
Verification and Optimization of a PLC Control

Schedule

Ed Brinksma1 and Angelika Mader2 ⋆

1Faculty of Computer Science, University of Twente
2Computer Science Department, University of Nijmegen

Abstract. We report on the use of the SPIN model checker for both
the verification of a process control program and the derivation of opti-
mal control schedules. This work was carried out as part of a case study
for the EC VHS project (Verification of Hybrid Systems), in which the
program for a Programmable Logic Controller (PLC) of an experimental
chemical plant had to be designed and verified. The intention of our ap-
proach was to see how much could be achieved here using the standard
model checking environment of SPIN/Promela. As the symbolic calcu-
lations of real-time model checkers can be quite expensive it is interest-
ing to try and exploit the efficiency of established non-real-time model
checkers like SPIN in those cases where promising work-arounds seem
to exist. In our case we handled the relevant real-time properties of the
PLC controller using a time-abstraction technique; for the scheduling we
implemented in Promela a so-called variable time advance procedure. For
this case study these techniques proved sufficient to verify the design of
the controller and derive (time-)optimal schedules with reasonable time
and space requirements.

1 Introduction

Nowadays, the verification of hybrid systems is a popular topic in the formal
methods community. The presence of both discrete and continuous phenomena
in such systems poses an inspiring challenge for our specification and modelling
techniques, as well as for our analytic capacities. This has led to the develop-
ment of new, expressive models, such as timed and hybrid automata [3, 16], and
new verification methods, most notably model checking techniques involving a
symbolic treatment of real-time (and hybrid) aspects [10, 17, 6].

An important example of hybrid (embedded) systems are process control pro-
grams, which involve the digital control of processing plants, e.g. chemical plants.
A class of process controllers that are of considerable practical importance are
those that are implemented using Programmable Logic Computers or PLCs.
Unfortunately, both PLCs and their associated programming languages have

⋆ supported by an NWO postdoc grant and the EC LTR project VHS (project nr.
26270)

no well-defined formal models, c.q. semantics, which complicates the design of
reliable controllers and their analysis.

To assess the capacity of state-of-the-art formal methods and tools for the anal-
ysis of hybrid systems, the EC research project VHS (Verification of Hybrid
Systems) has defined a number of case studies. One of these studies concerns
the design and verification of a PLC program for an experimental chemical plant.

In this paper we report on the use of the SPIN model checker for both the ver-
ification of a process control program for the given plant and the derivation of
optimal control schedules. It is a companion paper to [12], which concentrates
on the correct design of the process controller. The intention of our approach
was to see how much could be achieved here using the standard model check-
ing environment of SPIN/Promela [7]. As the symbolic calculations of real-time
model checkers can be quite expensive it is interesting to try and exploit the
efficiency of established non-real-time model checkers like SPIN in those cases
where promising work-arounds seem to exist. In our case we handled the relevant
real-time properties of the PLC controller using a time-abstraction technique;
for the scheduling we implemented in Promela a so-called variable time advance

procedure [15]. For this case study these techniques proved sufficient to verify the
design of the controller and derive (time-)optimal schedules with very reasonable
time and space requirements.

The rest of this paper is organised as follows: section 2 gives a description of the
batch plant, the nature of PLCs and a description of the control program that
was systematically designed in [12]. Section 3 describes the Promela models for
the plant and the control process, and their use for the formal verification and
optimization. Section 4 contains the conclusions.

2 Description of the system

The system of the case study is basically an embedded system, consisting of
a batch plant and a Programmable Logic Controller (PLC), both of which are
described in more detail below. The original goal of the case study was to write a
control program such that the batch plant and the PLC with its control program
together behave as intended. The intended behaviour is that, first, new batches
can always be produced, and second, in the second place, that the control sched-
ule is time optimal, i.e. the average time to produce a batch is minimal.

2.1 Description of the batch plant

The batch plant (see Figure 1) of the case study is an experimental chemical
process plant, originally designed for student exercises. We describe its main
features below; a more detailed account can be found in [9]. The plant “produces”
batches of diluted salt solution from concentrated salt solution (in container B1)
and water (in container B2). These ingredients are mixed in container B3 to

obtain the diluted solution, which is subsequently transported to container B4
and then further on to B5. In container B5 an evaporation process is started.
The evaporated water goes via a condenser to container B6, where it is cooled
and pumped back to B2. The remaining hot, concentrated salt solution in B5 is
transported to B7, cooled down and then pumped back to B1.

The controlled batch plant is clearly a hybrid system. The discrete element is
provided by the control program and the (abstract) states of the valves, mixer,
heater and coolers (open/closed, on/off). Continuous aspects are tank filling
levels, temperatures, and time. The latter can be dissected into real-time phe-
nomena of the plant on the one hand, such as tank filling, evaporation, mixing,
heating and cooling times, and the program execution and reaction times (PLC
scan cycle time), on the other. The controller of the batch plant is a nice example
of an embedded system: the controlling, digital device is part of a larger physical
system with a particular functionality.

For the case study we decided to fix the size of a batch: the material is either
4.2l salt solution with a concentration of 5g/l and 2.8l water or, if mixed, 7l
salt solution of 3g/l concentration. With these batch sizes containers B1, B2,
B4, B6 and B7 are capable of two “units” of material, B3 and B5 only one
“unit” of material. The plant description in [9] contains also durations for the
transport steps from one tank to another. In our (timed) plant model we used
these durations as our basis, although the actual durations might possibly be
different.

B1–B3 B2–B3 B3–B4 B4–B5 heat B5 B5–B7 cool B6 cool B7 B6–B2 B7–B1

320 240 70 350 1100 280 300 600 240 220

Table 1. Duration of plant processes in seconds

2.2 Programmable Logic Controllers

PLCs are special purpose computers designed for control tasks. Their area of
application is enormous. Here, we briefly emphasize the main characteristics of
PLCs in comparison to “usual” computers.

The most significant difference is that a program on a PLC runs in a permanent
loop, the so called scan cycle. In a scan cycle the program in the PLC is executed
once, where the program execution may depend on varible values stored in the
memory. The length of a scan cycle is in the range of milliseconds, depending
on the length of the program. Furthermore, in each scan cycle there is a data
exchange with the environment: a PLC has input points connected via an in-
terface with a dedicated input area of its memory, and the output area of the
memory is connected via an interface with the output points of the PLC. On the
input points the PLC receives data from sensors, on the output points the PLC

LIS
101

QI
102

LIS
201

QI
202

LIS
301

QI
302

LIS
401

FIS
801

LIS
501

QIS

TI

502

503

LIS
601

TIS
602

LIS
701

TIS
702

PIS
1001

PIS
901

B1 B2

B3

B4

K1

B6B5

B7

P1 P2

V2

V1

V3

V8 V9

V7

V6 V4

V5

V13

V11

V12

V29

V14

V15

V17

V16

V10

V18

V19

V21V23

V27 V20

V24

V25 V28V26 V22

cooling
water

salt

cooling
water

cooling
water

H O2

H O2

Fig. 1. The P/I-Diagram of the Batch Plant

sends data to actuators. Finally, there are some activities of the operating sys-
tem (self checks, watchdogs etc.) that take place in a scan cycle. The operating
system itself is small and stable, which is prerequisite for reliable real-time con-
trol. PLC programs are developed and compiled on PCs in special programming
environments and can be loaded to the PLC. There are different programming
languages collected in a standard [8]. In our application we used Sequential Func-
tion Charts (SFC), a graphical language that is related to Petri-Nets, and the
program executed in each scan cycle depends on the places that are active at the
moment. In this sense SFC provides a meta-structure and the actual instructions
of our application are written in Instruction List, an assembly-like language. In
these languages it is possible to make use of timers which is also a difference to
the programming languages we usually deal with.

The scan cycle mechanism makes PLCs suitable for control of continuous pro-
cesses (tight loop control). However, it has to be guaranteed that the scan cycle
length is always below the minimal reaction time that is required by the plant to
control the entire system. In this case study the scan cycle time is a few orders
of magnitude smaller than what the reaction time has to be. The execution time
of a scan cycle is in the range of a few milliseconds. For some applications the
timing behaviour in this range is relevant, e.g. for machine control. For our chem-
ical plant it is not relevant: it does not really matter whether a valve closes 10
ms earlier or later. This property is relevant when modelling the whole system.
Here, we can model the PLC as if executing “time-continuously”, i.e. a scan cycle
takes place in zero time. In comparison to the PLC the plant is so “slow” that
it cannot distinguish a real PLC with scan cycles form an ideal time-continuous
control. For a more detailed discussion of modelling PLCs see [11].

2.3 The control program

The goal of this section is to describe our view on the plant and the control
program as we used it in an informal way. Its formal derivation and our other
verification activities are presented in [12].

In the plant we identified a number of transport processes, such as transport
of 4.2l salt solution from container B1 to B3. All possible transport processes,
the evaporation process and two cooling process lead to a number of 12 parallel
processes. The activities in each process are simply to open some valves, switch
on a mixer, pump or heater, and when the process finishes, close and switch off
everything again. Each process starts its activities if its activation conditions

are fulfilled, and is in a wait state otherwise. An active process (state) remains
active until its postconditions are fulfilled. Then it gets back in the waiting
state. With this approach we have a so called closed loop control: the criterion
to change a state is not that time proceeded, but an event occurs. The structure
of the program is easy to find back in the SFC (Sequential Function Chart)
representation in Figure 2.

wait1

P1

Θ1

result1

wait12

P12

Θ12

result12

START

true

wait2

P2

Θ2

result2

. . .

Fig. 2. The control program in Sequential Function Chart

Control starts in the state “START” and (because the transition condition is
“true”) immediately distributes to the 12 parallel wait states. In a wait state a
process does nothing. If control comes to state Pi, the program attached to state
Pi is executed in every scan cycle as long as control remains in Pi. The programs
attached to P1, . . . , P12 are contained in figure 3 in the so called Instruction
List (IL) format. The instructions of IL are assembly-like. Here, we mainly load
the constants true or false to the accumulator and write the accumulator value
to the variables, e.g., Vi, representing the valves. The action qualifier P1 (at the
top of each program) indicates that the instructions right to it are only executed
in the first scan cycle when control is here; P0 says that the instructions are only
executed in the last scan cycle when control is in this location.

The main complexity of the program is hidden in the activation conditions Θi.
We assume to have a predicate Pi.X for each step Pi indicating whether control is
at the corresponding step or not (these variables are available in PLC programs).
The conditions to start a process (i.e. step) are infomally the following:

1. The filling levels of the tanks must allow for, e.g., a transport step: the upper
tank must contain enough material, the lower tank must contain enough
space, etc. These conditions are encoded in the predicates Φi of Figure 4.

2. We do not want a tank to be involved in two processes at a time. E.g.,
when transferring solution from B4 to B5 there should not be a concurrent
transfer from B3 to B4. This requirement can be formulated by conditions on
valves: when solution is transferred from B4 to B5 valve V11 must be closed
for the duration of the transfer (invariant). These requirements induce a
conflict structure on the processes. It is required that control is never at two
conflicting processes at the same time. This condition is split into two parts:
first, control cannot go to a process if a conflicting process is alraedy active.

These conditions are encoded in the predicates Ψi of Figure 5. Second, when
conflicting processes could get control at the same moment only the one
having priority gets it. These priorities are fixed, and their priority graph is
cycle free. They induce the predicates Θi in figure 6.

P1 : P1 LD true
ST V8

P0 LD false
ST V8

P2 : P1 LD true
ST V9

P0 LD false
ST V9

P3 : P1 LD true
ST V8
ST Mixer

P0 LD false
ST V8
ST Mixer

P4 : P1 LD true
ST V9
ST Mixer

P0 LD false
ST V9
ST Mixer

P5 : P1 LD true
ST V11

P0 LD false
ST V11

P6 : P1 LD true
ST V12

P0 LD false
ST V12

P7 : P1 LD true
ST Heater

P0 LD false
ST Heater

P8 : P1 LD true
ST V15

P0 LD false
ST V15

P9 : P1 LD true
ST V17

P0 LD false
ST V17

P10: P1 LD true
ST V29

P0 LD false
ST V29

P11: P1 LD true
ST V18
ST V23
ST V22
ST V1
ST V3
ST Pump1

P0 LD false
ST V18
ST V23
ST V22
ST V1
ST V3
ST Pump1

P12: P1 LD true
ST V20
ST V24
ST V25
ST V5
ST V6
ST Pump2

P0 LD false
ST V20
ST V24
ST V25
ST V5
ST V6
ST Pump2

Fig. 3. Instruction List Programs for steps P1. . . . , P12

The execution mechanism of PLCs guarantees a synchronous execution of paral-
lel steps: in each scan cycle each program attached to an active step is executed
once. It is this synchronous mechanism that makes the conditions Θi to have
the intended effect.

Φ1 := (B1 = sol42C ∨ B1 = sol82C) ∧ B3 = empty
Φ2 := (B2 = water28C ∨ B2 = water56C) ∧ B3 = empty
Φ3 := (B1 = sol42C ∨ B1 = sol82C) ∧ B3 = water28C
Φ4 := (B2 = water28C ∨ B2 = water56C) ∧ B3 = sol42C
Φ5 := B3 = sol70C ∧ (B4 = empty ∨ B4 = sol70C)
Φ6 := (B4 = sol70C ∨ B4 = sol140C) ∧ B5 = empty
Φ7 := B5 = sol70C ∧ (B6 = empty ∨ B6 = water28C ∨ B6 = water28H)
Φ8 := B5 = sol42H ∧ (B7 = empty ∨ B7 = sol42C ∨ B7 = sol42H)
Φ9 := B7 = sol42H ∨ B7 = sol84H
Φ10 := B6 = water28H ∨ B6 = water56H
Φ11 := (B7 = sol42C ∨ B7 = sol84C) ∧ (B1 = empty ∨ B1 = sol42C)
Φ12 := (B6 = water28C ∨ B6 = water56C) ∧ (B2 = empty ∨ B2 = water28C)

Fig. 4. The tank filling conditions

Ψ1 := Φ1 ∧ ¬ P2.X ∧ ¬ P4.X ∧ ¬ P5.X ∧ ¬ P11.X
Ψ2 := Φ2 ∧ ¬ P1.X ∧ ¬ P3.X ∧ ¬ P5. X ∧ ¬ P12.X
Ψ3 := Φ3 ∧ ¬ P2.X ∧ ¬ P4.X ∧ ¬ P5.X ∧ ¬ P11.X
Ψ4 := Φ4 ∧ ¬ P1.X ∧ ¬ P3.X ∧ ¬ P5. X ∧ ¬ P12.X
Ψ5 := Φ5 ∧ ¬ P1.X ∧ ¬ P2.X ∧ ¬ P3.X ∧ ¬ P4.X ∧ ¬ P6.X
Ψ6 := Φ6 ∧ ¬ P5.X ∧ ¬ P7.X ∧ ¬ P8.X
Ψ7 := Φ7 ∧ ¬ P6.X ∧ ¬ P8.X ∧ ¬ P10.X ∧ ¬ P12.X
Ψ8 := Φ8 ∧ ¬ P6.X ∧ ¬ P7.X ∧ ¬ P9.X ∧ ¬ P11.X
Ψ9 := Φ9 ∧ ¬ P8.X ∧ ¬ P11.X
Ψ10 := Φ10 ∧ ¬ P7.X ∧ ¬ P12.X
Ψ11 := Φ11 ∧ ¬ P1.X ∧ ¬ P3.X ∧ ¬ P8.X ∧ ¬ P9.X
Ψ12 := Φ12 ∧ ¬ P2.X ∧ ¬ P4.X ∧ ¬ P7.X ∧ ¬ P10.X

Fig. 5. A process may not start if a conflicting process is active

Θ1 := Ψ1 ∧ ¬ Ψ5

Θ2 := Ψ2 ∧ ¬ Ψ1 ∧ ¬ Ψ3 ∧ ¬ Ψ5

Θ3 := Ψ3 ∧ ¬ Ψ5

Θ4 := Ψ4 ∧ ¬ Ψ1 ∧ ¬ Ψ3 ∧ ¬ Ψ5

Θ5 := Ψ5 ∧ ¬ Ψ6

Θ6 := Ψ6 ∧ ¬ Ψ7 ∧ ¬ Ψ8

Θ7 := Ψ7

Θ8 := Ψ8 ∧ ¬ Ψ7

Θ9 := Ψ9 ∧ ¬ Ψ8

Θ10 := Ψ10 ∧ ¬ Ψ7

Θ11 := Ψ11 ∧ ¬ Ψ1 ∧ ¬ Ψ3 ∧ ¬ Ψ8 ∧ ¬ Ψ9

Θ12 := Ψ12 ∧ ¬ Ψ2 ∧ ¬ Ψ4 ∧ ¬ Ψ7 ∧ ¬ Ψ10

Fig. 6. Of two conflicting processes only the one with priority may get active

3 Verification and optimization with Spin

This section describes our approach to the verification of the PLC program of
Figure 2 and its subsequent optimisation. For the verification we constructed
a model of the control program and the plant in Promela, while completely
abstracting away from time. We used the model checker Spin to check that all
execution sequences of the combined model satisfy the property that “always
eventually batches are produced”. This implies that under ideal circumstances,
in which no material is lost through leakage or evaporation, control is such that
new batches will always be produced. The details of the verification procedure
are given in section 3.1; the technical conclusions are given in section 4.

To obtain also optimal schedules for the plant, in the sense that the average
production time of a batch is minimal, we refined the Promela model by including
light-weight real-time features. These sufficed find optimal scheduling sequences
as counter-examples to properties stating suboptimal behaviour (cf. [4, 14]). This
approach is described in more detail in section 3.2, with conclusions in section 4.

3.1 Correctness of the PLC program

Both the plant as described in section 2.1, and the informal control program
description of section 2.3 can be translated into Promela in a straighforward
way, the crucial part of the modelling exercise being the real-time properties of
the plant in combination with the PLC execution mechanism given in section
2.2. In this case there are two basic principles that allow us to deal with the
entire system by essentially abstracting away from time (see also [11] for a more
general account in the context of PLCs):

1. The control program works independently of the time that the production
steps take. Therefore, in the model each of the production steps P1, . . . ,
P12 may take some unspecified time: if activated (e.g. by opening a valve)
it goes to an undefined state that it eventually will leave to reach the final
state where the result property holds. By this way of modeling every timing
behaviour of the plant is subsumed, including the real one. If we can prove
correctness for this general case, then correctness of the special case follows.

2. The excution speed of the control program is much faster than the toler-
ance of the plant processes, as was already mentioned above. This has two
important implications:

– we can abstract away from the scan cycle time and assume that scan
cycles are executed instantaneously.

– we can assume that the plant is continuously scanned so that state
changes are detected without (significant) delay.

In our Promela model of the control program scan cycles are made instantaneous
using the atomic construct. The model of the combined behaviour of the plant
and the control program is obtained by putting the models of the control process

and all the plant processes in parallel. Doing this, we must make sure that the
continuous execution of the control program does not cause a starvation of the
plant processes. This is taken care of by allowing only fair executions in Spin of
our Promela model: in each execution no active process may be ignored indefi-
nitely. We must be careful, however, not to lose the other important property,
viz. that each state change of the plant is detected “immediately”. Our model
takes care of this by forcing a control program execution after each potential
state change of the plant.

The Promela model of this case study is too big to be part of this paper. The
full version can be retrieved from [2]. Here we present two excerpts, one of
the plant model and one of the control program model, to illustrate its main
features. Figure 7 contains the Promela process that models the transportation of
solutions from container B1 to B3. It models the combined behaviour underlying
steps S1 and S3.

The model consists of a do-loop that continuously tries to start the transfer of
a unit of salt solution from B1 to B3 (corresponding to steps S1 and S3 of the
specification). If the right conditions are fulfilled control will enter the body of
the loop, and will mark the beginning of the transfer step by instantaneously
(using the Promela atomic construct) changing the contents of both contain-
ers to undefined transitional states. At some later moment it will execute the
second part of the body, instantaneously changing the transitional states to the
corresponding terminal states, corresponding to the end of the transfer. Here,
we have also added an assert statement between these two atomic statements,
expressing an invariant that must always hold between the beginning and end
of the tranfer step. As this may create a lot of extra states in the verification
model this assertion can be removed to improve the performance when checking
other properties.

Other observations that may help to understand this Promela model are:

– The cycle variable is a global flag that forces the excution of a scan cycle
after the execution of each atomic step in the plant (flag is raised at the end
of each such atomic step). After the execution of a scan cycle (also modelled
as an atomic process, see below) the flag is lowered. Each atomic step in the
plant is guarded by the test cycle==0.

– The Promela model combines steps in the plant that involve the same set of
containers into one process. This reduces the number of processes that must
be scheduled fairly.

– The Promela model of the plant models the transportation steps from a
“physical” attitude and imposes fewer conditions for a transportation to
take place that the formal plant specification in the corresponding steps.
E.g. for transportation from B1 to B3 to take place it is only required that
B1 is not empty and valve V8 is open.

– To compensate for this all illegal and unwanted states of the plant are ex-
plicitly modelled as error states (error is defined as assert(false)) whose

proctype B1toB3()
{ do

:: atomic{ (cycle==0 && B1!=cempty && v8) ->
if

:: (B1==sol42C) -> B1=undef1
:: (B1==sol84C) -> B1=undef2
:: else -> error

fi ;
if

:: (B3==cempty) -> B3=undef1
:: (B3==water28C && mix) -> B3=undef2
:: else -> error

fi ;
cycle=1

} ;
assert(v8 && (B3!=undef2 || mix)) ;

atomic{ (cycle==0 && v8) ->
if
:: (B1==undef1) -> B1=cempty

:: (B1==undef2) -> B1=sol42C
:: else -> error

fi ;
if
:: (B3==undef1) -> B3=sol42C

:: (B3==undef2 && mix) -> B3=sol70C
:: else -> error

fi ;
cycle=1

}
od

}

Fig. 7. The Promela model of transfer between B1 and B3

proctype Control()
{ int i,j ;

do

:: atomic{ i=1 ; j=1 ;
do

:: (i<15) ->
if

:: (theta(i,j) && !px[procnr(i)]) -> PB1(i)
:: (result(i,j) && px[procnr(i)]) -> PB0(i)
:: else -> skip

fi ;
if

:: (j==1) -> j=2
:: (j==2) -> j=1 ; i=i+1
fi

:: (i==15) -> goto endcycle
od ;

endcycle: cycle=0
}

od
}

Fig. 8. The Promela model of the control process

reachability can be checked. This approach gives us more information about
the robustness of our controller.

The Promela process that models the control program is listed in Figure 8. This
is a straightforward translation of the PLC program of Figure 3.

The do loop of Control repeatedly executes an atomic scan cycle, in which
the processes P1,. . . ,P12 are scheduled sequentially. To deal with the symmetric
subcases of each step (i.e. the disjuncts between brackets in Figure 4) we need
a second loop counter j next to the main counter i (because P11 and P12 in
fact have 4 subcases P11 is covered by i∈ {11, 12} and j∈ {1, 2}, and P12 by
i∈ {13, 14} and j∈ {1, 2}). Modulo these small adaptations the theta(i,j)

correspond to the Θ-predicates of Figure 6, and the result(i,j) correspond to
analoguous formalisation of result conditions of the PLC program (the uninstan-
tiated resulti labels of Figure 2). PB1(i) and PB2(i) correspond to the code of
the P1 part, and the P0 part of the PLC program, respectively. The variables
px[i] correspond to the Pi.X activity predicates of the program mentioned ear-
lier. Note that at the end of each scan cycle the global flag cycle is lowered, as
required.

Whereas the assertions in the model served to check on our own understanding
the model, the main correctness requirement that “always eventually a new
batch is produced” was verified using the Spin facilities for model checking LTL
formulas. The requirement was formalized as the following LTL property:

� ♦ (B3 == sol70C) ∧ � ♦ (B3 == cempty) (1)

expressing that the contents of container B3 (containing the brine solution that
is considered the “production” of the plant) is infinitely often full and infinitely
oftem empty (the constant cempty was chosen to be different from the Promela
reserved word empty). As these two properties must interleave in each linear
execution sequence they are equivalent to the desired requirement.

It turned out to be feasible to run the model checker sequentially on our model
initialised with material for 0 up to 8 batches (including the intermediate differ-
ent possibilities for half batches; 30 runs in total). In order to avoid the explosion
of the more than 8100 possible initial configurations that are in principle possi-
ble, we considered only configurations filling the plant “from the top”, i.e. filling
tanks in the order B1,. . . ,B7. The other initializations are reachable from these
by normal operation of the plant. As satisfaction of the property that we checked
(see below) for our initial configurations implies its satisfaction for all reachable
configurations this is sufficient. Using simulations of our model we satisfied our-
selves that our model did include the required normal operation steps (here,
model checking would run into the same combinatorial explosion).

After initial simulations and model checking runs had been used to remove
small (mainly syntactic) mistakes from our model, the model was systematically
checked for property (1) for the 30 initializations with different batch volumes

described above. No errors were reported, except for initializations with batch
volumes 0, 0.5, 7.5 and 8, as should be the case. The model checking was done
using Spin version 3.3.7 on a SUN Enterprise E3500-server (6 SPARC cpus with
3.0 GB main memory). The model checking was run in exhaustive state space
search mode with fair scheduling. The error states reported unreachable in all
runs. The shortest runs were completed in the order of seconds and consumed in
the order of 20MB memory; the longest run required in the order of 40 minutes
and 100MB.

3.2 Deriving optimal schedules

The control schedule of Figure 2 that we have shown to be correct by the pro-
cedure sketched in the previous subsection, follows an essentially crude strategy.
After each scan cycle it enables all non-conflicting processes in the plant whose
preconditions it has evaluated to hold true. It is not a priori clear that this strat-
egy would also lead to a plant operation that is optimal in the sense that the
average time to produce a batch is minimal.

To determine optimal schedules for the various batch loads of the plant we have
refined the models of the previous section as follows:

1. We added a notion of time to the model. To avoid an unnecessary blow-
up of the state space due to irrelevant points in time, i.e. times at which
nothing interesting can happen, we have borrowed an idea from discrete
event simulation, viz. that of variable time advance procedures [15].

2. We refined the plant model using the information from Table 1, such that
each process in the plant will take precisely the amount of time specified.

3. We refined the model of the control program such that after each scan cycle
any non-empty subset of the maximal set of allowed non-conflicting processes
determined by the original control program could be enabled.

The search for optimal schedules was then conducted by finding counterexamples
for the claim:

�(batches < N) (2)

where batches is a global variable that counts the number of times that a brine
solution is transferred from B3 to B4. This property is checked for increasing
values of N in the context of a given maximal clock value maxtime. The assump-
tion is that for maxtime large enough such counterexamples will display regular
scheduling patterns. Below, we elaborate on each of the above points and the
search procedure.

A variable time advance procedure In real-time discrete event systems
events have associated clocks that can be set by the occurrence of other events.

An event occurs when its clock expires. Such systems can be simulated by cal-
culating at each event occurrence the point in time at which the next event will
occur, and then jumping to that point in time. This is known as variable time

advance.

We wish to apply this idea to our model because it will not litter the global
state space with states whose time component is uninteresting, in the sense that
there is no process in the plant that begins or ends. As we can only calculate
when plant processes will end once they have started, we can only use this
time advance procedure if we assume that processes will always be started when
others end (or at time 0). It is not difficult to see, however, that we will not lose
schedules this way that are strictly faster than what we can obtain using this
policy. The informal argument is as follows: assume that a derived scheduling
policy can be strictly improved by postponing a given event e by some time t .
Because we are optimising w.r.t. time (and not energy or resource utilisation or
the like), the more optimal schedule must exploit this time to start a conflicting

process (ending a conflicting process would have prevented e in the original
schedule; any event associated with a non-conflicting process can be executed
anyway). Because this process is conflicting it must also finish before e occurs.
We may therefore assume that in any optimal schedule e is excuted when the
last preceding conflicting process ends.

The variable time advance procedure is implemented by the Promela process
Advance given in Figure 9. The basic idea of Advance is quite simple: when it
becomes active it will calculate the next point in time when a plant process will
terminate. To do so it uses the global array ptime(i) containing the termination
times of the processes i, whose values are calculated as part of the Promela pro-
cesses modelling the plant, and the global time variable time, which is controlled
by Advance. maxstep is a global constant corresponding to the longest possible
time step in the model, i.e. the duration of the heating process. All variables
related to time are of type short, a unit corresponding to 10 seconds in Table 1
as al its entries are multiples of 10 seconds. Advance will be activated only when
the predicate promptcondition holds. This predicate is true if and only if all
processses that have been enabled by the control program have indeed become
active and none has terminated.

The refined plant model The refined model of the plant differs from the
original model in the folowing respects:

– The (atomic) start event of each plant process is used to calculate the ter-
mination time of that process.

– The termination event of each plant process is guarded with the additional
condition that the global time time must equal the calculated termination
time.

– The start and termination events include printf statements to record acti-
vation and termination times to enable the analysis of simulated executions
(of the counterexample trails).

proctype Advance()
{ int i ; short minstep ;

do
:: atomic{(promptcondition) ->

minstep=maxstep ; i=1 ;

do
:: (i<13) ->

if
:: (px[i] && ((ptime(i)-time)<minstep)) ->

minstep=(ptime(i)-time)
:: else -> skip
fi ;

i=i+1
:: (i==13) -> goto step

od ;
step: time=time+minstep

}
od

}

Fig. 9. The Promela model of the time advance process

The refined control model To allow the new model of the control program
to enable any nonempty subset of the permissable plant process start events, we
have split the loop of the original model of Figure 8, resulting in Figure 10. The
first of the two loops scans only for termination conditions of plant processes and
executes the corresponding control fragments PB0(i). The second loop subse-
quently scans the valid preconditions of the plant processes. The corresponding
control fragments PB1(i) may or may not be executed. If not, the process num-
ber is stored in the local variable last, possibly overwriting a previous value. If
the second loop is exited without any processes being active (act is false), then
the process with number last is activated.

The idea to retrospectively activate the last plant process that could have been
activated to prevent the plant from becoming inactive, cannot be implemented
in the original, single control loop. There, plant process terminations occuring
after the evaluation of the precondition corresponding to last could invalidate
the precondition, rendering subsequent activation impossible.

Both loops of the new version are contained in a new outer loop that monitors
the progress of time and will stop control if time exceeds maxtime. This will
cause the combined plant and control model to terminate.

Finding optimal schedules Finding optimal schedules we restricted ourselves
to the interesting cases involving initial plant loads of 1 through 7 batches. For
our initial experiments we fixed maxtime to be 5000 time units (50,000 s). For
each initial load we needed two or three runs to determine the maximal number
of batches for which counterexamples could be produced in a very short time (in
the order of seconds real time). It turned out that all counterexamples produced
contained schedules that rapidly (i.e. within 300 time units) converged to a
repeating pattern with a fixed duration.

The initial measurements are collected in Table 2. The interpretation of the
columns is as follows:

– load: indicates the number of batches with with the plant is initialised,
– simtime: indicates the the duration (in simulated time units) of the coun-

terexample traces,
– batches: the number of batches produced in that trace,
– states: the number of states visited to produce the trace,
– transitions: the number of transitions visited to produce the trace,
– convergence: the convergence time until periodic behaviour,
– period: period time of periodic behaviour.

A first analysis of Table 2 shows the state space that needs to be searched to
produce the counterexamples is very small, and could make one suspicious of the
quality of the results that are obtained. Surprisingly enough, five of the measured
periods turn out to be optimal schedules! For loads with 1 and 7 batches this can
be readily checked by hand by moving a single batch through the plant, or the
empty space for a batch (the total volume of the plant is 8 batches), respectively,
and measuring the total duration of the critical branches of the path.

Initially, we thought that we had made a mistake when we measured the same
period of 173 units for loads 2, 3 and 4. Closer analysis of the schedules, however,
revealed that this is the result of the fact that the plant has one process that
clearly dominates the time consumption during the production of batches, viz.
the heating of container B5 (110 time units). Since filling B5, heating it, and
emptying B5 must be part of every production cycle, the average production
time of a batch must be greater or equal then 35+110+28=173 time units. This
makes the schedules underlying the period of 173 for loads 2, 3 and 4 optimal
schedules as well.

load simtime batches states transitions convergence period

1 4767 17 1185 1510 56 294
2 4682 28 1916 2450 56 173
3 4972 31 2063 2639 294 173
4 4886 30 2031 2598 208 173
5 3761 20 1449 1866 208 197
6 3885 20 1567 2072 173 195
7 4340 17 1202 1532 173 260

Table 2. Initial schedule measurements

The previous observation made us think that schedules for loads 5 and 6 could
be improved upon, as they are in some sense dual to the cases for loads 2 and
3 (moving empty batch space upwards through the plant instead of batches
downwards). In fact, inspection of the counterexample for load 6 clearly showed

proctype Control()
{ int i,j,last ; bool precon, postcon ;

do
:: (time<maxtime) ->

atomic{i=1 ; j=1 ;
do
:: (i<15) ->

postcon=(result(i,j) && px[procnr(i)]) ;
if

:: postcon -> PB0(i)
:: else -> skip

fi ;
if
:: (j==1) -> j=2

:: (j==2) -> j=1 ; i=i+1
fi

:: (i==15) -> goto loop2
od ;
loop2:

i=1 ; j=1 ; last=1 ;
do

:: (i<15) ->
precon=(theta(i,j) && !px[procnr(i)]) ;

if
:: precon -> PB1(i)
:: precon -> last=i

:: else -> skip
fi ;

if
:: (j==1) -> j=2
:: (j==2) -> j=1 ; i=i+1

fi
:: (i==15) -> goto finish

od ;
finish:

if
:: (!act) -> PB1(last)
:: else -> skip

fi ;
cycle=0

}
:: (time>=maxtime) -> goto endtime
od ;

endtime: skip
}

Fig. 10. The refined model of the control process

that it could be improved. As increasing the number of batches immediately led
to a dramatic increase of the response time for producing counterexamples, we
looked for cheaper ways to get feedback more quickly. There are two dimensions
that determine the state space to be explored, viz. the depth of the search tree
and its branching degree. The first can be made smaller by reducing the value
of maxtime, the second by exploring fewer scheduling alternatives in the control
program.

For the second option we had the original control schedule of Figure 8 at our
disposal. This process does not lead to a completely deterministic scheduling,
because it may make a difference whether the scan cycle is executed once or more
often between plant events. This is because the termination of some processes
later in the scan cycle may enable the beginning of other plant processes earlier
in the (next) scan cycle. The result therefore stabilises after two scan cycles.
Using this much leaner search tree we did in fact find optimal schedules for
loads 5 and 6, again with period 173, in a matter of seconds, see Table 3.

load simtime batches states transitions convergence period

5 3329 20 1380 1761 35 173
6 3467 20 1415 1806 173 173

Table 3. Measurements for loads 5 and 6 with the original control program

Also the first option, reducing the search tree by reducing maxtime, can be
used with success. Reducing the simulated time to 519 time units, we could
find an optimal schedule for a system load of 6 producing 3 batches. This option
required a more extensive search, however, involving more than 4.5 million states,
showing that the optimal schedule here is contained in a part of the tree explored
much later than in the previous examples. We did not systematically apply this
approach to the other loads.

It must be concluded that the plant can be scheduled in the overall optimal
time of 1730 seconds for all loads, except for the extreme loads of 1 and 7.
Because of our analysis above, these are not only time optimal but also resource
optimal schedules, in the sense that the (expensive) destillation container B5 is
in continuous use. From the energy perspective, probably the schedule for load
2 is optimal, as this involves the circulation, heating and cooling of the smallest
volume.

4 Conclusions

In this paper we have shown how the Promela/Spin environment can be used
to verify and optimize control schedules for a small-size PLC controlled batch
plant. The approach in this paper relies quite heavily on the structured design
of an initial control program that can be found in [12] and the analysis of formal
approaches to PLCs in [11].

It is interesting to see that we succeeded in dealing with this real-time embedded
system using standard Promela/Spin. For the verification of the initial control
program this was due to a property of the plant, viz. that we could assume
instantaneous and immediate scanning of all state changes of the plant. This as
a consequence of the tolerance of the plant processes for much slower reaction
times than those realised by the PLC control. This makes us conclude that this
abstraction can be used for checking non-timed correctness criteria in all process
control problems that have this property.

The original task we set ourselves was just to check the correctness of the plant
control in the sense that the designed program would in principle always be ca-
pable of producing more batches for any reasonable initial load. Having achieved
that task we wondered how the model might be used to also look at the optimal-
ity of the schedules. As we wanted to treat this in terms of small modifications
of the model only, we added time in the form of an explicit time advancing pro-
cess. This is very close in spirit to the real-time Promela/Spin extension DTSpin
[1]. Given the particular properties of the plant, however, viz. that without loss
of optimality plant processes can be assumed to start when others terminate,
we could do this by only generating those points in time in which plant events
could take place. From the schedules that we obtained we can conclude that in
this case study this variable time advance procedure reduced the generated state
space by approximately a factor of 20.

On the basis of our modified model we could find optimal schedules surprisingly
quickly. This is certainly due to the particular characteristics of the given plant,
with its very critical heating process. Also, we have been lucky in the sense
that the optimal schedules often were found in those parts of the search tree
that were explored earlier. Counterexamples were produced so quickly, in fact,
that the gain of the factor of 20 by using the time advance procedure seemed
immaterial. There is one exception, however, viz. searching the optimal schedule
for load 6 using the refined (nondeterministic) Control process. By drastically
reducing maxtimewe obtained an optimal schedule while storing some 4.5 million
states. Given the 132 byte state vector, in this case the reduction factor of 20
appears very useful. Although more experiments are certainly needed, we believe
that variable time advance procedures can be useful for this kind of application.
One way to think of them is as an explicitly programmed analogon of the notion
of time regions as in timed automata [3]. Taking advantage of specific properties
of systems such as ours an explicit approach can sometimes yield better results.

To apply our technique for finding optimal schedules, viz. by generating coun-
terexamples for claims of suboptimal behaviour, in more general cases, it would
be useful to be able to influence the search strategy of the model checker more
directly and guide the search first into those parts of the search trees where
counterexamples are likely to be found. [5] discusses how branch and bound al-
gorithms could be used for such purposes, especially in the context of model
checking for timed automata (UPPAAL [10]). Our results indicate that it can
be wortwhile to investigate such guided search methods also for non-real time
model checkers like Spin.

Another study of the optimal scheduling for the VHS case study 1 is reported
in [13]. Here the problem is analysed using the tools OpenKronos and SMI. It
is difficult to compare the results of this approach directly with ours, as they
include also the production of the initial loads into their schedules, which we
just assume to be present. The more general findings seem to be consistent
with ours, however. OpenKronos could be used succesfully to produce optimal
schedules for loads of up to 3 batches before falling victim to the state explosion
problem. The symbolic model checker SMI produced results 6 batches and more,
with a computation time of approximately 17 minutes per batch.

References

1. Dtspin homepage. http://www.win.tue.nl/~dragan/DTSpin.html.
2. VHS: Case study 1 sources. http://www.cs.kun.nl/~mader/vhs/cs1.html.
3. R. Alur and D.L. Dill. A theory of timed automata. Th. Computer Science,

(138):183–335, 1994.
4. A. Fehnker. Scheduling a steel plant with timed automata. In Sixth International

Conference on Real-Time Computing Systems and Applications (RTCSA’99).
IEEE Computer Society Press, 1999.

5. A. Fehnker. Bounding and heuristics in forward reachability algorithms. Technical
Report CSI-R0002, University of Nijmegen, Netherlands, February 2000.

6. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: a model checker for hybrid
systems. Software Tools for Technology Transfer, (1):110–123, 1997.

7. G.J. Holzmann. The model cheker spin. IEEE Trans. on Software Eng., 23(5):279–
295, May 1997.

8. International Electrotechnical Commission. IEC International Standard 1131-3,
Programmable Controllers, Part 3, Programming Languages, 1993.

9. S. Kowalewski. Description of case study cs1 ”experimental batch plant”.
http://www-verimag. imag.fr/VHS/main.html, July 1998.

10. K.G. Larsen, P. Petterson, and W. Yi. Uppaal in a nutshell. Software Tools for
Technology Transfer, (1):134–153, 1997.

11. A. Mader. A classification of PLC models and applications. submitted to WODES,
2000.

12. A. Mader, E. Brinksma, H. Wupper, and N. Bauer. Design of a plc con-
trol program for a batch plant - vhs case study 1. submitted for publication,
http://www.cs.kun.nl/~ mader/papers.html, 2000.

13. Peter Niebert and Sergio Yovine. Computing optimal operation schemes
for multi batch operation of chemical plants. VHS deliverable, May 1999.
http://www-verimag.imag.fr/VHS/main.html.

14. Th. Ruys and E. Brinksma. Experience with literate programming in the modelling
and validation of systems. In B. Steffen, editor, Tools and Algorithms for the
Construction and Analysis of Systems, volume 1384 of Lecture Notes in Computer
Science, pages 393–408. Springer-Verlag, 1998.

15. G.S. Shedler. Regenerative Stochastic Simulation. Academic Press, 1993.
16. F.W. Vaandrager and J.H. van Schuppen. Hybrid Systems: Computation and Con-

trol, volume 1569 of Lecture Notes in Computer Science. Springer-Verlag, 1999.
17. S. Yovine. Kronos: a verification tool for real-time systems. Software Tools for

Technology Transfer, (1):123–134, 1997.

