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Abstract. The spectral deconvolution algorithm (SDA) and
SDA+ (extended SDA) methodologies can be employed to
separate the fine and coarse mode extinction coefficients
from measured total aerosol extinction coefficients, but their
common use is currently limited to AERONET (AErosol
RObotic NETwork) aerosol optical depth (AOD). Here we
provide the verification of the SDA+ methodology on a non-
AERONET aerosol product, by applying it to fine and coarse
mode nephelometer and particle soot absorption photome-
ter (PSAP) data sets collected in the marine boundary layer.
Using data sets collected on research vessels by NOAA-
PMEL(National Oceanic and Atmospheric Administration –
Pacific Marine Environmental Laboratory), we demonstrate
that with accurate input, SDA+ is able to predict the fine and
coarse mode scattering and extinction coefficient partition
in global data sets representing a range of aerosol regimes.
However, in low-extinction regimes commonly found in the
clean marine boundary layer, SDA+ output accuracy is sen-
sitive to instrumental calibration errors. This work was ex-
tended to the calculation of coarse and fine mode scattering
coefficients with similar success. This effort not only verifies
the application of the SDA+ method to in situ data, but by
inference verifies the method as a whole for a host of appli-
cations, including AERONET. Study results open the door to
much more extensive use of nephelometers and PSAPs, with
the ability to calculate fine and coarse mode scattering and
extinction coefficients in field campaigns that do not have
the resources to explicitly measure these values.

1 Introduction

One vital degree of freedom in aerosol optical characteristics
is the partition between fine and coarse mode aerosol parti-
cles. While smaller Aiken/nucleation and larger giant modes
contain significant aerosol particle number and mass, respec-
tively, nucleation particles do not have significant surface
area cross sections and giant particles have short residence
times in the atmosphere. Thus, such particles only account
for a second-order contribution to the radiative budget. In
their simplest form aerosol models have a bi-modal aerosol
distribution with optically active fine (approximate diameter
range: 0.1–1 µm) and coarse (approximate diameter range:
1–15 µm) particle sizes. These modes are often treated as in-
dependent, externally mixed particle size distributions which
can extend into each other’s diameter space. While not fully
physical (internal mixing of pollution on dust and the pres-
ence of more than two optically active modes are two possi-
ble perturbations), external mixing is an adequate assump-
tion and an essentially robust scenario within the models,
except perhaps in the most polluted or hazy environments
(Eck et al., 2010, 2012). Fine mode particles, typically with
a volume median diameter (VMD) between 0.2 and 0.5 µm,
are largely produced by combustion including open biomass
burning, biofuel use, and industrial pollution. Coarse mode
particles, with VMDs on the order of 3–10 µm, are princi-
pally mechanically generated and include dust and sea salt.
Hence, knowing the partition between fine and coarse modes
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within total aerosol extinction is important for estimating the
anthropogenic aerosol burden and calculating the direct cli-
mate forcing caused by anthropogenic aerosols (e.g., Chin et
al., 2004; Bates et al., 2006), as well as estimating the pres-
ence of smoke and volcanic sulfates (e.g., Ansmann et al.,
2011). Furthermore, fine and coarse mode particles have dis-
tinct spectral behaviors. Coarse mode particles are generally
spectrally flat at larger solar wavelengths, while fine mode
particles rapidly fall off in extinction with increasing wave-
lengths (e.g., Eck et al., 1999). Thus if the fine/coarse extinc-
tion and scattering partition can be constrained, much of their
spectral behavior can be described (O’Neill et al., 2008).

Characterizing the bi-modal nature of optically active par-
ticles is an important design point of nearly all atmospheric
aerosol field programs. Often, an impactor or other size se-
lection device with a diameter size cut of 1 µm is used up-
stream of a nephelometer so that the fine mode scattering
can be isolated. A simultaneous measurement of total scatter-
ing is sometimes also made, and the difference of fine from
total yields coarse mode components. From these measure-
ments, submicron fraction (SMF: submicron extinction coef-
ficient divided by total extinction coefficient) can be calcu-
lated. While straightforward, there are difficulties with this
method. First and foremost is that the minimum between fine
and coarse mode volume distributions, while dependent on
relative humidity (RH), is rarely 1 µm but typically closer to
0.8 µm (e.g., Fitzgerald, 1991; Rissler et al., 2006) and part
of the coarse mode often encroaches on the fine mode mea-
surement (E. A. Reid et al., 2003; J. S. Reid, 2003, 2006)
and vice versa (Eck et al., 2010, 2012). In marine or dusty
conditions this can lead to substantial fine mode scattering
coefficient measurement errors. The effect is clearly exac-
erbated by increasing cut diameters: the fine mode signa-
ture can be fully swamped by the coarse mode signature if
a 2.5 µm size cut is used as is often done in association with
air quality studies (e.g., Atwood et al., 2013). A second is-
sue is that the difference method requires two nephelometers
if simultaneous measurements are desired. To determine fine
and coarse mode aerosol extinction coefficients, it is neces-
sary to add two particle soot absorption photometers (PSAPs;
Bond et al., 1999) or similar instrumentation to measure par-
ticle absorption coefficients. If particle hygroscopicity is to
be studied with dry and humidified scattering coefficients
measured, then at least four nephelometers are required for
contiguous data of both fine and coarse mode scattering coef-
ficients. This suite of instruments is unsupportable in smaller
field campaigns and has rarely been achieved in historical
data sets. Methodologies to retrospectively calculate fine and
coarse mode scattering and extinction coefficients extend the
usefulness of many data sets and provide greater global and
historical knowledge of fine and coarse mode aerosol optical
properties.

Within the realm of spectral sun photometer data, the
fine/coarse partition and fine mode fraction (FMF: fine
mode extinction divided by total extinction) are frequently

generated products. Note that FMF is different from the SMF
in that FMF does not use an artificially generated cut point;
the partition is determined optically from the distinctive
spectral properties of fine and coarse mode particles. Using
almucantar sky radiance data, the Dubovik and King (2000)
retrievals of aerosol particle size and optical properties from
the AERONET (AErosol RObotic NETwork) sun photome-
ter network are a mainstay of global aerosol science. How-
ever, such inversions are limited to sun photometers sites
with sky scanning capability and to the necessarily coarse
temporal resolution associated with sky scanning measure-
ments compared to extinction measurements (nominal sam-
pling intervals of an hour (when solar zenith angle exceeds
45 degrees) and 3 min for the latest generation of AERONET
instruments).

Shortly after the Dubovik and King (2000) paper, O’Neill
et al. (2001a, 2003) developed the spectral deconvolution al-
gorithm (SDA) methodology using only aerosol optical depth
(AOD) spectra to separate fine and coarse mode contribu-
tions to atmospheric AOD at a reference wavelength (typi-
cally taken at 500 nm). More recently O’Neill et al. (2008)
developed SDA+, which extends the calculated reference
wavelength fine and coarse mode AODs of the SDA to fine
and coarse mode AOD spectra that are coherent with the
asymptotic constraints of the fine mode and the analytical
constraints of a bi-modal size distribution. One advantage
of the SDA and SDA+ is that the separation into fine and
coarse mode AOD is entirely based on the spectral proper-
ties of the AOD: no assumed diameter minimum between
modes is necessary. The SDA has been applied to AERONET
measurements, and has compared well to simultaneously de-
rived Dubovik and King (2000) inversions of fine–coarse
AOD partitions (O’Neill et al., 2003, 2012; Eck et al., 2010).
The SDA and SDA+ have been used to extract fine and
coarse mode AOD parameters measured by sun photometers
in many locations with the results in agreement with direct
aerosol measurements (e.g., measured aerosol size distribu-
tions) and the Dubovik and King (2000) inversions, includ-
ing regimes dominated by coarse mode dust, fine mode pol-
lution, Arctic, biomass burning, and marine aerosols (e.g.,
O’Neill et al., 2008; Eck et al., 2010; Salinas et al., 2013).
The SDA has been used to correct for thin cirrus contami-
nation in AERONET data (Chen et al., 2012). Its optical co-
herence with lidar measurements of backscatter coefficient
and depolarization ratio profiles has been illustrated for vari-
ous types of aerosol events (Saha et al., 2010, O’Neill et al.,
2012; Cottle et al., 2013). The SDA methodology has also
been successfully applied to extinction coefficient measure-
ments acquired in the Gulf of Mexico by cavity ring down
(CRD) instruments (Atkinson et al., 2010).

In this paper we present a first-time comprehensive ex-
tinction coefficient analysis from SDA+ results across di-
verse environments. We will demonstrate how the SDA+ al-
gorithm can be applied to in situ field data collected by a
TSI 3-wavelength (λ) nephelometer (Anderson and Ogren,
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1995) and PSAP, commonly deployed light scattering and
absorption measurement instruments. If an SDA+ retrieval
applied to such low-order extinction spectra is successful, an
important complementary parameter can be added to the out-
put retrievals of the nephelometer and PSAP. Because there
is significant curvature in the scattering coefficient spectrum,
and because the contribution of the typically weak-amplitude
aerosol absorption coefficient to the curvature is small, the
SDA+ method may be further employed to compute fine and
coarse mode scattering coefficients.

Unlike total spectral AOD or CRD extinction coefficient
measurements, however, application of the SDA+ method
to nephelometer and PSAP data sets is susceptible to addi-
tional complicating constraints. First, the spectral range of
the 3-λ nephelometer and PSAP data is much shorter than
sun photometers whose spectra extent nominally spans from
the UV to the near IR (approximately the same range for
many CRDs). Thus there is inherently less signal range to
construct the first and second-order spectral derivatives that
are employed here for the SDA+ retrievals. Second, at three
wavelengths (i.e., the minimum to calculate a second deriva-
tive), individual calibration error in any one band can intro-
duce significant spectral error. The redundancy of the five
bands employed in AERONET retrievals reduces the impact
of any single band that suffers from such calibration errors.
Finally, nephelometer and absorption instruments need state-
dependent corrections for particle size dependent truncation
and the non-Lambertian light source (Anderson and Ogren,
1995).

In this paper we examine the applicability of the SDA+

algorithm to nephelometer and PSAP data collected by
the NOAA Pacific Marine Environmental Laboratory At-
mospheric Chemistry Research Group (PMEL: downloaded
from http://saga.pmel.noaa.gov/data/) in eight field cam-
paigns performed between 1997 and 2008 across three
oceans, two hemispheres, and in environments ranging from
heavily polluted to relatively clean marine air and from trop-
ical to Arctic (e.g., Quinn and Bates, 2005). In these projects,
both fine and sub-10 µm aerosol data were collected. Exam-
ining varied data and aerosol species, we compare SDA+-
generated fine mode scattering and extinction coefficients de-
rived from measured sub-10 µm scattering and extinction co-
efficient spectra to those measured using an instrumentally
defined, inter-modal cut point. We scrutinize instrument cal-
ibration and perform data analyses to infer the importance of
precise inputs to the SDA+ algorithm, particularly in low-
extinction regimes. We close with an assessment of the suit-
ability of the SDA+ algorithm for in situ use and with dis-
cussions of method strengths and shortcomings.

2 Theoretical basis of the Ångström exponent,
SDA and SDA+

One of the most common methods for semi-quantitatively
estimating the FMF extinction is the use of the clas-
sical Ångström exponent (sometimes referred to as the
Ångström coefficient). For clarity, we will refer to the clas-
sical Ångström exponent using å as opposed to the spectral
derivative Ångström exponent (α) defined later in this sec-
tion. Equation (1) defines the original spectral dependence of
extinction as derived by Ångström (1929):

σep=σep,1·λ
−å, (1)

whereσep is the particle extinction at a particular wavelength
(λ), andσep,1 is the extinction coefficient at a wavelength of
1 µm. In practice, å is merely the linear regression slope of
extinction versus wavelength in log–log space (i.e., Eq. 2):

å= − ln

(
σep,λ1

σep,λ2

)/
ln

(
λ1

λ2

)
. (2)

In addition to extrapolating extinction coeffi-
cients between wavelengths in the shortwave region,
Ångström (1929) also noted that the value of the classical
Ångström exponent is a good indicator of aerosol particle
size, with å< 1 indicative of coarse mode dominated aerosol
distributions (FMF less than 0.5), and å> 2 indicative of
fine mode dominated aerosol distributions (FMF greater
than 0.5). For example, Kaufman et al. (1994) used it as an
indicator of the fraction of small particles to large particles
in industrial regimes.

Within a given aerosol environment, the classical
Ångström fit relationship appears robust. For example, both
Reid et al. (1999) and Smirnov et al. (2002) have been able
to use empirically derived relationships between size and the
classical Ångström exponent in their studies. While å is com-
monly reported in aerosol optics papers, Reid et al. (1999)
noted, based on modeling and observations from Reid et
al. (1998), that such a formulation is problematic as the
classical Ångström fit is heavily wavelength dependent. For
red to near-infrared wavelengths, å adequately represents a
mix of fine and coarse mode influences that becomes pro-
gressively more coarse mode dominated as the wavelength
increases. In the green or blue spectral region fine parti-
cle size and refractive index become increasingly more im-
portant in determining the value of å. Indeed, the aerosol
chemistry dictates the refractive indices of the aerosols, as
well as their hygroscopic growth (presuming the measure-
ments were made at a RH>∼ 30 %) which can further im-
pact the size distribution and the refractive indices (Tang,
1996). When the entire AERONET data set of AOD was ex-
amined, Eck et al. (1999) noted significant departures from
the classic Ångström fit, supported by more theoretical stud-
ies by Schuster et al. (2005).
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Table 1.Campaign overview.

Campaign ACE-Asia VOCALS

Location Western North Pacific east of Japan Southeast Pacific Ocean along the Peruvian and Chilean
coast

Period March to April 2001 October to December 2008

Research vessel NOAA R/VRonald H. Brown NOAA R/V Ronald H. Brown

Nephelometer One nephelometer (λ = 450 550, and 700 nm);
RH≈ 55 %

Two nephelometers (λ = 450, 550, and 700 nm);
RH≈ 60 %

PSAP One PSAP (λ = 550 nm); RH≈ 55 % Two PSAPs (λ = 467, 530, and 660 nm); RH≤ 25 %

Impactor cutoff The primary inlet was outfitted with two impactors with
D50 %, aero= 1.1 µm andD50 %, aero= 10 µm. An auto-
mated valve switched between the two impactors every
15 min.

An initial D50 %, aero= 10 µm impactor was placed at
the primary inlet and a second impactor with a cutoff
at D50 %, aero= 1.0 µm was placed downstream of one
nephelometer and one PSAP.

Estimated error of the
extinction coefficient

±14 % at the 95 % confidence level for an averaging
period of 30 min (Quinn and Bates, 2005)

±5 % for an averaging period of 60 min (PMEL)

Air masses encountered Complex mixtures of marine, volcanic, pollution and/or
dust sources originating from Asia (Quinn and Bates,
2005)

Marine regimes with periods of polluted continental air
originating from South America (Hawkins et al., 2010)

The SDA methodology was developed as an alternative
method for extracting fine and coarse mode AOD at a refer-
ence wavelength from the total AOD spectrum. The method
hinges on the use of a polynomial fit to three or more appro-
priately spaced wavelengths to capture the first and second
derivatives of total AOD (τT) versus wavelength, specifically
α(λ) = −dlnτT(λ)/dlnλ and its spectral derivativeα′(λ) =

dα(λ)/dlnλ (e.g., “curvature”; Eck et al., 1999; Reid et al.,
1999; O’Neill et al., 2001b). It is important to note thatα

is the differential calculus analogue of å: the spectral deriva-
tive α is a pure derivative computed at a specific wavelength
from a (differentiable) polynomial fit toτT(λ), while å is a
regression-based average (or approximate) derivative across
what is usually a relatively large wavelength range.

The SDA algorithm was further refined to exploit the in-
creased spectral range (UV to shortwave infrared or SWIR
wavelength) available in the most recent generation of
AERONET instruments (O’Neill et al., 2008). This algo-
rithm (SDA+) is an extension of the SDA that employs spec-
tral fits to (1) the SDA fine mode outputs ofτf(λref), αf(λref),
and α′

f(λref) at the reference wavelength (λref) of 500 nm;
(2) an empirically derived relation for the spectral position
and amplitude of the peak inαf(λ); and (3) the asymptotic,
long-wavelength limits of the fine mode spectrum (ibid). The
fitted outputs ofτf(λ), αf(λ), and α′

f(λ) are then used to
derive the analogue coarse mode parameters from the fun-
damental bi-modal relations forτ(λ), α(λ), andα′(λ). The
original SDA+ motivation of extending the range of input
wavelengths into the SWIR was not a factor in the analy-
sis of Sect. 4 as our extinction coefficient data is limited to
the visible spectral region. In principle one could employ the
SDA using a spectrum of reference wavelengths to do the
same thing. However, the use of explicit constraints on the

fine mode spectrum ensures that the SDA+ output is more
spectrally coherent, even in this limited input spectral range.

This SDA+ parameterization, while originally developed
for application to AOD measurements, is readily transferable
to extinction coefficient analysis by the simple expedient of
replacingτ with σep. First and second derivatives of the spec-
tral extinction coefficient can be computed using a second-
order spectral polynomial fit to the three measurement chan-
nels (450, 550, and 700 nm), and fine and coarse mode scat-
tering and extinction coefficients can be extracted from these
direct measurements. The accuracy of this novel application
is easily assessed as the SDA+ output can be compared to di-
rect measurements of the aerosol fine and coarse mode scat-
tering and extinction coefficients made during the field cam-
paigns presented in this paper.

3 Missions overview and design

This paper will examine the results of the SDA+ calcula-
tions when applied to eight NOAA-PMEL (National Oceanic
and Atmospheric Administration – Pacific Marine Environ-
mental Laboratory) data sets collected in multiple marine
aerosol regimes. These eight campaigns were selected from
all NOAA-PMEL field campaigns with published data (http:
//saga.pmel.noaa.gov/data/), where total and submicron ex-
tinction or scattering coefficients were measured. We ini-
tially focus on two disparate data sets representing two
hemispheres, one containing highly polluted marine air and
the other relatively clean background marine air, so we
can observe the SDA+ performance in high and low ex-
tinction regimes. These data were collected from research
vessels operated by PMEL during two missions: Aerosol
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Characterization Experiment – Asia (ACE-Asia); and VA-
MOS (Variability of the American MOnsoon Systems, an in-
ternational CLIVAR program) Ocean–Cloud–Atmosphere–
Land Study (VOCALS).

The NOAA Research Vessels (R/Vs) were outfitted with a
multitude of instruments to measure the chemical and phys-
ical properties of the in situ aerosols. The primary aerosol
inlet was located in a mast at the bow of the ship 18 m a.s.l.
The mast was capped with an inlet nozzle that rotated into the
relative wind to minimize the loss of large particles. Air was
pulled at a rate of 1 m3 min−1 and heated to a set RH (see Ta-
ble 1 for specific RH values for each campaign) (Quinn and
Bates, 2005).

Each R/V contained a TSI integrating three-wavelength
nephelometer (Model 3563) (λ = 450, 550, and 700 nm) and
a Radiance Research particle soot absorption photometer
(PSAP) located downstream of the nephelometer. During
ACE-Asia, there was only one dedicated 3-λ nephelometer
and one dedicated 1-λ PSAP. A valve upstream of the two in-
struments switched between an impactor with a 10 µm aero-
dynamic diameter cutoff (D50 %, aero) and an impactor with
D50 %, aero= 1.1 µm every 15 min, allowing for discrete mea-
surements of sub-10 µm and sub-1.1 µm extinction coeffi-
cients. The VOCALS campaign had two dedicated 3-λ neph-
elometers and 3-λ PSAPs, and an impactor with a 1 µm diam-
eter cutoff was placed downstream of the first pair of instru-
ments, permitting simultaneous measurement of sub-10 µm
and sub-1.0 µm extinction coefficients. The nephelometers
were zeroed several times throughout the campaign using fil-
tered air, and truncation errors and non-Lambertian illumi-
nation errors were corrected using the method described by
Anderson and Ogren (1998). The PSAPs were calibrated and
corrected for scattering artifacts and deposit spot size as de-
tailed in Bond et al. (1999). Values for both instruments were
reported at STP (0◦C and 1013 mb) over an averaging period
of 60 min. Table 1 provides more details about the two cam-
paigns.

The wavelengths of the absorption coefficient measure-
ments were matched to those of the measured scattering co-
efficients, using the classical absorption Ångström exponent
(åap):

åap = −

log(
σap,2
σap,1

)

log(λ2
λ1

)
, (3)

where σap,i is the particle absorption coefficient at wave-
lengthλi . During ACE-Asia, when a measured classical ab-
sorption Ångström exponent was unavailable due to the mea-
surement of the absorption coefficient at only one wave-
length, åap = 1.5 was used, except for dust dominated aerosol
events (fine mode extinction accounts for less than 25 % of
total extinction), where åap = 2 was used (Bergstrom et al.,
2007; Eck et al., 2010).
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Figure 1. Correlation between(a) the classical Ångström coeffi-
cients (å) and the measured submicron fraction (SMF) extinction for
ACE-Asia and VOCALS and stratification of the spectral derivative
Ångström (α) with calculated fine mode fraction (FMF) during the
(b) ACE-Asia and(c) VOCALS campaign.

4 Results and analysis

The ACE-Asia and VOCALS data sets represent a vast swath
of the aerosol particle variability in the marine atmosphere.
Located off the coast of Asia, the ACE-Asia cruise expe-
rienced clean marine, pollution, dust and volcanic condi-
tions, and nearly every possible combination thereof. For
VOCALS, the environment was clean marine with persis-
tent stratus above and injections of pollution from coastal
Chile and Peru. The two missions represent two extremes
from the PMEL cruise data set collection. We begin our
analysis in Sect. 4.1 with our baseline hypotheses, namely,
that as is commonly assumed in the community, the classical
Ångström exponent and SMF are linearly proportional. Here
we examine differences between the two parameters for the
two missions. In Sect. 4.2 we examine in detail the ACE-Asia
campaign data and verify the application of SDA+ for a host
of conditions. From there, we examine VOCALS in Sect. 4.3,
which, with its very clean conditions, is perhaps the more
challenging data set to analyze. Section 4.4 applies what we
have learned to six more data sets collected by NOAA-PMEL
and discusses best practices for future application of SDA+

to scattering and extinction coefficient measurements.
Relationships between the Ångström exponent and fine

mode fraction as a first analysis step, the nephelometer+

PSAP-derived classical Ångström exponent (å) was com-
pared to the nephelometer+ PSAP-measured SMF for the
ACE-Asia and VOCALS cruises. In order to present the most
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accurate depiction of the relationship, the VOCALS 450 nm
nephelometer channel was increased by 5 % as is explained
in Sect. 4.3. Figure 1 presents the relationship for the entire
wavelength span (450–700 nm). Important features are im-
mediately apparent. First, while the relationships are indeed
strong within each campaign (R > 0.96), there is a clear dif-
ference in the two missions’ data populations: slope differ-
ences are 31 %. For entirely coarse mode dominated envi-
ronments (dust for ACE-Asia, and sea salt for VOCALS),
both å values originate near zero, a well-known behavior. But
for fine mode dominated environments the relationships di-
verge markedly. Using the classical Ångström relationship
for ACE-Asia, a SMF extinction of 1.00 is associated with a
450–700 nm classical å= 2.13, but the same å= 2.13 is as-
sociated with a SMF of 0.68 in VOCALS. Furthermore, it is
evident that there are cases in the marine environment when
the assumption that å< 1 indicates a coarse mode dominated
aerosol distribution is flawed. Within the ACE-Asia data set
the cross over from coarse to fine mode dominated extinction
(SMF extinction> 0.5) occurs at å= 0.84.

The FMF and the SMF are intrinsically related but their re-
lationship as a function of Angstrom exponent differs in de-
tail for different reasons. Figure 1b and c show the FMF ver-
sus the SDA+α at 550 nm for the ACE-Asia and VOCALS
data sets, respectively. As indicated by Eq. (1) of O’Neill et
al. (2003):

η =
α − αc

αf − αc

=

(
1

αf − αc

)
α +

(
−αc

αf − αc

)
, (4)

the dispersion of the FMF (η) versusα scattergrams can be,
at least partly, described by the variation in fine mode parti-
cle size (by the variation inαf , where the coarse mode spec-
tral derivative,αc, is relatively constant, nominally taken as
−0.15 in the SDA+ retrieval). An increase inαf will result
in a smaller slope and intercept. This can be seen in Fig. 1b
and c where the relationship is stratified into ranges of in-
creasingαf or decreasing particle size. The regression coef-
ficients of the linear fits seen in the graphs is smallest for
αf < 2: this is understandable since small values ofαf repre-
sent a regime where the retrieval is less dependable (where
αf becomes progressively more confounded withαc and its
associated uncertainty).

4.1 SDA+ results: ACE-Asia 30–40◦ N western Pacific
Ocean – polluted regime

In our first in-depth analysis of the application of the SDA+

method to in situ data, 60 min averages of PM10 3-λ ex-
tinction coefficient measurements (450, 550, and 700 nm) as
measured by a nephelometer and PSAP during ACE-Asia
were used, rather than spectral AOD, as inputs to the code.
SDA+ was then used to calculate the fine and coarse mode
extinction coefficients, which were in turn compared to fine
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Figure 2. A time series(a) of the measured submicron mode (SM)
and SDA+-calculated fine mode (FM) extinction coefficient aboard
the R/VRonald H. Brown(PMEL) during the ACE-Asia campaign.
Bottom graph(b) shows fine mode fraction extinction predicted
by SDA+ versus the equivalent submicron fraction derived from
PSAP and nephelometer extinction coefficient measurements. Plots
for scattering coefficient predictions and measurements show simi-
lar agreements (see Supplement). A one-to-one line is provided for
reference in(b). Fit statistics are found in Table 2.

and coarse mode extinction coefficient measurements made
by the PSAP and nephelometer (for which the fine and coarse
modes were separated by the 1.1 µm impactor). Additionally,
the SDA+ method was applied solely to the nephelometer
results to examine the applicability of SDA+ to predict fine
and coarse mode scattering coefficients.

The ACE-Asia data set was collected over a variety of air
masses, ranging from relatively clean marine air to highly
polluted Asian continental outflow, with periods dominated
by dust from the Gobi Desert, dust mixed with pollution
from China and/or Korea, and volcanic aerosols mixed with
pollution (Quinn et al., 2004). This data set provides us
with the greatest opportunity to examine the applicability of
the SDA+ methodology to a wide range of environments,
aerosol chemistries, and hence particles sizes and indices of
refraction.

The mission time series of 1.1 µm impactor measured
submicron mode (SM) and SDA+-calculated fine mode
(FM) extinction coefficient is presented in Fig. 2a while the
SDA+-calculated FMF and observed SMF for extinction is
presented in Fig. 2b. These results show good agreement be-
tween the predicted and observed fine mode extinction co-
efficients as well as between the extinction-based SMF and
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Table 2.Fit statistics for measured and SDA+ calculated output from Fig. 2.

Statistics – ACE-Asia 450 nm 550 nm 700 nm

Correlation coefficient for FM scattering/extinction coefficients 0.99/0.99 0.98/0.98 0.96/0.97
RMSE for SMF and FMF scattering/extinction coefficient 0.10/0.10 0.12/0.12 0.14/0.15
MBE for SMF and FMF scattering/extinction coefficient 0.08/0.08 0.10/0.10 0.13/0.14

FMF. The results, in general, for both extinction and scat-
tering coefficients, for low and high scattering regimes and
for fine and coarse mode dominated regimes, were found
to give good agreement with low errors (correlation coeffi-
cients, root mean square errors (RMSEs) and mean bias er-
rors (MBEs) are reported in Table 2).

Figure 2 and Table 2 overall show that SDA+, with as-
sociated correlation coefficients greater than 0.96, is a viable
method for estimating fine mode extinction coefficients when
only direct measurements of total extinction coefficients are
available. However, there is one obvious bias, namely, the
predicted FMF-to-observed SMF ratio generally falls below
the one-to-one line in the bottom graphs of Fig. 2 (associ-
ated MBE is greater than 0.08). Such a bias was also ob-
served in AERONET sun photometer data when the SDA
was compared to the Dubovik and King (2000) retrieved
SMF (O’Neill et al., 2003; Eck et al., 2010). That bias was
explained by a known fine mode bias in the reference meth-
ods: the assumed minimum in the bi-modal size distribution
for the Dubovik and King (2000) AERONET inversions. In
our case, the SMF is determined by the strict diameter cutoff
of an impactor. In both cases, the reference method fails to
account for the tails of the full fine and coarse mode par-
ticle distributions. The impactor cutoff diameter for ACE-
Asia,D50 %, aero, was 1.1 µm at RH≈ 55 %, whereas the spec-
trally based separation of fine mode aerosols used in the
SDA+ methodology has no physical cutoff diameter. The
encroachment of the physical coarse mode aerosol into di-
ameter regime associated with the measured fine mode scat-
tering described in the introduction would lead to a lower
predicted-to-measured value for fine mode extinction coeffi-
cient, resulting in SMF extinction values below the one-to-
one line in the FMF versus SMF graph of Fig. 2b. This bias
is observed in the ACE-Asia results.

We can verify this hypothesis for the observed bias
through examination of aerosol volume distributions col-
lected alongside the nephelometer and PSAP data during
the ACE-Asia cruise. The size distributions were measured
using a differential mobility particle sizer (DMPS; diam-
eter range 0.020 to 6.71 µm) and an aerodynamic particle
sizer (APS; diameter range 0.5 to 20 µm) where the APS-
measured aerodynamic diameters were converted to Stokes
diameters using measured chemistry to calculate the aerosol
density. The APS data were corrected for ultra-Stokesian
conditions in the instrument jet as well as shape effects
(Quinn et al., 2004). Overlapping channels were examined
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Figure 3. Mean aerosol volume distributions during four periods of
observation during the ACE-Asia field campaign.

and the first APS diameter channel with a higher count than
the corresponding DMPS channel was used to replace over-
lapping DMPS channels at that aerosol Stokes diameter and
for all larger channels. The measurements were made at an
RH≈ 55 % (Quinn et al., 2004).

Figure 3 illustrates mean aerosol volume distributions for
four of the seven ACE-Asia study periods as defined by
Quinn et al. (2004). All seven identified periods had ob-
served minimum distribution values at particle diameters
(Dp,min) less than 1.1 µm. For the period consisting primar-
ily of aerosols originating from Japanese pollution sources
(DOY: 96.4–99.2), and for the period of observation during
the dust frontal passage (DOY: 101.0–101.3), the mean ob-
servedDp,min between the fine and coarse mode particles was
Dp,min = 0.89 µm (Fig. 3a and c). For the period dominated
by fine mode volcanic emissions (DOY: 99.3-100.5), the par-
tition wasDp,min = 1.00 µm (Fig. 3b). The coarse mode dom-
inated the period containing dust from China and Mongo-
lia and pollution from the Korean Peninsula (DOY: 101.8–
103.4), showed a partition between the fine and coarse mode
of Dp,min = 0.71 µm (Fig. 3d). It is worth noting that these
values are highly dependent on RH. At ambient RHs, the
estimatedDp,min observed from AERONET inversions was
greater than 1.5 µm (Eck et al., 2005), but this is consistent
with the highly hygroscopic pollution aerosols present in this
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Figure 4. Measured total scattering coefficients from the ACE-Asia
field campaign compared to the scattering coefficients calculated
using the aerosol size distributions and Mie scattering calculations.
The time series shown in(a) through(c) are limited to DOY 90–110
as representative (so as to increase readability).

region and the high ambient RHs observed during the ACE
Asia field campaign (Quinn et al., 2004).

To visualize the coarse mode residual (1CM) contained
in the submicron mode (SM) scattering coefficients as de-
termined by the 1.1 µm impactor, we used a combination of
Mie-scattering calculations using various assumed cutoff val-
ues (Dc) and compared these to a ratio of the FM scattering
coefficient retrieved using the SDA+ divided by the physi-
cally measured ACE-Asia sub-1.1 µm nephelometer scatter-
ing coefficients (i.e., FM/ SM). The quantity computed us-
ing the Mie calculations was the ratio:

X =
SM(Dc)

SM(Dref)
, (5)

where SM(Dc) and SM(Dref) are the computed scattering co-
efficients for a variety ofDc test values and the impactor cut-
off of Dref = 1.1 where the measured particle size distribu-
tion was employed for the Mie calculations. Equation (5) can
be recast as

X =
FM − 1FM(Dc) + 1CM(Dc)

FM − 1FM(Dref) + 1CM(Dref)
, (6)

where1FM is the FM contribution to the coarse mode ex-
tinction due to the portion of the fine mode that extends be-
yondDc and1CM is the portion of CM that is included in
the fine mode integration due toDc. For a given particle size
distribution, we expectX to decrease monotonically with de-
creasingDc, from a value of unity atDref = 1.1 µm to a value
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Figure 5. Calculated values ofX = SM(Dc)/SM(Dref) (four
dotted curves). TheX output was calculated four times us-
ing Mie scattering and measured size distributions, with differ-
ent values of the cutoff diameterDc. The solid red line is the
SDA+-retrieved FM divided by the nephelometer-measured submi-
cron mode (Xmeas= FM / SM). The measured submicron fraction
(SMF) is included for reference.

of FM / SM as1CM approaches1FM to values less than
FM / SM. Optimal values ofDc, for which X = FM / SM,
should be in the neighborhood ofDp,min (although the SDA+
calculation process is optical and not based purely on the par-
ticle size distribution).

In order to verify the quality of our Mie calculations, we
first calculated the Mie-scattering coefficients for the mea-
sured total aerosol size-distribution and compared the re-
sults to the nephelometer-measured scattering coefficients
(Fig. 4), achieving adequate agreement (correlation coeffi-
cient values above 0.95). We then calculatedX of Eq. (5)
for a variety of cutoff diameters (Dc = 1.0, 0.89, 0.79, and
0.71 µm). Thus the variation ofX allows us to visualize sev-
eral possible scenarios of1CM contained in the fine mode.
The results are coherent with the SDA+ retrievals inasmuch
as an optimal and realisticDc value is found for almost all
of the measurements in the temporal series of Fig. 5. The
variability of the point whereX intercepts FM/ SM (the red
curve of Fig. 5) is expected as the optimal values ofDc and
1CM will change with changes in the aerosol size distribu-
tion.

Both in the low FMF cases and the high FMF cases in
Fig. 5, we see that there is obvious encroachment of coarse
mode aerosols below theD50 %, aero= 1.1 µm cutoff point for
SM scattering coefficient measurements (i.e., that the best
match with the FM/ SM curve corresponds toDc values
below 1.1 µm). This is an illustrative confirmation of why
the nephelometer-measured SMF (SM0) was consistently
greater than the FMF calculated by the SDA+ (Fig. 2). In-
deed, under the ACE-Asia study conditions, the application
of the SDA+ algorithm to total nephelometer and PSAP data
appears more representative of fine and coarse mode extinc-
tion than the actual use of an impactor.
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4.2 SDA+ sensitivity analysis: VOCALS: 0–22◦ S
eastern Pacific Ocean – mixed marine

The ACE-Asia analysis is a good example of the application
of the SDA+ method to an environment with a large con-
centration of aerosols. The VOCALS field campaign, on the
other hand, was much more representative of clean marine
air, with occasional spikes in the fine mode extinction coeffi-
cient caused by local pollution events such as fossil fuel burn-
ing emissions and copper smelter emissions from the coast of
Chile and Peru (Hawkins et al., 2010). The VOCALS region
fine mode particle size may be larger than most regions glob-
ally due to sulfates that are cloud-processed in the persistent
Alto Cumulus deck. Eck et al. (2012) show very large re-
trieved fine mode radius values at the Arica site on the coast
of Chile for ambient conditions. These retrievals were asso-
ciated with very large curvature of the AOD spectra from
380 to 870 nm. The lower aerosol concentrations measured
during VOCALS resulted in much lower total extinction co-
efficients, with means of 30, 26, and 22 M m−1, for 450, 550
and 700 nm, respectively, and a mean 550 nm absorption co-
efficient of 2.1 M m−1, as compared to the ACE-Asia data
set, with mean total extinction coefficients of 135, 126, and
91 M m−1 and a 550 nm absorption coefficient of 7.3 M m−1.

The agreement between SDA+-predicted and observed
fine mode extinction coefficients, Fig. 6a, and SMF extinc-
tion and FMF extinction, Fig. 6b, is good, but deteriorates in
high FMF regimes (associated error statistics are reported in
Table 3, top). There is an overprediction of the fine mode ex-
tinction and scattering coefficients at all three wavelengths in
high FMF extinction regimes, most particularly in the 700 nm
channel. The same pattern is observed with the scattering co-
efficient (see Supplement).

Investigation of the biases evident in Fig. 6a led us to ex-
amine the sensitivity of the second-order fit in the SDA+

code to small errors in the measurements. We found that par-
ticularly at such small levels of total extinction, small input
errors can produce large errors in the resulting calculations.
Thus, a single wavelength error could have dramatic con-
sequences to the application of the SDA+ method. To test
the reproducibility of the (scattering dominated) measured
extinction coefficient in the clean marine environment, we
performed forward calculations of the scattering coefficient
from the aerosol size distributions measured during the VO-
CALS campaign, and compared them to the nephelometer
measurements.

As in the ACE-Asia campaign, the size distributions were
measured using the combined results from the DMPS and
the APS. For VOCALS, the measurements were made at an
RH≈ 60 %. The coarse mode was assumed to be sea salt with
a refractive index of 1.54 and a growth factor of 1.75 at 60 %
RH, and the fine mode was assumed to be ammonium sulfate
with a refractive index of 1.53 and a growth factor of 1.30 at
60 % RH (Tang et al., 1996).
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Figure 6. A time series(a) of the measured submicron mode (SM)
and SDA+-calculated fine mode (FM) extinction coefficient aboard
the R/VRonald H. Brown(PMEL) during the VOCALS campaign.
Bottom graph(b) shows fine mode fraction extinction predicted
by SDA+ versus the equivalent submicron fraction derived from
PSAP and nephelometer extinction coefficient measurements. Plots
for scattering coefficient predictions and measurements show sim-
ilar agreements. A one-to-one line is provided for reference in(b).
Fit statistics are found in Table 3 (top).

The results of Mie calculations compared to the neph-
elometer measurements are shown in Fig. 7. While it is dan-
gerous to draw too many conclusions from Fig. 7 due to large
uncertainties in the coarse mode size distribution (Reid et al.,
2006), and an estimated uncertainty in the calculated scatter-
ing coefficient of±35 % (Quinn et al., 2004), we can clearly
see the three channels do not respond similarly. Because of
the large uncertainty it is difficult to specify if the red chan-
nel is underpredicting or the blue channel is overpredicting
the scattering coefficient, but our knowledge that the SDA+

is overpredicting fine mode aerosol extinction (Fig. 6b) leads
us to conclude there is excessive curvature in the nephelome-
ter output. Thus, we increased the 450 nm measured extinc-
tion coefficient by a mere 5 % and reran the SDA+ code.
The results are shown in Fig. 8 with associated error statis-
tics found in Table 3 (bottom), and demonstrate a significant
improvement over the original results, with lower RMSEs in
all three channels. The reader will recall that the outputs for
all channels are affected by the change in the 450 nm channel
because the second-order fit is applied across all three chan-
nels within the SDA+ methodology to calculate fine mode
scattering and extinction coefficients.
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Table 3.Fit statistics for measured and SDA+ calculated output from Figs. 6 and 8.

Statistics – VOCALS 450 nm 550 nm 700 nm

Correlation coefficient for FM scattering/extinction coefficient 0.98/0.98 0.96/0.96 0.91/0.91
RMSE for SMF and FMF scattering/extinction coefficient 0.12/0.12 0.14/0.14 0.15/0.14
MBE for SMF and FMF scattering/extinction coefficient −0.07/ − 0.07 −0.09/ − 0.08 −0.09/ − 0.09

Statistics-corrected VOCALS 450 nm 550 nm 700 nm

Correlation coefficient for FM scattering/extinction coefficient 0.99/0.99 0.98/0.98 0.97/0.97
RMSE for SMF and FMF scattering/extinction coefficient 0.09/0.08 0.07/0.07 0.05/0.06
MBE for SMF and FMF scattering/extinction coefficient −0.07/ − 0.06 −0.02/ − 0.02 −0.01/0.01
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Figure 7. Measured total scattering coefficient from the VOCALS
field campaign compared to the scattering coefficient calculated us-
ing the aerosol size distributions and Mie scattering calculations.

The cause for the error within the 450 nm channel is at-
tributed to a slight degradation (now rectified) of the neph-
elometer detected during the VOCALS field campaign due
to the PMT or the firmware controlling the channel. While
difficult to quantify the exact level of degradation in the
VOCALS data set, 5 % is a reasonable first estimate, and
is within the uncertainty of the calibration corrections. It is
worth reiterating that the SDA+ code was originally devel-
oped for the AERONET sensors, which have four to eight
channels spanning the solar spectrum from the near IR to the
UV. Here we are applying a second-order fit to three chan-
nels in the visible spectrum (i.e., there is no data redundancy
to mitigate any single channel error). This means that the
second-order fit of the SDA+ code is sensitive to small er-
rors in the measurements: a presumed error of 5 % in the
scattering coefficient in one channel can result in a significant
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Figure 8. A time series(a) of the corrected measured submicron
mode (SM) and SDA+-calculated fine mode (FM) extinction coef-
ficient aboard the R/VRonald H. Brown(PMEL) during the VO-
CALS campaign. Bottom graph(b) shows fine mode fraction ex-
tinction predicted by SDA+ versus the equivalent submicron frac-
tion derived from PSAP and corrected nephelometer extinction co-
efficient measurements. Plots for scattering coefficient predictions
and measurements show similar agreements. A one-to-one line is
provided for reference in(b). Fit statistics are found in Table 3 (bot-
tom).

increase in the RMSE of the output of the SDA+ code. Thus,
while we believe the physics of the SDA+ retrieval is sound,
this exercise demonstrates the necessity for reducing uncer-
tainties in the field measurements to the greatest extent pos-
sible.
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4.3 Global application of the SDA+

In order to further test our methodology on data sets spanning
the globe, we applied the SDA+ to every available field cam-
paign performed by NOAA-PMEL (http://saga.pmel.noaa.
gov/data/), where total and submicron extinction or scatter-
ing coefficients were measured (not every campaign listed
on the website reported total and submicron scattering or ex-
tinction coefficient measurements). Details of the instrumen-
tal setups are found at the NOAA-PMEL website. These field
campaigns along with their location and campaign period are
summarized in Table 4. Three of the field campaigns were
lacking measurements of either submicron absorption or total
absorption, so the SDA+ methodology was applied only to
the scattering coefficient measurements. ACE-2, ACE-Asia,
and INDOEX used a single dedicated 3-λ TSI nephelome-
ter (450, 550, 700 nm) and two impactors, one with a cut-
off diameter of 1.1 µm and the other with a cutoff diam-
eter of 10 µm, which alternated positions upstream of the
nephelometer every 15 min. ACE-Asia also had a 1-λ PSAP
downstream of the filters, as described in Sect. 3. These mea-
surements were made at 55 % RH. The remaining campaigns
had two 3-λ nephelometers (450, 550, and 700 nm) which
measured at an RH of approximately 60 %. The first neph-
elometer measured scattering due to aerosols with aerody-
namic diameters of less than 10 µm and the second mea-
sured scatter due to aerosols with aerodynamic diameters
of less them 1 µm. Except for the NEAQS 2004 campaign,
each campaign also had two PSAPs (radiance research) that
reported sub-10 µm and sub-1 µm absorption at three wave-
lengths (467, 530, and 660 nm) and an RH ranging between
25 and 60 %. The measured absorption coefficients were sub-
sequently corrected to match the nephelometer wavelengths
using the classical absorption Ångström coefficient, but any
effects due to differing RHs were ignored. All measurements
were averaged over 60 min.

Some modifications were necessary to the input data set,
as described in the “notes” column of Table 4. Primarily the
slight deterioration of the 450 nm nephelometer channel de-
scribed in Sect. 4.3 was evident in two campaigns in the
subsequent years following VOCALS. Furthermore, during
ACE-2, there were periods where the measured scattering
coefficients from the 450, 550, and 700 nm channel appeared
to have an inverse curvature. While it is possible that this
is a real phenomenon (e.g., fog droplets present), it is also
possibly an error in instrumental calibration. Only measure-
ments whereσe,450 nm> σe,550 nm and σe,550 nm> σe,700 nm
were used. The results presented in Table 4 show the good
agreement between measured and SDA+-calculated fine
mode scattering and extinction coefficients across multiple
oceans, hemispheres, and marine environments, with the
strong caveat that measured total scattering and extinction
coefficients must be accurate for the SDA+ methodology to
work.
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5 Discussion and conclusions

The successful use of the SDA+ algorithm applied to neph-
elometer and PSAP data, as well as to nephelometer data
alone, not only verifies the application of the method to in
situ data, but by inference verifies the method as a whole.
Indeed, while the application of the SDA+ algorithm is con-
sistent with the more comprehensive extinction-sky radiance
retrievals of Dubovik and King (2000), previous assessments
of the SDA+ method has largely been by inference. Here we
demonstrate the consistency of the optical method against
a true benchmark and thus verify the method as a whole.
Clearly, the SDA+ methodology is suitable for separating the
fine and coarse mode extinction coefficients from measured
total extinction, with low RMSEs for high and low aerosol
extinction regimes, with large and small FMF and for data
sets spanning the globe. However, there are several caveats
for interpreting any SDA+ data set derived in general as well
as specifically from nephelometer and PSAP data sets.

Interpretation of any error in the SDA+ calculated FMF as
compared to measurements must take into account the cutoff
diameter for the measured fine mode extinction coefficients.
As the coarse mode aerosol population frequently creeps be-
low conventional cutoff diameters, and as the SDA+ method-
ology has no assumed aerosol cutoff diameter, the SDA+

calculations in some instances may be more relevant (within
a context of bi-modal distributions that extend beyond the ar-
tificial particle size limits imposed by fine-mode inlet filter)
than the measured SMF.

Perhaps the most pressing requirement for the application
of the SDA+ (and SDA) is scrupulous attention to instru-
ment calibration. Without a doubt, the previous successful
application of the SDA method to AERONET sun photome-
ter data is largely due to the networks well-earned reputation
of solid instrument calibration. The breadth of wavelengths
used from the near UV into the near IR increases confidence
in curvature signatures while reducing the influence of iso-
lated channel mis-calibration. In contrast, the second-order
(zero redundancy) fit of the SDA+ method to the measured
extinction coefficients at the three wavelengths in the visible
spectrum commonly used by the nephelometer and PSAP can
cause the SDA+ output to be extremely sensitive to small er-
rors in the extinction coefficient input. This underscores the
need for careful calibration of all field instruments.

Ultimately, the SDA+ methodology shows significant im-
provement over current status quo of using Ångström expo-
nents to estimate the contribution of fine mode aerosols to
scattering and extinction coefficients where direct measure-
ments of fine and coarse mode contributions are not avail-
able. Accurate use of Ångström exponents to estimate the
contribution of the fine mode aerosols to the total scatter-
ing or extinction regime requires measurements of the rela-
tionship between the two to be taken inasmuch as the slope
between the Ångström exponent and the SMF can change,
due to changes in aerosol size distribution, chemistry, and

hygroscopicity. Since this feature is, at least in part, built into
the SDA+ (cf. Fig. 1) then its performance is, for this reason
and because it accounts for second-order spectral curvature,
an improvement over the current status quo method. Thus
the SDA+ methodology can increase our knowledge of fine
mode scattering and extinction and the contribution of an-
thropogenic aerosols to total aerosol extinction in global and
historical data sets which currently lack explicitly measured
fine and coarse mode data set.

The Supplement related to this article is available online
at doi:10.5194/amt-7-3399-2014-supplement.
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