,X

m
 with elements from Z

p

● Supports queries expressed as polynomial
length formulas of nested intersections,
unions, and set differences

● e.g. ((X
2
∩ X

4
) ∪ (X

8
∩ X

5
)) ∩ (X

1
 \ X

9
))

X
1

X
3X

2
X

4

X
5

X
6

∩ ∩

U \

∩

Outsourced Sets

● Database D consisting of m sets
X

1
,...,X

m
 with elements from Z

p

● Supports queries expressed as polynomial
length formulas of nested intersections,
unions, and set differences

● e.g. ((X
2
∩ X

4
) ∪ (X

8
∩ X

5
)) ∩ (X

1
 \ X

9
))

● D changes dynamically under element
insertion and deletion

X
1

X
3X

2
X

4

X
5

X
6

∩ ∩

U \

∩

Our Result

● VC with outsourced storage for sets:
– query-specific proof-construction cost
– efficient non-interactive updates
– circuit-independent
– public verifiability
– concrete complexity analysis

● low involved constants

Our Result

● Setup cost:
– client's pre-processing cost → O(|D|)

● Given query Q computable in O(N) with answer A:
– verification time O(|Q| + |A|)
– proof size O(|Q|)
– proof construction O(N)

● Update cost:
– O(1) operations for client and server

Our Result

● Setup cost:
– client's pre-processing cost → O(|D|)

● Given query Q computable in O(N) with answer A:
– verification time O(|Q| + |A|)
– proof size O(|Q|)
– proof construction O(N)

● Update cost:
– O(1) operations for client and server

independent of
cardinalities of
other sets

Large Intermediate Results

X
1

∩

U U

X
2

X
3

X
4

X
5

X
6

X
6

 Verification cost and proof size should be oblivious
 to the set cardinalities (except for answer set)

Note
Circle size
denotes set
cardinality

Main Idea (attempt 1)

X
1

X
2

I
1
,Π

1

∩

● i[Papamanthou,Tamassia,Triandopoulos'11]
– construction for a single set operation based

on bilinear accumulators

Main Idea (attempt 1)

X
1

X
3X

2
X

4

X
5

X
6

I
1
,Π

1

∩ ∩

U
U

∩

● i[Papamanthou,Tamassia,Triandopoulos'11]
– construction for a single set operation based

on bilinear accumulators

Main Idea (attempt 1)
● i[Papamanthou,Tamassia,Triandopoulos'11]

– construction for a single set operation based
on bilinear accumulators

● Apply repeatedly per operation?

X
1

X
3X

2
X

4

X
5

X
6

I
1
,Π

1

I
2
,Π

2

U
1
,Π

3 U
2
,Π

4

Answer A, Π
5

∩ ∩

U
U

∩

Main Idea (attempt 1)

X
1

X
3X

2
X

4

X
5

X
6

I
1
,Π

1

I
2
,Π

2

U
1
,Π

3 U
2
,Π

4

Answer A, Π
5

Π = { (I
1
,Π

1
), (I

2
,Π

2
), (U

1
,Π

3
),(U

2
,Π

4
),(A,Π

5
) }

∩ ∩

U
U

∩

Main Idea (attempt 1)

X
1

X
3X

2
X

4

X
5

X
6

I
1
,Π

1

I
2
,Π

2

U
1
,Π

3 U
2
,Π

4

Answer A, Π
5

Π = { (I
1
,Π

1
), (I

2
,Π

2
), (U

1
,Π

3
),(U

2
,Π

4
),(A,Π

5
) }

● Not efficient!
● Intermediate sets possibly much larger than answer

∩ ∩

U
U

∩

Main Idea (attempt 2)

X
1

X
3X

2
X

4

X
5

X
6

I
1
,Π

1

I
2
,Π

2

U
1
,Π

3 U
2
,Π

4

Answer A, Π
5

Π = { (I
1
,Π

1
), (I

2
,Π

2
), (U

1
,Π

3
),(U

2
,Π

4
),(A,Π

5
) }

∩ ∩

U
U

∩

Main Idea (attempt 2)

Π = { (I
1
,Π

1
), (I

2
,Π

2
), (U

1
,Π

3
),(U

2
,Π

4
),(A,Π

5
) }

● Remove intermediate sets

X
1

X
3X

2
X

4

X
5

X
6

I
1
,Π

1

I
2
,Π

2

U
1
,Π

3 U
2
,Π

4

Answer A, Π
5

∩ ∩

U
U

∩

Security Proof

● Soundness?
– construct adversary for a single operation

Security Proof

X
1

X
3X

2
X

4
X

5
X

6

∩ U

∩

∩

.

.

Y

X
6

.

. Π = { Π
1
, Π

2
, ..., Π

n
 }

● Soundness?
– construct adversary for a single operation

Security Proof

X
1

X
3X

2
X

4
X

5
X

6

∩ U

∩

∩

.

.

Y

X
6

A B

∩

C

.

. Π = { Π
1
, Π

2
, ..., Π

n
 } Π

i

● Soundness?
– construct adversary for a single operation

X
1

X
3X

2
X

4
X

5
X

6

∩ U

∩

∩

...

Y

X
6

Security Proof

X
1

X
3X

2
X

4
X

5
X

6

∩ U

∩

∩

...
A B

∩

Y

X
6

C

● Exists operation with
honest input A,B, cheating output C and proof Π

i

Security Proof

X
1

X
3X

2
X

4
X

5
X

6

∩ U

∩

∩

...
A B

∩

Y

X
6

C

● What is the value of set C?
– even the adversary may not know!

Problem

Solution

● Replace proofs Π
i
 with proofs-of-knowledge

Solution

● Replace proofs Π
i
 with proofs-of-knowledge

● Proof of Knowledge (PoK)
– For any convincing (cheating) prover
Ǝ extractor that outputs witness

Solution

● Replace proofs Π
i
 with proofs-of-knowledge

● Proof of Knowledge (PoK)
– For any convincing (cheating) prover
Ǝ extractor that outputs witness

● Witness → cheating sets

PoK for Sets

● Construction based on q-Knowledge of
Exponent assumption [Groth'10]

PoK for Sets

● Construction based on q-Knowledge of
Exponent assumption [Groth'10]

● Constant size
– only two additional group elements on Π

i

PoK for Sets

● Construction based on q-Knowledge of
Exponent assumption [Groth'10]

● Constant size
– only two additional group elements on Π

i

● Matches nicely with bilinear accumulators
– “accumulators with knowledge”

Conclusion
● Verifiable Computation

– numerous general solutions in literature
– asymptotically excellent but not practical for general

deployment yet
 (continuous improvements though...

[SBV+'12],[PGHR'13],[BCGTV'13], etc.)

● Our work: a protocol for specific functions
– sacrifice generality for practicality

● Follow-up [Kosba, Papadopoulos, Papamanthou, Sayed, Shi, Triandopoulos]
– constant-size proofs
– extends the Quadratic Span Program framework
– server cost ~30x smaller than [PGHR'13]

Thank you!

Conclusion
● Verifiable Computation

– numerous general solutions in literature
– asymptotically excellent but not practical for general

deployment yet
 (continuous improvements though...

[SBV+'12],[PGHR'13],[BCGTV'13], etc.)

● Our work: a protocol for specific functions
– sacrifice generality for practicality

● Follow-up [Kosba, Papadopoulos, Papamanthou, Sayed, Shi, Triandopoulos]
– constant-size proofs
– extends the Quadratic Span Program framework
– server cost ~30x smaller than [PGHR'13]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

