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Abstract

Asynchronous stochastic systems are abundant in the real world. Examples include queuing systems, tele-

phone exchanges, and computer networks. Yet, little attention has been given to such systems in the model

checking and planning literature, at least not without making limiting and often unrealistic assumptions re-

garding the dynamics of the systems. The most common assumption is that of history-independence: the

Markov assumption. In this thesis, we consider the problems of verification and planning for stochastic pro-

cesses with asynchronous events, without relying on the Markov assumption. We establish the foundation

for statistical probabilistic model checking, an approach to probabilistic model checking based on hypothe-

sis testing and simulation. We demonstrate that this approach is competitive with state-of-the-art numerical

solution methods for probabilistic model checking. While the verification result can be guaranteed only

with some probability of error, we can set this error bound arbitrarily low (at the cost of efficiency). Our

contribution in planning consists of a formalism, the generalized semi-Markov decision process (GSMDP),

for planning with asynchronous stochastic events. We consider both goal directed and decision theoretic

planning. In the former case, we rely on statistical model checking to verify plans, and use the simulation

traces to guide plan repair. In the latter case, we present the use of phase-type distributions to approximate a

GSMDP with a continuous-time MDP, which can then be solved using existing techniques. We demonstrate

that the introduction of phases permits us to take history into account when making action choices, and this

can result in policies of higher quality than we would get if we ignored history dependence.
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Chapter 1

Introduction

Stochastic processes with asynchronous events (and actions) are abundant in the real world. The canonical

example is a simple queuing system with a single service station, for example modeling your local post

office. Customers arrive at the post office, wait in line until the service station is vacant, spend time being

serviced by the clerk, and finally leave. We can think of the arrival and departure (due to service completion)

of a customer as two separate events. There is no synchronization between the arrival and departure of cus-

tomers, i.e. the two events just introduced are asynchronous, so this is clearly an example of an asynchronous

system. Other examples of asynchronous systems include telephone exchanges and computer networks.

When we talk about stochastic processes, we are primarily concerned with random variations in the

timing of events, for example the duration of a phone call (timing of a “hang up” event) or the lifetime of

an electronic component (timing of a “fail” event). We assume that we are given a probability distribution

accurately capturing the timing of events. We do not concern ourselves with how these probability distribu-

tions are obtained, although we expect them to be based on a collection of empirical measurements to which

we fit an analytic distribution function. For example, the duration of a phone call is typically modeled using

an exponential distribution, while component lifetime often is found to match a Weibull distribution.

1.1 Two Problems

In this thesis, we consider two separate problems concerning stochastic processes with asynchronous events:

verification and planning. For verification, we are given a system, or a model of a system, and are asked

1
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to determine whether the system satisfies some given property. The solution to a verification problem is a

“yes” or “no” answer. In the case of a telephone exchange, for example, we may want to verify that the

probability is at least 0.9999 that no calls are dropped in a 24-hour period. For planning purposes, we inject

a decision dimension into the model, and are asked to find a course of action that will enable a goal to

be attained or some expected reward to be maximized. For instance, for a network of computers, we can

introduce different service actions and then try to find a service policy that will give us the best value.

Verification and planning can be seen as vital steps in the development of functional systems. Through

planning, we obtain a system design, and verification is used to ensure that the system design is satisfactory.

1.1.1 Verification

Probabilistic verification of continuous-time stochastic processes has received increasing attention in the

model checking community in the past five years, with a clear focus on developing numerical solution

methods for model checking of continuous-time Markov processes. Numerical techniques tend to scale

poorly with an increase in the size of the model (the “state space explosion problem”), however, and are

feasible only for restricted classes of stochastic discrete event systems.

We present a statistical approach to probabilistic model checking, employing hypothesis testing and

discrete event simulation. Our solution method works for any discrete event system that can be simulated,

and can be used to verify systems too large for numerical analysis. Since we rely on statistical hypothesis

testing, we cannot guarantee that the verification result is correct, but we can at least bound the probability

of generating an incorrect answer to a verification problem. Another advantage of our model checking

algorithm, as with most statistical solution methods, is that it is trivially parallelizable, so we can solve

problems faster in a distributed fashion by utilizing multiple interconnected computers.

1.1.2 Planning

Planning for stochastic processes with asynchronous events and actions has received little attention in the

artificial intelligence (AI) literature, although some attention has recently been given to planning with con-

current actions. Guestrin et al. (2002) and Mausam and Weld (2004) use discrete-time Markov decision

processes (MDPs) to model and solve planning problems with concurrent actions, but the approach is re-

stricted to instantaneous actions executed in synchrony. Rohanimanesh and Mahadevan (2001) consider
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planning problems with temporally extended actions that can be executed in parallel. By restricting the tem-

porally extended actions to Markov options, the resulting planning problems can be modeled as discrete-time

semi-Markov decision processes (SMDPs).

All three of the approaches cited above model time as a discrete quantity. This is a natural model of

time for synchronous systems driven by a global clock. Asynchronous systems, on the other hand, are best

represented using a dense (continuous) model of time (Alur et al. 1993). Continuous-time MDPs (Howard

1960) can be used to model asynchronous systems, but are restricted to events and actions with exponential

trigger time distributions. Continuous-time SMDPs (Howard 1971b) lift the restriction on trigger time

distributions, but cannot model asynchrony.

We introduce the generalized semi-Markov decision process (GSMDP), based on the GSMP model

of discrete event systems (Glynn 1989), as a model for asynchronous stochastic decision processes. A

GSMDP, unlike an SMDP, remembers if an event enabled in the current state has been continuously enabled

in previous states without triggering. This is key in modeling asynchronous processes, which typically

involve events that race to trigger first in a state, but the event that triggers first does not necessarily disable

the competing events. For example, if a customer is currently being serviced at the post office, the fact that

another customer arrives does not mean that the service of the first customer has to start over from scratch.

By including a real-valued clock for each event in the description of states, we can model a GSMDP as an

MDP, but this will be a general state space, continuous-time MDP.

We present two different solution methods for GSMDPs. First, we consider the problem of planning

for goal achievement, and present a planning framework based on the Generate, Test and Debug (GTD)

paradigm introduced by Simmons (1988). This work ties together our efforts in planning and verification.

The second solution method is based on a decision theoretic framework, and we present the use of phase-

type distributions (Neuts 1981) to approximate a GSMDP with a continuous-time MDP that then can be

solved exactly (or approximately).

1.2 Summary of Research Contribution

Stochastic models with asynchronous events can be rather complex, in particular if the Markov assumption

does not hold, such as if event delays are not exponentially distributed for continuous-time models. Many
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phenomena in nature are, in fact, best modeled with non-exponential distributions, for example, the lifetime

of a product (Nelson 1985) or a computer process (Leland and Ott 1986). Yet, the Markov assumption is

commonly made, and the attention in the AI planning literature, in particular, is given almost exclusively

to discrete-time models, which are inappropriate for asynchronous systems. We believe, however, that the

complexity of asynchronous systems is manageable. More precisely, we set out to provide evidence for the

following statement:

Thesis. Verification and planning for stochastic processes with asynchronous events can be made practical

through the use of statistical hypothesis testing and phase-type distributions.

We will support this statement by developing a set of techniques and tools for verification and planning

with asynchronous events. In verification, we provide a unifying semantics for interpreting probabilistic

temporal logic formulae over general stochastic discrete event systems. We have developed a statistical

approach to probabilistic model checking, based on hypothesis testing and simulation. The main theo-

retical results are Theorems 5.4 and 5.8, which establish the verification procedure for conjunctive and

nested probabilistic statements. We show, through empirical studies, that our approach compares well with

state-of-the-art numerical techniques for model checking Markov processes. We also show that the use of

memoization and heuristics for selecting the verification error of nested probabilistic operators can make

statistical verification of properties with nested probabilistic statements work in practice. Finally, we con-

sider the verification of so called “black-box” systems, which are systems that have already been deployed

and cannot be simulated, and make explicit the assumptions required for it to produce reliable results.

In planning, we establish a framework for stochastic decision processes with asynchronous events. We

consider both goal directed and decision theoretic (reward oriented) planning. For goal directed planning,

we use our statistical model checking algorithm to verify plans. Plans that fail to satisfy a given goal

condition are repaired, and we rely on the execution traces generated during plan verification to find reasons

for failure. We show that the information obtained from the execution traces can help us understand why a

plan fails, and can also be used to guide automated plan repair. For decision theoretic planning, we introduce

the GSMDP model, and show how phase-type distributions can be used to approximate a GSMDP with a

continuous-time MDP. We show, through experiments, that the introduction of phases can help us produce

better policies (in terms of expected reward) by allowing us to take history dependence into account.
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We would like to highlight two tools, in particular, that have come out of our research effort and are now

available to the public. These are YMER1, a tool for probabilistic model checking, and TEMPASTIC-DTP2 ,

which is our decision theoretic planner for GSMDPs.

1.3 Overview of Thesis

This thesis is divided into two parts, corresponding to the two different research problems that we address:

verification and planning. The two parts are to a large extent independent of each other. We rely on the

verification work when we discuss goal directed planning in Chapter 8, but only on an abstract level. The

separation into two largely independent parts is made with a heterogeneous audience in mind. The target

audience for the part on verification is the model checking community, while the part on planning primarily

targets researchers in artificial intelligence. To accommodate readers with a cross-disciplinary inclination,

we provide a comprehensive introduction in Chapter 2 to terminology, notation, and techniques that are

used extensively throughout the remainder of the thesis. Chapter 3 provides the context for our research

contribution with a discussion of related work in probabilistic verification and planning under uncertainty.

Part I consists of a thorough presentation and evaluation of our statistical approach to probabilistic

model checking. We start in Chapter 4 by introducing the unified temporal stochastic logic (UTSL) for

specifying properties of stochastic discrete event systems. UTSL represents a unification of Hansson and

Jonsson’s (1994) PCTL, which has a semantics defined for discrete-time Markov processes, and Baier et al.’s

(2003) version of CSL, which has a semantics defined for continuous-time Markov processes. We provide a

semantics for UTSL that is defined in terms of general stochastic discrete event systems.

Chapter 5 introduces a model checking algorithm for UTSL, based on statistical hypothesis testing.

This work originated in an effort to verify plans for complex stochastic temporal domains, with a focus

on probabilistic time-bounded reachability properties (Younes and Musliner 2002). Time-bounded CSL

properties were later considered (Younes and Simmons 2002b), although with an unsatisfactory solution for

conjunctive and nested probabilistic operators. These shortcomings have now been addressed, and a sound

and practical solution to the verification of properties with nested probabilistic operators is presented for the

1http://www.cs.cmu.edu/˜lorens/ymer.html
2http://www.cs.cmu.edu/˜lorens/tempastic-dtp.html



6 CHAPTER 1. INTRODUCTION

first time in this thesis.

Chapter 6 provides an empirical evaluation of our model checking algorithm and a comparison with

numerical solution methods. The comparative study extends a previously published (Younes et al. 2004)

comparison of statistical and numerical solution methods for probabilistic model checking. The results are

intended as an aid to practitioners when facing a choice between different solution techniques, or when

selecting parameters for a specific solution method.

The model checking algorithm presented in Chapter 5 relies on the ability to generate sample trajectories

for a stochastic discrete event system on demand. In Chapter 7, we consider a situation where this is not

possible, for example, if we want to verify an already deployed system for which we have no model. We

assume that we are provided with a finite set of sample trajectories, and show how to statistically verify

UTSL properties based on this limited source of information about a system. This chapter, which concludes

the part on verification, is based on a previously published technical report (Younes 2004).

In Part II, we consider the problem of planning with asynchronous events and actions. We describe two

complementary approaches. Chapter 8 describes a goal directed approach. We present a general planning

framework for generating stationary policies for controllable stochastic discrete event systems that satisfy

UTSL goal conditions. The statistical model checking algorithm is used for policy verification, and policies

that do not satisfy a given goal condition are repaired. We rely on the sample trajectories generated during

the verification phase to guide the repair effort. This chapter is based on work reported two consecutive

years at ICAPS (Younes et al. 2003; Younes and Simmons 2004a).

A decision theoretic approach to planning with asynchronous events and actions is presented in Chap-

ter 9, where we introduce the generalized semi-Markov decision process (GSMDP). We present the use of

continuous-phase type distributions to approximate a GSMDP with a continuous-time MDP, which can then

be solved exactly. We extend the work of Younes and Simmons (2004c) by considering additional tech-

niques for approximating a general distribution with a phase-type distribution. The “Bellman equation” for

a GSMDP first appeared in a workshop paper (Younes and Simmons 2004b).

Finally, Chapter 10 discusses directions for future work in verification and planning. For verification,

this includes statistical techniques for verifying steady-state properties and the use of symbolic data struc-

tures for faster discrete event simulation. In planning, we call for a formal analysis of optimal GSMDP

planning and discuss the possibility of using value function approximation techniques to solve GSMDPs.



Chapter 2

Background

This chapter introduces terminology and techniques that will be used extensively in later chapters. Readers

already familiar with concepts such as random variable, probability distribution, acceptance sampling, and

stochastic process may still find it useful to read this chapter, as our notation may differ from what they

are used to. In particular, this is the case for standard parametric probability distributions, and we refer the

reader to Table 2.1 for a summary of our notation for important distributions.

2.1 Random Variables and Probability Distributions

Consider the chance experiment of observing the outcome of a die roll. The possible observations are the

integers 1 through 6. For a regular die, we assume that each outcome is equally likely, i.e. outcome i is

observed with probability 1/6. Now, consider a chance experiment that consists of observing the duration

of a phone call. The outcome of this experiment is a positive real number, rather than an integer, and there

is some probability of observing a call with a duration no longer than t.

Formally, we represent a chance experiment with a random variable (Feller 1957; Wadsworth and Bryan

1960), also called a variate. A random variable X can take on any value in an outcome space Ω, and we

associate a non-negative weight f(x) with each possible outcome x ∈ Ω. The outcome space, as illustrated

by the two examples in the previous paragraph, can be discrete or continuous. We assume, for simplicity,

that the outcome space is either the integers or the real numbers. In the former case, we call X a discrete

random variable, while in the latter case X is referred to as a continuous random variable. Impossible

7
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x0 1 2 3 4 5 6 7

f (x)

0

1

Figure 2.1: Probability density function for a discrete

random variable.

x0

f (x)

0

Figure 2.2: Probability density function for a continuous

random variable.

x0 1 2 3 4 5 6 7

F(x)

0

1

Figure 2.3: Cumulative distribution function for a dis-

crete random variable.

x0

F(x)

0

1

Figure 2.4: Cumulative distribution function for a con-

tinuous random variable.

outcomes, for example 7 in the die roll experiment, are assigned zero weight.

The total weight for the outcome space must equal unity. In other words, the weight function f must

satisfy the condition
∫

Ω f(x) = 1. For discrete outcome spaces, f(x) is simply the probability associated

with outcome x. In the continuous case, f(x) is not a probability, however, and f(x) can be greater than

1. For example, f(x) is either 0 or 2 for a continuous uniform distribution over the interval (0, 0.5). The

function f(x) is called the probability density function for the random variable X. Figures 2.1 and 2.2 show

the probability density function for a discrete and a continuous random variable, respectively. The support

of a probability distribution is the subset of the outcome space Ω with positive weight. It is {1, 2, 3, 4, 5, 6}
for the distribution in Figure 2.1 and [0,∞) for the distribution in Figure 2.2.

The probability that the value of X is at most t, Pr[X ≤ t], is a function F (t) called the cumulative dis-

tribution function. We have F (t) =
∑t

x=−∞ f(x) for discrete random variables and F (t) =
∫ t
−∞ f(x) dx

for continuous random variables. Since f(x) is non-negative for all values of x, F (t) is a non-decreasing

function of t, limt→−∞ F (t) = 0, and limt→∞ F (t) = 1. A probability distribution is positive if F (0) = 0.

Figures 2.3 and 2.4 show two examples of cumulative distribution functions for positive distributions.
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We can obtain new random variables as functions of existing random variables. In the board game

Monopoly, for example, a player rolls two dice at once and adds the outcome of the two rolls to determine

the number of steps to take on the board. Let X1 and X2 be random variables representing the individual

die rolls. The sum X1 + X2 is another random variable Y representing the chance experiment of simulta-

neously rolling two identical dice and summing up their outcomes. In general, a function g(X1, . . . ,Xn)

of n random variables is itself a random variable Y with some probability density function and cumulative

distribution function.

2.1.1 Expectation, Variance, and Moments

The probability density function or cumulative distribution function for a random variable X fully charac-

terizes the chance experiment represented by X. It is common to present a set of summarizing statistics for

the experiment instead of the whole distribution function. The most commonly used summarizing statistic

is the mean, or expected value, of a random variable. The expected value of X, denoted E[x], is defined

as µ =
∑∞

x=−∞ xf(x) for discrete distributions and µ =
∫∞
−∞ xf(x) dx for continuous distributions. The

value µ represents the “expected outcome” of a chance experiment, but does not necessarily correspond to

a possible outcome. In the case of a single die throw, for example, we have µ = 3.5.

While the mean is a measure of location for a random variable, the variance of X, denoted Var[X] or

σ2, is a measure of spread. It is defined as σ2 = E[(X − µ)2], where µ is the mean of X. The square root

of the variance, σ, is called the standard deviation, and is sometimes preferred as a measure of spread in

practice because σ and µ are of the same unit of measurement. For example, if µ is the average length of a

phone call in seconds, then σ measures the spread in seconds, while σ2 gives a measure of spread in squared

seconds. The spread can also be specified using the coefficient of variation, defined as cv = σ/µ, or the

squared coefficient of variation (cv2), which gives a measure of spread that is relative to the location µ.

The mean of a random variable is a special case of a set of summarizing statistics called moments. The

ith moment of a random variable X is defined as µi = E[Xi]. Obviously, the mean of X is µ1. The variance,

σ2, can be expressed using the first two moments:

σ2 = E[(X − µ1)
2] = E[X2]− 2µ1 E[X] + µ2

1 = µ2 − µ2
1

The squared coefficient of variation, cv2, is therefore equal to (µ2/µ
2
1)− 1.
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Distribution F (x) µ σ2

Bernoulli







0 if x < 0
1− p if x = 0

1 if x > 0
p p(1− p)

Geometric, G(p) 1− (1− p)x (x ≥ 0)
1

p

1− p(1− p)

p2

Binomial, B(n, p)

x
∑

i=0

(

n

i

)

pi(1− p)n−i np np(1− p)

Uniform, U(a, b)







0 if x < a
(x− a)/(b− a) if a ≤ x ≤ b

1 if x > b

a + b

2

(b− a)2

12

Exponential, Exp(λ) 1− e−λx (x ≥ 0)
1

λ

1

λ2

Weibull, W (η, β) 1− e−(x/η)β

(x ≥ 0) ηΓ(1 + β−1) η2
(

Γ(1 + 2β−1)− Γ2(1 + β−1)
)

Lognormal, L(µ, s) Φ(s−1 log(x/µ)− s/2) (x ≥ 0) µ µ2
(

es2 − 1
)

Table 2.1: Common parametric probability distributions.

2.1.2 Parametric Distributions

A probability distribution can be almost arbitrarily complex, but many important phenomena in nature can

be fairly accurately described using only a few parameters. We call a distribution parametric if the shape

of its distribution function is determined by the values of a finite number of parameters. Table 2.1 shows

the cumulative distribution function, mean, and variance for seven parametric distributions that will occur

frequently in this thesis. Next, we describe each of these distributions in more detail.

Let the random variable X represent the chance experiment of tossing an unbiased coin. The probability

distribution associated with X can be specified using the single parameter p = 1/2, and is an example of

a Bernoulli distribution. The random variable X is called a Bernoulli variate and the chance experiment

represented by X is a Bernoulli trial. In general, the Bernoulli distribution can be used to model any chance

experiment with two distinct outcomes, typically encoded by the integers 0 and 1, and with a probability p

of outcome 1 occurring.

Next, consider an experiment where we toss a coin repeatedly until we get a head. Let X be a random

variable with value equal to the number of coin tosses in an experiment. In this case, X is said to have a

geometric distribution with parameter p = 1/2. The probability of observing that X has value x (i.e. that
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x coin tosses are required to get one head in a specific experiment) is p(1 − p)x, which is the probability

density function for the geometric distribution. The probability of observing x tails in a row is (1 − p)x, so

the cumulative distribution function is F (x) = 1− (1− p)x.

Let X1, . . . ,Xn be n independent and identically distributed Bernoulli variates with parameter p. The

random variable Y =
∑n

i=1 Xi then has a binomial distribution with parameters n and p, denoted B(n, p). If

we carry out n independent coin tosses, for example, then the number of heads that we observe is binomially

distributed with p = 1/2. The binomial distribution will play a central role in the next section, when we

discuss acceptance sampling, which is the technique we will later use for statistical probabilistic model

checking.

A random variable representing a die roll has a discrete uniform distribution with f(x) = 1/6 for

x ∈ {1, . . . , 6} (Figures 2.1 and 2.3 plot f(x) and F (x), respectively, for this distribution). The uniform

distribution can also be defined over a continuous interval (a, b), with f(x) = (x − a)/(b − a) for x ∈
(a, b). The uniform distribution has finite support, unlike the geometric distribution and the three continuous

distributions mentioned below which all have infinite support.

The exponential distribution, with cumulative distribution function F (x) = 1− e−λx, is one of the most

widely used continuous distributions due to its favorable analytical properties. The parameter λ is the rate

of the distribution, for example representing the failure rate of an electrical component or the arrival rate

of customers at a post office. Figures 2.2 and 2.4 plot f(x) and F (x), respectively, for the exponential

distribution with λ = 1. The exponential distribution is memoryless. This means that if X is a random

variable with an exponential distribution, then Pr[X > t + s | X > t] = Pr[X > s]. The geometric

distribution, which in many ways can be seen as a discrete version of the exponential distribution, is also

memoryless, and these are in fact the only memoryless distributions (Feller 1957, p. 305). The memoryless

property is essential for analytical tractability in many applications.

Not all phenomena in the real world can be properly captured by a memoryless distribution. Component

lifetime, for example, is often not memoryless. Failure may be more likely early on during a warm-up period

than when a system has been running for a while, or it could be the case that the failure rate increases with

time due to material fatigue. The Weibull distribution (Weibull 1951), with cumulative distribution function

F (x) = 1 − e−(x/η)β
, is commonly used in reliability engineering for this purpose. The parameter η is a

scale parameter, while β is a shape parameter with 0 < β < 1 giving a decreasing failure rate and β > 1
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x0 1 2 3 4

f (x)

0

1

β = 0. 5
β = 1

β = 1. 5

x0 1 2 3 4

F(x)

0

1

β = 0. 5
β = 1

β = 1. 5

Figure 2.5: Probability density function (left) and cumulative distribution function (right) for the Weibull distribution.

giving an increasing failure rate. The mean and variance of a Weibull distribution are defined in terms of

the gamma function, Γ(x) =
∫∞
0 tx−1e−t dt , as shown in Table 2.1. If β is equal to 1, then the Weibull

distribution is simply an exponential distribution with rate 1/η. Figure 2.5 shows the probability density

function and cumulative distribution function for three different values of β.

The lognormal distribution is another probability distribution commonly used in reliability engineering.

If X is a random variable with a lognormal distribution, then Y = log X is a normal variate. The cumulative

distribution function for the standard normal distribution (µ = 1 and σ = 0) is given by the formula

(2.1) Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt ,

and Table 2.1 shows the distribution function for the lognormal distribution in terms of Φ(x).

2.1.3 Phase-Type Distributions and Approximation Techniques

The exponential distribution, with its memoryless property, is often used in models of stochastic systems.

This results in models for which tractable solution techniques for many problems (e.g. model checking

and planning) exist. Phase-type distributions (Neuts 1975, 1981), both discrete and continuous, generalize

the exponential distribution to permit memory dependence in the form of phases. We will use phase-type

distributions in Chapter 9 to approximate non-exponential parametric distributions for the purpose of solving

decision theoretic planning problems with asynchronous events.

Erlang (1917) was the first to consider a generalization of the exponential distribution that preserves

much of its analytic tractability. Let X1, . . . ,Xn be n random variables, all having an exponential distri-

bution with rate λ. The random variable Y =
∑n

i=1 Xi is then said to have an Erlang distribution with
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1 2 . . . n
λ λ λ λ

Figure 2.6: Erlang distribution.

1 2 . . . n
p1λ1 p2λ 2 pn−1λ n−1 λ n

(1 − p1)λ1 (1 − p2)λ 2
. . . (1 − pn−1)λ n−1

Figure 2.7: Coxian distribution.

parameters n and λ. The Erlang distribution can be thought of as a chain of n phases where the time spent

in each phase before transitioning to the next phase is exponentially distributed with rate λ (Figure 2.6). The

random variable Y represents the time from entry of the first phase until exit of the last phase. A general-

ized Erlang distribution includes the possibility of exiting the chain already after the first phase (there is a

probability p of transitioning to the second phase).

A Coxian distribution (Cox 1955) is a further generalization of the Erlang distribution, permitting phase-

dependent transition rates and a probability qi = (1 − pi) of bypassing the remaining phases after exiting

phase i. Figure 2.7 shows an n-phase Coxian distribution. Note that a Coxian distribution with n phases has

2n− 1 parameters, while an n-phase Erlang distribution only has a single parameter (the rate λ).

The Erlang and Coxian distributions are special cases of the class of phase-type distributions. In general,

a phase-type distribution with n phases represents the time from entry until absorption in a Markov process

(see Section 2.3.3) with n transient states and a single absorbing state. We are primarily interested in

continuous phase-type distributions, as this thesis is concerned with asynchronous systems, which are best

represented using a continuous model of time. The general form of an n-phase continuous phase-type

distribution is specified using n2 + 2n parameters:

• λi, for 1 ≤ i ≤ n, representing the exit rate for phase i.

• pij , for 1 ≤ i, j ≤ n, representing the probability that phase i is followed by phase j. The probability

qi = 1−∑n
j=1 pij is the probability of absorption immediately following phase i.

• αi, for 1 ≤ i ≤ n, representing the probability that the initial phase is i.

If we define an n × n matrix Q, with elements Qii = −λi(1 − pii) and Qij = λipij (i 6= j), and a row

vector ~α = [αi], then the cumulative distribution function for a continuous phase-type distribution is given

by F (x) = 1 − ~αeQx~e, where ~e is a unit column vector of size n. The kth moment of the distribution is

µk = k!~α(−Q)−k~e. It is common to consider only acyclic phase-type distributions, where phase j can be
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reached only from phases i < j, because they require fewer parameters.

We can use a phase-type distribution PH to approximate a general distribution G, for example a Weibull

or lognormal distribution. The most straightforward approximation technique is the method of moments,

where the objective is to match the first k moments of G and PH . When using the method of moments, it is

desirable to match as many moments of G as possible, but we will typically need more phases to match more

moments, so there is a tradeoff between accuracy and complexity of the approximate model. The objective

is often to find a phase-type distribution that matches a fixed number of moments and is minimal (in terms

of the number of phases), or close to minimal, within a certain class of phase-type distributions (e.g. acyclic

phase-type distributions).

We can easily match a single moment of a general distribution G by using an exponential distribution

with rate 1/µ1, but this typically yields a poor approximation of G. It is possible to match the first two

moments of any positive distribution using either a generalized Erlang distribution or a two-phase Coxian

distribution. If the squared coefficient of variation, cv2, is less than 1, then we can use a generalized Erlang

distribution with the following parameters (Sauer and Chandy 1975; Marie 1980):

n =

⌈

1

cv2

⌉

λ =
1− p + np

µ1

p = 1− 2n · cv2 + n− 2−
√

n2 + 4− 4n · cv2

2(n − 1)(cv2 + 1)

For example, a uniform distribution U(0, 1) (µ1 = 1/2 and cv2 = 1/3) can be approximated by a three-

phase (generalized) Erlang distribution with p = 1 and λ = 6. For distributions with cv2 ≥ 1/2, we match

the first two moments with a two-phase Coxian distribution with parameters λ1 = 2/µ1, λ2 = 1/(µ1 · cv2),

and p = 1/(2 · cv2) (Marie 1980). For example, a Weibull distribution W (1, 1/2) has µ1 = 2 and cv2 = 5,

and can therefore be approximated by a two-phase Coxian distribution with λ1 = 1, λ2 = 1/10, and

p = 1/10. Whitt (1982) and Altiok (1985) show how to find a phase-type distribution with only two phases

that matches the first three moments of a general distribution, provided that cv2 > 1 and µ3 > 3µ2
2/(2µ1).

Telek and Heindl (2002) provide bounds on µ3, with cv2 > 1/2, for which a two-phase Coxian distribution

can be used to match three moments. Johnson and Taaffe (1989) use a mixture of Erlang distributions to

match the first three moments of any positive distribution, but the resulting phase-type distribution is a factor

two from minimal in the class of acyclic phase-type distributions. Johnson and Taaffe (1990) describe an

approach for matching three moments based on nonlinear programming, which results in close to minimal
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acyclic phase-type distributions. An analytic solution, combining an Erlang distribution with a two-phase

Coxian distribution, for matching three moments with close to minimal acyclic phase-type distributions is

presented by Osogami and Harchol-Balter (2003).

It is possible to match the first few moments of a distribution without obtaining a good fit for the dis-

tribution function. For example, the first two moments do not reveal whether the distribution function has

multiple modes. Instead of matching moments of a distribution, we can try to match the shape of the distribu-

tion function. The Kullback-Leibler divergence (KL-divergence), or relative entropy, is a popular similarity

measure for distribution functions. Let f and g be two probability density functions. The KL-divergence of

f and g is defined as follows (Kullback and Leibler 1951, p. 80):1

(2.2) KL(f, g) =

∫ ∞

−∞
f(x) log

f(x)

g(x)
dx

Asmussen et al. (1996) use the EM (Expectation-Maximization) algorithm (Dempster et al. 1977) to fit

a general phase-type distribution to an arbitrary continuous distribution, minimizing the KL-divergence.

Bobbio and Cumani (1992) present a maximum likelihood estimation algorithm for fitting an acyclic phase-

type distribution to a continuous distribution. For both fitting algorithms, the user selects the number of

phases to use instead of the number of moments to match, with more phases typically resulting in a better fit.

These approaches are computationally more costly than the method of moments. The number of iterations

required for the EM algorithm to converge tends to grow with the number of phases. Convergence can

be reached faster by imposing restrictions on the structure of the phase-type distribution, for example by

matching a sum of n exponential distributions or an n-phase Coxian distribution rather than a general phase-

type distribution. Figure 2.8 shows the probability density function for the uniform distribution U(0, 1) and

five different phase-type distributions (two obtained by matching moments, and three obtained through use

of the EM algorithm). We need only a single phase to match the first moment of U(0, 1), and we need three

phases to match the first two moments (achieved by an Erlang distribution, as mentioned earlier).

A continuous distribution can also be approximated by a discrete phase-type distribution (Bobbio et al.

2003, 2004). An advantage of using discrete, rather than continuous, phase-type distributions is that a lower

coefficient of variation can be achieved with the same number of phases. It is known that with n phases,

1The KL-divergence can be thought of as the distance between two probability density functions, although technically it is not

a true distance measure because it is not symmetric.
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x0 1 2

f (x)

0

1

2 U(0,1)
1 moment (0.3069)

2 moments (0.3179)
2 phases (0.2274)
4 phases (0.1389)
8 phases (0.0987)

Figure 2.8: Phase-type fitting for uniform distribution. The KL-divergence for each phase-type distribution is shown

in parentheses.

cv2 is at least 1/n for a continuous phase-type distribution, with 1/n achieved exactly by an n-phase Erlang

distribution (Aldous and Shepp 1987). Discrete phase-type distributions can also capture distributions with

finite support and deterministic distributions, while continuous phase-type distributions always have infinite

support. One clear disadvantage, however, with discrete-time approximations of continuous-time systems

is that coincident events must be taken into consideration. With continuous distributions, the probability

of two events occurring at the same time is zero, but if we discretize time, two events may occur in the

same interval of time. This can significantly increase the complexity of any analysis of the model, and is

particularly a problem for analyses of systems with asynchronous events.

2.2 Acceptance Sampling with Bernoulli Trials

A probabilistic model checking problem can be phrased as a hypothesis testing problem. We will take

advantage of this in Chapter 5 when presenting a statistical approach to probabilistic model checking. As

an example of a hypothesis testing problem, consider a manufacturing process that produces units of some

product. Each manufactured unit is either functional or defective, and assume that there is some probability

p, unknown to us, of the process producing a functional unit. Naturally, we want p to be high, meaning that
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the expected fraction of functional units, in a lot of produced units, is high. Let θ be the lowest acceptable

value of p. By inspecting a limited number of manufactured units, we want to determine if the manufacturing

process is acceptable (i.e. p ≥ θ). This section discusses how to solve problems like this statistically using

a technique called acceptance sampling, which we will later use for probabilistic model checking.

2.2.1 Problem Formulation

Let Xi be a random variable having a Bernoulli distribution with parameter p, i.e. Pr[Xi = 1] = p and

Pr[Xi = 0] = 1 − p. An observation xi of Xi has value either 0 or 1. For the manufacturing process

mentioned above, xi is 1 if the ith unit that we observe is functional, and 0 if it is defective. Each random

variable Xi, called a Bernoulli trial, represents the inspection of a manufactured unit and the observation

xi represents the outcome of the inspection. We are interested in testing whether the parameter p of the

Bernoulli distribution is above or below some given threshold θ. More specifically, we want to test the

hypothesis H : p ≥ θ against the alternative hypothesis K : p < θ.

We are going to consider statistical approaches for solving this hypothesis testing problem, and we gen-

erally have to tolerate that any statistical test procedure has some probability of accepting a false hypothesis,

but this is tolerable so long as the probability of error is sufficiently low. In particular, the test procedure

should limit the probability of accepting the hypothesis K when H holds (known as a type I error, or false

negative) to α, and the probability of accepting H when K holds (a type II error, or false positive) should

be at most β. We generally assume that both α and β are less than 1/2. Figure 2.9 plots the probability of

accepting H as a function of p, denoted Lp, for a hypothetical acceptance sampling test with ideal perfor-

mance in the sense that the probability of a type I error is exactly α and the probability of a type II error is

exactly β. The parameters α and β determine the strength of an acceptance sampling test.

The above problem formulation is flawed, however, as it essentially requires that we can differentiate

between p = θ and p = θ− ǫ for arbitrary ǫ > 0. For p = θ, we require the probability of accepting H to be

at least 1−α, but for p only infinitesimally smaller than θ, the probability of accepting H is required to be at

most β. For this to work, we either need to conduct exhaustive sampling, which is impractical if the sample

population is large, or we need to have 1− α = β, which means that if one error probability is set low then

the other is required to be high. In order to avoid exhaustive sampling and obtain the desired control over

the two error probabilities, we relax the hypothesis testing problem by introducing two thresholds p0 and



18 CHAPTER 2. BACKGROUND

p0 θ 1

L p

0

β

1 − α

1

Figure 2.9: Probability, Lp, of accepting the hypothesis

H : p ≥ θ as a function of p for a hypothetical statistical

test.

p0 p1 p0 1

L p

0

β

1 − α

1

Figure 2.10: Probability, Lp, of accepting the hypothesis

H0 : p ≥ p0 as a function of p for a statistical test with

indifference region.

p1, with p0 > p1. Instead of testing H against K, we choose to test the hypothesis H0 : p ≥ p0 against

the alternative hypothesis H1 : p ≤ p1. We require that the probability of accepting H1 when H0 holds is

at most α, and the probability of accepting H0 when H1 holds is at most β. Figure 2.10 shows the typical

performance characteristic for a realistic acceptance sampling test. If the value of p is between p0 and p1,

we are indifferent with respect to which hypothesis is accepted, and both hypotheses are in fact false in this

case. The region (p1, p0) is referred to as the indifference region and it is shown as a gray area in Figure 2.10.

We will often find it appropriate to define the two thresholds p0 and p1 in terms of a single threshold

θ and the half-width of the indifference region δ, i.e. p0 = θ + δ and p1 = θ − δ. Testing H0 against H1

can then be interpreted as testing the hypothesis H : p ≥ θ against the alternative hypothesis K : p < θ,

as originally specified, where acceptance of H0 results in acceptance of H and acceptance of H1 results in

acceptance of K. The probability of accepting H is therefore at least 1 − α if p ≥ θ + δ and at most β if

p ≤ θ − δ. If |p − θ| < δ, then the test gives no bounds on the probability of accepting a false hypothesis.

In this case, however, we say that p is sufficiently close to the threshold θ so that we are indifferent with

respect to which of the two hypotheses, H or K, is accepted. By narrowing the indifference region, we can

get arbitrarily close to the ideal performance shown in Figure 2.9.

We now turn to the problem of finding a test procedure with the desired characteristics. A set of n
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observations is referred to as a sample from now on. We first present a test procedure that uses samples of

fixed size, and then present a sequential test procedure where the sample size required for a test of a given

strength is a random variable. We will see that the sequential test procedure, while giving no upper bound

on the sample size for any given run, typically requires far smaller samples on average than a test procedure

using samples of predetermined size.

2.2.2 Acceptance Sampling with Fixed-Size Samples

A sample of size n consists of n observations, x1, . . . , xn, of the Bernoulli variates X1, . . . ,Xn that repre-

sent our experiment. To test the hypothesis H0 : p ≥ p0 against the alternative hypothesis H1 : p ≤ p1,

using a single sample of size n, we specify a constant c. If
∑n

i=1 xi is greater than c, then hypothesis H0 is

accepted. Otherwise, if the given sum is at most c, then hypothesis H1 is accepted. The problem is now to

find n and c such that H1 is accepted with probability at most α when H0 holds, and H0 is accepted with

probability at most β when H1 holds. The pair 〈n, c〉 represents an acceptance sampling test that uses a

single fixed-size sample, and we refer to this pair as a single sampling plan (Grubbs 1949; Duncan 1974).

Optimal Single Sampling Plans

The probability distribution of a sum of n Bernoulli variates with parameter p is a binomial distribution with

parameters n and p, denoted B(n, p). The probability of
∑n

i=1 Xi being at most c is therefore given by the

cumulative distribution function for B(n, p):

(2.3) F (c;n, p) =

c
∑

i=0

(

n

i

)

pi(1− p)n−i

Thus, with probability F (c;n, p) we accept hypothesis H1 using a single sampling plan 〈n, c〉, and conse-

quently hypothesis H0 is accepted with probability 1− F (c;n, p) by the same sampling plan.

If we can find a pair 〈n, c〉 simultaneously satisfying F (c;n, p) ≤ α for all p ≥ p0 and 1−F (c;n, p) ≤ β

for all p ≤ p1, then we have a single sampling plan with strength 〈α, β〉 for testing H0 against H1. For fixed

c and n, F (c;n, p) is a non-increasing function of p in the interval [0, 1]. This means that F (c;n, p0) ≤ α

implies F (c;n, p) ≤ α for all p ≥ p0, and 1 − F (c;n, p1) ≤ β implies 1 − F (c;n, p) ≤ β for all p ≤ p1.

Hence, finding a single sampling plan 〈n, c〉 with the prescribed strength amounts to solving the following
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system of non-linear inequalities for the integer variables n and c:

F (c;n, p0) ≤ α(2.4a)

1− F (c;n, p1) ≤ β(2.4b)

This system of inequalities typically has an infinite number of solutions. We generally prefer sampling

plans that use small samples (i.e. require few observations) over those that use large samples, so we want to

minimize n subject to (2.4a) and (2.4b). The stated optimization problem does not have a simple, closed-

form solution, except in a few special cases discussed below. Peach and Littauer (1946) propose using a

Poisson approximation to find a suitable single sampling plan. Grubbs (1949) provide tables with optimal

sampling plans for α = 0.05, β = 0.10, and n ≤ 150. A graphical solution method is provided by Larson

(1966, p. 273). With the widespread availability of fast digital computers, however, these solution methods

are essentially obsolete.

Algorithm 2.1 is a procedure for finding an optimal single sampling plan given the parameters p0, p1,

α, and β that specify the hypothesis testing problem and the desired strength of the sampling plan. The

algorithm uses binary search to find a minimum sample size, n, under the assumption that c does not have to

be an integer. It then searches linearly from the minimum to find a valid single sampling plan. The inverse

of the function F̃ (x;n, p) = (F (⌊x⌋;n, p) + F (⌈x⌉;n, p))/2, for x ∈ [0, n], is used extensively by the

algorithm. For fixed n and p, F̃ (x;n, p) is a non-decreasing function of x. Thus, F̃ (x0;n, p0) ≤ α implies

F̃ (x;n, p0) ≤ α for all x ≤ x0, and 1− F̃ (x1;n, p1) ≤ β implies 1− F̃ (x;n, p1) ≤ β for all x ≥ x1. As a

consequence, if x0 ≥ x1, then any x in the interval [x1, x0] can be used to simultaneously satisfy (2.4a) and

(2.4b) for the given n. If, on the other hand, x0 < x1, then we need to use a sample larger than n in order to

obtain a test with the desired strength.

Example 2.1. For probability thresholds p0 = 0.5 and p1 = 0.3, and error bounds α = 0.2 and β = 0.1,

the optimal single sampling plan found by Algorithm 2.1 is 〈30, 12〉. This means that we need a sample of

size 30, and we accept the hypothesis p ≥ 0.5 if and only if the sum of the 30 observations exceeds 12.

Figure 2.10 (p. 18) plots the probability Lp = 1 − F (12; 30, p) of accepting the hypothesis H0 : p ≥ 0.5

as a function of p. We can see that for values of p far away from the indifference region, the probability

of accepting a false hypothesis is virtually zero. Note also that 1 − F (12; 30, p1) ≈ 0.084 < β and

F (12; 30, p0) ≈ 0.181 < α, so the actual strength of the test is better than 〈α, β〉.
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SINGLE-SAMPLING-PLAN(p0, p1, α, β)
nmin ⇐ 1, nmax ⇐ −1
n⇐ nmin

while nmax < 0 ∨ nmin < nmax do

x0 ⇐ F̃−1(α;n, p0)
x1 ⇐ F̃−1(1− β;n, p1)
if x0 ≥ x1 ∧ x0 ≥ 0 then

nmax ⇐ n
else

nmin ⇐ n + 1
if nmax < 0 then

n⇐ 2 · n
else

n⇐ ⌊(nmin + nmax)/2⌋
n⇐ nmax − 1
repeat

n⇐ n + 1
c0 ⇐ ⌊F̃−1(α;n, p0)⌋
c1 ⇐ ⌈F̃−1(1− β;n, p1)⌉

until c0 ≥ c1

return 〈n, ⌊(c0 + c1)/2⌋〉

Algorithm 2.1: Procedure for finding an optimal single sampling plan using binary search. F̃−1(y; n, p) can be

computed by adding the terms of (2.3) until the sum equals or exceeds y.

Sample Sizes

How large a sample is required to obtain a single sampling plan of strength 〈α, β〉 for testing H0 : p ≥ p0

against H1 : p ≤ p1? In general, we can give only an approximate answer, but there are two special cases

for which n can be expressed precisely as a formula of the test parameters.

First, consider the case when p1 = 0 and p0 < 1. From (2.3) it follows that F (c;n, 0) = 1 for all choices

of n and c, so (2.4b) is trivially satisfied. The reasoning behind Algorithm 2.1 tells us that choosing c as low

as possible makes it easier to satisfy (2.4a). We therefore set c = 0, which gives us F (c;n, p0) = (1− p0)
n.

We can now derive a lower bound for n from (2.4a):

(2.5) (1− p0)
n ≤ α =⇒ n log(1− p0) ≤ log α =⇒ n ≥ log α

log(1− p0)

The minimum sample size for p1 = 0 and p0 < 1 is thus n = ⌈log α/ log(1 − p0)⌉. Note that n is

independent of β, which makes perfect sense because the given sampling plan will always guarantee a zero
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thresholds optimal single sampling plan

p1 = 0 p0 = 1 n = 1 c = 0

p1 = 0 p0 < 1 n =

⌈

log α

log(1− p0)

⌉

c = 0

p1 > 0 p0 = 1 n =

⌈

log β

log p1

⌉

c = n− 1

Table 2.2: Optimal single sampling plans for different choices of p1 and p0.

probability of accepting H0 when H1 is true.

The second special case is essentially a mirror image of the first: p1 > 0 and p0 = 1. We can see from

(2.3) that F (c;n, 1) = 0 so long as c < n, meaning that (2.4a) is trivial to satisfy. Choosing c as large as

possible makes it easier to satisfy (2.4b), so we choose c = n − 1. This gives us 1 − F (c;n, p1) = pn
1 and

we can now derive a lower bound for n from (2.4b):

(2.6) pn
1 ≤ β =⇒ n log p1 ≤ log β =⇒ n ≥ log β

log p1

The optimal sample size is therefore n = ⌈log β/ log p1⌉ for p1 > 0 and p0 = 1. As in the previous

case, n depends only on one of the error bounds: the probability of accepting H1 when H0 holds is always

zero. Table 2.2 summarizes the two cases when we can express n exactly, and also shows the optimal single

sampling plan for the degenerate case when the indifference region is (0, 1).

Example 2.2 (“five nines”). Imagine that we are testing a critical system, and we want to be almost certain

that the system almost never fails. Let p0 = 1, p1 = 1 − 10−5 = 0.99999 and β = 10−10. Table 2.2 gives

us the single sampling plan 〈2302574, 2302573〉 for the specified parameters of the test. This implies that to

guarantee a probability of at most 10−10 of accepting the system as functional when its failure probability

is at least 10−5, we should make over two million observations and accept the system only if we observe no

failures.

We can derive an approximation formula for n when p1 > 0 and p0 < 1. A binomial distribution

B(n, p) has mean np and variance np(1− p). Let Y =
(
∑n

i=1 Xi − np
)

/
√

np(1− p), where each Xi is a

Bernoulli variate with parameter p as before. Then Y is approximately normal with mean 0 and variance 1

for large n, as first shown by De Moivre (1738).2 In other words, Pr[Y ≤ x] ≈ Φ(x), with Φ(x) being the

2Pearson (1924) aids the modern statistician in understanding the contribution of De Moivre.
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standard normal cumulative distribution function given by (2.1). We accept hypothesis H1 if
∑n

i=1 xi ≤ c,

for some constant c, so the probability of accepting H1 is approximately Φ
(

(c − np)/
√

np(1− p)
)

. The

optimal single sampling plan should accept H1 with probability α if p = p0 and probability 1−β if p = p1.

Using the inverse of Φ(x) and the fact that Φ(x) = 1−Φ(−x), we can express these constraints as follows:

c− np0
√

np0(1− p0)
= Φ−1(α)(2.7a)

− c− np1
√

np1(1− p1)
= Φ−1(β)(2.7b)

By adding (2.7a) and (2.7b), we can derive an approximation formula for n:

(c− np0)− (c− np1) = Φ−1(α)
√

np0(1− p0) + Φ−1(β)
√

np1(1− p1)

=⇒ √n(p1 − p0) = Φ−1(α)
√

p0(1− p0) + Φ−1(β)
√

p1(1− p1)

=⇒ n =

(

Φ−1(α)
√

p0(1− p0) + Φ−1(β)
√

p1(1− p1)
)2

(p0 − p1)2

(2.8)

Thus, the sample size for a single sampling plan is approximately inversely proportional to the squared

width of the indifference region. The presence of the factors
√

pi(1− pi) in the numerator indicates that

the sample size also depends on the placement of the indifference region. For a fixed width, the sample size

is largest if the indifference region is centered around p = 1/2, and it decreases if the indifference region is

shifted towards p = 0 or p = 1.

To get an idea of how the sample size depends on α and β, we can use the following approximation for-

mula for the inverse normal cumulative distribution function with η =
√

− log α2 (Hastings 1955, p. 191):

Φ−1(α) ≈ Φ̃−1(α) = −η +
a0 + a1η

1 + b1η + b2η2
,

∣

∣Φ−1(α) − Φ̃−1(α)
∣

∣ < 3 · 10−3(2.9)

a0 = 2.30753 b1 = 0.99229

a1 = 0.27061 b2 = 0.04481

This means that n is roughly proportional to the logarithm of α and β. Consequently, decreasing α or β

tends to be less costly than narrowing the indifference region.

Example 2.3. For probability thresholds p0 = 0.505 and p1 = 0.495, and error bounds α = β = 10−2,

the approximation formulae (2.8) and (2.9) give us n ≈ 54174. The true value for n, computed by Algo-

rithm 2.1, is 54117. If we keep the same error bounds, but shift the indifference region by setting p0 = 0.905

and p1 = 0.895, we get 19490 as the approximate sample size and 19481 as the exact.
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SIMPLE-SEQUENTIAL-TEST(p0, p1, α, β)
〈n, c〉 ⇐ SINGLE-SAMPLING-PLAN(p0, p1, α, β)
m⇐ 0, dm ⇐ 0
while dm ≤ c ∧ dm + n−m > c do

m⇐ m + 1
dm ⇐ dm−1 + xm

if dm > c then

return H0

else

return H1

Algorithm 2.2: Sequential acceptance sampling procedure based on a single sampling plan.

2.2.3 Sequential Acceptance Sampling

The sample size for a single sampling plan is fixed and therefore independent of the actual observations

made. It is often possible, however, to reduce the expected number of observations required to achieve a

desired test strength by taking the observations into account as they are made.

Sequential Modification of Single Sampling Plan

If we use a single sampling plan 〈n, c〉 and the sum of the first m observations (m < n) is already greater

than c, then we can accept H0 without making further observations. Conversely, if the sum of the first m

observations is dm, and dm+n−m ≤ c so that regardless of the outcome of the remaining n−m observations

we already know that the sum of n observations will not exceed c, then we can safely accept H1 after making

only m observations. The modified test procedure, summarized in Algorithm 2.2, is a simple example of a

sequential sampling plan: after each observation, we decide whether sufficient information is available to

accept either of the two hypotheses or additional observations are required.

The Sequential Probability Ratio Test

The idea of reducing the expected sample size by taking observations into account as they are made was

first explored by Dodge and Romig (1929), who constructed double sampling plans where a second sample

is drawn only if the observations constituting the first sample do not give sufficient support for accepting

a hypothesis. A general theory of sequential hypothesis testing was later developed in a seminal paper by

Wald (1945), where the sequential probability ratio test is defined. This test is provably optimal in the sense
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that it minimizes the expected sample size if p = p0 or p = p1 (Wald and Wolfowitz 1948), and the expected

savings in the number of required observations compared to a single sampling plan is often substantial even

if we use the sequential modification of the latter.

The sequential probability ratio test is carried out as follows. At the mth stage of the test, i.e. after

making m observations x1, . . . , xm, we calculate the quantity

(2.10)
p1m

p0m
=

m
∏

i=1

Pr[Xi = xi|p = p1]

Pr[Xi = xi|p = p0]
=

pdm

1 (1− p1)
m−dm

pdm

0 (1− p0)m−dm
,

where dm =
∑m

i=1 xi. The quantity pjm is simply the probability of the observation sequence x1, . . . , xm,

given that Pr[Xi = 1] = pj . This makes the computed quantity a ratio of two probabilities, hence the phrase

probability ratio in the name of the test. Hypothesis H0 is accepted if

(2.11)
p1m

p0m
≤ B ,

and hypothesis H1 is accepted if

(2.12)
p1m

p0m
≥ A .

Otherwise, additional observations are made until either (2.11) or (2.12) is satisfied. A and B, with A > B,

are chosen so that the probability is at most α of accepting H1 when H0 holds, and at most β of accepting

H0 when H1 holds.

Finding A and B that gives strength 〈α, β〉 is non-trivial. In practice we choose A = (1 − β)/α and

B = β/(1 − α), which results in a test that very closely matches the prescribed strength. Let the actual

strength of this test be 〈α′, β′〉. Wald (1945, p. 131) shows that the following inequalities hold:

α′ ≤ α

1− β
(2.13)

β′ ≤ β

1− α
(2.14)

This means that if α and β are small, which typically is the case in practical applications, then α′ and β′ can

only narrowly exceed the target values. Wald (1945, p. 132) also shows that α′ + β′ ≤ α+ β, so at least one

of the inequalities α′ ≤ α and β′ ≤ β must hold, and in practice we often find that both inequalities hold.

Example 2.4. Let p0 = 0.5, p1 = 0.3, α = 0.2 and β = 0.1 as in Example 2.1. If we use A = (1 − β)/α

and B = β/(1 − α), then we are guaranteed that α′ ≤ 0.2/0.9 ≈ 0.222 and β′ ≤ 0.1/0.8 = 0.125 by the
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inequalities (2.13) and (2.14). Through computer simulation we obtain the estimates α′ ≈ 0.175 < α and

β′ ≈ 0.082 < β, so the strength of the test is in reality better than 〈α, β〉.

If p0 = 1 or p1 = 0, then the sequential probability ratio test is equivalent to the test procedure encoded

by Algorithm 2.2, provided that we choose A = α−1 and B = β. For p0 = 1 and xi = 1 for all i up to and

including m, the probability ratio (2.10) equals pm
1 . We therefore accept H0 if pm

1 ≤ β, which is identical

to the condition in (2.6). If, on the other hand, we observe a single zero before condition (2.11) is satisfied,

the probability ratio becomes∞ and we immediately accept H1, corresponding to choosing c = n − 1 for

a single sampling plan. For p1 = 0, the probability ratio equals (1 − p0)
−m if the first m observations are

zeros. We accept H1 if (1 − p0)
−m ≥ α−1, which is equivalent to the condition in (2.5). In this case, we

accept H0 if we observe a single one before condition (2.12) is satisfied, corresponding to c = 0 for a single

sampling plan. Anderson and Friedman (1960) call sampling plans of this kind curtailed single sampling

plans and they prove that such plans are strongly optimal. This means that any other sampling plan with

at least the same strength always requires at least as many observations for all values of p. In general, as

mentioned above, the sequential probability ratio test only guarantees expected optimality for p ∈ {p0, p1}.
When implementing the sequential probability ratio test, it is typically computationally more practical

to work with the logarithm of p1m/p0m. At stage m, we therefore compute

fm = log
p1m

p0m
= dm log

p1

p0
+ (m− dm) log

1− p1

1− p0
.

We accept H0 if fm ≤ log β
1−α , accept H1 if fm ≥ log 1−β

α , and make at least one more observation

otherwise. Pseudocode for the sequential probability ratio test is given as Algorithm 2.3.

Geometric Interpretation of Sequential Tests

To gain a better understanding of how sequential tests work, it is intuitively appealing to give a geometric

interpretation of such tests. At stage m of a sequential test, we summarize the m observations made so far

with the statistic dm. The pair 〈m,dm〉 can be considered as the current state of the test, where m and dm

are non-negative integers with dm ≤ m. The two-dimensional space S =
{

〈m,dm〉 ∈ Z
∗ ×Z

∗ | dm ≤ m
}

constitutes the possible states of a sequential test. Any given sequential test procedure subdivides the space

S into three mutually exclusive regions R0, R1, and Rc (“continue”). The test is terminated the first time

the state of the test enters either R0 or R1. At the entrance of the subregion Ri, hypothesis Hi is accepted.
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SPRT(p0, p1, α, β)
if p0 = 1 ∨ p1 = 0 then

return SIMPLE-SEQUENTIAL-TEST(p0, p1, α, β)
else

m⇐ 0, fm ⇐ 0
while log β

1−α < fm < log 1−β
α do

m⇐ m + 1
fm ⇐ fm−1 + xm log p1

p0
+ (1− xm) log 1−p1

1−p0

if fm ≤ log β
1−α then

return H0

else

return H1

Algorithm 2.3: Procedure implementing the sequential probability ratio test.

The subregion Rc represents states where additional observations are required. This region always contains

the point 〈0, 0〉, meaning that a sequential test starts in this region.

For a sequential test derived from a single sampling plan 〈n, c〉, we never make more than n observations,

so the state space of such a test is S′ =
{

〈m,dm〉 ∈ S | m ≤ n
}

. We accept H0 if dm > c. Thus,

we set R0 =
{

〈m,dm〉 ∈ S′ | dm > c
}

. For the same test, we accept H1 if dm ≤ m + c − n, so

R1 =
{

〈m,dm〉 ∈ S′ | dm ≤ m + c − n
}

. Figure 2.11 displays the regions graphically for p0 = 0.5,

p1 = 0.3, α = 0.2, and β = 0.1 (i.e. n = 30 and c = 12 as stated in Example 2.1). The shaded regions

represent unreachable states (dm > m and m > n). The line dm = c that defines the boundary between

Rc and R0 is called the acceptance line, while the line dm = m + c− n defining the boundary between Rc

and R1 is called the rejection line. The test can be carried out graphically by plotting a curve representing

the outcome of the observations. The solid curve in Figure 2.11 represents the observations xi = 1 for

i ∈ {1, 3, 4, 6, 7, 8} and xi = 0 for i ∈ {2, 5}. Hypothesis H0 is accepted the moment this curve intersects

the acceptance line, and H1 is accepted (H0 is rejected) the moment the curve intersects the rejection line.

In contrast, the sequential probability ratio test terminates if fm ≤ log β
1−α (accept H0) or fm ≥ log 1−β

α

(accept H1). We can write these termination criteria as dm ≥ h0 + ms and dm ≤ h1 + ms respectively,

where h0, h1, and s are given by the following expressions:

(2.15) h0 =
log

β

1− α

log
p1(1− p0)

p0(1− p1)

h1 =
log

1− β

α

log
p1(1− p0)

p0(1− p1)

s =

log
1− p0

1− p1

log
p1(1− p0)

p0(1− p1)
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accept H0

accept H1

continue

Figure 2.11: Graphical representation of a sequential

single sampling plan for p0 = 0.5, p1 = 0.3, α = 0.2,

and β = 0.1 (n = 30 and c = 12).
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accept H0

accept H1

continue

Figure 2.12: Graphical representation of the sequential

probability ratio test for p0 = 0.5, p1 = 0.3, α = 0.2,

and β = 0.1.

We can therefore define the acceptance region R0 =
{

〈m,dm〉 ∈ S | dm ≥ h0 + ms
}

for the sequential

probability ratio test. The line dm = h0+ms is the acceptance line for the test. Similarly, R1 =
{

〈m,dm〉 ∈
S | dm ≤ h1 + ms

}

making dm = h1 + ms the rejection line for the test.

Figure 2.12 shows a graphical representation of the sequential probability ratio test for the same param-

eters that were used in Figure 2.11. The solid curve represents the same observation sequence as was plotted

in Figure 2.11. Note that the curve intersects the acceptance line with the eighth observation, so we accept

the hypothesis H0 : p ≥ 0.5 at this point if we use the sequential probability ratio test. The same observa-

tion sequence does not result in acceptance in Figure 2.11, which indicates that we can reduce the expected

number of observations by using the sequential probability ratio test. The acceptance and rejection lines are

parallel with common slope s. Consequently, the region Rc is unbounded and there is no upper bound on

the number of observations that the test will require before terminating. However, the probability is equal

to one that the sequential probability ratio test will eventually terminate (Wald 1945, p. 128), although the

sample size may vary greatly.

Expected Sample Sizes

The sample size for a sequential acceptance sampling test is a random variable, meaning that the required

number of observations can vary from one use of such a test to another. Furthermore, the expected sample

size typically depends on the unknown parameter p, so we cannot report a single value as was the case for

acceptance sampling with fixed-size samples. The expected sample size varies with the distance of p from
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the indifference region (p1, p0). It tends to be largest when p is close to the center of the indifference region,

and decreases the further away p is from the indifference region.

First, consider the sequential variation of a single sampling plan 〈n, c〉. The test terminates at stage m

if dm > c (accept H0) or dm ≤ m + c − n (accept H1). The probability of the test terminating at stage m

by accepting H0 is equal to the probability of observing exactly c ones in the first m − 1 observations and

then an additional one. This probability can be expressed as p · f(c;m − 1, p), where p is the probability

of observing a one and f(c;n, p) is the probability density function for B(n, p). Note that we could not

have accepted H1 prior to stage m under these conditions, because we accept H1 only if the remaining

observations cannot lead to acceptance of H0. The test terminates at stage m by accepting H1 if we observe

exactly m + c − n ones in the first m − 1 observations followed by a zero, which occurs with probability

(1− p)f(m + c− n;m− 1, p). The expected sample size Ep as a function of p can therefore be expressed

as follows:

(2.16) Ep =

n
∑

m=c+1

m · p · f(c;m− 1, p) +

n
∑

m=n−c

m · (1− p) · f(m + c− n;m− 1, p)

Naturally, Ep can never exceed n, is exactly n− c if p = 0, and is exactly c + 1 if p = 1.

The expected sample size for the sequential probability ratio test is harder to determine. Wald (1945,

p. 164) provides

(2.17) Ẽp =
Lp log

β

1− α
+ (1− Lp) log

1− β

α

p log
p1

p0
+ (1− p) log

1− p1

1− p0

as a good approximation of Ep when p1 is not far from p0, which is typically the case in practice. The

quantity Lp is the probability of accepting H0 when Pr[Xi = 1] = p. Wald provides an approximation

formula for Lp as well, but the formula is not suited for computing an approximation of Lp for an arbitrary

p. Approximating Ep for an arbitrary p is therefore non-trivial, but we can provide explicit formulae for a

few cases of special interest, as shown in Table 2.3.3 The expected sample size increases from 0 to p1 and

decreases from p0 to 1. In the indifference region (p1, p0), the sample size increases from p1 to some point

p′ and decreases from p′ to p0. The point p′ is generally equal to s or at least very near s, where s is the

common slope given in (2.15) of the acceptance and rejection lines (Wald 1947, p. 101).

3The approximation formulae for p = 0 and p = 1 differ from those derived by Wald (1947, pp. 99–100). This is because we

assume p0 > p1, while Wald assumes the opposite.
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p L̃p Ẽp

0 0
log

1− β

α

log
1− p1

1− p0

p1 β
β log

β

1− α
+ (1− β) log

1− β

α

p1 log
p1

p0
+ (1− p1) log

1− p1

1− p0

s
log

1− β

α

log
1− β

α
− log

β

1− α

− log
β

1− α
log

1− β

α

log
p1

p0
log

1− p0

1− p1

p0 1− α
(1− α) log

β

1− α
+ α log

1− β

α

p0 log
p1

p0
+ (1− p0) log

1− p1

1− p0

1 1
log

β

1− α

log
p1

p0

Table 2.3: Approximate expected sample size for the sequential probability ratio test.



2.2. ACCEPTANCE SAMPLING WITH BERNOULLI TRIALS 31

p0 p1 p0 1

E p

0

5

10

15

20

25

30

35

40

Figure 2.13: Expected sample size for a sequential single sampling plan (dashed curve) and the sequential probability

ratio test (solid curve) with p0 = 0.5, p1 = 0.3, α = 0.2, and β = 0.1. The error bars extend a standard deviation

in each direction from the curves. The crosses mark the approximate expected sample size for the cases listed in

Table 2.3. The indifference region is fairly wide in this case, resulting in a relatively large approximation error. For a

narrower indifference region, the approximation error is generally much less noticeable.

Figure 2.13 plots the expected sample size as a function of the true probability p for the sequential single

sampling plan and the sequential probability ratio test with p0 = 0.5, p1 = 0.3, α = 0.2, and β = 0.1. The

curve for the former was computed using (2.16), while the curve for the latter was generated using computer

simulation. We see that the sequential probability ratio test has a lower average than the sequential test

derived from a single sampling plan, but that the variance is much larger when p is in, or close to, the

indifference region. As we will see next, however, the sequential probability ratio test does not always have

a lower expected sample size than a sequential single sampling plan with the same strength.

Optimality of Sequential Tests

For the particular choice of parameters that was used to produce Figure 2.13, the sequential probability ratio

test has a lower expected sample size than an optimal single sampling plan for all values of p. In general,

however, this is not guaranteed to be the case. While the sequential probability ratio test minimizes the

expected sample size at p0 and p1 simultaneously, there may very well exist alternative tests that achieve a
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lower expected sample size for other values of p, in particular for p ∈ (p1, p0).

Example 2.5. For p0 = 0.5, p1 = 0.3, and α = β = 10−4, the optimal single sampling plan requires

exactly 326 observations. In contrast, the expected sample size for the sequential probability ratio test is 510

at p = s, which is a 56 percent increase in the expected sample size compared to a single sampling plan.

It is easy to see that the expected sample size at p = s for the sequential probability ratio test can be

larger than the fixed sample size of a single sampling plan if α and β are sufficiently small. Consider the

case when α = β. From the approximation formula for p = s in Table 2.3, it follows that the numerator

of Ẽs is equal to
(

log(α−1 − 1)
)2

, which means that Es is approximately proportional to the square of

log α. From (2.8) and (2.9), on the other hand, it follows that the sample size for a single sampling plan is

approximately proportional to log α. As α approaches zero, (log α)2 grows faster than log α, which helps

explain the fact that Es can be larger for the sequential probability ratio test than for a single sampling plan.

Kiefer and Weiss (1957) suggest minimizing the expected sample size at a third point p2, instead of at

p0 and p1, by using a generalized sequential probability ratio test.4 If p2 is chosen with care, the resulting

test minimizes the maximum expected sample size. Weiss (1962) derives such a test for the symmetric case

with p0 = 1
2 + δ and p1 = 1

2 − δ, while Freeman and Weiss (1964) consider approximate solutions for the

general case. The test is designed to minimize

b0 Pr[H1 accepted|p = p0] + b1 Pr[H0 accepted|p = p1] + b2Ep2 ,

where b0, b1, and b2 are user-specified positive constants such that b0 + b1 + b2 = 1. For some choice of

these constants, the resulting test has strength 〈α, β〉, although the exact relationship is unknown (Freeman

and Weiss 1964, p. 69). While this surely is an interesting alternative problem formulation, we will not

explore it further in this thesis because it represents a departure from the model where the user specifies

the desired strength of the test. Schwarz (1962) and Lai (1988) consider yet another problem formulation

where the objective is to minimize the expected cost subject to a cost c per observation and a unit cost for

accepting a false hypothesis. We refer the interested reader to Lai (2001) for a more detailed account of the

developments in the field of sequential hypothesis testing since the ground-breaking work of Wald.

4The condition for making an additional observation at stage m when using a generalized sequential probability ratio test is

Bm < p1m/p0m < Am (Weiss 1953). The test is a regular sequential probability ratio test if Am = A and Bm = B for all m.
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2.3 Stochastic Discrete Event Systems

This section formally defines the class of systems for which we develop verification and planning algorithms

in later chapters. We rely heavily on the notion of a stochastic process, which is any process that evolves

over time, and whose evolution we can follow and predict in terms of probability (Doob 1942, 1953). At

any point in time, a stochastic process is said to occupy some state. If we attempt to observe the state of a

stochastic process at a specific time, the outcome of such an observation is governed by some probability

law. Mathematically, we define a stochastic process as a family of random variables.

Definition 2.1 (Stochastic Process). Let S and T be two sets. A stochastic process is a family of random

variables X = {Xt | t ∈ T}, with each random variable Xt having range S.

The index set T in Definition 2.1 represents time and is typically the set of non-negative integers, Z
∗,

for discrete-time stochastic processes and the set of non-negative real numbers, [0,∞), for continuous-time

stochastic processes. We will generally assume that T is such that if t ∈ T and t′ ∈ T for t′ ≥ t, then

t′− t ∈ T . The set S represents the states that the stochastic process can occupy, and this can be an infinite,

or even uncountable, set.

The definition of a stochastic process as a family of random variables is quite general and includes sys-

tems with both continuous and discrete dynamics. We will focus our attention on a limited, but important,

class of stochastic processes: stochastic discrete event systems. This class includes any stochastic process

that can be thought of as occupying a single state for a duration of time before an event causes an instanta-

neous state transition to occur. The canonical example of such a process is a queuing system, with the state

being the number of items currently in the queue. Thus, the state space S is {0, 1, . . . , n} if the queue has

finite capacity n and Z
∗ if it has infinite capacity. The state changes at the occurrence of an event repre-

senting the arrival or departure of an item. We call this a discrete event system because the state change is

discrete rather than continuous and is caused by the triggering of an event.

2.3.1 Trajectories

A random variable Xt ∈ X represents the chance experiment of observing the stochastic process X at time

t. If we record our observations at consecutive time points for all t ∈ T , then we have a trajectory, or sample

path, for X . Our work in probabilistic model checking is centered around the verification of temporal logic
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Figure 2.14: A trajectory for a simple queuing system with arrival events occurring at t1, t2 and t3 and a departure

event occurring at t4. The state of the system represents the number of items in the queue.

formulae over trajectories for stochastic discrete event systems. The terminology and notation introduced

here is used extensively in later chapters.

Definition 2.2 (Trajectory). A trajectory for a stochastic process X is any set of observations {xt ∈ S | t ∈
T} of the random variables Xt ∈ X .

The trajectory of a stochastic discrete event system is piecewise constant and can therefore be repre-

sented as a sequence σ = {〈s0, t0〉, 〈s1, t1〉, . . .}, with si ∈ S and ti ∈ T \ {0}. Zero is excluded to ensure

that only a single state can be occupied at any point in time. Figure 2.14 plots part of a trajectory for a

simple queuing system. Let

(2.18) Ti =







0 if i = 0
∑i−1

j=0 tj if i > 0
,

i.e. Ti is the time at which state si is entered and ti is the duration of time for which the process remains in

si before an event triggers a transition to state si+1. A trajectory σ is then a set of observations of X with

xt = si for Ti ≤ t < Ti + ti. According to this definition, trajectories of stochastic discrete event systems

are right-continuous. A finite trajectory is a sequence σ = {〈s0, t0〉, . . . , 〈sn,∞〉} where sn is an absorbing

state, meaning that no events can occur in sn and that xt = sn for all t ≥ Tn.

An infinite trajectory is convergent if T∞ < ∞. In this case, xt is not well-defined for all t ∈ T . For a

trajectory to be convergent, however, an infinite sequence of events must occur in a finite amount of time,

which is unrealistic for any physical system. Hoel et al. (1972) use the term explosive to describe processes
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for which such sequences can occur with non-zero probability. It is common to assume time divergence for

infinite trajectories of real-time systems (cf. Alur and Dill 1994), i.e. that the systems are non-explosive, and

most finite-state systems satisfy this property by default.

2.3.2 Measurable Stochastic Discrete Event Systems

Of utmost importance to probabilistic model checking is the definition of a probability measure over sets of

trajectories for a system. The set of trajectories must be measurable. Formally, a measurable space is a set

Ω with a σ-algebra FΩ of subsets of Ω (Halmos 1950). A probability space is a measurable space 〈Ω,FΩ〉
and a probability measure µ. When we say that a set Ω must be measurable, we really mean that there must

be a σ-algebra for the set. The elements of this σ-algebra are the measurable subsets of Ω.

For stochastic discrete event systems, the elements of the σ-algebra are sets of trajectories with common

prefix. A prefix of a trajectory σ = {〈s0, t0〉, 〈s1, t1〉, . . .} is a sequence σ≤τ = {〈s′0, t′0〉, . . . , 〈s′k, t′k〉}, with

s′i = si for all i ≤ k,
∑k

i=0 t′i = τ , t′i = ti for all i < k, and t′k < tk. Let Path(σ≤τ ) denote the set of

trajectories with common prefix σ≤τ . This set must be measurable, and we assume that a probability measure

µ over the set of trajectories with common prefix exists. For our work on probabilistic model checking, we

assume only that we can generate sample trajectory prefixes distributed according to µ.

A probability measure µ over sets of trajectories with common prefix can be defined for virtually all

systems of practical interest, although the precise definition thereof will of course depend on the specific

probability structure of the stochastic discrete event system being studied. In general, a stochastic discrete

event system is measurable if the sets S and T are measurable. We can show this by defining a σ-algebra

over the set of trajectories with common prefix σ≤τ = {〈s0, t0〉, . . . , 〈sk, tk〉}, denoted Path(σ≤τ ), as fol-

lows. Let FS be a σ-algebra over the state space S, and let FT be a σ-algebra over the index set T of

the stochastic process. Such σ-algebras exist if S and T are measurable sets, which by assumption they

are. Then C(σ≤τ , Ik, Sk+1, . . . , In−1, Sn), with Si ∈ FS and Ii ∈ FT , denotes the set of trajectories

σ = {〈s′0, t′0〉, 〈s′1, t′1〉, . . . } such that s′i = si for i ≤ k, s′i ∈ Si for k < i ≤ n, t′i = ti for i < k, t′k > tk,

and t′i ∈ Ii for k ≤ i < n. In other words, C(σ≤τ , Ik, Sk+1, . . . , In−1, Sn) is a subset of Path(σ≤τ ). The

sets C(σ≤τ , Ik, Sk+1, . . . , In−1, Sn) are the elements of a σ-algebra over the set Path(σ≤τ ) with set opera-

tions applied element-wise, for example C(σ≤τ , Ik, Sk+1, . . . , In−1, Sn)∪C(σ≤τ , I
′
k, S

′
k+1, . . . , I

′
n−1, S

′
n)=

C(σ≤τ , Ik ∪ I ′k, Sk+1 ∪ S′
k+1, . . . , In−1 ∪ I ′n−1, Sn ∪ S′

n).
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2.3.3 Structured Stochastic Discrete Event Systems

So far, we have defined stochastic discrete event systems in rather general terms as any stochastic process

with piecewise constant trajectories. Most stochastic discrete event systems of interest have more structure

than that. Any additional structure simplifies the specification of a stochastic discrete event system and can

often be exploited in the analysis of such systems.

The probability measure on sets of trajectories for a stochastic discrete event system can be expressed

using a holding time distribution with probability density function h(·;σ≤τ ) and a next-state distribution

p(·;σ≤τ , t). The probability measure for C(σ≤τ , Ik, Sk+1, . . . , In−1, Sn) can now be defined recursively as

(2.19) µ(C(σ≤τ , Ik, Sk+1, . . . , In−1, Sn)) =
∫

Ik

h(tk + t;σ≤τ )

∫

S
p(s;σ≤τ , t)µ(C(σ≤τ ⊕ 〈t, s〉, Ik+1, Sk+2, . . . , In−1, Sn)) ,

where {〈s0, t0〉, . . . , 〈sk, tk〉} ⊕ 〈t, s〉 = {〈s0, t0〉, . . . , 〈sk, tk + t〉, 〈s, 0〉}. The base case for the recursive

definition is µ(C(σ≤τ )) = 1. This is a factored representation of the probability measure µ.

In addition to structure in the probability measure on sets of trajectories, we can also have structure in the

state space. Instead of a flat state representation, it is often natural to describe the state of a system by using

multiple state variables which leads to a factored state space. A factored representation of the state space

S of a measurable stochastic discrete event system is a set of state variables SV and a value assignment

function V (s, x) providing the value of x ∈ SV in state s. The domain of x is the set Dx =
⋃

s∈S V (s, x)

of possible values that x can take on. A tuple 〈S, T, µ,SV , V 〉 represents a measurable stochastic discrete

event system with a factored state space. Note that |S| is at most
∏

x∈SV |Dx|, which is exponential in

the number of state variables, but the actual size of S can of course be smaller than
∏

x∈SV |Dx| if certain

combinations of variable assignments do not correspond to an actual state s ∈ S.

We will now discuss a few common models of stochastic discrete event systems with specific struc-

tural properties. By making limiting assumptions regarding the shape of the probability density functions

h(·;σ≤τ ) and p(·;σ≤τ , t), we enable a succinct representation of µ. This is important for efficient generation

of sample trajectories for stochastic discrete event systems, which is a large component of our statistical

model checking algorithm. We include a brief description of Markov and semi-Markov processes. More

detailed accounts on this topic are provided by, for example, Kolmogoroff (1931), Doob (1953), Bartlett

(1966), Howard (1971a, 1971b), and Çinlar (1975).
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Markov Processes

A stochastic discrete event system is a time homogeneous Markov process if the future behavior at any point

in time depends only on the state at that point in time, and not in any way on how that state was reached.

This implies that the probability measure on sets of trajectories satisfies the following property:

(2.20) µ(Path({〈s0, t0〉, . . . , 〈sk, tk〉})) = µ(Path({〈sk, 0〉}))

Equation 2.20 is known as the Markov property, named after the Russian mathematician A. A. Markov

who in the early 1900’s systematically studied discrete-time stochastic processes satisfying this property.

A Markov process is time inhomogeneous if the distribution over future trajectories depends on the time of

observation, in addition to the current state.

For a factored representation of µ, condition (2.20) holds if and only if h(tk + t;σ≤τ ) = h(t; sk) and

p(·;σ≤τ , t) = p(·; sk) for all trajectory prefixes σ≤τ = {〈s0, t0〉, . . . , 〈sk, tk〉}. The first condition implies

that h(·;σ≤τ ) is a memoryless distribution. Thus, a discrete-time Markov process has geometric holding

time distributions for each state, so the probability of remaining in state s for t more time units before a state

transition occurs is h(t; s) = qs(1 − qs)
t−1 for some qs ∈ [0, 1]. The dynamics of a discrete-time Markov

process with state space S is fully specified with qs and p(·; s) for each state s ∈ S. If S is countable, then

the dynamics is captured by a state transition probability matrix P with elements

Pij =







1− qi(1− p(i; i)) if i = j

qip(j; i) if i 6= j
,

where Pij is the probability that the discrete-time Markov process occupies state j at time t + 1 when the

process occupies state i at time t.

Example 2.6. Consider a simple queuing system, and let si, i ≥ 0, denote the state with i items in the

queue. Assume that the holding time in s0 is geometrically distributed with parameter q0 = 1
5 and the

holding time in all other states is geometrically distributed with parameter qi = 2
5 . The expected holding

time in s0 is greater than in the other states because no departures can occur in s0. Furthermore, assume that

a state transition in si, for i > 0, is caused by a departure with probability 3
4 and an arrival with probability

1
4 . The resulting discrete-time Markov process is depicted in Figure 2.15.
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Figure 2.15: A discrete-time Markov process represent-

ing a queuing system. The arcs are labeled with the en-

tries of the state transition probability matrix for the pro-

cess.
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−7/10

1/5

1/2

. . .

Figure 2.16: A continuous-time Markov process repre-

senting a queuing system. The arcs are labeled with the

entries of the infinitesimal generator matrix for the pro-

cess.

For continuous-time Markov processes, the holding time in state s is exponentially distributed: h(t; s) =

λse
−λst. The parameter λs is the exit rate for state s. The probability that a state transition occurs in the

next t′ time units is
∫ t′

0 λse
−λst dt = 1 − e−λst′ . The dynamics of a continuous-time Markov process with

countable state space can be fully characterized by a matrix Q with elements

Qij =







−λi(1− p(i; i)) if i = j

λip(j; i) if i 6= j
.

The matrix Q is typically referred to as the infinitesimal generator of a continuous-time Markov process

(Puterman 1994, p. 561).

Example 2.7. Consider a queuing system similar to that in Example 2.6, but with time as a continuous

quantity. The holding time for si is exponentially distributed with rate 1
5 for i = 0 and 7

10 for i > 0. In si,

for i > 0, a state transition is caused by a departure with probability 5
7 and by an arrival with probability 2

7 .

Figure 2.16 shows the resulting continuous-time Markov process.

As was mentioned earlier, it is common to assume time divergence for infinite trajectories of stochastic

discrete event systems, i.e. that the system is non-explosive. Obviously, any discrete-time Markov process is

non-explosive because there is always at least a unit delay between state transitions. It can be shown that a

sufficient condition for a continuous-time Markov process to be non-explosive is that there exists a constant

c such that λs ≤ c for all s ∈ S (cf. Baier et al. 2003, Prop. 1). As a direct consequence, all finite-state time

homogeneous Markov processes are non-explosive. Not all infinite-state continuous-time Markov processes

are non-explosive, however, as the following example illustrates.

Example 2.8. Consider the continuous-time Markov process depicted in Figure 2.17, with an infinite state

space S = {s0, s1, . . . } and exit rates λi = 22(i+1). The exit rates for this Markov process rapidly increase
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s0
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s1

8

. . .

22i

si

22(i+1)

. . .

Figure 2.17: An explosive continuous-time Markov process.

with each state transition. Any trajectory with a holding time in the interval (0, 2−(i+1)) in state si, for each

i ≥ 0, is convergent because the total time never exceeds 1. The probability measure for the set of all such

trajectories is
∞
∏

i=0

(

1− e−λi·2−(i+1)
)

=

∞
∏

i=1

(

1− e−2i
)

.

This infinite product converges to a value approximately equal to 0.849. Thus, the probability measure of

the set of convergent trajectories is non-zero, which means that the Markov process is explosive.

In order to simulate the execution of a Markov process, we need to be able to sample from the next-

state distribution of any state. If we are to simulate execution for an extended period of time, we need a

long sequence of pseudorandom numbers. Unless we are careful in our choice of pseudorandom number

generator, subtle correlations in pseudorandom number sequences may be a source of systematic error in the

analysis of the simulation output (Ferrenberg et al. 1992). The Mersenne Twister (Matsumoto and Nishimura

1998), with its exceptionally long period, is thought to be a suitable pseudorandom number generator for

simulation studies of stochastic processes.

Semi-Markov Processes

Not all phenomena in nature are accurately captured by memoryless distributions. The lifetime of a system

component, for example, is often best modeled using a Weibull distribution (Nelson 1985). The Weibull

distribution can be used to model increasing failure rates, for example representing increasing likelihood of

failure due to wear, as well as decreasing failure rates.

A semi-Markov process is a stochastic process for which in order to accurately predict future behavior

one may need to know not only the current state but also the amount of time spent in that state (although

it is still inconsequential how the current state was reached). We can state the semi-Markov property as a

constraint on the probability measure µ:

(2.21) µ(Path({〈s0, t0〉, . . . , 〈sk, tk〉})) = µ(Path({〈sk, tk〉}))
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The probability measure over sets of trajectories for a semi-Markov process can be represented by a

holding time distribution h(·; sk, tk) and a next-state distribution p(·; sk, t). The probability of transitioning

out of state sk within t time units, provided that we have already been in sk for tk time units, is given by
∫ t
0 h(tk + x; sk, tk). Given that a state transition occurs after t time units in state sk, the probability that the

next state belongs to the set S′ is
∫

S′ p(s′; sk, t).

Example 2.9. Consider a computer system that can be in one of two states: running or crashed. The uptime

is modeled by a standard Weibull distribution with shape parameter 1.5, denoted W (1, 1.5). This means that

the likelihood of a crash increases with time. When crashed, the system can be brought back to the running

state through a reboot. The reboot time is uniformly distributed in the interval (1, 2). This computer system

is a semi-Markov process because the holding time distributions are not memoryless.

To simulate execution of a semi-Markov process, we need to be able to generate non-uniform pseudo-

random numbers. Typical pseudorandom number generators produce observations for a random variable

U with a uniform distribution U(0, 1). We can transform these observations into pseudorandom numbers

distributed according to an arbitrary distribution function F (x). The random variable X = F−1(U), where

F−1 is the inverse of F , has distribution function F (x), so an observation u of U can be transformed into

an observation x = F−1(u) of X (von Neumann 1951). For example, the exponential distribution has

cumulative distribution function F (x) = 1 − e−λx, so we can use x = − log(1 − u)/λ as a sample from

the exponential distribution. The inverse method works well for many common probability distributions for

which the inverse of F (x) can be computed efficiently. Various other methods for generating non-uniform

pseudorandom numbers are described by Devroye (1986).

Generalized Semi-Markov Processes

Both Markov and semi-Markov processes can be used to model a wide variety of stochastic discrete event

systems, but without emphasis on the event structure. The queuing systems in Examples 2.6 and 2.7 are

naturally described as having arrival and departure events, although the Markov processes we use to model

the systems represent only the joint effects of all events enabled in a state. The generalized semi-Markov

process (GSMP), first introduced by Matthes (1962), is an established formalism in queuing theory for

modeling stochastic discrete event systems with focus on the event structure of a system (Glynn 1989).
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A GSMP consists of a set of states S and a set of events E. At any time, the process occupies some

state s ∈ S in which a subset Es of the events are enabled. Associated with each event e ∈ E is a positive

trigger time distribution Ge, and a next-state distribution pe(·;σ≤τ , t). The probability density function

for Ge, he(·;σ≤τ ), can depend on the entire execution history, which separates GSMPs from semi-Markov

processes. Let Te be a random variable representing the trigger time of e. If e just became enabled, then

Pr[Te ≤ t | σ≤τ ] = He(t;σ≤τ ) =
∫ t
0 he(x;σ≤τ ) dx is the probability that e triggers within t time units,

provided that e remains continuously enabled. If e has already been enabled for ue time units, then the

probability of e triggering in the next t time units is

(2.22) Pr[Te ≤ t+ue | Te > ue, σ≤τ ] = 1−Pr[Te > t+ue | Te > ue, σ≤τ ] = 1− 1−He(t + ue;σ≤τ )

1−He(ue;σ≤τ )
.

By taking the derivative of (2.22) we get

(2.23) he(t;ue, σ≤τ ) =
1

1−He(ue;σ≤τ )
he(t + ue;σ≤τ ) ,

which is the conditional probability density function for the distribution Ge. The enabled events in a state

race to trigger first, and the event that triggers causes a transition to a state s′ ∈ S according to the next-state

distribution for the triggering event.

Example 2.10. Consider a queuing system with infinite capacity, and a state of this system is simply the

number of items currently in the queue. There is an arrival event a, enabled in every state, that has an

exponential trigger time distribution with rate 1
5 . There is also a departure event d that is enabled in states

si for i > 0. This event has an exponential trigger time distribution with rate 1
2 . This queuing system is a

GSMP with state space S = Z
∗ and event set E = {a, d}. Furthermore, we have E0 = {a}, Ei = E for

i > 0, ha(t) = 1
5e−t/5, pa(i + 1; i) = 1 for all i ∈ S, hd(t) = 1

2e−t/2, and pd(i− 1; i) = 1 for all i > 0.

For many stochastic discrete event systems, the trigger time and next-state distributions do not depend

on every aspect of an entire trajectory prefix, as is clearly the case in Example 2.10. Let ue, for each e ∈ E,

represent the time that e has been continuously enabled without triggering. If he(·;σ≤τ ) = he(·; sk, ue)

and pe(·;σ≤τ , t) = pe(·; sk), for all e ∈ E, then we have a time homogeneous GSMP (Glynn 1989, p. 18).

A time homogeneous GSMP where all events have an exponential trigger time distribution with rate λe

is also a time homogeneous Markov process. The holding time distribution for state s is an exponential
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distribution with rate λs =
∑

e∈Es
λe and the transition probabilities are p(s′; s) =

∑

e∈Es
pe(s

′; s)λe/λs.

The stochastic discrete event systems in Examples 2.7 and 2.10 are in fact equivalent.

To simulate the execution of a time homogeneous GSMP model, we associate a real-valued clock te

with each event that indicates the time remaining until e is scheduled to trigger in the current state. The

process starts in some initial state s with events Es enabled. For each enabled event e ∈ Es, we sample a

trigger time according to Ge and set te to the sampled value. For disabled events, we set te = ∞. Let e∗

be the event in Es with the smallest clock value. This becomes the triggering event in s. Provided that at

most one of the time distributions is not continuous, the probability of two events triggering at exactly the

same time is zero so e∗ is uniquely defined (Glynn 1989, p. 17). When e∗ triggers after te∗ time units in s,

we sample a successor state s′ according to pe∗(·; {〈s, 0〉}, te∗ ) and update each clock te as follows:

1. if e ∈ Es′ ∩
(

{e∗} ∪
(

E \Es

))

, then t′e is sampled from Ge;

2. if e ∈ Es′ ∩
(

Es \ {e∗}
)

, then t′e = te − te∗ ;

3. otherwise, if e 6∈ Es′ then t′e =∞.

The first rule covers events that are enabled in s′ and either triggered or were not enabled in s. All such events

are rescheduled. Events that remain enabled across state transitions without triggering are not rescheduled

(rule 2). The final rule states that events disabled in s′ are scheduled not to trigger. Given a new state s′ and

new clock values t′e for each e ∈ E, we repeat the procedure just specified with s = s′ and te = t′e so long as

Es 6= ∅. Enabled events, annotated by a scheduled trigger time, can be stored in a heap to accommodate fast

retrieval of e∗ (Gonnet 1976). McCormack and Sargent (1981) compare various data structures for storing

event schedules. Discrete event simulation is further discussed by Bratley et al. (1987) and Shedler (1993).

2.4 Stochastic Decision Processes

So far, we have discussed stochastic processes with a fixed structure. Now, let us consider the case when a

decision maker can influence the structure and dynamics of the process, to some degree, and wants to select

a structure that achieves some design objective. We then have a stochastic decision process.

The most widely adopted stochastic decision process is the Markov decision process (MDP; Bellman

1957; Howard 1960, 1971b; Puterman 1994; Boutilier et al. 1999). The dynamics of a discrete-time Markov
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process is captured by a transition probability matrix P . For an MDP, there are multiple transition probability

matrices that a decision maker may choose from at each stage during execution. Each choice corresponds

to an action on behalf of the decision maker. A transition probability matrix P a represents the behavior of

the system in the next time step if action a is chosen by the decision maker. For continuous-time MDPs, an

action is instead represented by a infinitesimal generator matrix Qa.

The decision maker designs a policy, denoted π, which is a mapping from situations to actions.5 A

situation can constitute the entire execution history (history dependent policy), the current time and state

(time dependent policy), or just the current state (stationary policy). A policy may designate a fixed action

to be used in a situation (deterministic policy), or a distribution over actions (randomized policy). The policy

fixes the dynamics of a system, and an MDP coupled with a policy is a Markov process. For example, given

a stationary randomized policy π and a set of actions A, the probability of transitioning from state i to j in

the next time step is
∫

A P a
ij dπ(i).

Rewards and costs (negative rewards) are used to encode perceived value for a decision maker. Different

reward structures can be used, but it is common to associate rewards with state transitions. For example, a

transition from s to s′ earns the decision maker an immediate reward k(s, s′). The transition rewards can

depend on the action that is chosen for a state. For continuous-time models, it is also common to earn reward

at some rate c(s) for the duration of time that state s is occupied.

A decision maker chooses a policy according to some optimality criterion. The objective is generally to

maximize the expected reward accumulated during execution, but this can be given different interpretations.

Possibly the most straightforward interpretation is to maximize the expected total reward. This can be

unbounded, however, if execution can proceed ad infinitum. To ensure that a bound exists, we can halt

execution after a fixed time bound (finite-horizon total reward) or discount reward earned t time units into

the future by a factor γt (infinite-horizon discounted reward). Other optimization criteria exist as well (cf.

Puterman 1994).

Depending on the optimality criterion, it may not be necessary to consider the most general class of

policies in order to act optimally. For example, to find a policy that maximizes the infinite-horizon dis-

counted reward for an MDP, it is sufficient to consider the class of deterministic stationary policies. The

5In the model checking literature, a policy is called a schedule. Model checking for MDPs involves verifying that a property

holds for a certain class of schedulers (cf. Bianco and de Alfaro 1995).
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infinite-horizon discounted reward in state i of a discrete-time MDP controlled by a deterministic stationary

policy π is given by the recurrence relation

vπ(i) = r̄π(i)(i) + γ
∑

j∈S

P
π(i)
ij · vπ(j) ,

where r̄a(i) =
∑

j∈S P a
ij · k(i, j) is the expected transition reward in state i for action a (Howard 1960,

p. 77). The optimal value is obtained by maximizing over the set of actions:

(2.24) v∗(i) = max
a∈A

(

r̄a(i) + γ
∑

j∈S

P a
ij · v∗(j)

)

This equation forms the basis for value iteration, which is a dynamic programming (Bellman 1957) tech-

nique for finding the optimal policy of an MDP. An alternative solution method is policy iteration (Howard

1960), which often requires fewer iterations than value iteration to converge, but with a higher cost per

iteration. A middle ground is provided by Puterman and Shin’s (1978) modified policy iteration.

Howard (1960) shows that the continuous-time MDP with discounting is computationally equivalent to

its discrete-time counterpart, and describes how a continuous-time MDP can be transformed into a discrete-

time MDP using a technique analogous to uniformization (Jensen 1953) for Markov processes. The equiva-

lence between continuous and discrete-time MDPs is further explored by Lippman (1975), and generalized

to countable state spaces by Serfozo (1979). Uniformization is a technique by which a continuous-time

MDP with state-dependent exit rates can be transformed into an equivalent continuous-time MDP with the

same (uniform) exit rate for all states. The uniform continuous-time MDP can then be treated as a discrete-

time MDP resulting from observing the original continuous-time MDP at a constant rate. Uniformization

introduces self-transitions not present in the original model, because it is possible to remain in the same state

from one observation to another. Puterman (1994) presents uniformization as the preferred method for solv-

ing continuous-time MDPs, but we show in Chapter 9 that it can be more efficient to solve a continuous-time

MDP directly, without first transforming it into a discrete-time MDP.

The semi-Markov decision process (SMDP; Howard 1963, 1971b), a decision theoretic extension of the

semi-Markov process, permits time between state transitions to be governed by a general positive distribu-

tion. Chitgopekar (1969), Stone (1973), Cantaluppi (1984) consider generalizations of the SMDP model

where the action choice is allowed to change not only at the time of state transitions, but also at time points

between state transitions. Chapter 9 discusses this issue further.



Chapter 3

Related Work

This chapter discusses related research in the model checking, operations research, and AI planning liter-

ature. We focus primarily on research dealing with probabilistic systems, although in the case of planning

we also mention efforts involving nondeterministic systems. We do not attempt to produce an exhaustive

account of all past research concerning probabilistic verification and planning under uncertainty, as it would

be a daunting task. The research efforts mentioned in this chapter should instead be thought of as a repre-

sentative sample of all related work.

3.1 Probabilistic Verification

Early work on probabilistic verification has a clear focus on discrete time models, with the verification of

randomized algorithms as the primary application in mind. Hart et al. (1983) analyze termination of concur-

rent probabilistic programs. Lehmann and Shelah (1982) and Hart and Sharir (1984) introduce probabilistic

temporal logics for specifying properties of probabilistic programs. These logics can only express proper-

ties that either hold with probability one or with non-zero probability, so a verification algorithm can ignore

the actual probabilities in a model. In contrast, the logic of Reif (1980) permits properties with rational

probability thresholds other than zero and one. Automated verification as model checking was pioneered

by Clarke and Emerson (1982). Vardi (1985) and Courcoubetis and Yannakakis (1995) describe model

checking algorithms for linear temporal logic, LTL, when the model is a probabilistic program and the LTL

formula is required to hold with probability one.

45
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Hansson and Jonsson (1989, 1994) present the probabilistic real-time computation tree logic, PCTL,

based on CTL (Clarke and Emerson 1982; Clarke et al. 1986) but with the path quantifiers “for all trajecto-

ries” (∀) and “there exists a trajectory” (∃) replaced by a single probabilistic path quantifier with a probability

threshold not restricted to the values zero and one. In PCTL, one can also associate a time bound with a

path operator, such as “until”, enabling one to impose deadlines for reaching certain states. PCTL formulae

are interpreted over discrete time Markov processes, and each state transition corresponds to a time unit.

Hansson and Jonsson provide algorithms for PCTL model checking with finite-state models. In the general

case, with a finite time bound and a probability threshold in the interval (0, 1), PCTL model checking can

be solved numerically in either O(t · (|S|+ |E|)) or O(log(t) · |S|3) time, where t is the time bound, |S| is
the size of the state space, and |E| is the number of state transitions with non-zero probability in the Markov

process. Since |E| is at most |S|2, and typically no less than |S|, PCTL model checking is polynomial in

the size of the state space. To handle large state spaces, Baier et al. (1997) propose using multi-terminal

binary decision diagrams, MTBDDs (Clarke et al. 1993; Bahar et al. 1993; Fujita et al. 1997), to carry out

the numerical computations.

Aziz et al. (1996, 2000) propose the logic CSL, the continuous stochastic logic, as a variation of PCTL

for expressing properties of continuous-time Markov processes. They prove that CSL model checking is

decidable for rational time bounds, but do not provide a practical model checking algorithm. Baier et al.

(1999) present a numerical model checking algorithm, using MTBDDs, for a variation of CSL with the

addition of a steady-state operator. Model checking of time-bounded CSL formulae amounts to solving a

system of Volterra integral equations, but solving this equation system is time consuming and numerical

stability is hard to achieve (Hermanns et al. 2000). A better solution method is provided by Baier et al.

(2000), who show that CSL model checking of time-bounded formulae can be reduced to transient analysis

of continuous-time Markov processes and suggest the use of sparse matrices instead of MTBDDs. The

former means that time-bounded CSL properties can be verified using existing techniques for transient

analysis, in particular uniformization1 (Jensen 1953), which have been used extensively in the performance

evaluation literature (Grassmann 1977; Gross and Miller 1984; Reibman and Trivedi 1988; Malhotra et al.

1994). While Baier et al. suggest that uniformization should be applied to each individual state separately,

resulting in a time complexity of O(q · t · |S| · |E|) for time-bounded CSL formulae (q is the uniformization

1Other names for this technique are randomization and Jensen’s method.
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constant and can be set to the maximum exit rate for the model), Katoen et al. (2001) improve the time

complexity by a factor O(|S|) by noting that uniformization can be performed for all states simultaneously.

These contributions are summarized by Baier et al. (2003).

While MTBDDs often can represent the transition matrix of a Markov process in a compact manner,

they are not always an efficient representation for numerical computation. Kwiatkowska et al. (2002b,

2004) explore different representations, including a hybrid approach that combines the MTBDD represen-

tation of transition matrices with a flat representation of iteration vectors. This hybrid approach is generally

faster than MTBDDs, while handling larger systems than sparse matrices. Another promising approach is

presented by Buchholz et al. (2003), who use Kronecker products to exploit structure in the models.

Infante López et al. (2001) go beyond Markov models by considering the CSL model checking problem

for semi-Markov processes. For CSL formulae without a time bound, the problem reduces to probabilis-

tic model checking for discrete-time Markov processes. For time-bounded formulae, the model check-

ing problem amounts to solving a system of Volterra integral equations. A different approach is taken by

Kwiatkowska et al. (2002a). Time bounds in CSL are typically specified as intervals of real numbers, but

Kwiatkowska et al. associate positive probability distributions with time bounds and suggest that this can be

used to express certain properties of systems with general distributions while still using Markov models of

the systems. Alur et al. (1991) describe a model checking algorithm for generalized semi-Markov processes,

but only for probability thresholds zero or one and restricted to trigger time distributions with finite support.

Kwiatkowska et al. (2000) use a similar approach for probabilistic timed automata, and permit arbitrary

probability thresholds.

Even with the use of clever data structures, numerical solution techniques tend to suffer greatly from

the state space explosion problem. The statistical approach presented in Chapter 5 is an attempt to over-

come the limitations of numerical solution techniques for large state spaces, while providing only statistical

correctness guarantees. Lassaigne and Peyronnet (2002) propose a statistical approach for model checking

a fragment of LTL. They do not formulate a hypothesis testing problem, but instead rely on less efficient

techniques for statistical estimation. In probabilistic model checking, the question is whether a probability

is above or below some threshold, and it would typically be a waste of effort to obtain an accurate esti-

mate of a probability only to realize that it is far from the specified threshold. Grosu and Smolka (2004)

present a Monte Carlo approach to LTL model checking for non-probabilistic systems, but take the same
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approach as Lassaigne and Peyronnet by relying on statistical estimation rather than hypothesis testing. In

this case, it makes even less sense to use estimation techniques because the estimated probability has no

clear meaning—there are no probabilities in the model. Sen et al. (2004) describe a statistical approach,

based on hypothesis testing, for verifying probabilistic systems. They assume that the system has already

been deployed so that execution traces cannot be generated on demand. We discuss their approach in further

detail in Chapter 7, where we expose some serious flaws in their proposed solution method.

3.2 Planning under Uncertainty

Current approaches to planning under uncertainty can be divided roughly into distinct categories based on

their representation of uncertainty, how goals are specified, the model of time used, and assumptions made

regarding observability. Two prevalent representations of uncertainty are nondeterministic and stochastic

models. In nondeterministic models, uncertainty is represented strictly logically, using disjunction, while in

stochastic models uncertainty is specified with probability distributions over the possible outcomes of events

and actions.

The objective when planning with nondeterministic models is often, although not always, to generate

a universal plan (Schoppers 1987) that is guaranteed to achieve a specified goal regardless of the actual

outcomes of events and actions. A goal can be a set of desirable states, as in the work of Cimatti et al.

(1998) and Jensen and Veloso (2000), or a modal temporal logic formula as proposed by Kabanza et al.

(1997) and Pistore and Traverso (2001). Conditional planners, such as CNLP (Peot and Smith 1992) and

PLINTH (Goldman and Boddy 1994a), are also examples of planners for nondeterministic domains.

Ginsberg (1989) questions the practical value of universal nondeterministic planning. His main concern

is that the representation of a universal plan is bound to be infeasibly large for interesting problems. It is

impractical, Ginsberg argues, for an agent to precompute its response to every situation in which it might find

itself, simply because the number of situations is prohibitively large. In control theory, Balemi et al. (1993)

propose the use of ordered binary decision diagrams (BDDs; Bryant 1986) as a compact representation of

supervisory controllers, and this representation has more recently also been used in the AI community for

nondeterministic planning (Cimatti et al. 1998; Jensen and Veloso 2000). Kabanza et al. (1997) attempt to

address the time complexity problem by proposing an incremental algorithm for constructing partial policies.
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Their planning system relies on domain-specific search control rules for efficiency, and produces a universal

plan if given enough time.

By requiring a stochastic domain model, with state transitions weighted by probabilities, a probabilistic

planner has a more detailed model of uncertainty to work with. It can therefore choose to focus planning

effort on the most relevant parts of the state space. A plan may fail because some contingencies have not

been planned for, but this is acceptable so long as the success probability of the plan is high. Having to deal

with probabilities can, however, be computationally more challenging than working with nondeterministic

models. In recent work, Jensen et al. (2004) present a compromise solution, distinguishing between primary

and secondary effects of actions without assigning probabilities to state transitions. The resulting planning

framework can produce plans that are robust for up to n faults.

Drummond and Bresina (1990) present an anytime algorithm for generating partial policies with high

probability of achieving goals expressed using a modal temporal logic. Other research on probabilistic

planning typically considers only propositional goals. Kushmerick et al. (1995) and Lesh et al. (1998) work

with plans consisting of actions that are executed in sequence regardless of the outcome of the previous

actions. This is often called conformant planning (Smith and Weld 1998). Conditional probabilistic plans

(Blythe 1994; Draper et al. 1994; Goldman and Boddy 1994b) allow for some adaptation to the situation

during plan execution. In the work by Draper et al., this adaptation is obtained by means of explicit sensing

actions that are made part of the plan.

Sampling techniques have been used for probabilistic plan assessment by Blythe (1994) and Lesh et al.

(1998). In both cases, however, the probability of plan success is estimated using flawed statistical methods.

The estimation is based on the normal assumption, which is known to give unreliable results when used to

estimate proportions (see, e.g., Fujino 1980; Hall 1982; Agresti and Coull 1998; Newcombe 1998; Brown

et al. 2001). Furthermore, statistical hypothesis testing would be more appropriate in both cases because

the probability estimate is only used to compare two plans or to test if the success probability exceeds a

specified threshold. Lesh et al. use an interesting data mining technique, however, for analyzing simulation

traces in order to discover plan flaws. The technique, which is more thoroughly described by Zaki et al.

(2000), targets discrete-time planning domains. It has some similarities with our failure analysis approach

presented in Chapter 8, and is in many ways more ambitious than our approach.

In decision theoretic planning, a reward structure is added to the probabilistic model, and the objective
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is to find a control policy that maximizes the expected reward during execution. The discrete-time MDP

formalism (Section 2.4) has received significant attention in the AI community in the past decade, with

applications ranging from robot navigation (Koenig et al. 1995) to elevator control (Nikovski and Brand

2003). Considerable progress has been made on algorithms for MDP planning that exploit structure in the

model. Boutilier et al. (1995) use dynamic Bayesian networks (Dean and Kanazawa 1989) to represent

transition probability matrices and decision trees to represent conditional probability tables and policies,

and propose the structured policy iteration algorithm. Hoey et al. (1999) use a similar approach, but replace

decision trees with MTBDDs.2

Even structured solution techniques suffer from the state space explosion problem. Approximate solu-

tion techniques, including automated state abstraction (Boutilier and Dearden 1994; Dearden and Boutilier

1997) and value function approximation (Bellman et al. 1963; Gordon 1995; Guestrin et al. 2003) aim to

address this problem by sacrificing optimality for efficiency.

Boyan and Littman (2001) propose an extension of MDPs—time-dependent MDPs (TMDPs)—where

the time between state transitions can depend on the current time. The model corresponds to a general state

space MDP with a single continuous state variable representing global time. State spaces with multiple

continuous state variables are considered by Feng et al. (2004), but restricted to discrete transition functions

(i.e. each state can only have a finite number of possible successors).

In Chapter 9, we introduce the generalized semi-Markov decision process (GSMDP), which can be

used to model decision theoretic planning problems with asynchronous events and actions. GSMDPs can

be viewed as compositions of asynchronous SMDPs. They differ from TMDPs in that they essentially

require one local clock for each event in the model. The algorithm of Feng et al. (2004) can handle mul-

tiple continuous state variables, but the restriction to discrete transition functions makes it inadequate for

GSMDP planning. Some attention has recently been given to planning with concurrent actions. Guestrin

et al. (2002) and Mausam and Weld (2004) use discrete-time MDPs to model and solve planning problems

with concurrent actions, but these approaches are restricted to instantaneous actions executed in synchrony.

Rohanimanesh and Mahadevan (2001) consider planning problems with temporally extended actions that

can be executed in parallel. By restricting the temporally extended actions to Markov options, the resulting

planning problems can be modeled as discrete-time SMDPs.

2MTBDDs are also know as algebraic decision diagrams (ADDs), and this is the name typically used in the AI literature.
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The GSMDP framework can be thought of as a probabilistic and decision theoretic extension of the

planning framework developed by Musliner et al. (1995), which is part of the CIRCA architecture. The

CIRCA domain model is a nondeterministic timed automata, with uncertainty in the duration and outcome

of events and actions. The nondeterministic domain model is essentially a GSMP, but with intervals of

possible delays in place of delay distributions and without probabilities associated with state transitions.

The CIRCA planner can generate plans that are guaranteed to maintain system safety. Plan generation is

done incrementally. Starting from the initial state, actions are assigned to states as the states are determined

to be reachable. Following each action assignment, the current plan is verified to see if failure is always

avoided. If a failure state is reachable, the planner backtracks to consider alternative action assignments. A

counterexample, in the form of an execution trace, is generated by the verifier if a plan is determined to be

unsafe. The counterexample traces can be used to guide plan repair (Goldman et al. 2004). The probabilistic

planning framework presented in Chapter 8 is based on the CIRCA planning framework. In particular, it

makes use of a verifier to find reasons for plan failure.

Atkins et al. (1996) describe a probabilistic extension of CIRCA, but it does not permit a modular

specification of asynchronous events. The user is required to specify the joint distribution for any set of

events that can be enabled simultaneously, which can be rather cumbersome. Furthermore, their approach

does not handle state spaces with cycles. Li et al. (2003) attempt to address some of these issues, but rely on

ad hoc approximation techniques using “probability rate functions.” The use of phase-type distributions, as

described in Chapter 9, is a more principled way of dealing with general delay distributions for asynchronous

events and actions.
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Part I

Verification
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Chapter 4

Specifying Properties of

Stochastic Discrete Event Systems

Given a stochastic discrete event system, it is often of interest to be able to specify properties of the system.

These properties could represent behavior that we want the system to exhibit during execution. For example,

a desirable property of a telephone system might be that the probability of a call getting dropped is low.

To enabled automatic verification of stochastic discrete event systems, we need a formalism for expressing

interesting properties of such systems. This chapter introduces the unified temporal stochastic logic (UTSL),

which can be used to express properties such as “the probability is at most 0.01 that a call is dropped within

60 minutes from now.” UTSL has essentially the same syntax as the existing logics PCTL and CSL, but

UTSL provides a unified semantics for both discrete-time and continuous-time systems, as well as systems

with discrete, continuous, and general state spaces. This will allow us, for the most part, to treat all stochastic

discrete event systems uniformly when presenting a statistical approach to probabilistic model checking in

the next chapter.

4.1 Temporal Logic

The use of temporal logic (Rescher and Urquhart 1971) for specifying properties of deterministic and non-

deterministic systems with program verification in mind was pioneered by Pnueli (1977) and is now a wide-
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spread practice in the model checking community. The propositional branching-time logic CTL (computa-

tion tree logic; Clarke and Emerson 1982; Clarke et al. 1986), a particularly popular formalism, can be used

to express properties such as “for all trajectories, Ψ eventually becomes true with Φ holding continuously

until then” and “there exists a trajectory such that Φ holds after the next state transition.” CTL is related

to UB (Ben-Ari et al. 1981, 1983) and the branching-time temporal logic described by Lamport (1980).

Emerson (1990) provides an excellent survey of temporal logics with a model checking perspective.

For many real-time systems, it is important to ensure that deadlines are met. To reason about deadlines,

we need to be able to express quantitative temporal properties of a system. Extensions of CTL with time as

a discrete (RTCTL; Emerson et al. 1990, 1992) or continuous (TCTL; Alur et al. 1990, 1993) quantity have

therefore been proposed. With RTCTL and TCTL, it is possible to express timed properties such as “for all

trajectories, Φ becomes true within t time units.” Earlier work in the same direction includes Bernstein and

Harter’s (1981) extension of Lamport’s logic that associates time bounds with eventualities. A survey on the

topic of logics for real-time systems is provided by Alur and Henzinger (1992).

The logic TCTL has also been proposed as a formalism for expressing properties of continuous-time

stochastic systems, but with “for all trajectories” (∀) and “there exists a trajectory” (∃) reinterpreted as “with

probability one” and “with positive probability”, respectively (Alur et al. 1991). The same interpretation is

given to the path quantifiers ∀ and ∃ in earlier work by Hart and Sharir (1984) on the branching-time logic

PTL for discrete-time stochastic processes.

4.2 UTSL: The Unified Temporal Stochastic Logic

In many cases, it is not economically or physically feasible to ensure certain behaviors with probability one,

but simply guaranteeing that the behavior can be exhibited by the system with positive probability may be

too weak. For example, designing a telephone system where no call is ever dropped would be excessively

costly, but it is not satisfactory to just know that a call can possibly go through. For the telephone system,

we would like to ensure that calls go though with a reasonably high probability, for example 0.9999. Neither

TCTL nor PTL permit us to express such a property. For this, we need a different path quantifier, which is

provided by PCTL (Hansson and Jonsson 1989, 1994). PCTL has quantitative time bounds just as RTCTL,

on which PCTL is based, but the path quantifiers ∀ and ∃ are replaced by a single probabilistic path quantifier.
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This lets us express quantitative bounds on the probability of a set of trajectories. For example, PCTL can

express the property “with probability at least θ, Φ will be satisfied within t time units.”

PCTL formulae are interpreted over discrete-time Markov processes. Aziz et al. (1996, 2000) propose

a similar logic, CSL (continuous stochastic logic), with formulae interpreted over continuous-time Markov

processes. A variation of CSL has been proposed by Baier et al. (1999, 2003), which also includes a facility

for expressing bounds on steady-state probabilities. This version of CSL has also been used for expressing

properties of semi-Markov processes (Infante López et al. 2001). Yet another logic, with essentially the same

syntax as PCTL, has been proposed for expressing properties of probabilistic timed automata (Kwiatkowska

et al. 2000). While the difference in syntax is minimal between all mentioned logics for expressing prob-

abilistic real-time properties, the semantics of the various logics are tied to specific classes of stochastic

processes, for example discrete-time Markov processes in the case of PCTL. To avoid having to refer to

different logics for different classes of systems, we introduce the logic UTSL, with a unified semantics for

all measurable stochastic discrete event systems.

The syntactic structure of UTSL is the same as that of both CSL (without the steady-state operator) and

PCTL, although we use the notation of Baier et al. (2003) rather than that of Hansson and Jonsson (1994).

Definition 4.1 (UTSL Syntax). LetM = 〈S, T, µ,SV , V 〉 be a factored stochastic discrete event system.

The syntax for UTSL is defined inductively as follows:

1. x ∼ v is a UTSL formula for x ∈ SV , v ∈ Dx, and ∼ ∈ {≤,=,≥}.

2. ¬Φ is a UTSL formula if Φ is a UTSL formula.

3. Φ ∧Ψ is a UTSL formula if both Φ and Ψ are UTSL formulae.

4. P⊲⊳ θ

[

XI Φ
]

, for ⊲⊳ ∈ {≤,≥}, θ ∈ [0, 1] and I ⊂ T , is a UTSL formula if Φ is a UTSL formula.

5. P⊲⊳ θ

[

Φ UI Ψ
]

, for ⊲⊳ ∈ {≤,≥}, θ ∈ [0, 1] and I ⊂ T , is a UTSL formula if both Φ and Ψ are UTSL

formulae.

If the time domain T is the non-negative integers, UTSL syntax coincides with PCTL syntax, and we

get CSL syntax by letting T be the non-negative real numbers.

The standard logic operators, ¬ and ∧, have their usual meaning. The UTSL operator P⊲⊳ θ[·] replaces

the traditional CTL path quantifiers ∀ and ∃. The truth value of a path formula ϕ, i.e. either XI Φ (“next”)
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or Φ UI Ψ (“until”), is determined over a trajectory (sample path) for a system. The path formula XI Φ

asserts that the next state transition occurs t ∈ I time units into the future and that Φ holds at the time instant

immediately following the state transition, while Φ UI Ψ asserts that Ψ becomes true t ∈ I time units into

the future while Φ holds continuously prior to time t. Since we are dealing with measurable stochastic

systems, there is some probability associated with the set of trajectories that satisfy ϕ. The probabilistic

path quantifier P⊲⊳ θ[·] permits us to compare this probability against an arbitrary threshold θ.

Definition 4.1 provides a bare-bones version of UTSL. Additional UTSL formulae can be derived in

the usual way. For example, ⊥ ≡ (x = v) ∧ ¬(x = v) for some x ∈ SV and v ∈ Dx, ⊤ ≡ ¬⊥,

x < v ≡ ¬(x ≥ v), Φ ∨ Ψ ≡ ¬(¬Φ ∧ ¬Ψ), Φ → Ψ ≡ ¬Φ ∨ Ψ, and P< θ[ϕ] ≡ ¬P≥ θ[ϕ]. We have

associated a time bound I with the path operators X and U . The unbounded versions of these operators are

obtained by letting I equal the time domain T , for example P⊲⊳ θ[Φ U Ψ] ≡ P⊲⊳ θ

[

Φ UT Ψ
]

. We can derive

additional path operators, such asW (“weak until”), ✸ (“eventually”), and � (“continuously”), as follows

(Hansson and Jonsson 1994):

P≥ θ

[

ΦWI Ψ
]

≡ P≤ 1−θ

[

¬Ψ UI ¬(Φ ∨Ψ)
]

P≤ θ

[

ΦWI Ψ
]

≡ P≥ 1−θ

[

¬Ψ UI ¬(Φ ∨Ψ)
]

P⊲⊳ θ

[

✸
I Φ
]

≡ P⊲⊳ θ

[

⊤ UI Φ
]

P⊲⊳ θ

[

�
I Φ
]

≡ P⊲⊳ θ

[

ΦWI ⊥
]

Unbounded versions of these path operators can be derived in the same way as for X and U .

4.3 UTSL Semantics and Model Checking Problems

The validity of a UTSL formula is determined relative to a trajectory prefix. For simple UTSL formulae of

the form x ∼ v, the validity depends only on the last state of the trajectory prefix, but this is not necessarily

the case for UTSL formulae containing one or more probabilistic operators. The formal semantics of UTSL

is given by the following inductive definition.

Definition 4.2 (UTSL Semantics). LetM = 〈S, T, µ,SV , V 〉 be a factored stochastic discrete event sys-

tem. With Path(σ≤τ ) denoting the set of trajectories with common prefix σ≤τ and the definition of Ti
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given by (2.18), satisfaction relations for UTSL formulae and path formulae are inductively defined by the

following rules:

M, {〈s0, t0〉, . . . , 〈sk, tk〉} |= x ∼ v if V (sk, x) ∼ v

M, σ≤τ |= ¬Φ ifM, σ≤τ |6= Φ

M, σ≤τ |= Φ ∧Ψ if (M, σ≤τ |= Φ) ∧ (M, σ≤τ |= Ψ)

M, σ≤τ |= P⊲⊳ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |= ϕ}) ⊲⊳ θ

M, σ, τ |= XI Φ if ∃k ∈ N.
(

(Tk−1 ≤ τ) ∧ (τ < Tk) ∧ (Tk − τ ∈ I) ∧ (M, σ≤Tk
|= Φ)

)

M, σ, τ |= Φ UI Ψ if ∃t ∈ I.
(

(M, σ≤τ+t |= Ψ) ∧ ∀t′ ∈ T.
(

(t′ < t)→ (M, σ≤τ+t′ |= Φ)
))

Definition 4.2 specifies the validity of a UTSL formula at any time during execution of a stochastic

discrete event system. We typically want to know whether a property Φ holds for a modelM if execution

starts in a specific state s. The triple 〈M, s,Φ〉 is a model checking problem with an affirmative answer if

and only ifM, {〈s, 0〉} |= Φ. More generally, we can define the validity of a UTSL formula relative to a

probability measure µ0, such that µ0(S
′) is the probability that execution starts in a state s ∈ S′. This is

accomplished with the addition of the following rules:

M, µ0 |= x ∼ v if ∀s ∈ supµ0.
(

M, {〈s, 0〉} |= x ∼ v
)

M, µ0 |= ¬Φ ifM, µ0 |6= Φ

M, µ0 |= Φ ∧Ψ if (M, µ0 |= Φ) ∧ (M, µ0 |= Ψ)

M, µ0 |= P⊲⊳ θ[ϕ] if

∫

S
µ({σ ∈ Path({〈s, 0〉}) | M, σ, 0 |= ϕ}) dµ0(S) ⊲⊳ θ

The probability integral in the last rule reduces to
∑

s∈S µ0(s)µ({σ ∈ Path({〈s, 0〉}) | M, σ, 0 |= ϕ}) if

the state space S is countable. A UTSL model checking problem can now be specified as a triple 〈M, µ0,Φ〉.
This definition subsumes the definition with a single initial state.

The semantics of Φ UI Ψ requires that Φ holds continuously, i.e. at every point in time, along a trajectory

until Ψ is satisfied. If Φ and Ψ are both free of any probabilistic operators, however, then the truth values

of these subformulae do not depend on the amount of time that is spent in a specific state. Without nested

probabilistic operators, it is therefore sufficient to verify the subformulae Φ and Ψ at the entry of each
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x = 0

G

x = 1

s0 s1

Figure 4.1: A simple two-state semi-Markov process. The time from when the left state (s0) is entered until the

transition to the right state (s1) occurs is a random variable with distribution G.

state along a trajectory. The same can be said for stochastic discrete event systems that satisfy the Markov

property (2.20), even with nested probabilistic operators present, because the Markov property ensures that

the amount of time spent in a state does not have an impact on the future behavior of the process.

In general, with nested probabilistic operators and without the Markov assumption, it may not be suf-

ficient to verify the subformulae Φ and Ψ of Φ UI Ψ at the time of state transitions. We illustrate this

with two simple examples. The first example shows that a UTSL formula can be true at the entry of a state

without holding continuously while remaining in the same state. The second example shows that a UTSL

formula can become true while remaining in a state without being true at the entry of the state. It should

be noted that the statistical model checking algorithm we present in the next chapter can deal with nested

probabilistic operators only if it is sufficient to verify nested formulae at discrete points along a trajectory,

which generally means that we must be dealing with a discrete-time model or a model satisfying the Markov

property.

Example 4.1. Consider the semi-Markov process with two states depicted in Figure 4.1. Assume that G is

a standard Weibull distribution with shape parameter 0.5, denoted W (1, 0.5), and that we want to verify the

UTSL formula Φ = P≥ 0.5[ϕ], where ϕ is the path formula P≥ 0.5

[

x=0 U [0,1] x=1
]

U [0,1] x=1, relative to

the trajectory prefix {〈s0, 0〉}.
To solve this problem, we compute the probability measure of the set of trajectories that start in s0 at

time 0 and satisfy the path formula ϕ. Let P denote this set. Members of P are of the form {〈s0, t〉, 〈s1,∞〉}
with t ∈ [0, t′] for some t′ ≤ 1. The probability measure of P is therefore at most F (1) ≈ 0.632, where

F (·) is the cumulative distribution function for W (1, 0.5). Of the trajectories with t ∈ [0, 1], only the ones

where Ψ = P≥ 0.5

[

x=0 U [0,1] x=1
]

holds until s1 is reached satisfy the path formula ϕ.

If we require Ψ to hold continuously along a trajectory until s1 is reached, then we have to rule out

trajectories with t ≥ t′ such that Ψ does not hold if verified relative to the trajectory prefix {〈s0, t
′〉}. The

probability of reaching s1 within 1 time unit, given that we have already spent t′ time units in s0, is given
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by the formula

q(t′) =
1

1− F (t′)

∫ t′+1

t′
f(x) dx

where f(·) is the probability density function for W (1, 0.5). The value of q is greater than 0.5 for t′ =

0.1, but less than 0.5 for t′ = 0.2. Since q is a decreasing function of t′, it means that Ψ does not hold

continuously over trajectories starting in s0 if t ≥ 0.2. It follows that the probability measure of the set P

is less than F (0.2) ≈ 0.361, so Φ does not hold. We would reach the opposite conclusion if we simply

verified the nested formulae at the entry of each state, since Ψ holds initially in s0.

Example 4.2. Consider the same two-state semi-Markov process as in the previous example, but this time

with G equal to W (1, 1.5). Assume that we want to verify the UTSL formula Φ = P≥ 0.5[ϕ], where ϕ

is the path formula x=0 U [0,1] P≥ 0.7

[

x=0 U (0,1] x=1
]

. Note that the time interval is open to the left

in the formula Ψ = P≥ 0.7

[

x=0 U (0,1] x=1
]

, so Ψ cannot hold in s1 because x=0 must hold at the

entry of a state for Ψ to hold in that state. Ψ does not hold immediately in s0 either: the probability of

reaching s1 within 1 time unit is F (1) ≈ 0.632 < 0.7 at time 0 in s0. The formula Ψ does become true,

however, along trajectories that remain in s0 for 0.2 time units or more before transitioning to s1. Since

F (1)− F (0.2) ≈ 0.547 ≥ 0.5, it follows that Φ holds with the semantics given by Definition 4.2.

Our semantics for time-bounded until is consistent with that of TCTL defined by Alur et al. (1991).

Infante López et al. (2001) propose a semantics of CSL for semi-Markov processes that does not require

subformulae to hold continuously in a state along a trajectory. With their semantics, one would get the

opposite result in both of the examples above. While the semantics of Infante López et al. makes it easier to

verify properties with nested probabilistic operators, it is not consistent with the common definition of a tra-

jectory for a continuous-time discrete event system as a piecewise linear function of time. Furthermore, one

could imagine using phase-type distributions to approximate the Weibull distributions in the two examples

and verify the properties for the resulting Markov processes. The introduction of phase transitions would

result in nested formulae possibly being verified at different times in the same state, which is inconsistent

with the semantics of Infante López et al.
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Chapter 5

Statistical Probabilistic Model Checking

This chapter presents a statistical approach to probabilistic model checking, employing hypothesis testing

and discrete event simulation. The proposed solution method works for any discrete event system that can

be simulated, although the method for verifying properties with nested probabilistic statements is limited to

discrete-time systems or systems satisfying the Markov property. We prove two fundamental theorems that

establish efficient verification procedures for conjunctive and nested probabilistic statements, we discuss

benefits and hazards of using distributed sampling, and we provide complexity results for the statistical

solution method.

Consider the UTSL model checking problem 〈M, µ0,P⊲⊳ θ[ϕ]〉. The set of trajectories satisfying ϕ and

with the initial state distributed according to µ0 has probability measure

p =

∫

S
µ({σ ∈ Path({〈s, 0〉}) | M, σ, 0 |= ϕ}) dµ0(S) .

We could solve the model checking problem by computing p and then compare it to the threshold θ, but a

numerical computation of p is not feasible for certain classes of stochastic discrete event systems, in partic-

ular many infinite-state systems and generalized semi-Markov processes. For Markov processes, efficient

numerical techniques for computing p do exist (Hansson and Jonsson 1994; Baier et al. 2003), but the com-

putational complexity of these techniques is proportional to the size of the state space, which puts limits on

their applicability for verifying properties of stochastic systems with large state spaces.

Simulation has often been advertised as a last resort when numerical techniques fail (see, e.g., Teichroew

and Lubin 1966; Buchholz 1998) and it is a technique with roots in the infancy of computer science. The
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Monte Carlo method (Ulam and von Neumann 1947; Metropolis and Ulam 1949), which is essentially a

statistical approach to the study of integro-differential equations, was conceived by S. Ulam in 1946 to solve

problems in mathematical physics on ENIAC—the first digital computer (Metropolis 1987; Eckhardt 1987).

It is therefore reasonable to consider statistical techniques, involving simulation and sampling, to solve

UTSL model checking problems. For this purpose, we set up a chance experiment represented by Bernoulli

variates Xi with parameter p. We could then proceed by estimating p with a confidence interval using

techniques for estimating the mean of a distribution with unknown variance (see, e.g., Chow and Robbins

1965; Nádas 1969; Raatikainen 1995). Note, however, that in order to verify the UTSL formula P⊲⊳ θ[ϕ], we

do not need to have an accurate estimate of p—we need to know only if p is above or below the threshold θ.

It would be a waste of effort to obtain an accurate estimate of p, only to realize that p is far from θ.

In Section 2.2, we discussed acceptance sampling, a statistical technique for testing if the parameter p of

a Bernoulli variate is above or below a threshold θ. This is exactly what we need for UTSL model checking.

The verification of a probabilistic UTSL formula, for example Φ = P≥ θ[ϕ], can be thought of in terms of

hypothesis testing. To verify Φ we need to test the hypothesis H : p ≥ θ against the alternative hypothesis

K : p < θ. We first restrict our attention to UTSL formulae without nested probabilistic operators. In

Section 5.2, we consider the general case and show how nested probabilistic operators can be dealt with

using statistical techniques, at least for certain classes of stochastic discrete event systems.

5.1 Model Checking without Nested Probabilistic Operators

To use acceptance sampling for the purpose of UTSL model checking, we need to introduce the concept of

an indifference region. With each formula of the form P⊲⊳ θ[ϕ], we associate an indifference region centered

around θ with half-width δ(θ). The half-width can be a constant, such as 10−1, but it is sometimes desirable

to let the half-width be a function of θ. A reasonable choice in that case is

(5.1) δ(θ) =







2δ0θ if θ ≤ 0.5

2δ0(1− θ) if θ > 0.5
,

which makes the half-width δ0 if θ is 0.5 and smaller if θ is close to 0 or 1. We modify the semantics

of UTSL to account for indifference regions. This is done by replacing the satisfaction relation |= with

two relations |≈⊤ and |≈⊥ representing satisfaction and unsatisfaction, respectively, for UTSL formulae



5.1. MODEL CHECKING WITHOUT NESTED PROBABILISTIC OPERATORS 65

when taking indifference regions into account. The relations |≈⊤ and |≈⊥ are mutually exclusive, but not

exhaustive, so |≈⊥ is not equivalent to |6≈⊤.

Definition 5.1 (UTSL Semantics with Indifference Regions). Let M = 〈S, T, µ,SV , V 〉 be a factored

stochastic discrete event system, and let δ(θ) be a function determining the half-width of an indifference

region centered around θ. A satisfaction relation |≈⊤ and an unsatisfaction relation |≈⊥ for UTSL with

indifference regions are simultaneously defined by induction as follows:

M, {〈s0, t0〉, . . . , 〈sk, tk〉} |≈⊤ x ∼ v if V (sk, x) ∼ v

M, {〈s0, t0〉, . . . , 〈sk, tk〉} |≈⊥ x ∼ v if V (sk, x) ≁ v

M, σ≤τ |≈⊤ ¬Φ ifM, σ≤τ |≈⊥ Φ

M, σ≤τ |≈⊥ ¬Φ ifM, σ≤τ |≈⊤ Φ

M, σ≤τ |≈⊤ Φ ∧Ψ if (M, σ≤τ |≈⊤ Φ) ∧ (M, σ≤τ |≈⊤ Ψ)

σ≤τ |≈⊥ Φ ∧Ψ if (M, σ≤τ |≈⊥ Φ) ∨ (M, σ≤τ |≈⊥ Ψ)

M, σ≤τ |≈⊤ P≥ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |= ϕ}) ≥ θ + δ(θ)

M, σ≤τ |≈⊥ P≥ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |= ϕ}) ≤ θ − δ(θ)

M, σ≤τ |≈⊤ P≤ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |= ϕ}) ≤ θ − δ(θ)

M, σ≤τ |≈⊥ P≤ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |= ϕ}) ≥ θ + δ(θ)

It should be clear from Definitions 4.2 and 5.1 that, for any UTSL formula Φ, (M, σ≤τ |≈⊤ Φ) =⇒
(M, σ≤τ |= Φ) and (M, σ≤τ |≈⊥ Φ) =⇒ (M, σ≤τ |6= Φ). However, the inverse does not hold, in general.

For example, it is possible that M, σ≤τ |= Φ is satisfied without M, σ≤τ |≈⊤ Φ being so because of the

indifference regions. In fact, the triple 〈M, σ≤τ ,P⊲⊳ θ[ϕ]〉 does not belong to either of the two relations |≈⊤

and |≈⊥ if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |= ϕ}) falls into the indifference region for P⊲⊳ θ[ϕ], i.e. is less than

δ(θ) away from θ.

Since we are resorting to statistical techniques for solving UTSL model checking problems, we must

accept that we sometimes produce an incorrect answer. This is satisfactory, so long as we can guarantee

certain a priori bounds on the probability of an incorrect result. Simply put, we want the probability of

accepting a UTSL formula as true when it is false (or vice versa) to be below a predetermined threshold.

To be precise, we want our statistical model checking algorithm to accept a UTSL formula Φ as true with
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probability at least 1− α ifM, σ≤τ |≈⊤ Φ holds, and the probability should be at most β that Φ is accepted

as true if M, σ≤τ |≈⊥ Φ holds. Let M, σ≤τ ⊢ Φ represent the fact that our model checking algorithm

accepts Φ as true, and letM, σ≤τ 0 Φ represent the fact that Φ is rejected as false by our algorithm. For the

remainder of this section, we will often leave outM from relations for the sake of brevity. The requirements

for our algorithm can then be summarized by the following two conditions:

Pr[σ≤τ ⊢ Φ | σ≤τ |≈⊤ Φ] ≥ 1− α(5.2)

Pr[σ≤τ ⊢ Φ | σ≤τ |≈⊥ Φ] ≤ β(5.3)

We require that our model checking algorithm always produces a result, i.e. it either accepts a UTSL

formula as true or rejects it as false. In other words, the algorithm is required to satisfy the condition

¬(σ≤τ ⊢ Φ) ⇐⇒ (σ≤τ 0 Φ). It follows from this requirement that

(5.4) Pr[σ≤τ 0 Φ | σ≤τ |≈⊤ Φ] ≤ α

is equivalent to condition (5.2). The parameter α can be interpreted as a bound on the probability of a type

I error (false negative) and β can be thought of a bound on the probability of a type II error (false positive),

provided that we do not consider it an error to produce an incorrect answer for a model checking problem

when some of the probabilities fall into an indifference region. By narrowing the indifference regions for

probabilistic UTSL operators, we can get arbitrarily close to a statistical algorithm that implements the true

semantics for UTSL given by Definition 4.2, although this will most certainly come at a cost.

Let us now consider the problem of verifying a UTSL formula Φ relative to a trajectory prefix so that

conditions (5.4) and (5.3) are satisfied, under the assumption that Φ does not contain any nested probabilistic

operators. To begin with, if Φ is of the form x ∼ v, then it is trivial to satisfy the two conditions for any

α and β. Given a trajectory prefix {〈s0, t0〉, . . . , 〈sk, tk〉}, we simply observe the value of x in state sk and

compare it to v. The probability of error in this case is always zero.

5.1.1 Probabilistic Operator

To verify the UTSL formula P⊲⊳ θ[ϕ], we introduce Bernoulli variates Xi with parameter p, as stated in the

introduction to this chapter, where p is the probability measure of the set of trajectories that satisfy ϕ. An

observation of Xi can be obtained by first generating a trajectory forM using discrete event simulation and
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then verifying ϕ over the sampled trajectory. If ϕ does not contain any probabilistic operators, as is assumed

for now, then we can verify ϕ without any uncertainty in the result. If ϕ is determined to hold over the

sampled trajectory, then the observation is 1, otherwise it is 0.

While a trajectory for a stochastic discrete event system can be infinite, we assume that we never need

to generate more than a finite prefix of a trajectory in order to determine the truth value of ϕ over the entire

trajectory. If ϕ is XI Φ, then this assumption holds with certainty because we only need to simulate a single

state transition. If ϕ is Φ UI Ψ, then the assumption holds if the probability is zero that an infinite number

of state transitions occur before sup I time units have passed. A sufficient condition for this to be the case

is that the system is non-explosive and sup I is finite, as is stated by the following theorem.

Theorem 5.1 (Sufficient Conditions for Tractability). The probability is zero that an infinite trajectory is

needed to determine the truth value of Φ UI Ψ, with sup I < ∞, for a non-explosive stochastic discrete

event system.

Proof. If we have not already encountered a state satisfying ¬Φ ∨Ψ within the first sup I time units along

a trajectory, then we can conclude that Φ UI Ψ does not hold without having to look further along the

trajectory. If the stochastic discrete event system is non-explosive, then the probability measure is zero for

an infinite trajectory {〈s0, t0〉, 〈s1, t1〉, . . .} with
∑∞

i=0 ti < ∞. It follows that within a finite interval of

time, in particular the interval [0, sup I], only a finite number of state transitions can occur. Consequently,

the probability is one that we can determine the truth value of Φ UI Ψ by looking at a finite prefix of a

trajectory.

We can now set up a hypothesis testing problem for verifying P≥ θ[ϕ]. We should test the hypothesis

H0 : p ≥ θ + δ(θ) against the alternative hypothesis H1 : p ≤ θ − δ(θ) (for P≤ θ[ϕ], we simply reverse

the roles of the two hypotheses). The hypothesis H0 holds if and only if σ≤τ |≈⊤ P≥ θ[ϕ] holds, and H1 is

similarly related to the judgment σ≤τ |≈⊥ P≥ θ[ϕ]. Thus, by using an acceptance sampling test with strength

〈α, β〉 to decide σ≤τ ⊢ P≥ θ[ϕ], we can satisfy conditions (5.4) and (5.3) with our model checking algorithm.

5.1.2 Composite State Formulae

To complete the model checking algorithm, we need to verify negated UTSL formulae and conjunctions

of UTSL formulae. We take a compositional approach to verification of such formulae. To verify ¬Φ, we
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verify Φ and reverse the result. To verify a conjunction, we verify each conjunct separately. The following

two rules formally define the behavior of the model checking algorithm:

M, σ≤τ ⊢ ¬Φ ifM, σ≤τ 0 Φ

M, σ≤τ ⊢ Φ ∧Ψ if (M, σ≤τ ⊢ Φ) ∧ (M, σ≤τ ⊢ Ψ)

Next, we show how to bound the probability of error for a composite UTSL formula, assuming that we have

bounds for the probability of error in the verification results for the subformulae.

First, consider the verification of ¬Φ, assuming we have already verified Φ so that conditions (5.4) and

(5.3) are satisfied. Since we negate the verification result for Φ, a type I error for Φ becomes a type II error

for ¬Φ, and a type II error for Φ becomes a type I error for ¬Φ. To verify ¬Φ with error bounds α and β,

we therefore have to verify Φ with error bounds β and α as stated by the following proposition.

Proposition 5.2. To verify ¬Φ with type I error probability α and type II error probability β, it is sufficient

to verify Φ with type I error probability β and type II error probability α.

Proof. Assume that Pr[σ≤τ 0 Φ | σ≤τ |≈⊤ Φ] ≤ β and Pr[σ≤τ ⊢ Φ | σ≤τ |≈⊥ Φ] ≤ α. It follows from

Definition 5.1 that σ≤τ |≈⊤ Φ ⇐⇒ σ≤τ |≈⊥ ¬Φ and σ≤τ |≈⊥ Φ ⇐⇒ σ≤τ |≈⊤ ¬Φ. Our model

checking algorithm is such that σ≤τ 0 Φ ⇐⇒ σ≤τ ⊢ ¬Φ and σ≤τ ⊢ Φ ⇐⇒ σ≤τ 0 ¬Φ. Consequently,

Pr[σ≤τ 0 ¬Φ | σ≤τ |≈⊤ ¬Φ] = Pr[σ≤τ ⊢ Φ | σ≤τ |≈⊥ Φ] ≤ α and Pr[σ≤τ ⊢ ¬Φ | σ≤τ |≈⊥ ¬Φ] = Pr[σ≤τ 0

Φ | σ≤τ |≈⊤ Φ] ≤ β.

Next, consider the verification of Φ ∧Ψ. The conjunction is determined to hold by our algorithm if and

only if both Φ and Ψ are determined to hold. A type I error occurs if we believe that at least one of Φ and

Ψ does not hold, when in reality both are true. A type II error occurs if we believe that both Φ and Ψ hold,

when at least one of the conjuncts actually is false. We will show that in order to verify a conjunction with

error bounds α and β, it is sufficient to verify each conjunct with the same error bounds. To prove this, we

use the following elementary lemma from probability theory.

Lemma 5.3. For arbitrary events A and B, Pr[A ∧B] ≤ min(Pr[A],Pr[B]).

Using this lemma, we can derive bounds on the error probabilities associated with the verification of a

conjunction based on error bounds for the verification of the individual conjuncts.
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Theorem 5.4 (Conjunction). If Φi is verified with type I error probability αi and type II error probability

βi for all 1 ≤ i ≤ n, then Φ =
∧n

i=1 Φi can be verified with type I error probability mini∈Rej (Φ) αi and

type II error probability max1≤i≤n βi, where Rej (
∧n

i=1 Φi) = {i | σ≤τ 0 Φi}.

Proof by induction. If n = 1, then
∧n

i=1 Φi ≡ Φ1, which by assumption can be verified with type I error

probability α1 = minα1 and type II error probability β1 = max β1.

Assume that Φ =
∧n

i=1 Φi, for some n ≥ 1, can be verified with type I error probability α =

mini∈Rej (Φ) αi and type II error probability β = max1≤i≤n βi. Furthermore, assume that Pr[σ≤τ 0

Φn+1 | σ≤τ |≈⊤ Φn+1] ≤ αn+1 and Pr[σ≤τ ⊢ Φn+1 | σ≤τ |≈⊥ Φn+1] ≤ βn+1.

It follows from Definition 5.1 that σ≤τ |≈⊤ Φ ∧ Φn+1 ⇐⇒ (σ≤τ |≈⊤ Φ) ∧ (σ≤τ |≈⊤ Φn+1). We thus

have Pr[σ≤τ 0 Φ ∧ Φn+1 | σ≤τ |≈⊤ Φ ∧ Φn+1] = Pr[σ≤τ 0 Φ ∧ Φn+1 | (σ≤τ |≈⊤ Φ) ∧ (σ≤τ |≈⊤ Φn+1)].

There are three ways in which a type I error can occur, i.e. our model checking algorithm can conclude

σ≤τ 0 Φ ∧ Φn+1:

1. If both Φ and Φn+1 are verified to be false, then Pr[σ≤τ 0 Φ ∧ Φn+1 | (σ≤τ |≈⊤ Φ) ∧ (σ≤τ |≈⊤

Φn+1)] = Pr[(σ≤τ 0 Φ) ∧ (σ≤τ 0 Φn+1) | (σ≤τ |≈⊤ Φ) ∧ (σ≤τ |≈⊤ Φn+1)], which by Lemma 5.3 is

at most min(Pr[σ≤τ 0 Φ | (σ≤τ |≈⊤ Φ)∧ (σ≤τ |≈⊤ Φn+1)],Pr[σ≤τ 0 Φn+1 | (σ≤τ |≈⊤ Φ)∧ (σ≤τ |≈⊤

Φn+1)]). By assumption, this is at most min(α,αn+1) = mini∈Rej (Φ∧Φn+1) αi.

2. If Φ is verified to be false and Φn+1 is verified to be true, then Pr[σ≤τ 0 Φ ∧ Φn+1 | (σ≤τ |≈⊤

Φ) ∧ (σ≤τ |≈⊤ Φn+1)] = Pr[(σ≤τ 0 Φ) ∧ (σ≤τ ⊢ Φn+1) | (σ≤τ |≈⊤ Φ) ∧ (σ≤τ |≈⊤ Φn+1)] ≤
min(α, 1) = mini∈Rej (Φ∧Φn+1) αi.

3. If Φ is verified to be true and Φn+1 is verified to be false, then Pr[σ≤τ 0 Φ ∧ Φn+1 | (σ≤τ |≈⊤

Φ) ∧ (σ≤τ |≈⊤ Φn+1)] = Pr[(σ≤τ ⊢ Φ) ∧ (σ≤τ 0 Φn+1) | (σ≤τ |≈⊤ Φ) ∧ (σ≤τ |≈⊤ Φn+1)] ≤
min(1, αn+1) = αn+1. If Φ is verified as true, then Rej (Φ) = ∅. We therefore have αn+1 =

mini∈Rej (Φ∧Φn+1) αi.

In all three cases the probability of a type I error is bounded by mini∈Rej (Φ∧Φn+1) αi as required.

Our model checking algorithm will conclude σ≤τ ⊢ Φ∧Φn+1 if and only if it can conclude both σ≤τ ⊢ Φ

and σ≤τ ⊢ Φn+1. There are three ways in which this can lead to a type II error:
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1. If both σ≤τ |≈⊥ Φ and σ≤τ |≈⊥ Φn+1 hold, then the probability of a type II error is Pr[(σ≤τ ⊢
Φ) ∧ (σ≤τ ⊢ Φn+1) | (σ≤τ |≈⊥ Φ) ∧ (σ≤τ |≈⊥ Φn+1)]. This is at most min(Pr[σ≤τ ⊢ Φ | (σ≤τ |≈⊥

Φ) ∧ (σ≤τ |≈⊥ Φn+1)],Pr[σ≤τ ⊢ Φn+1 | (σ≤τ |≈⊥ Φ) ∧ (σ≤τ |≈⊥ Φn+1)]) by Lemma 5.3, which in

turn is at most min(β, βn+1) by assumption.

2. If σ≤τ |≈⊥ Φ holds, but not σ≤τ |≈⊥ Φn+1, then the probability of a type II error is Pr[(σ≤τ ⊢
Φ) ∧ (σ≤τ ⊢ Φn+1) | σ≤τ |≈⊥ Φ] ≤ min(β, 1) = β.

3. If σ≤τ |≈⊥ Φn+1 holds, but not σ≤τ |≈⊥ Φ, then the probability of a type II error is Pr[(σ≤τ ⊢
Φ) ∧ (σ≤τ ⊢ Φn+1) | σ≤τ |≈⊥ Φn+1] ≤ min(1, βn+1) = βn+1.

We take the maximum over the three cases to obtain the bound max1≤i≤n+1 βi.

Intuitively, we can explain Theorem 5.4 as follows. To conclude that Φ ∧ Ψ does not hold, we only

need to be convinced that one of the conjuncts does not hold. We can base the decision for the conjunction

solely on the rejection of a single conjunct, in which case the probability of a type I error will be the same

for the conjunction as for the rejected conjunct. We get mini∈Rej (Φ) αi by basing our decision for the entire

conjunction on the conjunct that has been verified with the smallest probability of a type I error. To conclude

that Φ∧Ψ holds, we must be convinced that both conjuncts hold. We get a type II error if at least one of the

conjuncts does not hold and we accept the conjunction as true. If Φ does not hold, the probability of a type

II error for the conjunction is bounded by the type II error probability for Φ. If Ψ does not hold, the type

II error probability for Ψ bounds the type II error probability for the conjunction. Since we cannot know if

either Φ or Ψ is actually false, we know only that the type II error probability is at most the maximum of the

type II error probabilities for the conjuncts.

If we knew that the verification results for the individual conjuncts were obtained independently, then

we could actually bound the type I error probability for the verification of the conjunction by
∏

i∈Rej (Φ) αi,

but Theorem 5.4 does not make any assumptions regarding independence. For example, if the same set of

sampled trajectories were used to verify all of the conjuncts, then the verification results for the individual

conjuncts would not be independent.

Example 5.1. Consider the UTSL formula Φ = P≥ 0.5[ϕ1] ∧ P≥ 0.75[ϕ2]. Let α1 = 0.01 and β1 = 0.04 be

the error bounds used to verify the first conjunct, and let α2 = 0.03 and β2 = 0.02 be the error bounds used
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Figure 5.1: Probability of an incorrect verification result for a conjunction Φ = P≥ 0.5[ϕ1]∧P≥ 0.75[ϕ2] as a function

of the probabilities p1 and p2 that ϕ1 and ϕ2, respectively, hold over trajectories starting in some initial state s0. The

error bounds are α1 = 0.01, β1 = 0.04, α2 = 0.03 and β2 = 0.02. The border of the L-shaped indifference region is

indicated by dashed lines. The plot was obtained using computer simulation, with 50,000 runs per data point.

to verify the second conjunct. Furthermore, let pi be the probability measure of the set of trajectories that

start in s0 at time 0 and satisfy ϕi, for i ∈ {1, 2}. We assume that the function in (5.1), with δ0 = 0.1, is

used to determine the indifference region for each probabilistic operator. This gives the indifference region

(0.4, 0.6) for the first conjunct and (0.7, 0.8) for the second conjunct. According to Theorem 5.4, if p1 > 0.6

and p2 > 0.8, then the probability of rejecting the conjunction as false is at most min(α1, α2) = 0.03. On

the other hand, if p1 < 0.4 or p2 < 0.7, then the probability of accepting the conjunction as true is at most

max(β1, β2) = 0.04. Figure 5.1 plots the probability of incorrectly verifying the given conjunction as a

function of p1 and p2. The simulation results confirm that, while the probability of error is large inside of

the L-shaped indifference region, the error bounds are respected outside of the indifference region.

The following result follows immediately from Theorem 5.4 and establishes the procedure for the veri-

fication of a conjunction, namely that we use the target error bounds for the conjunction when verifying the

individual conjuncts.

Corollary. To verify
∧n

i=1 Φi with type I error probability α and type II error probability β, it is sufficient
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to verify each conjunct Φi with type I error probability α and type II error probability β.

We have now shown how to verify a UTSL formula without nested probabilistic operators so that condi-

tions (5.4) and (5.3) are satisfied. An observation is obtained by generating a trajectory using discrete event

simulation and verifying the path formula over the generated trajectory. To verify a negation, we verify the

negated UTSL formula while reversing the role of the error bounds. A conjunction is verified by verifying

each conjunct using the same error bounds as intended for the conjunction (note that the fact that we can use

the same error bounds to verify the individual conjuncts will prove essential when dealing with nested prob-

abilistic operators). For probabilistic operators, we can use one of the acceptance sampling tests described

in Section 2.2. In the next chapter, we present empirical results for our model checking algorithm using two

different tests: the sequential version of a single sampling plan and Wald’s sequential probability ratio test.

5.2 Model Checking with Nested Probabilistic Operators

In this section, we consider UTSL formulae with nested probabilistic operators. If a path formula contains

probabilistic operators, we can no longer assume that it can be verified without error. To deal with the

possibility of making an error in verifying a path formula, we modify the semantics given in Definition 5.1.

Definition 5.2 (UTSL Semantics with Indifference Regions and Nesting). Let M = 〈S, T, µ,SV , V 〉
be a factored stochastic discrete event system, and let δ(θ) be a function determining the half-width of an

indifference region centered around θ. A satisfaction relation |≈⊤ and an unsatisfaction relation |≈⊥ for

UTSL with indifference regions and nested probabilistic operators are simultaneously defined by induction

as follows (the first six rules are the same as in Definition 5.1 and are therefore not repeated here):

...

M, σ≤τ |≈⊤ P≥ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈⊤ ϕ}) ≥ θ + δ(θ)

M, σ≤τ |≈⊥ P≥ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈⊥ ϕ}) ≥ 1− (θ − δ(θ))

M, σ≤τ |≈⊤ P≤ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈⊤ ϕ}) ≤ θ − δ(θ)

M, σ≤τ |≈⊥ P≤ θ[ϕ] if µ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈⊥ ϕ}) ≤ 1− (θ + δ(θ))
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M, σ, τ |≈⊤ XI Φ if ∃k ∈ N.
(

(Tk−1 ≤ τ) ∧ (τ < Tk) ∧ (Tk − τ ∈ I) ∧ (M, σ≤Tk
|≈⊤ Φ)

)

M, σ, τ |≈⊥ XI Φ if ∀k ∈ N.
((

(Tk−1 ≤ τ) ∧ (τ < Tk) ∧ (Tk − τ ∈ I)
)

→ (M, σ≤Tk
|≈⊥ Φ)

)

M, σ, τ |≈⊤ Φ UI Ψ if ∃t ∈ I.
(

(M, σ≤τ+t |≈⊤ Ψ) ∧ ∀t′ ∈ T.
(

(t′ < t)→ (M, σ≤τ+t′ |≈⊤ Φ)
))

M, σ, τ |≈⊥ Φ UI Ψ if ∀t ∈ I.
(

(M, σ≤τ+t |≈⊥ Ψ) ∨ ∃t′ ∈ T.
(

(t′ < t) ∧ (M, σ≤τ+t′ |≈⊥ Φ)
))

Definition 5.2 is equivalent to Definition 5.1 for UTSL formulae that do not have nested probabilistic

operators, so the semantics just given can be used even without nested probabilistic operators. To prove

this, we first show that for UTSL formulae free of any probabilistic operators, the relations |≈⊤ and |≈⊥ are

equivalent to |= and |6=, respectively.

Lemma 5.5. If Φ is a UTSL formula that does not contain any probabilistic operators, then (M, σ≤τ |≈⊤

Φ) ⇐⇒ (M, σ≤τ |= Φ) and (M, σ≤τ |≈⊥ Φ) ⇐⇒ (M, σ≤τ |6= Φ).

Proof by structural induction. If Φ is x ∼ v, then the two equivalences follow immediately from Defini-

tions 4.2 and 5.2. If the UTSL formula is ¬Φ or Φ∧Ψ where Φ and Ψ are free of any probabilistic operators,

assume that the equivalences hold for Φ and Ψ. It follows from Definitions 4.2 and 5.2 that the equivalences

hold for the compound UTSL formulae. This covers all UTSL formulae that can be formed without any

probabilistic operators according to Definition 4.1.

Proposition 5.6. For UTSL formulae that do not contain nested probabilistic operators, Definitions 5.1 and

5.2 are equivalent.

Proof. The first six rules are identical for the two definitions. It follows from Lemma 5.5 that the rules

for path formulae are equivalent to the rules in Definition 4.2, which Definition 5.1 inherits, because

the path formulae are assumed not to contain probabilistic operators. From this, it follows that the sets

{σ ∈ Path(σ≤τ ) | M, σ, τ |≈⊤ ϕ} and {σ ∈ Path(σ≤τ ) | M, σ, τ |= ϕ} are equivalent. The rules

for M, σ≤τ |≈⊤ P⊲⊳ θ[ϕ] are therefore equivalent for the two definitions. Analogously, the sets {σ ∈
Path(σ≤τ ) | M, σ, τ |≈⊥ ϕ} and {σ ∈ Path(σ≤τ ) | M, σ, τ |6= ϕ} are equivalent. Since M, σ, τ |6= ϕ

is equivalent to ¬(M, σ, τ |= ϕ), we have µ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈⊥ ϕ}) = 1 − µ({σ ∈
Path(σ≤τ ) | M, σ, τ |= ϕ}). Hence, the rules for M, σ≤τ |≈⊥ P⊲⊳ θ[ϕ] are also equivalent for the two

definitions, and this covers all rules.
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It is still the case that M, σ≤τ |≈⊤ Φ implies M, σ≤τ |= Φ and M, σ≤τ |≈⊥ Φ implies M, σ≤τ |6= Φ.

We want our model checking algorithm to satisfy conditions (5.4) and (5.3) for the modified definition of

the relations |≈⊤ and |≈⊥ for UTSL formulae. Negation and conjunction can be handled in the same way as

before, because the definition is unmodified in these cases, but probabilistic statements must now be handled

differently.

5.2.1 Probabilistic Operator

Consider the UTSL model checking problem 〈M, σ≤τ ,P≥ θ[ϕ]〉 (the case P≤ θ[ϕ] is analogous), and let

p = µ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈⊤ ϕ}) and q = µ({σ ∈ Path(σ≤τ ) | M, σ, τ |≈⊥ ϕ}). The

two conditions (5.4) and (5.3) can then be expressed as Pr[σ≤τ 0 P≥ θ[ϕ] | p ≥ θ + δ(θ)] ≤ α and

Pr[σ≤τ ⊢ P≥ θ[ϕ] | q ≥ 1− (θ − δ(θ))] ≤ β, respectively. If these conditions are satisfied, then we accept

P≥ θ[ϕ] with probability at least 1−α if p ≥ θ + δ(θ) and with probability at most β if q ≥ 1− (θ− δ(θ)).

If p ≥ θ + δ(θ), then µ({σ ∈ Path(σ≤τ ) | M, σ, τ |= ϕ}) ≥ θ definitely holds, so there is a high

probability of accepting P≥ θ[ϕ] when it holds with some margin. Conversely, if q ≥ 1 − (θ − δ(θ)), then

µ({σ ∈ Path(σ≤τ ) | M, σ, τ |= ϕ}) ≤ θ definitely holds, so P≥ θ[ϕ] is rejected with high probability when

it is false with some margin.

We want to use acceptance sampling, as before, to verify probabilistic statements. With probabilistic

operators in the path formulae, it is possible that observations we use for the acceptance sampling test are

incorrect. If we can at least bound the probability of a path formula being incorrectly verified, then we can

modify the acceptance sampling test to account for the possibility of observation errors. In particular, we

assume that Pr[σ, τ 0 ϕ | σ, τ |≈⊤ ϕ] ≤ α′ and Pr[σ, τ ⊢ ϕ | σ, τ |≈⊥ ϕ] ≤ β′ for some α′ and β′. To

understand the general theoretical results presented below regarding acceptance sampling with observation

error, it may help to have the following interpretation for the random variables X and Y in mind:

Y = 1 ⇐⇒ M, σ, τ ⊢ ϕ X = 1 ⇐⇒ M, σ, τ |≈⊤ ϕ

Y = 0 ⇐⇒ M, σ, τ 0 ϕ X = 0 ⇐⇒ M, σ, τ |≈⊥ ϕ

Note that Y has exactly two outcomes and is therefore a Bernoulli variate, but X can have more than two

outcomes. Before establishing a modified acceptance sampling test, we need the following intermediate

result regarding two arbitrary random variables X and Y with some correlation between their observations.
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Lemma 5.7. Let X and Y be two random variables such that Pr[Y = 0 | X = 1] ≤ α′ and Pr[Y =

1 | X = 0] ≤ β′. If Pr[X = 1] = p and Pr[X = 0] = q, then p(1− α′) ≤ Pr[Y = 1] ≤ 1− q(1− β′).

Proof. By the formula of total probability we have

Pr[Y = 1] = Pr[X = 1]Pr[Y = 1 | X = 1] + Pr[X = 0]Pr[Y = 1 | X = 0]

+ Pr[X /∈ {0, 1}] Pr[Y = 1 | X /∈ {0, 1}]

= p(1− Pr[Y = 0 | X = 1]) + q Pr[Y = 1 | X = 0] + (1− p− q) Pr[Y = 1 | X /∈ {0, 1}] .

As an upper bound for Pr[Y = 1], we get Pr[Y = 1] ≤ p(1−0)+qβ′+(1−p−q) ·1 = 1−q(1−β′). The

lower bound for Pr[Y = 1] is derived as follows: Pr[Y = 1] ≥ p(1−α′)+q·0+(1−p−q)·0 = p(1−α′).

We can now show that with the observation error bounded by α′ and β′, it is sufficient to replace the

probability thresholds p0 and p1 of a standard acceptance sampling test with p0(1−α′) and 1− (1−p1)(1−
β′), respectively. In effect, this means that we narrow the indifference region for the acceptance sampling

test in order to cope with the possibility of inaccurate observations.

Theorem 5.8 (Acceptance Sampling with Observation Error). Let Y be a Bernoulli variate whose ob-

servations are related to the observations of a random variable X as follows: Pr[Y = 0 | X = 1] ≤ α′ and

Pr[Y = 1 | X = 0] ≤ β′. Furthermore, let Pr[X = 1] = p, Pr[X = 0] = q, and Pr[Y = 1] = p′. To test

the hypothesis H0 : p ≥ p0 against the alternative hypothesis H1 : q ≥ 1 − p1, for probability thresholds

p0 > p1, so that the probability of accepting H1 when H0 holds (type I error) is at most α and the proba-

bility of accepting H0 when H1 holds (type II error) is at most β, it is sufficient to test H ′
0 : p′ ≥ p0(1− α′)

against H ′
1 : p′ ≤ 1 − (1 − p1)(1 − β′) with probability at most α that H ′

1 is accepted when H0 holds

and probability at most β that H ′
0 is accepted when H1 holds, provided that acceptance of H ′

0 leads to

acceptance of H0 and acceptance of H ′
1 leads to acceptance of H1.

Proof. From (2.3), assuming a single sampling plan 〈n, c〉 is used, we get F (c;n, p′) as the probability

of accepting hypothesis H ′
1. We know from Lemma 5.7 that p′ ≥ p(1 − α′). Since F (c;n, p) is a non-

increasing function of p in the interval [0, 1], we have F (c;n, p′) ≤ F (c;n, p(1−α′)), which if H0 : p ≥ p0

holds is at most F (c;n, p0(1 − α′)). By choosing n and c so that F (c;n, p0(1 − α′)) ≤ α, we ensure that

the probability of accepting H ′
1, and therefore also H1, is at most α when H0 holds.
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The probability of accepting H ′
0 is 1−F (c;n, p′) when using the single sampling plan 〈n, c〉. It follows

from Lemma 5.7 that p′ ≤ 1− q(1− β′). Thus, 1−F (c;n, p′) ≤ 1−F (c;n, 1− q(1− β′)), which in turn

is at most 1− F (c;n, 1 − (1 − p1)(1 − β′)) if H1 : q ≥ 1− p1 holds. Consequently, if we choose n and c

so that 1− F (c;n, 1 − (1− p1)(1− β′)) ≤ β, we are guaranteed that the probability of accepting H ′
0, and

therefore also H0, is at most β when H1 holds.

The above proof establishes Theorem 5.8 specifically for single sampling plans, but the result is more

general because we only need to modify the probability thresholds in order to cope with observation er-

ror while leaving the rest of the test procedure intact. We can use the exact same modification for other

acceptance sampling tests, for example Wald’s sequential probability ratio test. Note that the probability

thresholds equal p0 and p1 if the observation error is zero, so the modified test is identical to the original test

in that case, as should be expected. Note also that the observation error can be chosen independently of the

desired strength of the test. A procedure for verifying probabilistic UTSL formulae with nested probabilistic

operators follows immediately from Theorem 5.8.

Corollary. An acceptance sampling test with strength 〈α, β〉 and probability thresholds (θ + δ(θ))(1− α′)

and 1 − (1 − (θ − δ(θ)))(1 − β′) can be used to verify P≥ θ[ϕ] with type I error probability α and type

II error probability β, provided that ϕ can be verified over trajectories with type I error probability α′ and

type II error probability β′.

To better understand the verification procedure for the UTSL formula P≥ θ[ϕ] with nested probabilistic

operators, consider the following four sets of trajectories:

P = {σ ∈ Path(σ≤τ ) | M, σ, τ |= ϕ} Q = {σ ∈ Path(σ≤τ ) | M, σ, τ |6= ϕ}

P̃ = {σ ∈ Path(σ≤τ ) | M, σ, τ |≈⊤ ϕ} Q̃ = {σ ∈ Path(σ≤τ ) | M, σ, τ |≈⊥ ϕ}

We cannot determine membership in P or Q for a sampled trajectory σ ∈ Path(σ≤τ ) if ϕ contains proba-

bilistic operators. We assume, however, that we have a probabilistic procedure for determining membership

in P̃ or Q̃. We require a probability of at most α′ that σ is determined to be in Q̃ if it is really in P̃ , and the

probability of determining that σ is in P̃ should be at most β′ if σ is actually in Q̃. Given such a procedure,

Theorem 5.8 provides us with a way to test the hypothesis H0 : µ(P̃ ) ≥ θ + δ(θ) against the alternative

hypothesis H1 : µ(Q̃) ≥ 1 − (θ − δ(θ)). Acceptance of H0 leads to acceptance of P≥ θ[ϕ] as true, and
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µ(P) = 1 − µ(Q) < θ µ(P) ≥ θ

1 − µ(Q) ≤ θ − δ (θ ) µ(P) ≥ θ + δ (θ )

1 − µ(Q̃) ≤ θ − δ (θ ) µ(P̃) ≥ θ + δ (θ )

Pr[accept "µ(P) < θ "] ≥ 1 − β Pr[accept "µ(P) ≥ θ "] ≥ 1 − α

Figure 5.2: Probabilistic guarantees for model checking problems with UTSL formulae of the form P≥ θ[ϕ], with

probabilistic operators in ϕ. The thick box represents all such model checking problems. In the right half are problems

with an affirmative answer. A subset of these problems have an affirmative answer even with an indifference region

at the top level of half-width δ(θ). For some of the latter set of problems, the UTSL formula holds with indifference

regions at all levels. It is for this last set of problems that we can guarantee an affirmative answer with probability at

least 1− α. There is a similar hierarchy for the problems with a negative answer, in the left half of the thick box. The

gray area represents the set of model checking problems for which we give no correctness guarantees.

acceptance of H1 leads to rejection of P≥ θ[ϕ] as false. We are guaranteed that H0 is accepted with proba-

bility at least 1 − α if H0 holds. Since P̃ ⊂ P , we know that µ(P ) ≥ θ when H0 holds, so there is a high

probability of accepting P≥ θ[ϕ] when it holds with some margin. We also know that H1 is accepted with

probability at least 1− β if H1 holds, and µ(P ) < θ in that case, so there is a high probability of rejecting

P≥ θ[ϕ] when it is false with some margin.

Figure 5.2 gives a graphical representation of the correctness guarantees provided by the algorithm for

UTSL formulae with nested probabilistic operators. For the subset of all model checking problems such that

µ(P̃ ) ≥ θ + δ(θ), it is guaranteed that an affirmative answer is given with probability at least 1−α. For the

problems such that 1−µ(Q̃) ≤ θ− δ(θ), it is guaranteed that a negative answer is given with probability at

least 1− β. For the remaining problems, no guarantees are made regarding the correctness of the result.

5.2.2 Path Formulae with Probabilistic Operators

We have established a procedure for verifying probabilistic statements when the path formula cannot be

verified without some probability of error. It remains to show how to verify path formulae containing

probabilistic operators so that the following conditions are satisfied:

Pr[σ, τ 0 ϕ | σ, τ |≈⊤ ϕ] ≤ α′(5.5)

Pr[σ, τ ⊢ ϕ | σ, τ |≈⊥ ϕ] ≤ β′(5.6)

This is straightforward for XI Φ. We simulate a single state transition and verify Φ in the resulting state.

Path formulae of the form Φ UI Ψ are more difficult to handle. We need to find a t ∈ I such that Ψ is
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satisfied at time t and Φ is satisfied at all time points t′ prior to t. Examples 4.1 and 4.2 showed that it is not

sufficient to consider only the time points at which a state transition occurs for models that do not satisfy the

Markov property. However, if the model is a Markov process, then it is sufficient to consider the time points

at which state transitions occur, as mentioned in Chapter 4. This is guaranteed to be a finite number of time

points if the assumptions of Theorem 5.1 are satisfied. The same can be said for any discrete-time model,

provided that sup I is finite. If only a finite number of time points need be considered, then we can treat the

verification of Φ UI Ψ as a large disjunction of conjunctions. Let {t1, . . . , tn} be the set of time points at

which we may have to verify the subformulae, with ti ≤ sup I . For Markov processes, these are the time

points at which state transitions occur, and for discrete-time models these are all time points no later than

sup I . Furthermore, let tn+1 be some time point later than sup I . We can verify Φ UI Ψ as follows:

σ, τ ⊢ Φ UI Ψ if

n
∨

i=1

(

(ti ≥ τ) ∧
(

[ti, ti+1) ∩ I 6= ∅
)

∧ (σ≤ti ⊢ Ψ)

∧
(

(ti ∈ I) ∨ (σ≤ti ⊢ Φ)
)

∧
i−1
∧

j=1

(σ≤tj ⊢ Φ)

)

Since disjunction can be expressed using conjunction and negation, and we already know how to verify

negations and conjunctions using statistical techniques, this gives us a way to verify Φ UI Ψ so that condi-

tions (5.5) and (5.6) are satisfied. Thus, it is sufficient simply to verify the UTSL formulae Φ and Ψ with

error bounds α′ and β′ at each relevant time point along a trajectory.

5.2.3 Observation Error

A noteworthy consequence of Theorem 5.8 is that the bounds on the observation error, α′ and β′, can be

chosen independently of the bounds on the probability of a verification error occurring, α and β. We can

decrease α′ and β′ to increase the indifference region of the outer probabilistic statement and therefore

lower the sample size required to verify this part of the formula, but this will increase the effort required per

observation, since we have to verify the nested probabilistic statements with higher accuracy. If we increase

α′ and β′ to lower the effort per observation, then we need to make more observations. Clearly, there is a

tradeoff here, and the choice for the bounds on the observation error can have a great impact on performance.

Ideally, we want to use the observation error that minimizes the expected verification effort, but this

quantity is non-trivial to compute. We propose, instead, a heuristic estimate of the verification effort that
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can be computed efficiently.

Definition 5.3 (Estimated Effort Heuristic). Let n(p0, p1, α, β) be the expected sample size of an ac-

ceptance sampling test with strength 〈α, β〉 for probability thresholds p0 and p1, and let q be the expected

number of state transitions within a unit interval of time. We define a heuristic estimate of the effort required

to verify a UTSL formula inductively as follows:

effort(x ∼ v, α, β, α′, β′) = 1

effort(¬Φ, α, β, α′, β′) = effort(Φ, α, β, α′, β′)

effort(Φ ∧Ψ, α, β, α′, β′) = effort(Φ, α, β, α′, β′) + effort(Ψ, α, β, α′, β′)

effort(P⊲⊳ θ[ϕ], α, β, α′ , β′) = n((θ + δ(θ))(1 − α′), 1− (1− (θ − δ(θ)))(1 − β′), α, β)

· min
α′′,β′′

effort(ϕ,α′, β′, α′′, β′′)

effort(XI Φ, α, β, α′, β′) = effort(Φ, α, β, α′, β′)

effort(Φ UI Ψ, α, β, α′, β′) = q · sup I · effort(Φ, α, β, α′, β′)

+ q · (sup I − inf I) · effort(Ψ, α, β, α′, β′)

For discrete-time models, we set q to 1, and for continuous-time Markov processes, q can be set to the

maximum exit rate of the model. The quantity n(p0, p1, α, β) depends on the acceptance sampling test that

is used to verify probabilistic properties. If we use a single sampling plan, then we can compute n exactly

using Algorithm 2.1 or approximately using (2.8). Estimating the effort of verifying the UTSL formula

P⊲⊳ θ[ϕ] when using a sequential sampling plan is trickier because the expected sample size is a function of

the unknown probability measure p of the set of trajectories satisfying ϕ. It may be reasonable to minimize

the worst-case estimated effort. For Wald’s sequential probability ratio test, we can use the value of Ẽp for

s given in Table 2.3.

The observation error can obviously not be set to zero, but there is an upper bound as well because the

width of the indifference region for an acceptance sampling test must be positive. In the case of acceptance

sampling with observation error, the condition 1− (1 − p1)(1 − β′) < p0(1 − α′) must be satisfied. From

this condition, we can derive an upper bound on the symmetric observation error (α′ = β′):

(5.7) 1− (1− p1)(1 − α′) < p0(1− α′) =⇒ 1 < (1 + p0 − p1)(1− α′) =⇒ α′ <
p0 − p1

1 + (p0 − p1)
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The difference p0− p1 is the intended width of the indifference region with zero observation error, which in

our case equals 2δ(θ). We can therefore write (5.7) as α′ < δ(θ)/(0.5 + δ(θ)).

Example 5.2. With p0 = 0.91 and p1 = 0.89, the maximum symmetric observation error is 0.02/1.02 ≈
0.0196 according to (5.7). This means that the probability of error must be no more than 0.0196 for each

individual observation when using an indifference region of width 0.02.

We can find the optimal symmetric observation error for each probabilistic operator of a UTSL formula

using numerical function minimization and systematically working our way outward from the innermost

probabilistic operators. For the innermost probabilistic operators, we can use zero observation error be-

cause their path formulae do not contain any probabilistic operators. We can find the optimal symmetric

observation error for the remaining probabilistic operators by searching for the value of x = α′ = β′ that

minimizes effort(P⊲⊳ θ[ϕ], α, β, x, x) in the interval (0, δ(θ)/(0.5 + δ(θ))). A lower effort could, conceiv-

ably, be achieved with an asymmetric observation error, but it would require optimization in two dimensions

to find the asymmetric observation error with minimal estimated effort.

Example 5.3. Consider the UTSL formula Φ = P≥ 0.9

[

X P≥ 0.85[X x=1]
]

, and assume that we use (5.1)

with δ0 = 0.05 to determine the width of indifference regions. This gives us the probability thresholds

p0 = 0.91 and p1 = 0.89 for the outer probabilistic operator, and p′0 = 0.865 and p′1 = 0.835 for the inner

probabilistic operator. Furthermore, assume that we want to verify Φ with error bounds α = β = 0.01.

Using Definition 5.3 and assuming symmetric observation error, we estimate the effort of verifying Φ as the

product of n(p0 · (1−α′), 1− (1− p1)(1−α′), α, β) and n(p′0, p
′
1, α

′, α′). Figure 5.3 plots the two factors

of the total estimated effort separately for a single sampling plan. This choice of sampling plan means that

the estimated effort is equal to the actual effort. The dotted line indicates the upper bound on the symmetric

observation error: 0.02/1.02 ≈ 0.0196. The total effort is plotted in Figure 5.4. The effort is minimal at

α′ = β′ ≈ 0.00153, which therefore is the optimal symmetric observation error for a single sampling plan.

5.2.4 Memoization

Statistical verification of UTSL formulae with nested probabilistic operators can be rather costly because

each observation for the outermost probabilistic operator involves at least one acceptance sampling test.
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Figure 5.3: Heuristic estimate, as a function of the

symmetric observation error α′, of the effort needed for

the verification of the inner (dashed curve) and outer

(solid curve) probabilistic operators of the UTSL formula

P≥ 0.9

[

X P≥ 0.85[X x=1]
]

.
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Figure 5.4: Total heuristic estimated effort, as a func-

tion of the symmetric observation error α′, for the UTSL

formula P≥ 0.9

[

X P≥ 0.85[X x=1]
]

.

When the path formula is Φ UI Ψ with Φ or Ψ being probabilistic statements, then each observation may

require acceptance sampling to be performed for every state visited along a trajectory before time sup I . We

can improve performance radically through the use of memoization (Michie 1968). This means that each

component of a path formula is verified only once in a specific state.

Memoization does not affect the validity of the verification result, since a time-bounded until formula

can be treated as a large conjunction, and we have noted that Theorem 5.4 does not require conjuncts to be

verified independently. Thus, we can ensure error bounds α′ and β′ for each observation even if we reuse

verification results along a sample trajectory. It is also safe to reuse memoized results across observations.

If we ensure that each trajectory is an independent sample, each observation will be independent as well.

This means that each nested probabilistic statement needs to be verified only once per unique visited state.

5.3 Distributed Acceptance Sampling

Statistical solution methods that use samples of independent observations are trivially parallelizable. We

can use multiple computers to generate the observations, as noted already by Metropolis and Ulam (1949,

p. 340), and expect a speedup linear in the added computing power. We must, of course, ensure that the

observations generated by different machines are indeed independent, and this requires extra care when
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Figure 5.5: Master/slave architecture and communication protocol for distributed acceptance sampling.

initializing the pseudorandom number generators on each machine. It may not be sufficient simply to use

a different seed on each machine, because the seed determines only the start of a sequence of numbers and

does not alter the way in which these numbers are generated. Independence can be assured, for example, if

we use the scheme proposed by Matsumoto and Nishimura (2000), which encodes a process identifier into

the pseudorandom number generator. This effectively creates a new pseudorandom number generator for

each unique identifier rather than a different segment of a sequence from the same generator, as is the case

when only the seed is varied.

It is natural to adopt a master/slave architecture (Figure 5.5) for the distributed verification task. One

or more slave processes register their ability to generate observations with a single master process. The

master process collects observations from the slave processes and performs an acceptance sampling proce-

dure. Independent observations can be generated by separate slave processes, running on different nodes

of a computer network or multiprocessor machine, without the need for communication between the slave

processes. Each slave process is assigned a unique identifier by the master process to ensure that the slave

processes use different pseudorandom number generators. After the initial communication to register the

slave process with the master process and inform the slave process of its identifier and the model it should

use, the only communication required is a single bit from a slave process to the master process for each ob-

servation that is generated. The right side of Figure 5.5 illustrates a typical communication session between

slave and master processes.
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Figure 5.6: Discrete-time Markov process used to illustrate risk of bias in distributed sampling.

5.3.1 Unbiased Distributed Sampling

When using distributed sampling with a sequential test, such as Wald’s sequential probability ratio test, it is

important not to introduce a bias against observations that take a longer time to generate. For UTSL model

checking, each observation involves the generation of a trajectory prefix through discrete event simulation

and the verification of a path formula over the generated trajectory prefix. If we were simply to use ob-

servations as they became available, we could easily end up violating the probabilistic guarantees of the

acceptance sampling test as specified by the parameters α, β, and δ. This is illustrated by the following

example.

Example 5.4. Consider the discrete-time Markov process shown in Figure 5.6 and assume that we want to

verify the UTSL property P≥ 0.9[x<n U x<0] in the state satisfying x=0. Note that sample trajectories

starting in the state with x=0 and satisfying the path formula x<n U x<0 involve a single transition, while

sample trajectories not satisfying the path formula involve n transitions. Thus, while the property actually

holds with probability p, the effort required to produce a negative observation is roughly n times as high

as to produce a positive observation. If we use m slave processes to generate observations, and ignore

communication overhead, we can expect to see
∑n−1

i=1 mpi = mp(1− pn−1)/(1 − p) positive observations

before seeing a negative observation. If, instead, we generate the observations with a single process, the

expected number of positive observations before the first negative observation is
∑∞

i=1 ipi(1− p) = p/(1−
p). These numbers differ by a factor of m(1 − pn−1). Figure 5.7 shows how this can introduce bias in the

analysis, leading to an acceptance sampling test with a probability of accepting the hypothesis H0 : p ≥ p0

that varies significantly with m.

This bias is avoided by committing, a priori, to the order in which observations will be taken into

account. This can be accomplished, for example, by processing observations in cyclic order. Thus, if slave

process 0 produces two observations before slave process 1 produces a single observation, the master process

waits for an observation from slave process 1 before processing the second observation from slave process
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Figure 5.7: Probability of accepting P≥ 0.9[x<n U x<0] for distributed acceptance sampling with m machines and

using observations immediately as they arrive.

0. Observations that are received out-of-order are buffered until it is time to process them.

The cyclic scheme works well if the slave processes are executed on homogeneous nodes. In a hetero-

geneous environment, however, a pure cyclic scheme will not take full advantage of the available computa-

tional resources. In the same amount of time, a slave process running on a fast machine will generate, on

average, more observations than a process running on a slow machine. The cyclic scheme, however, will

use the same number of observations from both slave processes. As a result, a potentially large fraction of

the observations generated on the faster machine will go to waste and the speedup will therefore not be as

large as one would expect from the added computing power.

To address this problem, we can maintain a dynamic schedule, instead of a static schedule, of the order

in which observations are processed. At the beginning, we schedule to receive one observation from each

slave process in a specific order. When an observation arrives from slave process i, we insert i at the end

of the current schedule, leaving two entries for i in the schedule. We then check if i is at the front of the

schedule, in which case we immediately process the observation and pop i from the front. Otherwise, we

buffer the observation for later use. At the removal of an item from the front of the schedule, we check

to see if there is a buffered observation for the new front item. We keep processing buffered observations,

removing the front item of the schedule for each processed observation, until the front item has no buffered

observations.
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By rescheduling the processing of the next observation for a slave process at the arrival of an observation,

we get a schedule that automatically adjusts to variations in performance of slave processes. If we have two

slave processes, with process 0 running on a machine that is twice as fast as the machine that process 1 is

running on, then the adaptive schedule will lead to us processing, on average, twice as many observations

from process 0 as from process 1. This happens automatically, without the need for explicit communication

of performance characteristics of the nodes on which slave processes are running.

5.3.2 Out-of-Order Observations

With the adaptive ordering of observations, we are guaranteed linear speedup, at least in the limit. We can

potentially do even better by processing out-of-order observations as they arrive, although of course not in

the naive way that has already been shown to introduce bias against long sample trajectories.

Recall from Section 2.2.3 that the first m observations x1, . . . , xm can be summarized with the statistic

dm =
∑m

i=1 xi, and that a sequential acceptance sampling test can be carried out by comparing dm at each

stage to an acceptance number am and a rejection number rm. Assume that we have processed m in-order

observations when observation xl arrives. We proceed as usual if l = m + 1, but we want to take the

observation into account immediately even if l > m + 1 instead of waiting until after we have received

observations xm+1 through xl−1. This can be done, without altering the probability of accepting H0 for

the acceptance sampling test, by computing lower and upper bounds for dm+1 through dl. We define the

following quantities:

x̌i =







xi if xi has been received

0 otherwise
x̂i =







xi if xi has been received

1 otherwise

The lower bound for di is ďi =
∑i

j=1 x̌j and the upper bound is d̂i =
∑i

j=1 x̂j . We can accept H0 at stage

l if ďl ≥ al and ďi > ri for all i < l. The second condition prevents us from accepting H0 at a stage if it

is still possible that H1 could be accepted at an earlier stage. If we were to ignore this condition, then we

could end up with a biased acceptance sampling test again. The conditions for acceptance of H1 at stage l

is d̂l ≤ rl and d̂i < ai for all i < l.

Figure 5.8(a) shows an example of sequential acceptance sampling with out-of-order observations. In

this case, observations 7 through 11 arrive before observation 6, but it is safe to accept H0 without waiting
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continue

(a) Accept H0.
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continue

(b) Inconclusive.

Figure 5.8: Acceptance sampling with out-of-order observations. The solid curve in each of the plots represents d̂m

and the dotted curve represents ďm. Note that both curves cross the acceptance line for H1 in (b), but that the curve

for d̂m crosses the acceptance line for H0 at an earlier stage.

for observation 6. The speedup can be significant if observation 6 happens to take an exceptionally long

time to generate. In Figure 5.8(b), we have an example of a situation where we have to wait for observation

6, because the final outcome of the test depends on it: if x6 = 1 we will accept H0, but if x6 = 0 we will

accept H1.

5.4 Complexity of Statistical Probabilistic Model Checking

The time complexity of statistical probabilistic model checking depends on the number of observations

(sample size) required to reach a decision, as well as the time required to generate each observation. An

observation involves the verification of a path formula ϕ over a sample trajectory σi. The sample size for a

sequential acceptance sampling test is a random variable, and so is the time per observation, which means

that we can generally only talk about the expected complexity of statistical probabilistic model checking.

First, consider the time complexity for UTSL formulae without nested probabilistic operators. The first

component of the complexity is the time per observation. A sample trajectory σi may very well be infinite,

but in order to verify the path formula XI Φ, we only need to consider a finite prefix of σi. The same is

true for path formulae of the form Φ UI Ψ if the conditions of Theorem 5.1 are satisfied. Without nested

probabilistic operators, nested UTSL formulae will be classical logic expressions, which we assume can be
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verified in constant time. Let m be the expected effort to simulate a state transition. The time per observation

is proportional to m for XI Φ and proportional to m times the number of state transitions that occur in a

time interval of length sup I for Φ UI Ψ. Let q denote the expected number of state transitions that occur in

a unit length interval of time. For continuous-time Markov processes, an upper bound for q is the maximum

exit rate of any state. The expected time per observation is then O(m · q · sup I) for Φ U I Ψ. This is a

worst-case estimate, because it assumes that ¬Φ ∨ Ψ is not satisfied prior to time sup I . If we reach a state

satisfying ¬Φ ∨ Ψ long before visiting q · sup I states, then we can determine the truth value of Φ UI Ψ

without considering further states.

The second component of the time complexity for verifying P⊲⊳ θ[ϕ] is the expected sample size, which is

a function of the error bounds α and β, and the two probability thresholds p0 and p1 (alternatively expressed

using the threshold θ and the half-width of the indifference region δ). If we use a sequential test, then

the expected sample size also depends on the unknown probability measure p of the set of trajectories that

satisfy ϕ. The expected sample size for various acceptance sampling tests was discussed in Section 2.2. For

example, we showed that the sample size for a single sampling plan is approximately proportional to the

logarithm of α and β, and inversely proportional to the width of the indifference region.

Let Np denote the expected sample size of the acceptance sampling test we use to verify probabilistic

statements. The verification time for P⊲⊳ θ

[

XI Φ
]

is then O(Np ·m) and for P⊲⊳ θ

[

Φ UI Ψ
]

it is O(Np ·m ·
q · sup I). Note that there is no direct dependence on the size of the state space of the model, which is in

sharp contrast to numerical solution techniques for probabilistic model checking, whose time complexity is

proportional to the size of the state space (Hansson and Jonsson 1994; Baier et al. 2003).

The time complexity of statistical probabilistic model checking is independent of the size of the state

space for a model if Np, m, and q are independent of state space size as well. We can make Np completely

model independent by using a single sampling plan, in which case Np depends only on the parameters α,

β, θ, and δ. The factor m is generally both model and implementation dependent and therefore hard to

capture. For generalized semi-Markov processes, for example, m could very well be proportional to the

number of events in the model. It can also be state space dependent, but models often have structure that

can be exploited by the simulator to avoid such dependence. Finally, q is clearly model dependent, but may

be independent of the size of the state space. For example, this is the case for the symmetric polling system

described in Section 6.1.2.
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With nested probabilistic operators, the verification time per state along a sample trajectory is no longer

constant. The complexity depends on the level of nesting and the path operators involved. Here, we consider

the UTSL formula P⊲⊳ θ

[

P⊲⊳ θ′
[

Φ′ UI′ Ψ′
]

UI Ψ
]

with one level of nesting as an example. In the worst

case we need to verify P⊲⊳ θ′
[

Φ′ UI′ Ψ′
]

in q · sup I states for each of the Np observations required for the

verification of the outer probabilistic operator. The worst-case complexity for verifying P⊲⊳ θ′
[

Φ′ UI′ Ψ′
]

,

assuming Φ′ and Ψ′ do not contain any probabilistic operators, is O(N ′
p ·m · q · sup I ′), so the total expected

worst-case complexity is O(Np ·N ′
p ·m2 · q2 · sup I · sup I ′). However, if we use memoization, the expected

worst-case complexity is O(m · q · (Np · sup I + k ·N ′
p · sup I ′)) instead, where k is the expected number of

unique states visited within sup I + sup I ′ time units from some initial state. The value of k is in the worst

case |S|, the size of the state space, but can be significantly smaller depending on the dynamics of the model

and the time bounds sup I and sup I ′.

The space complexity of statistical probabilistic model checking is generally quite modest. We need to

store the current state of a sample trajectory when generating an observation for the verification of a prob-

abilistic UTSL formula, and this typically requires O(log |S|) space, where |S| is the number of states for

the model. For stochastic discrete event systems that do not satisfy the Markov property, we may also need

to store additional information, such as scheduled trigger times for enabled events in the case of generalized

semi-Markov processes. In the presence of nesting, we may need to store up to d states simultaneously at

any point in time during verification, where d is the maximum depth of a nested probabilistic operator. The

nesting depth for a UTSL formula Φ is at most |Φ|, so the space requirements are still modest. If we use

memoization to speed up the verification of UTSL formulae with nested probabilistic operators, the space

complexity can be as high as O(|Φ| · |S|). Memoization, as usual, is a way of trading space efficiency for

time efficiency.

The statistical approach works for infinite-state systems as well, so long as we need to visit only a finite

number of states in order to verify a UTSL formula. This is the case if the conditions of Theorem 5.1 are

satisfied. To verify P⊲⊳ θ[Φ UI Ψ], the expected number of states that we need to visit is O(Np · q · sup I).

The expected number of unique states is O(min(Np · q · sup I, |S|)), which becomes the expected space

complexity for memoization with one level of nesting.



Chapter 6

Empirical Evaluation of

Probabilistic Model Checking

In the previous chapter, we described a statistical approach to probabilistic model checking, and concluded

with a theoretical discussion regarding the computational complexity of our statistical solution method. To

get a better feeling for how well our solution method performs in practice, we evaluate it empirically on a

set of case studies taken from the literature on performance evaluation and probabilistic model checking.

We also compare the statistical solution method with the leading numerical solution method for transient

analysis of Markov processes. The purpose of this empirical study is to show how the performance of the

different solution methods depends on input parameters and model characteristics.

Our empirical results indicate that the statistical solution method scales better than the numerical solution

method as the size of the state space increases, but that the performance of the two methods scales similarly

as a function of the time bounds involved in the UTSL formulae. We also show that the sequential probability

ratio test generally outperforms the sequential modification of a single sampling plan, although there are

exceptions to this rule, as was noted already in Section 2.2.3.

The empirical evaluation that we present in this chapter is meant as an aid to practitioners who want to

use probabilistic model checking to verify their system designs. We cannot recommend a single solution

method that is superior in all cases, as the right choice depends on characteristics of the model and the

requirements on the accuracy of the model checking result. We show the tradeoffs between accuracy and

89
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λ . . . ph = 1
aµ1 ph = 2

µ 2 . . . κ

(1 − a)µ1

Figure 6.1: Tandem queuing network with a two-phase Coxian distribution governing the routing time between the

queues.

speed that exist, and the results we present can help a user make an informed choice regarding solution

method and input parameters.

The empirical results presented in this chapter were generated on a 3 GHz Pentium 4 PC running Linux,

and with an 800 MB memory limit set per process, unless noted otherwise. The memory limit per process

was set lower than the physical memory limit of the machine (1 GB) to avoid swapping.

6.1 Case Studies

We present two case studies, taken from the literature on performance evaluation and probabilistic model

checking, and selected to accentuate specific performance characteristics of solution methods for probabilis-

tic model checking. A third simple example is also introduced to illustrate the use of nested probabilistic

operators in UTSL.

6.1.1 Tandem Queuing Network

The first case study is based on a model of a tandem queuing network presented by Hermanns et al. (1999).

The network consists of two serially connected queues, each with capacity n, making the total capacity of the

system 2n. Figure 6.1 shows a schematic view of the model. Messages arrive at the first queue, get routed

to the second queue after having been in the first queue for some time, and eventually leave the system after

being processed in the second queue. The interarrival time for messages at the first queue is exponentially

distributed with rate λ = 4n. The processing time at the second queue is exponentially distributed with rate

κ = 4. The routing time distribution is a two-phase Coxian distribution with parameters µ1 = µ2 = 2 and

a = 0.9. The size of the state space for a tandem queuing network of capacity 2n is O(n2).

We will verify whether the probability is less than 0.5 that a system starting out with both queues empty
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becomes full within τ time units. Let si ∈ {0, . . . , n}, for i ∈ {1, 2}, be the number of messages currently

in the ith queue. The tandem queuing network is full if the formula s1=n∧s2=n holds. The UTSL formula

P< 0.5[✸
[0,τ ] s1=n ∧ s2=n] represents the property of interest, and we will verify this formula in the state

s1 = 0 ∧ s2 = 0.

6.1.2 Symmetric Polling System

The second case study uses the model of an n-station symmetric polling system described by Ibe and Trivedi

(1990). Each station has a single-message buffer and the stations are attended by a single server in cyclic

order. The server begins by polling station 1. If there is a message in the buffer of station 1, the server

starts serving that station. Once station i has been served, or if there is no message in the buffer of station

i when it is polled, the server starts polling station i + 1 (or 1 if i = n). The polling and service times are

exponentially distributed with rates γ = 200 and µ = 1, respectively. Messages arrive to the system, as a

whole, according to a Poisson process, and the inter-arrival time is exponentially distributed with rate 1. At

arrival, messages are assigned, with equal probability, to one of the n stations. If a message is assigned to

a station whose buffer is full, then the message is dropped. Another way to think of this is that there is a

separate arrival event for each station, with the inter-arrival time per station being exponentially distributed

with rate λ = 1/n. The fact that arrival rates are equal for all stations makes the system symmetric. The

size of the state space for a system with n stations is O(n·2n).

We will verify the property that, if station 1 is full, then it is polled within τ time units with probability

at least θ. We do so for different values of n, τ , and θ in the state where station 1 has just been polled and the

buffers of all stations are full. Let s ∈ {1, . . . , n} be the station currently receiving the server’s attention,

let a ∈ {0, 1} represent the activity of the server (0 for polling and 1 for serving), and let mi ∈ {0, 1}
be the number of messages in the buffer of station i. The property of interest is represented in UTSL as

m1=1 → P≥ θ

[

✸
[0,τ ] poll 1

]

, where poll1 ≡ s=1 ∧ a=0, and the state in which we verify the formula is

given by s=1 ∧ a=1 ∧m1=1 ∧ · · · ∧mn=1.

6.1.3 Robot Grid World

The third case study involves a robot navigating in a grid world, and was introduced by Younes et al. (2004)

to illustrate the verification of formulae with nested probabilistic operators. We have an n × n grid world
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R

J

Figure 6.2: A grid world with a robot (R) in the bottom left corner and a janitor (J) in the center. The dashed arrow

indicates the path of the robot. The janitor moves with equal probability to any of the adjacent squares.

with a robot moving from the bottom left corner to the top right corner. The robot first moves along the

bottom edge and then along the right edge. In addition to the robot, there is a janitor moving randomly

around the grid. Figure 6.2 provides a schematic view of a grid world with n = 5.

The robot moves at rate λR = 1, unless the janitor occupies the destination square, in which case the

robot remains stationary. The janitor moves around randomly in the grid world at rate λJ = 2, selecting

the destination from the set of neighboring squares according to a discrete uniform distribution. The robot

initiates communication with a base station at rate µ = 1/10, and the duration of each communication

session is exponentially distributed with rate κ = 1/2.

The objective is for the robot to reach the goal square at the top right corner within τ1 time units with

probability at least 0.9, while maintaining at least a 0.5 probability of periodically communicating with the

base station. Let c be a Boolean state variable that is true when the robot is communicating with the base

station, and let x and y be two integer valued state variables holding the current location of the robot. The

UTSL formula P≥ 0.9

[

P≥ 0.5

[

✸
[0,τ2] c

]

U [0,τ1] x=n ∧ y=n
]

expresses the desired objective. The robot

moves along a line only, so the size of the state space for the robot grid world is O(n3).

6.2 Evaluation of Statistical Solution Method

As discussed in Section 5.4, there are two main factors influencing the verification time for the statistical

approach: the sample size required to achieve prescribed accuracy and the length of trajectory prefixes (in

terms of state transitions) required to determine if a path formula holds.

The sample size depends on the sampling plan that we choose to use, the error bounds α and β that
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we want to guarantee, the threshold θ, as well as our choice of δ(θ) determining the half-width of an

indifference region centered around θ. For sequential sampling plans, the sample size is a random variable

whose expectation also varies with p, which in our case is the probability measure of a set of trajectories

satisfying a path formula. The approximation formulae for the expected sample size of various sampling

plans provided in Section 2.2 give us some idea of what to expect, and the empirical results presented in this

section show the actual performance on the various case studies.

The expected length of trajectories varies with the model and the path formula, as we will see. If we

are lucky, we can verify a time-bounded path formula over a sample trajectory by considering only a short

prefix that ends long before the time bound is exceeded. For some models, however, the number of state

transitions that occur in a given time interval may be large, even if the interval is short, and this will lead to

longer verification times.

6.2.1 Comparing Sampling Plans

We consider two different sampling plans introduced in Section 2.2: the sequential version of a single

sampling plan (Algorithm 2.2) and Wald’s sequential probability ratio test (SPRT; Algorithm 2.3). We do

not include experiments with a non-sequential single sampling plan. There is of course a slight overhead

introduced by using a sequential stopping rule with a single sampling plan, but this overhead is negligible

(essentially three additional integer operations per iteration). The reduction in expected sample size that we

get from using a sequential stopping rule dominates the small overhead required to test for early termination.

Figures 6.3 and 6.4 present data for the tandem queuing network and symmetric polling system case

studies, respectively. In each case, we show verification time for the simple sequential sampling plan and

the SPRT using four different test strengths (subfigures (a) and (b)). We also give details of both sample size

(subfigures (c) and (d)) and trajectory length (subfigures (e) and (f)). For all data, we plot the results both

against model size (subfigures (a), (c), and (e)) and against the time bound of the path formula (subfigures

(b), (d), and (f)). Each data point is an average over 20 runs. We used δ(θ) = 5 · 10−3 as the half-width of

the indifference region. Furthermore, we used a symmetric test strength (α = β) across the board.

Our data shows that the SPRT outperforms the simple sequential test almost exclusively by a wide

margin. We can typically solve the same model checking problem with the SPRT using test strength 10−8

in shorter time than it takes to solve the same problem with a simple sequential test using test strength 10−1.
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(f) Trajectory length as a function of time bound.

Figure 6.3: Empirical results for the tandem queuing network (θ = 0.5), with τ = 50 (left) and n = 63 (right), using

acceptance sampling with 2δ = 10−2 and symmetric error bounds α = β equal to 10−8 (△), 10−4 (�), 10−2 (▽), and

10−1 (◦). The average trajectory length is the same for all values of α and β. The dotted lines mark a change in the

truth value of the formula being verified.
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(d) Sample size as a function of time bound.
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Figure 6.4: Empirical results for the symmetric polling system (θ = 0.5), with τ = 20 (left) and n = 10 (right), using

acceptance sampling with 2δ = 10−2 and symmetric error bounds α = β equal to 10−8 (△), 10−4 (�), 10−2 (▽), and

10−1 (◦). The average trajectory length is the same for all values of α and β. The dotted lines mark a change in the

truth value of the formula being verified.
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The difference in performance is due entirely to a difference in sample size, as the average trajectory length

is the same for both tests regardless of strength. The average sample size for the SPRT roughly doubles

when the test strength goes from 10−x to 10−2x, while the average sample size for the simple sequential test

more than doubles (and often more than triples) for the same change in test strength.

The vertical dotted lines in the figures indicate a change in the truth value of the UTSL formula that is

being verified. This line marks the value of |S| or τ where the probability measure for the set of trajectories

satisfying the path formula is exactly equal to the probability threshold θ. We can see that the average

sample size for both tests peaks in the vicinity of the dotted line, with the peaks for the SPRT being more

pronounced than those for the simple sequential test.

The average trajectory length for the tandem queuing network increases linearly with the capacity n of

the queues. This is because the arrival rate for messages is 4n, so the average number of state transitions that

occur in a fixed interval of time increases with n. Note, however, that the size of the state space is O(n2)

for the tandem queuing network, so the the average trajectory length is proportional to the square root of |S|
(Figure 6.3(e)). Thus, the average trajectory length, and therefore also the overall time complexity for the

statistical solution method, is sublinear in the size of the state space. In contrast, the rates for the symmetric

polling system are independent of the size of the state space. Initially, the average trajectory length increases

with the size of the state space (Figure 6.4(e)) because it takes longer time to achieve poll1 with more polling

stations. As the state space increases further, the probability of achieving poll 1 in the interval [0, τ ] goes

to zero, and all sample trajectories end with the time bound τ being exceeded. The expected number of

state transitions occurring in the interval [0, τ ] is the same for all state space sizes, since the exit rates are

constant, so the verification time does not increase for larger state spaces.

As a function of the time bound τ (Figure 6.3(f)), for a fixed n, the average trajectory length grows

linearly with τ for the tandem queuing network, at least for sufficiently large values of τ . The same is

true for the symmetric polling system (Figure 6.4(f)) for small values of τ , but as τ increases so does the

probability of achieving poll 1 in the interval [0, τ ] (Figure 6.5), and the average trajectory length approaches

a constant value as τ increases. This shows how the performance of the statistical solution method depends

on the formula that is verified in a more complex way than simply through the time bounds of path formulae.

While the SPRT typically has a smaller expected sample size than the simple sequential test for the same

test strength, a clear exception is seen in Figure 6.4(d). We witness the same phenomenon in Figure 6.6 for
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isfying the path formula ✸
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Figure 6.6: Sample size as a function of the formula time

bound for the symmetric polling system (θ = 0.9 and

n = 10), using acceptance sampling with 2δ = 10−2 and

symmetric error bounds α = β equal to 10−8 (△), 10−4

(�), 10−2 (▽), and 10−1 (◦).

a different θ (0.9 instead of 0.5), which also shows the variation in performance based on the threshold. For

θ = 0.5, the sample size is the same on both sides of the vertical dotted line, but it is notably lower to the

left of the line for θ = 0.9. There is a sharp peak in the expected sample size for the SPRT close to where

the truth value of the UTSL formula changes, as indicated by the dotted line. For α = β equal to 10−4

and 10−8, the SPRT has a larger expected sample size than the simple sequential test. We can see this more

clearly in Figure 6.7, where we have zoomed in on the relevant region. The gray area indicates the range of

τ for which the probability measure, p, of the set of trajectories satisfying the path formula ✸
[0,τ ] poll 1 is in

the indifference region (θ − δ, θ + δ). We can see that there is a sharp increase in the expected sample size

for the SPRT in and near the indifference region, while the expected sample size for the simple sequential

test remains largely unchanged. Still, it is only for a very narrow range of τ that the simple sequential test

outperforms the SPRT on average, for this particular choice of δ (5 · 10−3). We would not expect that p is

this close to θ for typical model checking problems. Furthermore, neither of the two tests give any valuable

accuracy guarantees in the indifference region. If we do expect p to be very close to θ, and we want to know

on which side of the threshold p really is, then we may have to resort to numerical solution techniques.

We can increase the accuracy of the model checking result by strengthening the test (decreasing α and β)

or narrowing the indifference region. Figure 6.8 shows how the expected sample size for the two sampling

plans depends on the half-width of the indifference region. The plots are for the symmetric polling system

with n = 10 and two different values of θ and τ . We can see that it is generally more costly to narrow the
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Figure 6.7: Sample size as a function of the formula time bound for the symmetric polling system (n = 10) in

the vicinity of the indifference region for two different values of θ, using acceptance sampling with 2δ = 10−2 and

symmetric error bounds α = β equal to 10−8 (△), 10−4 (�), 10−2 (▽), and 10−1 (◦). The indifference region is

indicated by a shaded area.

indifference region when using the simple sequential test rather than the SPRT. For example, we can have an

indifference region of half-width 10−5 with the SPRT at essentially the same cost as 10−3 with the simple

sequential test. For δ = 10−1 in the right plot, the upper border of the indifference region is 1, which means

that both the SPRT and the simple sequential test become a curtailed single sampling plan. This explains

the drop in expected sample size at this point.

6.2.2 “Five Nines”

For safety critical systems, we want to ensure that the probability of failure is very close to zero. While

guaranteeing a zero probability of failure is usually unrealistic, it is not uncommon to require the failure

probability of a safety critical system to be at most 10−4 or 10−5. A failure probability of at most 10−5

means a success probability of 1 − 10−5 = 0.99999, commonly referred to as “five nines.” For such high

accuracy requirements, it is typically best to use numerical solution techniques, but if the model is non-

Markovian or has a large state space, this may not be a viable choice.

To use statistical hypothesis testing with a probability threshold 1−10−5, we need to use an indifference

region with half-width at most 10−5. An indifference region that narrow requires a large average sample size

if the success probability is close to one, as we would expect it to be for a good system design. A possible
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Figure 6.8: Sample size as a function of the half-width of the indifference region for the symmetric polling system,

using acceptance sampling with symmetric error bounds α = β equal to 10−8 (△), 10−4 (�), 10−2 (▽), and 10−1 (◦).

solution is to set the indifference region to (1−10−5, 1) and use a curtailed single sampling plan. We need up

to n = ⌈log β/ log(1− 10−5)⌉ observations for such a sampling plan, where β is the maximum probability

that we accept the system as safe if the success probability is at most 1 − 10−5. We accept the system

as safe if all n observations are positive, but reject the system as unsafe at the first negative observation.

This means that if the success probability for the system is far below acceptable, we will quickly reject

the system, but acceptance always requires n observations. Note, however, that we will never need more

than n observations, so the maximum effort for verifying the system is known. Figure 6.9 plots the average

verification time, as a function of the formula time bound, for the symmetric polling system (n = 10) with

indifference regions (0.99999, 1) and (0.999985, 0.999995), of which the former leads us to use a curtailed

single sampling plan. In the latter case (solid curves), the SPRT was used.

First, consider the indifference region with 1 as upper bound, which leads to a curtailed single sampling

plan. We can see that for low values of τ , the average verification time is negligible, simply because we get

a negative observation very quickly and reject the system design as unacceptable. As τ increases and the

success probability approaches 1− 10−5, the average sample size increases. As we pass the point at which

the success probability exceeds 1 − 10−5 (roughly at τ = 29.57), the sample size settles at around 2 · 106

for β = 10−8. The verification time at this point is just under 11 minutes on our test machine (the average

trajectory length is just over 23).
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Figure 6.9: Verification time as a function of the formula

time bound for the symmetric polling system (n = 10),

using acceptance sampling with 2δ = 10−5 and symmet-

ric error bounds α = β equal to 10−8 (△) and 10−1 (◦).

β > .5 > .9 > .99 > .999

10−8 34.1 36.6 39.7 42.6

10−4 33.2 35.8 38.9 41.8

10−2 32.3 34.8 37.9 40.9

10−1 31.3 33.9 37.0 40.0

Table 6.1: Minimum value of formula time bound τ , for

the symmetric polling system (θ = 0.999995 and n =
10), that leads to an acceptance probability of at least .5,

.9, .99, and .999, respectively, for 2δ = 10−5 and four

different values of β.

We control the probability of error with the parameters α and β. By setting β low, we guarantee a

low probability of accepting a poor system design, and by setting α low, we guarantee a low probability

of rejecting a good system design. A curtailed single sampling plan is an efficient way of dealing with

probability thresholds close to 1, but it gives us no control over the risk of rejecting a good system design,

except that we will never reject a system design with success probability 1. This may lead us to reject many

system designs that in practice are acceptable, or we may have to relax the system requirements. Table 6.1

shows the value of τ for the symmetric polling system that leads to acceptance with a certain probability

for different values of β. For example, to guarantee that a poor system design is accepted with probability

at most 10−8, τ needs to be at least 42.6 for acceptance of the symmetric polling system with probability

at least 0.999. In reality, the probability that poll 1 becomes true within τ time units is sufficiently high for

τ = 29.57, but using that time bound for verification would almost definitely lead us to reject the system.

To ensure a non-trivial bound on the risk of rejecting an acceptable system design, we need to move

the upper bound of the indifference region away from 1. Finding a single sampling plan for an indifference

region as narrow as 10−5 is generally not feasible (cf. Figure 6.8), so we use only the SPRT in this case.

This means that, in contrast to a curtailed single sampling plan, there is no upper bound on the sample size.

The solid curves in Figure 6.9 show the average verification time for the SPRT with indifference region

(0.999985, 0.999995). We can see clear peaks in the verification time where the probability is close to

1− 10−5. The price for moving the upper bound of the indifference region away from 1 is that verification
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can take over an hour on average instead of a few minutes. One of the 20 experiments for α = β = 10−8

required a sample size of over 35 million, which can be compared to a maximum sample size of just over

1.8 million for the curtailed single sampling plan with β = 10−8.

6.2.3 Nested Probabilistic Operators

We use the robot grid world case study to show results of verification with nested probabilistic operators. We

have proven that a statistical approach is possible even in the presence of nested probabilistic operators, with

Theorem 5.8 being the key theoretical result. A practical concern, however, is that such verification could

be costly, since each observation for the outer probabilistic operator involves an acceptance sampling test

for the inner probabilistic operators. Nevertheless, our empirical results suggest that a statistical approach

is, in fact, tractable.

Figure 6.10 shows empirical data for the robot grid world case study for verifying the UTSL formula

P≥ 0.9

[

P≥ 0.5

[

✸
[0,τ2] c

]

U [0,τ1] x=n ∧ y=n
]

. This formula asserts that the probability is high (at least 0.9)

that the robot reaches the goal position while periodically communicating with the base station. The time

bounds τ1 and τ2 were set to 100 and 9, respectively. We used the SPRT exclusively, with memoization

enabled, and the heuristic proposed in Definition 5.3 to select the nested error bounds. It turns out that with

τ2 = 9, the probability measure of the set of paths satisfying ✸
[0,τ2] c is 1 − e−0.9 ≈ 0.593, independent

of the start state. We used an indifference region with half-width δ independent of θ. For both values of

δ that we used, δ = 0.05 and δ = 0.025, 0.593 is more than a δ-distance from the threshold 0.5 for the

inner probabilistic operator, so we will have a low probability of erroneously verifying the path formula

(P≥ 0.5

[

✸
[0,τ2] c

]

U [0,τ1] x=n ∧ y=n) over sample trajectories. For the outer probabilistic operator, we

used the symmetric error bounds α = β = 10−2. The heuristic gave us the symmetric nested error bounds

0.0153 and 0.00762 for δ = 0.05 and δ = 0.025, respectively.

We can see in Figure 6.10(b) the familiar peak in the average sample where the value of the UTSL

formula goes from true to false. Note, however, that the peak is not present in Figure 6.10(a), where the

verification time is plotted as a function of the state space size. This is due to memoization. Figure 6.10(d)

shows the fraction of unique states among all states visited along sample trajectories for the outer proba-

bilistic operator. This graph is almost the mirror image of that for the average sample size. As we generate

more sample trajectories, the probability increases that we visit states that have been visited before. With
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Figure 6.10: Empirical results for the robot grid world (τ1 = 100 and τ2 = 9), using acceptance sampling with

symmetric error bounds α = β = 10−2. The average trajectory length is the same for all values of δ. The dotted lines

mark a change in the truth value of the formula being verified.
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Figure 6.11: Verification time as a function of the nested error. The dotted line marks the maximum nested error.
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Figure 6.12: Fraction of verification time as a function

of state space size for the symmetric polling system (τ =
20) when using distributed acceptance sampling with two

machines instead of one.
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Figure 6.13: Distribution of workload as a function of

state space size for the symmetric polling system (τ =
20) when using distributed acceptance sampling with

m = 2.

memoization, we do not need to verify nested probabilistic statements more than once in a visited state, so

the cost per observation drops over time. The net effect is that total verification time is notably reduced.

The price we pay for the improved efficiency is that we use more memory. However, the number of unique

visited states is still only a tiny fraction of the total number of states for the robot grid world, resulting in

modest memory requirements.

Figure 6.11 shows the effectiveness of our heuristic for selecting the nested error. We plot the verification

time as a function of the symmetric nested error for δ = 0.05 and three different values of n (the size of

the grid). The cross on each curve marks the performance we get by using our heuristic. We do not obtain

optimal performance, but we are only off by a factor of 1.3 to 1.4. Note that selecting a nested error that is

too high or too low could easily result in a performance worse than optimal by orders of magnitude, so our

heuristic does reasonably well.

6.2.4 Distributed Acceptance Sampling

Acceptance sampling may require millions of observations, but each observation represents an independent

chance experiment. This means that we can carry out multiple experiments in parallel, which could result

in a substantial reduction in verification time. When using a sequential sampling plan, we need to be careful

not to introduce bias against observations that take a long time to generate. It is necessary to decide a priori

on an order in which observations from nodes working in parallel will be taken into consideration, and not
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simply incorporate observations as they are generated. We addressed this problem in Section 5.3.1, where

we proposed a way to schedule the processing of observations that dynamically adjusted to a heterogeneous

environment (e.g. observations being generated on CPUs of different speed).

Figure 6.12 shows the reduction in verification time as a function of the state space size for the symmetric

polling system when using two machines to generate observations. The first machine is equipped with a

Pentium III 733 MHz processor. If we also generate observations, in parallel, on a machine with a Pentium

III 500 MHz processor, we get the relative performance indicated by the solid curve. The verification time

with two machines is roughly 70 percent of the verification time with a single machine. Figure 6.13 shows

the fraction of observations used from each machine, with m1 being the machine with a 733 MHz processor

and m2 being the machine with a 500 MHz processor. We can see that these fractions are in line with

the relative performance of the two machines, and this is achieved without any explicit communication of

performance characteristics.1

6.3 Comparison with Numerical Solution Method

To verify the UTSL formula P⊲⊳ θ

[

Φ U [0,τ ] Ψ
]

in some state s ∈ S of a modelM with state space S, we

can compute the probability p = µ({σ ∈ Path({〈s, 0〉}) | M, σ, 0 |= Φ U [0,τ ] Ψ}) numerically and test if

p ⊲⊳ θ holds.

First, as initially proposed by Baier et al. (2000), the problem is reduced to the computation of transient

probabilities on a modified modelM′, where all states inM satisfying ¬Φ∨Ψ have been made absorbing.

The probability p is equal to the probability that we are in a state satisfying Ψ at time τ in model M′.

This probability can be computed using a technique called uniformization (also know as randomization),

originally proposed by Jensen (1953). The computation of p is expressed as an infinite sum, with each term

involving a matrix-vector multiplication. In practice, the infinite summation is truncated by using the tech-

niques of Fox and Glynn (1988), so that the truncation error is bounded by an a priori error tolerance ǫ. The

number of iterations required to achieve truncation error ǫ is Rǫ. The value of Rǫ is q · τ + k
√

2q · τ + 3/2,

1Roughly 65 percent of the observations are generated by m1. The CPU speed of m1 (733 MHz) is just over 59 percent of the

combined CPU speed for both m1 and m2 (1233 MHz), but this does not account for other factors (e.g. cache size) that also impact

performance.
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where q is the maximum exit rate for the model and k is o
(
√

log(1/ǫ)
)

(Fox and Glynn 1988). This means

that the number of iterations grows very slowly as ǫ decreases. For large values of q · τ , the number of itera-

tions is essentially O(q · τ). Each iteration involves a matrix-vector multiplication and each such operation

takes O(M) time, where M is the number of non-zero entries in the rate matrix Q for the continuous-time

Markov processM. The time complexity for the numerical solution technique is therefore O(q · τ ·M) (cf.

Malhotra et al. 1994). This is in comparison to the theoretical time complexity O(q ·τ ·Np) for our statistical

solution method, where Np is the expected sample size as a function of p. In the worst case M is O(|S|2),
but is typically O(|S|). Np, on the other hand, is often much smaller than |S| for large state spaces.

The number of iterations required by the numerical solution method can, in some cases, be reduced

significantly through the use of steady-state detection (Reibman and Trivedi 1988; Malhotra et al. 1994;

Younes et al. 2004). Further reduction is possible by using the sequential stopping rule described by Younes

et al. (2004), although this does not reduce the asymptotic time complexity of the numerical solution method.

The limiting factor for the numerical solution method is typically memory. The space complexity for

verifying the formula P⊲⊳ θ

[

Φ U [0,τ ] Ψ
]

is O(|S|) in most cases. For the results presented in this section, we

use the hybrid approach proposed by Parker (2002), which uses flat representations of vectors and symbolic

data structures, such as BDDs (Bryant 1986) and MTBDDs (Clarke et al. 1993; Bahar et al. 1993; Fujita

et al. 1997), to represent matrices. With steady-state detection enabled, the hybrid approach requires storage

of three double precision floating point vectors of size |S|, which for a memory limit of 800 MB means

that systems with at most 35 million states can be analyzed. An alternative to symbolic data structures

is sparse matrices. The space complexity is the same for both representations, and sparse matrices nearly

always provide faster numerical computation, but symbolic representations of rate and probability matrices

can exploit structure in the model and therefore require less memory in practice (Kwiatkowska et al. 2004).

Figure 6.14 compares the performance of the numerical and the statistical solution methods for the tan-

dem queuing network and symmetric polling system case studies. The truncation error (ǫ) for the numerical

solution method was set to 10−10. This error bound cannot be compared directly with the error bounds for

the statistical solution method, but the performance of the numerical method does not vary much with the

choice of ǫ. We can see, clearly, that the numerical solution method is faster for small state spaces, but that

the statistical solution method scales better with an increase in the size of the state space. For a fixed model

size, and with increasing time bound, the numerical solution method compares much more favorably. The
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Figure 6.14: Comparison of numerical and statistical probabilistic model checking for the tandem queuing network

(top) and the symmetric polling system (bottom). For the statistical solution method, results are shown for symmetric

error bounds α = β equal to 10−8 (△) and 10−1 (◦).

verification time remains constant once steady-state detection kicks in. Still, for the symmetric polling sta-

tion, the verification time for the statistical solution remains constant for large time bounds as well, because

all sample trajectories are terminated prematurely when reaching a state satisfying poll 1.

The numerical solution method has the same asymptotic time complexity for verifying a UTSL formula

in a single state as in all states simultaneously (Katoen et al. 2001). This is a great benefit when dealing with

nested probabilistic operators. Consider the UTSL formula P≥ 0.9

[

P≥ 0.5

[

✸
[0,τ2] c

]

U [0,τ1] x=n∧y=n
]

for

the robot grid world. The time complexity for the numerical solution method is O(q · τ1 ·M + q · τ2 ·M),

which is essentially the same as O(q · τ1 ·M) for τ2 < τ1. The statistical solution method, on the other
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Figure 6.15: Comparison of numerical, mixed, and statistical solution methods for formulae with nested probabilistic

operators. For the statistical and mixed solution methods, results are shown for δ equal to 0.025 (△) and 0.05 (▽).

hand, is definitely more costly in the presence of nested probabilistic operators. Younes et al. (2004) have

suggested a mixed solution method, which uses the numerical approach for nested probabilistic operators

and the statistical approach for top-most probabilistic operators. This mixed approach shares performance

characteristics of both solution methods, but is limited by memory in the same way as the pure numerical

solution method. We can see this in Figure 6.15, where we compare the three solution methods for the robot

grid world case study using two different values of τ2. For τ2 = 9, the statistical solution method is slower

for state spaces up to 106 or 107, but handles much larger state spaces than the other two solution methods

without running out of memory. For τ2 = 5, the nested probabilistic statement is false in all states. The pure

statistical approach benefits from this fact because sample trajectories will typically not extend beyond the

initial state. The numerical and mixed solution methods scale much worse in this case.

In summary, the empirical results presented in this chapter have shown that the performance of the

statistical solution method depends on several factors, in particular the parameters δ, α, and β. The SPRT

is generally orders of magnitude faster than a single sampling plan with the same strength, although there

are exceptions to this rule. Memoization is important for making a pure statistical approach tractable in the

presence of nested probabilistic operators. Numerical solution methods are faster than statistical methods

for smaller state spaces, and can benefit greatly from the use of steady-state detection, but statistical methods

scale better as the size of the state space increases.
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Chapter 7

Probabilistic Verification for

“Black-Box” Systems

So far, we have assumed that a model is available of the system that we want to verify. Given a model,

we can apply either numerical or statistical solution methods for probabilistic model checking. Numerical

techniques provide highly accurate results, but rely on strong assumptions regarding the dynamics of the

systems they are used to analyze. Statistical techniques require only that the dynamics of a system can be

simulated, and can therefore be used for a larger class of stochastic processes. The results produced by

statistical methods are only probabilistic, however, and attaining high accuracy tends to be costly.

For some systems, it may not even be feasible to assume that we can simulate their behavior. Sen et al.

(2004) consider the verification problem for such “black-box” systems. Here, “black-box” means that the

system cannot be controlled to generate execution traces, or trajectories, on demand starting from arbitrary

states. This is a reasonable assumption, for instance, for a system that has already been deployed and for

which we are given only a set of trajectories generated during actual execution of the system. We are then

asked to verify a probabilistic property of the system based on the information provided to us as a fixed set

of trajectories. Statistical solution techniques are certainly required to solve this problem. The statistical

method described in Chapter 4 cannot be used to verify “black-box” systems, however, because it depends

on the ability to generate trajectories on demand.

Sen et al. (2004) present an alternative solution method for verification of “black-box” systems based

109
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on statistical hypothesis testing with fixed sample sizes. In this chapter, we improve upon their algorithm by

making sure to always accept the most likely hypothesis, and we correct their procedure for verifying nested

probabilistic properties. Differences between the two approaches are discussed in detail towards the end of

this chapter.

The algorithm we present for verification of “black-box” systems can handle the full logic UTSL, in-

cluding properties without finite time bounds, although the accuracy of the result for such properties may

be poor. Our algorithm, like that of Sen et al. (2004), makes no guarantees regarding accuracy. Instead

of respecting some a priori bounds on the probability of error, the algorithm computes a p-value for the

result, which is a measure of confidence. This is really the best we can do, provided that we cannot generate

trajectories for the system as we see fit and instead are restricted to using a predetermined set of trajectories.

The algorithm presented in this chapter is complementary to the statistical model checking algorithm

presented in Chapter 5, and is useful under different assumptions. If we cannot generate trajectories for

a system on demand, then the algorithm presented here still allows us to reach conclusions regarding the

behavior of the system. If, however, we have a model of a system so that we can simulate its dynamics, then

we are better off with the approach of Chapter 5 as it gives us full control over the probability of obtaining

an incorrect result.

7.1 “Black-Box” Probabilistic Systems and Verification

Formally, we define a “black-box” probabilistic system in terms of what we know (or rather, do not know)

regarding the probability measure over sets of trajectories.

Definition 7.1 (“Black-Box” Probabilistic System). A “black-box” probabilistic system is a stochastic

discrete event system for which the probability measure µ over sets of trajectories with common prefix is

not fully specified and cannot be sampled from.

We thus refer to a stochastic discrete event system M as a “black-box” system if we lack an exact

definition of the probability measure µ over sets of trajectories of M. We assume that we cannot even

sample trajectories according to µ, as stated in Definition 7.1. Thus, in order to solve a verification problem

〈M, µ0,Φ〉 for a “black-box” systemM, we must rely on an external source to provide a sample set of n

trajectories for M that is representative of the probability measure µ and the initial state distribution µ0.
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We further assume that we are provided only with truncated trajectories, because infinite trajectories would

require infinite memory to store.

We will use statistical hypothesis testing to verify properties of a “black-box” system given a sample of

n truncated trajectories. Since we rely on statistical techniques, we will typically not know with certainty if

the result we produce is correct. The method we present for verification of “black-box” systems computes

a p-value for a verification result, which is a value in the interval [0, 1] with values closer to 0 representing

higher confidence in the result and a p-value of 0 representing certainty (Hogg and Craig 1978, pp. 255–256).

We start by assuming that Φ is free of nested probabilistic operators. Later on, we consider UTSL formulae

with nested probabilistic operators, which just as with regular statistical probabilistic model checking cannot

be handled in a meaningful way without making rather strong assumptions regarding the dynamics of the

“black-box” system.

7.1.1 Verification without Nested Probabilistic Operators

Given a state s, verification of a UTSL formula x ∼ v is trivial. We can simply read the value assigned

to x in state s and compare it to v. We consider the remaining three cases in more detail, starting with

the probabilistic operator P⊲⊳ θ[·]. Recall that the objective is to produce a Boolean result annotated with a

p-value.

Probabilistic Operator

Consider the problem of verifying the UTSL formula P⊲⊳ θ[ϕ] in state s of a stochastic discrete event system

M. As before, let Xi be a random variable representing the verification of the path formula ϕ over a

trajectory forM drawn according to the probability measure µ(Path({〈s, 0〉})). If we choose Xi = 1 to

represent the fact that ϕ holds over a random trajectory, and Xi = 0 to represent the opposite fact, then

Xi is a Bernoulli variate with parameter p = µ({σ ∈ Path({〈s, 0〉}) | σ, 0 |= ϕ}), i.e. Pr[Xi = 1] = p

and Pr[Xi = 0] = 1 − p. In order to verify P⊲⊳ θ[ϕ], we can make observations of Xi and use statistical

hypothesis testing to determine if p ⊲⊳ θ is likely to hold. An observation of Xi, denoted xi, is the verification

of ϕ over a specific trajectory σi. If σi satisfies the path formula ϕ, then xi = 1, otherwise xi = 0.

In our case, we are given n truncated trajectories for a “black-box” system that we can use to generate

observations of Xi. Each observation is obtained by verifying the path formula ϕ over one of the truncated
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trajectories. This is straightforward given a truncated trajectory {〈s0, t0〉, . . . , 〈sk−1, tk−1〉, sk}, provided

that ϕ does not contain any probabilistic operators. For ϕ = XI Φ, we just check if t0 ∈ I and s1 |= Φ.

For ϕ = Φ UI Ψ, we traverse the trajectory until we find a state si such that one of the following conditions

holds, with Ti defined as in (2.18) to be the time at which state si is entered:

1. (si |= ¬Φ) ∧ ((Ti /∈ I) ∨ (si |= ¬Ψ))

2. (Ti ∈ I) ∧ (si |= Ψ)

3. ((Ti, Ti+1) ∩ I 6= ∅) ∧ (si |= Φ) ∧ (si |= Ψ)

In the first case, Φ UI Ψ does not hold over the trajectory, while in the last two cases the time-bounded

until formula does hold. This is the same procedure as was used in Chapter 5 for generating observations

for the verification of probabilistic statements. Note, however, that in this case we may not always be able

to determine the value of ϕ over all trajectories because the trajectories that are provided to us are assumed

to be truncated. Previously, we assumed that we could always generate a sufficient prefix of a trajectory so

that the truth value of a path formula could be determined.

We consider the case P≥ θ[ϕ] in detail, noting that P≤ θ[ϕ] can be handled in the same way simply by

reversing the value of each observation. We want to test the hypothesis H0 : p ≥ θ against the alternative

hypothesis H1 : p < θ by using the n observations x1, . . . , xn of the Bernoulli variates X1, . . . ,Xn. To

do so, we specify a constant c. If
∑n

i=1 xi is greater than c, then hypothesis H0 is accepted, i.e. P≥ θ[ϕ] is

determined to hold. Otherwise, if the given sum is at most c, then hypothesis H1 is accepted, meaning that

P≥ θ[ϕ] is determined not to hold. The constant c should be chosen so that it becomes roughly equally likely

to accept H0 as H1 if p equals θ. The pair 〈n, c〉 is a single sampling plan, as described in Section 2.2.

We know from before that by using a single sampling plan 〈n, c〉, we accept hypothesis H1 with prob-

ability F (c;n, p), and consequently hypothesis H0 is accepted with probability 1 − F (c;n, p). Ideally, we

should choose c such that F (c;n, θ) = 0.5, but it is not always possible to attain equality because the bino-

mial distribution is a discrete distribution. The best we can do is to choose c such that |F (c;n, θ) − 0.5| is
minimized. We can readily compute the desired c using (2.3).

We now have a way to decide whether to accept or reject the hypothesis that P≥ θ[ϕ] holds, but we also

want to report a value reflecting the confidence in our decision. For this purpose, we compute the p-value
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for a decision. The p-value is defined as the probability of the sum of observations being at least as extreme

as the one obtained provided that the hypothesis that was not accepted holds. The p-value for accepting

H0 when
∑n

i=1 xi = d is Pr[
∑n

i=1 Xi ≥ d | p < θ] < F (n − d;n, 1 − θ) = 1 − F (d − 1;n, θ), while

the p-value for accepting H1 is Pr[
∑n

i=1 Xi ≤ d | p ≥ θ] ≤ F (d;n, θ). The following theorem provides

justification for our choice of the constant c.

Theorem 7.1 (Minimization of p-value). By choosing c to minimize |F (c;n, θ) − 0.5| when testing H0 :

p ≥ θ against H1 : p < θ using a single sampling plan 〈n, c〉, the hypothesis with the lowest p-value is

always accepted.

Proof. Hypothesis H1 is accepted only if d ≤ c, which means that the p-value for H1 under these circum-

stances is at most F (c;n, θ). The p-value for H0 if d ≤ c would be at least 1−F (c−1;n, θ). We know that

F (c−1;n, θ) < F (c;n, θ) and by assumption that |F (c−1;n, θ)−0.5| > |F (c;n, θ)−0.5|. It follows that

F (c;n, θ) < 1− F (c − 1;n, θ) as required. For d > c, the p-value for acceptance of H1 would be at least

F (c + 1;n, θ). The p-value for acceptance of H0 when d > c, on the other hand, is at most 1− F (c;n, θ).

We know that F (c+1;n, θ) > F (c;n, θ) and by assumption that |F (c+1;n, θ)−0.5| > |F (c;n, θ)−0.5|.
Consequently, 1−F (c;n, θ) < F (c+1;n, θ) and our choice of c ensures that the hypothesis with the lowest

p-value is always accepted.

In practice, it is unnecessary to compute c. It is more convenient simply to compute the p-value of each

hypothesis and accept the hypothesis with the lowest p-value.

Example 7.1. Consider the problem of verifying the UTSL formula Φ = P≥ 0.9

[

✸
[0,100] x=1

]

in a state

satisfying x=0 for a “black-box” system that in reality is the continuous-time Markov process shown in

Figure 7.1. The probability measure of trajectories starting in state x=0 and satisfying ✸
[0,100] x=1 is

1 − e−1 ≈ 0.63 for this system, so the UTSL formula does not hold, but we would of course not know

this unless we had access to the model. Assume that we are given a set of 100 truncated trajectories,

of which 63 satisfy the path formula ✸
[0,100] x=1 and 37 do not satisfy the given path formula. Thus,

n = 100 and d = 63. The p-value for H0 is 1 − F (62; 100, 0.9) ≈ 1 − 10−13, while the p-value for H1 is

F (63, 100, 0.9) ≈ 5.48 · 10−13. The hypothesis with the lowest p-value is H1, so we conclude that Φ does

not hold.
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x = 0

1/100

x = 1

Figure 7.1: A simple two-state continuous-time Markov process.

In the analysis so far we have been assuming that the value of ϕ can be determined over all n truncated

trajectories. Now, consider the case where we are unable to verify the path formula ϕ over some of the

n truncated trajectories. This would happen if we are verifying Φ UI Ψ over a trajectory that has been

truncated before either ¬Φ ∨ Ψ is satisfied or time exceeds all values in I . We cannot simply ignore such

trajectories: it is assumed that the entire set of n trajectories is representative of the measure µ, but the subset

of truncated trajectories for which we can determine the value of ϕ is not guaranteed to be a representative

sample for this measure.

Example 7.2. Consider the same problem as in Example 7.1. Assume that we are provided with a set of

100 truncated trajectories for the system, and that all trajectories have been truncated before time 50. Some

of these trajectories, on average roughly 39 in every 100, will satisfy the path formula ✸
[0,100] x=1, while

the remaining truncated trajectories will not contain sufficient information for us to determine the validity

of the path formula over these trajectories. An analysis based solely on the trajectories over which the

path formula can be decisively verified would be severely biased. If the number of positive observations

is exactly 39, with 61 undetermined observations, we would wrongly conclude that Φ holds with p-value

1− F (38; 39, 0.9) ≈ 0.0164, which implies a fairly high confidence in the result.

Let n′ be the number of observations whose value we can determine and let d′ be the sum of these n′

observations. We then know that the sum of all observations, d, is at least d′ and at most d′+n−n′. If d′ > c,

then hypothesis H0 can be safely accepted. Instead of a single p-value, we associate an interval of possible

p-values with the result: [F (n′ − d′;n, 1 − θ), F (n − d′;n, 1 − θ)]. Conversely, if d′ + n − n′ ≤ c, then

hypothesis H1 can be accepted with p-value in the interval [F (d′;n, θ), F (d′ + n − n′;n, θ)]. If, however,

d′ ≤ c and d′ + n− n′ > c, then it is not clear which hypothesis should be accepted. We could in this case

say that we do not have enough information to make an informed choice. Alternatively, we could accept

one of the hypotheses with its associated p-value interval. We prefer to always make some choice, and we

recommend choosing H0 if F (n − d′;n, 1 − θ) ≤ F (d′ + n − n′;n, θ) and H1 otherwise. This strategy
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minimizes the maximum possible p-value. Alternatively, we could minimize the minimum possible p-value

by instead choosing H0 if F (n′−d′;n, 1−θ) ≤ F (d;n, θ) and H1 otherwise. Note that this way of treating

truncated trajectories makes our approach work even for unbounded until formulae Φ U Ψ, although we

would typically expect the result to be highly uncertain for such formulae.

Example 7.3. Consider the same situation as in Example 7.2, with 39 positive and 61 undetermined obser-

vations. The p-value for accepting the UTSL formula Φ = P≥ 0.9

[

✸
[0,100] x=1

]

as true lies in the interval

[F (0; 100, 0.1), F (61, 100, 0.1)] ≈ [2.65 · 10−5, 1 − 3.77 · 10−15]. For the opposite decision, we get the

p-value interval [F (39; 100, 0.9), F (100; 100, 0.9)] ≈ [1.59 · 10−35, 1]. Both intervals are almost equally

uninformative, so no matter what decision we make, we will have a high uncertainty in the result. We would

accept Φ as true if we prefer to minimize the maximum possible p-value, and we would reject Φ as false if

we instead prefer to minimize the minimum possible p-value, but in both cases we have a maximum p-value

well above 0.5. This is in sharp contrast to the faulty analysis suggested in Example 7.2, which led to an

acceptance of Φ as true with a low p-value.

Composite State Formulae

To verify ¬Φ, we first verify Φ. If we conclude that Φ has a certain truth value with p-value pv , then we

conclude that ¬Φ has the opposite truth value with the same p-value. To motivate this, consider the case

¬P≥ θ[ϕ]. To verify P≥ θ[ϕ], we test the hypothesis H0 : p ≥ θ against H1 : p < θ as stated above.

Note, however, that ¬P≥ θ[ϕ] ≡ P< θ[ϕ], which could be posed as the problem of testing the hypothesis

H ′
0 : p < θ against H ′

1 : p ≥ θ. Since H ′
0 = H1 and H ′

1 = H0, we can simply negate the result of verifying

P≥ θ[ϕ] while maintaining the same p-value.

For a conjunction Φ ∧Ψ, we have to consider four cases. First, if we verify Φ to hold with p-value pvΦ

and Ψ to hold with p-value pvΨ, then we conclude that Φ ∧Ψ holds with p-value max(pvΦ, pvΨ). Second,

if we verify Φ not to hold with p-value pvΦ, while verifying that Ψ holds, then we conclude that Φ∧Ψ does

not hold with p-value pvΦ. The third case is analogous to the second with Φ and Ψ interchanged. Finally, if

we verify Φ not to hold with p-value pvΦ and Ψ not to hold with p-value pvΨ, then we conclude that Φ∧Ψ

does not hold with p-value min(pvΦ, pvΨ). This is similar to the result of Theorem 5.4, but for p-values

instead of bounds on the type I and II error probabilities.

Before proving the results above, let us give an intuitive justification. In order for Φ∧Ψ to hold, both Φ
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and Ψ must hold, so we cannot be any more confident in the result for Φ∧Ψ than we are in the result for the

individual conjuncts, thus the maximum in the first case. To conclude that Φ ∧ Ψ does not hold, however,

we only need to be convinced that one of the conjuncts does not hold. In case we think exactly one of the

conjuncts holds, then the result for the conjunction will be based solely on this conviction and the p-value

for the conjunct we think holds should not matter. This covers the second and third cases. In the fourth case,

we have two sources (not necessarily independent) telling us that the conjunction is false. We therefore have

no reason to be less confident in the result for the conjunction than in the result for each of the conjuncts,

hence the minimum in this case.

For a mathematical derivation of the given expressions, we consider the formula P≥ θ1 [ϕ1] ∧ P≥ θ2 [ϕ2].

Let di denote the number of trajectories that satisfy ϕi. Provided we accept the conjunction as true, which

means we accept each conjunct as true, the p-value for this result is

(7.1) Pr[

n
∑

i=1

X
(1)
i ≥ d1 ∧

n
∑

i=1

X
(2)
i ≥ d2 | p1 < θ1 ∨ p2 < θ2] .

To compute this p-value, consider the three ways in which p1 < θ1 ∨ p2 < θ2 can be satisfied (cf. Sen et al.

2004). We know from elementary probability theory (Lemma 5.3) that

(7.2) Pr[A ∧B] ≤ min(Pr[A],Pr[B])

for arbitrary events A and B. From this fact, and assuming that pv i is the p-value associated with the

verification result for P≥ θi
[ϕi], we derive the following:

1. Pr[
∑n

i=1 X
(1)
i ≥ d1 ∧

∑n
i=1 X

(2)
i ≥ d2 | p1 < θ1 ∧ p2 < θ2] ≤ min(pv 1, pv2)

2. Pr[
∑n

i=1 X
(1)
i ≥ d1 ∧

∑n
i=1 X

(2)
i ≥ d2 | p1 < θ1 ∧ p2 ≥ θ2] ≤ min(pv 1, 1) = pv1

3. Pr[
∑n

i=1 X
(1)
i ≥ d1 ∧

∑n
i=1 X

(2)
i ≥ d2 | p1 ≥ θ1 ∧ p2 < θ2] ≤ min(1, pv 2) = pv2

We take the maximum over these three cases to obtain a bound for (7.1), which gives us max(pv1, pv2).

For the same formula, but now assuming we have verified both conjuncts to be false, we compute the

p-value as

(7.3) Pr[
n
∑

i=1

X
(1)
i ≤ d1 ∧

n
∑

i=1

X
(2)
i ≤ d2 | p1 ≥ θ1 ∧ p2 ≥ θ2] .

It follows immediately from (7.2) that min(pv1, pv2) is a bound for (7.3), which is the desired result.
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7.1.2 Verification with Nested Probabilistic Operators

If we allow nested probabilistic operators, verification of UTSL formulae for “black-box” stochastic discrete

event systems becomes much harder. Consider the formula P≥ θ

[

✸
[0,100] P≥ θ′ [ϕ]

]

. In order to verify this

formula, we must test if P≥ θ′ [ϕ] holds at some time t ∈ [0, 100] along the set of trajectories that we are

given. Unless the time domain T is such that there is a finite number of time points in a finite interval, then

we potentially have to verify P≥ θ′ [ϕ] at an infinite or even uncountable number of points along a trajectory,

which clearly is infeasible. We made the same observation regarding verification of systems for which we

can generate trajectories on demand. The situation is even worse, however, for “black-box” systems. Even

if T = Z
∗, so that we only have to verify nested probabilistic formulae at a finite number of points, we

still have to take the entire prefix of the trajectory into account at each time point. We are given a fixed

set of trajectories, and we can use only the subset of trajectories with a matching prefix to verify a nested

probabilistic formula. It is thus likely that we will have few trajectories available to use for verifying nested

probabilistic formulae. In the worst case, there will be only a single matching prefix, in which case the

uncertainty in the result will be overwhelming.

We can get around this problem by assuming that the “black-box” system is a Markov process. Under

the Markov assumption, as mentioned earlier, we only have to take the last state along a trajectory prefix

into consideration. Consequently, any suffix of a truncated trajectory starting at a specific state s can be

regarded as representative of the probability measure µ({〈s, 0〉}). This makes more trajectories available

for the verification of nested probabilistic formulae.

Another complicating factor in the verification of P≥ θ[ϕ], where ϕ contains nested probabilistic opera-

tors, is that we cannot verify ϕ over trajectories without some uncertainty in the result. This means that we

no longer obtain observations of the random variables Xi, as defined above, but instead we observe some

other random variables Yi, related to Xi through bounds on the observation error.

To compute a p-value for nested verification, we assume that Pr[Yi = 0 | Xi = 1] ≤ α and Pr[Yi =

1 | Xi = 0] ≤ β. We can make this assumption if we introduce indifference regions in the verification

of nested probabilistic formulae and use the procedure described in Chapter 5 to verify path formulae over

truncated trajectories. By Lemma 5.7, we have the following bounds: p(1 − α) ≤ Pr[Yi = 1] ≤ 1 − (1 −
p)(1−β). The p-value for accepting P≥ θ[ϕ] as true when the sum of the observations is d is Pr[

∑n
i=1 Yi ≥

d | p < θ] < F (n − d;n, (1 − θ)(1 − β)). The p-value for the opposite decision is Pr[
∑n

i=1 Yi ≤ d | p ≥
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θ] ≤ F (d;n, θ(1 − α)). Since F (d;n, p) increases as p decreases, we see that the p-value increases as the

error bounds α and β increase, which makes perfect sense. As was suggested earlier, we can minimize the

p-value of the verification result by computing the p-values of both hypotheses and accept the one with the

lowest p-value.

We can let the user specify a parameter δ0 that controls the relative width of the indifference regions. A

nested probabilistic formula P≥ θ[ϕ] is verified with indifference region of half-width δ = δ0θ if θ ≤ 0.5

and δ = δ0(1 − θ) otherwise. The verification is carried out using acceptance sampling as before, but

with hypotheses H0 : p ≥ θ + δ and H1 : p ≤ θ − δ. Instead of reporting a p-value, as is done for

top-level probabilistic operators, we report bounds for the type I error probability of the sampling plan in

use if H1 is accepted and the type II error probability if H0 is accepted. In our case, assuming a sampling

plan 〈n, c〉 is used, the type I error bound is 1− F (c;n, θ + δ) and the type II error bound is F (c;n, θ − δ).

The difference from the procedure described in Chapter 5 is that we compute the error bounds that we can

achieve for subformulae with a fixed sample size instead of computing the sample size required to achieve

certain error bounds. We can then use Theorem 5.4 to compute error bounds for composite UTSL formulae

and path formulae with an until operator. As error bounds for the computation of the p-value for a top-level

probabilistic operator, we simply take the maximum error bounds for the verification of the path formula

over all trajectories.

7.2 Comparison with Related Work

The idea of using statistical hypothesis testing for verification of “black-box” systems was first proposed by

Sen et al. (2004). This section highlights the differences between their approach and the approach presented

in this chapter.

First, consider the verification of a probabilistic formula P≥ θ[ϕ]. Our approach is essentially the same

as theirs: given a constant c, accept if
∑n

i=1 Xi > c and reject otherwise. Their choice of c is different,

however, and is essentially based on De Moivre’s (1738) normal approximation for the binomial distribution.

Their acceptance condition is
∑n

i=1 Xi ≥ nθ, which corresponds to choosing c to be ⌈nθ⌉ − 1. The mean

of the binomial distribution B(n, θ) is nθ, so this would be the right thing to do if
∑n

i=1 Xi can be assumed

to have a normal distribution. De Moivre showed that this is approximately the case for large n if Xi
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are Bernoulli variates, but the approximation is poor for moderate values of n or if θ is not close to 0.5.

Their algorithm, as a consequence, will under some circumstances accept a hypothesis with a larger p-value

than the alternative hypothesis. By choosing c as we do, without relying on the normal approximation, we

guarantee that the hypothesis with the smallest p-value is always accepted (Theorem 7.1). Consider the

formula P≥ 0.01[ϕ], for example, with n = 501 and d = 5. Our procedure would accept the formula as

true with p-value 0.562, while the the algorithm of Sen et al. would reject the formula as false with p-value

0.614. The difference is not of great significance, but it is still worth pointing out because it demonstrates the

danger of using the normal approximation for the binomial distribution. With today’s fast digital computers,

it is hard to motivate using this assumption.

The second improvement over the method presented by Sen et al. is in the calculation of the p-value for

the verification of a conjunction Φ ∧ Ψ when both conjuncts have been verified to be false. They state that

the p-value is pvΦ + pvΨ, but this is too conservative. There is no reason to believe that the confidence in

the result for Φ ∧ Ψ would be lower (i.e. the p-value higher) if we are convinced that both conjuncts are

false. We have shown that the p-value in this case is bounded by min(pvΦ, pvΨ), which intuitively makes

more sense.

Sen et al., in their handling of nested probabilistic operators, confuse the p-value with the probability

of accepting a false hypothesis (generally referred to as the type I or type II error of a sampling plan).

The p-value is not a bound on the probability of a certain test procedure accepting a false hypothesis. In

fact, the test that both they and we use does not provide a useful bound on the probability of accepting a

false hypothesis. Their analysis relies heavily on the ability to bound the probability of accepting a false

hypothesis, and we have presented a way to provide such bounds by introducing indifference regions for

nested probabilistic operators.

In addition, Sen et al. are vague regarding the assumptions needed for their approach to produce reliable

answers. The fact that they treat any portion of a trajectory starting in s, regardless of the portion preceding

s, as a sample from the same distribution, hides a rather strong assumption regarding the dynamics of their

“black-box” systems. As we have pointed out, this is not a valid assumption unless we know that the system

is a Markov process. It also appears as if they consider only truncated trajectories over which they can fully

verify a path formula, and this can introduce a bias that very well may invalidate the conclusion reached

regarding the truth value of a probabilistic formula. We have made this clear in our exposition, and we have
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presented a sound procedure for handling the fact that the value of a path formula may not be determined

over all the truncated trajectories.

Finally, the empirical analysis offered by Sen et al. gives the reader the impression that a certain p-value

can be guaranteed for a verification result simply by increasing the sample size. This violates the premise of

a “black-box” system stated by the authors themselves earlier in their paper, namely that trajectories cannot

be generated on demand. More important, though, is the fact that a certain p-value can never be guaranteed.

The p-value is not a property of a test, but simply a function of a specific set of observations. If we are

unlucky, we may make observations that give us a large p-value even in cases when this is unlikely. It

is therefore misleading to say that an algorithm for “black-box” verification is “faster” than the statistical

model checking algorithm described in Chapter 5, as the latter algorithm is designed to realize certain a

priori performance characteristics. The empirical results of Sen et al. cannot, in fact, be replicated reliably

because there is no fixed procedure by which one can determine the sample size required to achieve a certain

p-value. Their results give the false impression that their procedure is sequential, i.e. that the sample size

automatically adjusts to the difficulty of attaining a certain p-value, when in reality they selected the reported

sample sizes manually based on prior empirical testing (K. Sen, personal communication, May 20, 2004).
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Chapter 8

Goal Directed Planning

We now turn to the problem of planning for stochastic systems with asynchronous events and actions. In

this chapter, we consider goal directed planning problems. We propose the use of UTSL as a formalism

for specifying plan objectives, and we present a general planning framework based on the Generate, Test

and Debug (GTD) paradigm (Simmons 1988). The goal is to generate a stationary policy, i.e. a mapping

from states to actions, that satisfies a UTSL goal condition. To handle the complexity of asynchronous

events with general delay distributions, we resort to statistical techniques. We use the statistical approach

for UTSL model checking, presented in Chapter 5, to verify policies. During the verification phase, sample

trajectories are generated, which can then be analyzed to find reasons for why a policy fails to satisfy the

goal condition. The result of this analysis is used to guide policy debugging.

We use a deterministic temporal planner to help generate the policies. A probabilistic planning problem

is transformed into a deterministic problem by making every possible outcome of events and actions avail-

able to the planning system. The solution is a deterministic plan, from which a policy is generated through

decision tree learning. This policy is typically overly optimistic, and the sample trajectories obtained during

policy verification are used to restrict the subsequent choices that the planning system can make.

8.1 Planning Framework

We present a general framework for goal directed probabilistic planning with asynchronous events, based

on the Generate, Test and Debug (GTD) paradigm proposed by Simmons (1988). The domain model is a

123
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FIND-POLICY(M, s0, φ)
π0 ⇐ GENERATE-INITIAL-POLICY(M, s0, φ)
if TEST-POLICY(M, s0, φ, π0) then

return π0

else

π ⇐ π0

loop ✄ return π on interrupt

π′ ⇐ DEBUG-POLICY(M, s0, φ, π)
if TEST-POLICY(M, s0, φ, π′) then

return π′

π ⇐ BETTER-POLICY(M, s0, φ, π, π′)

Algorithm 8.1: Generic planning algorithm for probabilistic planning based on the GTD paradigm.

continuous-time stochastic discrete event system, and policies are generated to satisfy properties specified

as UTSL formulae (Chapter 4). The approach resembles that of Drummond and Bresina (1990) for proba-

bilistic planning in discrete-time domains. Both approaches use temporal logic to express goal conditions,

and goal conformance is achieved through incremental plan modification.

At the core of the framework is a generic hill-climbing procedure, FIND-POLICY, shown as Algo-

rithm 8.1. The input to the procedure is a model M of a stochastic discrete event system, an initial state

s0, and a UTSL goal condition φ. The result is a policy π such that the stochastic process M[π] (i.e. M
controlled by π) satisfies φ when execution starts in a state s0.

The procedure GENERATE-INITIAL-POLICY returns a seed policy for the policy search algorithm. In

Section 8.2, we describe in detail how to implement this procedure using an existing deterministic temporal

planner. TEST-POLICY returns true if the current policy satisfies the goal condition, and returns false if the

goal condition is violated. This amounts to solving the UTSL model checking problem 〈M[π], s0, φ〉, which

can be done using existing numerical solution methods or the statistical solution technique presented in

Chapter 5. DEBUG-POLICY is responsible for debugging the current policy and returning a new policy. If the

new policy still does not satisfy the goal condition, then we retain the better of the two policies, as determined

by BETTER-POLICY, and continue until a satisfactory policy is found or the search is interrupted.

In the work presented here, it is essential that TEST-POLICY uses a statistical approach, because our

implementation of DEBUG-POLICY relies on the sample trajectories that are produced during policy verifi-

cation for its failure analysis. DEBUG-POLICY analyses the sample trajectories to find reasons why the goal
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Goal description UTSL Formula

reach office with probability at least 0.9 P≥ 0.9[✸ office]

reach office within 17 time units with probability at least 0.9 P≥ 0.9

[

✸
[0,17] office

]

reach office within 17 time units with probability at least 0.9 while P≥ 0.9

[

¬coffee-spilled U [0,17] office
]

not spilling coffee

reach office within 17 time units with probability at least 0.9 while P≥ 0.9

[

P≥ 0.5[✸ recharging ] U [0,17] office
]

maintaining at least a 0.5 probability of eventually recharging

remain stable for at least 8.2 time units with probability at least 0.7 P≥ 0.7

[

�
[0,8.2] stable

]

Table 8.1: Examples of goals expressible as UTSL formulae.

condition is violated, attempts to debug the current policy based on the outcome of the failure analysis, and

returns a new policy.

The model M is assumed to be a stochastic discrete event system with state space S and event set E.

We associate an enabling condition, φe, with each event e ∈ E. In state s, events Es = {e ∈ E | s |= φs}
are enabled and race to trigger. The event that triggers first causes a state transition to occur. For most of

this chapter, we will assume that the model is a GSMP (Section 2.3.3). Algorithm 8.1 does not rely on

this assumption—it can be made to work for arbitrary stochastic discrete event systems, but we will exploit

the probability structure imposed by a GSMP model to guide the generation of an initial policy and the

subsequent debugging of unsatisfactory policies.

A decision dimension is added to the domain model by identifying a set A ⊂ E of actions (controllable

events) that can be disabled at will. A policy π is used to determine which actions should be enabled in any

given situation. We restrict our attention to stationary policies, which are mappings from states to actions.

A model M controlled by a stationary policy π is a stochastic discrete event system M[π] with events
{

e ∈ E |
(

s |= φe

)

∧
(

e ∈ A → e = π(s)
)}

enabled in state s. We can choose to be idle (i.e. have no

action enabled) in a state. A special action, aǫ, is used to represent idleness and has an enabling condition

that is always true.

We use a subset of UTSL to express plan objectives, consisting of formulae of the form P⊲⊳ θ

[

Φ UI Ψ
]

and formulae that can be transformed to this form, such as P⊲⊳ θ

[

✸
I Φ

]

. A wide variety of goals can be

expressed with this subset of UTSL. Table 8.1 shows examples of achievement goals, goals with safety

constraints on execution paths, and maintenance/prevention goals. We limit our attention to goal formulae

with finite time bounds.
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8.2 Initial Policy Generation

Given a planning problem 〈M, s0, φ〉, we want to find a stationary policy π : S → Ea such thatM[π], s0 |=
φ. Algorithm 8.1 outlines a procedure for finding such a policy by means of local search. The efficiency of

the procedure will depend on the quality of the initial policy returned by GENERATE-INITIAL-POLICY. A

quick solution would be to simply return the null-policy mapping every state to the idle action aǫ, but this

ignores the goal condition of the planning problem. If we can make a more informed choice for an initial

policy, it is likely to have fewer bugs than the null-policy, thus requiring fewer repairs.

We present an implementation of GENERATE-INITIAL-POLICY that relaxes the original planning prob-

lem by ignoring uncertainty and solves the resulting deterministic planning problem using an existing tem-

poral planner. Our implementation uses a slightly modified version of VHPOP (Younes and Simmons

2003), a heuristic partial order causal link (POCL) planner with support for PDDL2.1 durative actions (Fox

and Long 2003).

8.2.1 Conversion to Deterministic Planning Problem

We assume a GSMP model. This means that a distribution Ge is associated with each event e governing the

time from when e becomes enabled until it triggers, provided e remains continuously enabled during that

time period. At the triggering of event e in state s, the next state is determined by a probability distribution

pe(·; s). If we have a factored representation of the state space, with Boolean state variables V , then the

distribution pe(·; s) can be represented implicitly by an effect formula effe using the formalism presented by

Rintanen (2003). Effects are recursively defined as follows:

1. ⊤ is the null-effect.

2. b and ¬b are effects if b ∈ V is a Boolean state variable.

3. eff1 ∧ · · · ∧ effn is an effect if eff1 through effn are effects.

4. c ✄ eff is an effect if c is a formula over V and eff is an effect.

5. p1eff1| . . . |pneffn is an effect if eff1 through effn are effects, pi ≥ 0 for all i ∈ {1, . . . , n}, and
∑n

i=1 pi = 1.
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The language PPDDL+, described in Appendix B, uses this representation. Younes and Littman (2004)

describe how to compute an explicit representation of pe(·; s) from an effect formula.

We relax a temporal probabilistic planning problem by treating all events of a model equally, ignoring

the fact that some events are not controllable. In other words, all events are considered to be actions that

the deterministic planner can choose to include in a plan. We eliminate probabilistic effects by splitting

events with probabilistic effects into multiple events with deterministic effects. Each new event has the

same enabling condition as the original event and an effect representing a separate outcome of the original

event’s probabilistic effect. An event with probabilistic effect p1eff1| . . . |pneffn is split into n events, the ith

event having deterministic effect effi.
1 Furthermore, instead of a probability distribution over possible event

durations, we associate an interval with each event representing the possible durations for the event. This

interval is simply the support of the probability distribution for the event delay. The deterministic temporal

planner is permitted to select any duration within the given interval for an event that is part of a plan. In the

next section, when we discuss policy debugging, we consider ways of constraining the choice of action and

event durations based on information gathered during the verification phase.

With these transformations, each event can be represented as one or more PDDL2.1 durative actions

with interval constraints on the duration, with the enabling condition of the event as a condition that must

hold over the entire duration of the action, and with the effect associated with the end of the durative action.

Figure 8.1 shows a stochastic event with delay distribution U(0, 10) and a probabilistic effect with two

outcomes, and the two durative actions with deterministic effects that are used to represent the stochastic

event. The purpose of the transformation is to make every possible outcome of a stochastic event available

to the deterministic planner.

A UTSL goal condition of the form P≥ p

[

Φ U [τ,τ ′] Ψ
]

is converted into a goal for the deterministic

planning problem as follows. We make Ψ a goal condition that must become true some time between τ and

τ ′ time units after the start of the plan, while Φ becomes an invariant condition that must hold until Ψ is

satisfied. We can represent this goal in the temporal POCL framework as a durative action with no effects,

with an invariant condition Φ that must hold over the duration of the action, and a condition Ψ associated

1Nested probabilistic effects may require further splitting. Any effect formula can be transformed to the form p1eff1| . . . |pneffn,

where effi is a deterministic effect, although this may result in an exponential increase in the size of the effect formula (Rintanen

2003).
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(:delayed-event crash

:delay (uniform 0 10)

:condition (up)

:effect (probabilistic 0.4 (down) 0.6 (broken)))

(:durative-action crash1

:duration (and (>= ?duration 0) (<= ?duration 10))

:condition (and (at start (up)) (over all (up)) (at end (up)))

:effect (at end (down)))

(:durative-action crash2

:duration (and (>= ?duration 0) (<= ?duration 10))

:condition (and (at start (up)) (over all (up)) (at end (up)))

:effect (at end (broken)))

Figure 8.1: A stochastic event (top) and two durative deterministic actions (bottom) representing the stochastic event.

with the end of the action. We add the temporal constraints that the start of the goal action must be scheduled

at time 0 and that the end of the action must be scheduled in the interval [τ, τ ′]. VHPOP records all such

temporal constraints in a simple temporal network (Dechter et al. 1991) allowing for efficient temporal

inference during planning.

For UTSL goals of the form P≤ p

[

Φ U [τ,τ ′] Ψ
]

, we instead want to find plans representing executions

not satisfying the path formula Φ U [τ,τ ′] Ψ. We then use ¬Ψ as an invariant condition that must hold in

the interval [τ, τ ′]. This can be represented by a durative action scheduled to start at time τ and end at

time τ ′ with invariant condition ¬Ψ and no effect. Note that it is not necessary to achieve ¬Φ in order for

Φ U [τ,τ ′] Ψ to be false, so we do not include Φ in the deterministic planning problem. This means that an

empty plan will satisfy the goal condition, unless τ is zero and Ψ holds in the initial state in which case the

problem lacks solution. We therefore return the null-policy as an initial policy for such goals.

There are a few additional constraints that we enforce in the modified version of VHPOP. The first is

that we do not allow concurrent actions. This is due to the restriction on policies being mappings from

states to single actions. The restriction is not severe, however, since an “action” with extended delay can

be modeled as a controllable event with short delay to start the action and an exogenous event to end the

action, allowing for additional actions to be executed before the temporally extended action completes. For

example, a “drive” action with extended duration can be represented by a “start” action and an “arrive”

event. The second constraint is that separate instances of the same exogenous event cannot overlap in time.
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For example, if one instance of the “crash” event is enabled at time τ and scheduled to trigger at time τ ′, then

no other instances of “crash” can be scheduled to be enabled or trigger in the interval [τ, τ ′]. This constraint

follows from the GSMP domain model. Both constraints are of the same nature and are represented in the

planner as a new flaw type, associated with two events e1 and e2, that can be resolved in ways analogous to

promotion and demotion for regular POCL threat resolution: either the end of e1 must come before the start

of e2, or the start of e1 must come after the end of e2.

The state of a GSMP can change only at the triggering of an event. At this point, other events can

be enabled. It is not possible, however, that an event becomes enabled between state transitions. A plan

is adjusted, before it is returned by GENERATE-INITIAL-POLICY, to ensure that events are scheduled to

become enabled at the triggering of some other event, and not at an arbitrary point in time. A plan now

represents an execution of actions and exogenous events satisfying the path formula Φ U [τ,τ ′] Ψ, possibly

ignoring the adverse effects of other exogenous events, which is left for the debugging phase to discover.

8.2.2 From Plan to Policy

A plan returned by VHPOP is a set of triples 〈ti, ei, di〉, where ei is an event, ti is the time that ei is

scheduled to become enabled, and di is the delay of ei (i.e. ei is scheduled to trigger at time ti + di). Given

a plan, we now want to generate a policy. We represent a policy using a decision tree (cf. Boutilier et al.

1995), and generate it by converting a plan into a set of training examples composed of state-action pairs

〈si, ei〉, si ∈ S and ei ∈ A ∪ {aǫ}, and then generating a decision tree from these training examples. The

training examples are obtained by serializing the plan returned by VHPOP and executing the sequence of

events, starting in the initial state. A decision tree policy can be compiled into a set of test-action pairs, the

policy representation used by CIRCA (Musliner et al. 1995), to facilitate efficient and predictable execution

behavior.

We serialize a plan by sorting the events in ascending order based on their trigger time, breaking ties

nondeterministically. The first event to trigger, call it e0, is applied to the initial state s0, resulting in a state

s1. If e0 is an action, then this gives rise to a training example 〈s0, e0〉. Otherwise, the first event gives

rise to the training example 〈s0, aǫ〉, signifying that we are waiting for something beyond our control to

happen in state s0. We continue to generate training examples in this fashion until there are no unprocessed

events left in the plan. Given a set of training examples for the initial plan, we use regular decision tree
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induction (Quinlan 1986) to generate an initial policy. The policy will assign actions even to states that are

not included in the training set. It is left to the debugging phase to identify overgeneralization.

To illustrate the process of generating an initial policy, consider the planning problem described by

Younes et al. (2003), which is a continuous-time variation of a problem developed by Blythe (1994). In

this problem, the goal is to have a person transport a package from CMU in Pittsburgh to Honeywell in

Minneapolis in at most 300 time units with probability at least 0.9, without losing it on the way. In UTSL,

this goal can be expressed as P≥ 0.9

[

¬lostpkg U [0,300] atme,honeywell∧carryingme,pkg

]

. The package can be

transported between the two cities by airplane and between two locations within the same city by taxi. There

is one taxi in each city. The Pittsburgh taxi is initially at CMU, while the Minneapolis taxi is at the airport.

There is one airplane available, and it is initially at the Pittsburgh airport. The airplane can get filled if we

do not have a reservation, preventing us to board it when arriving at the Pittsburgh airport. A reservation can

be made from CMU. Taxis located at airports serve other customers periodically, which means that we may

have to wait for a taxi when we arrive at the Minneapolis airport. If we stay for too long at an airport, the

package can get lost, although this can be prevented by putting the package in storage. The departure of the

airplane from an airport is controlled by an exogenous event, which means that we can miss the departure if

it takes too long to get to the airport.

Figure 8.2(a) shows the plan generated by the deterministic temporal planner. The plan schedules two

events to become enabled at time zero, one being the action to enter a taxi at CMU, and the other being

the exogenous event causing the plane to depart from Pittsburgh to Minneapolis (actions are identified by

an entry in the second column of the table in Figure 8.2(a)). The “enter-taxi” action is scheduled to trigger

first, resulting in a training example mapping the initial state to this action. The next state is mapped to the

first “depart-taxi” action, while the state following the triggering of that action is mapped to the idle action.

This is because the next event (“arrive-taxi”) is not an action. Eight additional training examples can be

extracted from the plan, and the decision tree representation of the policy learned from the eleven training

examples is shown in Figure 8.2(b). This policy, for example, maps all states satisfying atpgh-taxi,cmu ∧
atme,cmu to the action labeled a1 (the first “enter-taxi” action in the plan), while states where atpgh-taxi,cmu,

atplane,mpls-airport, and atme,pgh-airport are all false and inme,plane is true are mapped to the idle action aǫ.

Additional training examples can be obtained from plans with multiple events scheduled to trigger at the

same time by considering different trigger orderings of the simultaneous events. If two events e1 and e2 are
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ti:ei[di] act.

0:(enter-taxi me pgh-taxi cmu)[1] a1

0:(depart-plane plane pgh-airport mpls-airport)[60]

1:(depart-taxi me pgh-taxi cmu pgh-airport)[1] a2

2:(arrive-taxi pgh-taxi cmu pgh-airport)[20]

22:(leave-taxi me pgh-taxi pgh-airport)[1] a3

23:(check-in me plane pgh-airport)[1] a4

60:(arrive-plane plane pgh-airport mpls-airport)[90]

150:(enter-taxi me mpls-taxi mpls-airport)[1] a5

151:(depart-taxi me mpls-taxi mpls-airport honeywell)[1] a6

152:(arrive-taxi mpls-taxi mpls-airport honeywell)[20]

172:(leave-taxi me mpls-taxi honeywell)[1] a7

(a) Plan for simplified deterministic planning problem.

atpgh-taxi,cmu

atme,cmu

a1 a2

atplane,mpls-airport

atmpls-taxi,mpls-airport

atme,mpls-airport

a5 a6

movingmpls-taxi,mpls-airport ,honeywell

aε a7

atme,pgh-airport

a4 inme,plane

aε movingpgh-taxi,cmu,pgh-airport

aε a3

(b) Policy generated from plan in (a).

Figure 8.2: (a) Initial plan and (b) policy for transportation problem. Leaves in the decision tree are labeled by actions,

with labels taken from the table in (a). To find the action selected by the policy for a state s, start at the root of the

decision tree. Traverse the tree until a leaf node is reached by following the left branch of a decision node if s satisfies

the test at the node and following the right branch otherwise.
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DEBUG-POLICY(M, s0, φ, π)
S⊥ ⇐ set of states occurring in ~σ⊥

s⇐ some state in S⊥

a⇐ some action in {a ∈ A ∪ {aǫ} | s |= φa} \ {π(s)}
π′ ⇐ π, but with the mapping of s to a
return π′

Algorithm 8.2: Generic nondeterministic procedure for debugging a policy.

both scheduled to trigger at time t, we would get one set of training example by applying e1 before e2, and

a second set by applying e2 before e1. This can result in different training examples if one of the events is

an action.

8.3 Policy Debugging

During verification of a policy π for a planning problem 〈M, s0, φ〉, a set of sample trajectories ~σ =

{σ1, · · · , σn} is generated for the stochastic process M[π] with initial state s0. If the policy π does not

satisfy the goal condition φ, then these sample trajectories can help us understand the “bugs” of π and

provide us with valuable information on how to debug the policy.

Let ~σ⊥ denote the set of trajectories over which ϕ is verified not to hold. This set of sample trajectories

provides information on how a policy can fail to satisfy the specified goal condition. We can use this

information to guide policy debugging, without relying on model specific knowledge.

To debug a policy for goal condition P≥ θ[ϕ], we must lower the probability measure of the set of

trajectories not satisfying ϕ. Each member σi ∈ ~σ⊥ is a trajectory prefix {〈s0, t0〉, . . . 〈sk, tk〉} providing

evidence on how a policy can fail to achieve the goal condition. We could, conceivably, improve a policy

by modifying it so that the sequence of states appearing along a sample trajectory σi ∈ ~σ⊥ is interrupted.

Algorithm 8.2 shows a generic procedure for debugging a policy based on this simple principle. A state is

nondeterministically selected from the set of states that occur along some failure trajectory and an alternative

action is assigned to that state, resulting in a modified policy.

The sample trajectories can help us focus the debug effort on the relevant parts of the state space, in

particular if failure occurs early along a trajectory. There is little, however, to guide the state and action

choice in the model independent approach. We next present model dependent techniques for analyzing



8.3. POLICY DEBUGGING 133

sample trajectories that can lead to a more efficient implementation of the DEBUG-POLICY procedure. The

result of the analysis is a set of ranked failure scenarios. A failure scenario can be fed to the deterministic

temporal planner, which will try to generate a plan that takes the failure scenario into account. The resulting

plan, if one exists, can be used to debug the current policy.

8.3.1 Analysis of Sample Trajectories

Policy verification generates a set of trajectory prefixes ~σ = {σ1, . . . , σn}, with each trajectory prefix being

of the form

σi = {〈si0, ti0〉, ei0, . . . , 〈si,ki−1, ti,ki−1〉, ei,ki−1, 〈siki
, tiki
〉} .

This form differs slightly from our previous representation of sample trajectories in that it includes the trig-

gering events. Knowing which events cause state transitions, and not only the time at which the transitions

occur, is essential in our analysis. The goal of the analysis is to produce a set of failure scenarios that sum-

marizes the information in the sample trajectories. A failure scenario is a sequence 〈e1@t1, . . . , en@tn〉 of

events and trigger times, and is constructed with a specific event ek, 1 ≤ k ≤ n, in mind. A failure scenario

for ek is meant to represent an average trajectory that does not satisfy the goal condition while including a

state transition caused by ek. Each failure scenario is assigned a score, with a lower score indicating higher

severity.

We start the construction of failure scenarios by computing a value, relative to a UTSL goal formula

P≥ θ

[

Φ U [τ,τ ′] Ψ
]

, for each state occurring along a sample trajectory. The value of a state is between −1

and 1, and signifies the closeness to success or failure, ignoring timing information and counting only the

number of transitions. A large positive value indicates closeness to success, while a large negative value

indicates closeness to failure. State values are computed by constructing a discrete-time Markov reward

process representing an abstract view of the sample trajectories (cf. Riley and Veloso 2004). The state space

for this Markov reward process is the set of states that occur along some sample trajectory. The transition

probabilities p(s′; s) are defined as the number of times s′ is immediately followed by s along the sample

trajectories divided by the total number of occurrences of s. Let ks be the number of trajectory prefixes

that end in state s and satisfy the path formula Φ U [τ,τ ′] Ψ, and let ls be the number of trajectory prefixes

that end in s and do not satisfy the path formula. Then, the immediate reward associated with state s is
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(ks − ls)/(ks + ls), or 0 if no trajectory ends in s.2 The values of states are computed using the recurrence

V (s) = γ
∑

s′∈S

p(s′; s)V (s′) ,

where γ < 1 is a discount factor. The discount factor permits us to control the influence a success or failure

has on the value of states at some distance from the point along a trajectory at which success or failure is

determined to occur. State values can be computed iteratively, with the initial value of a state being equal its

immediate reward.

The next step is to assign a value to each event that occurs along some sample trajectory. Each triple

s
e−→ s′, meaning that e causes a transition from s to s′, is given the value V (s′) − V (s), which can be

seen as the value contribution of e. The value V (e) of an event e is the sum of the values of all triples that

e is part of. This way, an event that occurs often but early on the path to failure can have a lower value than

an event that leads directly to failure but only rarely. For later use, the mean µe and standard deviation σe

over triples involving e is also computed. The event with the largest negative value can be thought of as the

“bug” contributing the most to failure, and we want to plan to avoid this event or to prevent it from having

negative effects. The event, by itself, may not be sufficient to understand why failure occurs. A failure

scenario provides the context in which the event leads to failure.

We construct a failure scenario for each event e by combining the information from all failure trajectories

σi containing a triple s
e−→ s′ such that V (s′)−V (s) < µe + σe. The reason for the cutoff is to not include

information from failure trajectories where an event contributes to failure significantly less than on average

so that the aggregate information is representative for the “bug” being considered. For example, we fail to

deliver the package to Honeywell in Minneapolis if the airplane is filled before we have a chance to board

it. However, every occurrence of a “fill-plane” event along a failure trajectory does not represent the same

“bug”. If the airplane is filled while we are on our way to the Pittsburgh airport, but we also arrive at the

airport after the airplane has departed, the “fill-plane” event would be less responsible for failure than if we

had arrived at the airport in time for departure.

A failure scenario is constructed from a set of trajectories by averaging the trigger times of events.

Figure 8.3 gives an example of how two failure trajectories are combined into a single failure scenario.

Event e1 occurs twice along both failure trajectories and therefore occurs twice in the failure scenario. The

2For a goal formula P≤ θ [ϕ], the immediate rewards are negated.



8.3. POLICY DEBUGGING 135

Trajectory 1 Trajectory 2 Failure Scenario

e1 @ 1.2 e1 @ 1.6 e1 @ 1.4
e2 @ 3.0 e2 @ 3.2 e2 @ 3.1
e1 @ 4.5 e3 @ 4.4 e1 @ 4.5
e3 @ 4.8 e1 @ 4.5 e3 @ 4.6
e4 @ 6.8 e5 @ 6.4 e5 @ 6.7
e5 @ 7.0 - -

Figure 8.3: Example of failure scenario construction from two failure trajectories.

ei @ ti Label

(enter-taxi me pgh-taxi cmu) @ 0.909091 a1

(depart-taxi me pgh-taxi cmu pgh-airport) @ 1.81818 a2

(fill-plane plane pgh-airport) @ 13.284 e3

(arrive-taxi pgh-taxi cmu pgh-airport) @ 30.0722 e4

(leave-taxi me pgh-taxi pgh-airport) @ 30.9813 a5

(lose-package me pkg pgh-airport) @ 44.0285 e6

Figure 8.4: Failure scenario for the policy in Figure 8.2(b) associated with the “fill-plane” event.

trigger time for the ith occurrence of e1 in the failure scenario is the average of the trigger times of the ith

occurrences of e1 in the two trajectories. Event e4 only appears along the first trajectory and is thus excluded

from the scenario (it is assumed that e4 has trigger time∞ in the second trajectory, which makes the average

trigger time∞ as well). Figure 8.4 shows an actual failure scenario for the transportation problem.

8.3.2 Planning with Failure Scenarios

We select the failure scenario for the event with the lowest value and try to generate a plan for the selected

scenario that achieves the goal. If this fails, we try planning for the next worst failure scenario, and continue

in this manner until we find a promising repair, or run out of failure scenarios.

We plan to neutralize a failure scenario by incorporating the events and timing information of the sce-

nario into the planning problem that is then passed to the temporal deterministic planner. Given a failure

scenario 〈e1@t1, . . . , ek@tk, . . . , en@tn〉 associated with the event ek, we generate a sequence of states

s0, . . . , sn, where s0 is the initial state of the original planning problem and si for i > 0 is the state obtained

by applying ei to state si−1. We can plan to avoid the bad event ek by generating a planning problem with

initial state si for i < k. By choosing i closer to k, we can potentially avoid planning for situations that the

current policy already handles well. By choosing i closer to 0, we allow the planner more time to neutralize
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ek. Our implementation iterates over the possible start states from i = k − 1 to i = 0. If a solution is found

for some i, then we do not investigate other possible initial states. For each planning problem generated,

we limit the number of search nodes explored by VHPOP. This is necessary because VHPOP takes too

long time to recognize that a problem lacks solution, but often finds a solution quickly if one exists. In case

the search limit is reached, we attempt to plan given an earlier initial state, or try to plan for the next worst

failure scenario if we already are at i = 0.

Given an initial state si, the events following si in the failure scenario are incorporated into the planning

problem in the form of a set of event dependency trees Ti and a set of untriggered events Ui. The purpose

of these two sets is to force the deterministic planner to schedule events in a way consistent with the failure

scenario. Each node in an event dependency tree stores an event and a trigger time for the event relative to

the parent node (or relative to the initial state for root nodes). The children of a node for an event e represent

events that depend on the triggering of e to become enabled. If the deterministic planner schedules the event

e, then the events that depend on e should be scheduled to follow e. The set Ui represents events that are

enabled in all states sj but differ from all events ej for j ≥ i, and these events should not be allowed to

trigger between time 0 and tn in the deterministic planning problem.

We define the sets Ti and Ui for state si recursively. The base case is Tn = ∅, with Un containing

all events enabled in sn (a failure scenario imposes no scheduling constraints after the last event of the

scenario). For i < n, let δ = ti+1 − ti (or simply t1 for i = 0) and construct a tree Ti consisting of a single

node with event ei+1 and trigger time δ. For each tree T ∈ Ti+1:

• if the event at the root of T is an action, then add T to Ti (there is no reason to force an action to

follow the triggering of an event, because actions are truly under the control of the planner).

• if the event at the root of T is enabled in si, then add δ to the trigger time of the root node and add the

resulting tree to Ti.

• if the event at the root of T is disabled in si, then add T to the children of Ti (if the root event of T is

disabled in si, then it is enabled by ei+1 according to the failure scenario).

Let U be the set of events e ∈ Ui+1 not enabled in si. Then Ui = Ui+1 \
(

U ∪{ei+1}
)

. Finally, add Ti to Ti.
For the scenario shown in Figure 8.4 and the state right before the “fill-plane” event (i = 2), there are
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three event trees: one with e4@28.254 as the sole node, one with e3@11.4658 as the sole node, and a final

tree with a5 at the root and e6@13.0472 as a child node. The set U2 contains the following two events:

(depart-plane plane pgh-airport mpls-airport)

(move-taxi mpls-taxi mpls-airport)

This means that if we start planning from state s2, we are not allowed to schedule either of these two events

until after the trigger time for the last event in the failure scenario.

We incorporate the event trees in Ti that have an exogenous event at the root into the deterministic

planning problem by forcing all the events in these trees to be part of the plan. Events at root nodes are

scheduled to become enabled at time 0 and to trigger at the time stored at the node, and events at non-root

nodes are scheduled to become enabled at the time the parent event triggers and scheduled to trigger t time

units after the parent event triggers (t being the time stored at the node). The deterministic planner is allowed

to disable the effects of a forced event by disabling its enabling condition. This can easily be handled in a

POCL framework by treating the enabling condition as an effect condition that can be disabled by means of

confrontation (Weld 1994). The sets Ui impose further scheduling constraints for the deterministic planner.

Once a plan is found for a failure scenario, we extract a set of training examples from the plan as

described in Section 8.2. We update the current policy by incorporating the additional training examples

into the decision tree using incremental decision tree induction (Utgoff et al. 1997). This requires that we

store the old training examples in the leaf nodes of the decision tree, and some additional information in

the decision nodes, but we avoid having to generate the entire decision tree from scratch. We adapt the

algorithm of Utgoff et al. to our particular situation by always giving precedence to new training examples

over old ones in case of inconsistencies, and by restructuring the decision tree only after incorporating all

new training examples (the latter is done for efficiency and does not change the outcome).

Figure 8.5(a) shows a plan for the failure scenario in Figure 8.4, with the state after the “enter-taxi”

action as the initial state for the planning problem. Note, in particular, the “fill-plane” event, which the

deterministic planner has been forced to schedule at time 12.3749. The planner uses the “make-reservation”

action to counter the adverse effects of the “fill-plane” event. The policy after incorporating the training

examples generated from the plan is shown in Figure 8.5(b). The entire right subtree for the repaired policy

is the same as for the initial policy, so it does not have to be regenerated.
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ti:ei[di] act.

0:(leave-taxi me pgh-taxi cmu)[1] a8

0:(depart-plane plane pgh-airport mpls-airport)[60]

0:(fill-plane plane pgh-airport)[12.3749]
1:(make-reservation me plane cmu)[1] a9

2:(enter-taxi me pgh-taxi cmu)[1] a1

3:(depart-taxi me pgh-taxi cmu pgh-airport)[1] a2

4:(arrive-taxi pgh-taxi cmu pgh-airport)[20]

24:(leave-taxi me pgh-taxi pgh-airport)[1] a3

25:(check-in me plane pgh-airport)[1] a4

60:(arrive-plane plane pgh-airport mpls-airport)[90]

150:(enter-taxi me mpls-taxi mpls-airport)[1] a5

151:(depart-taxi me mpls-taxi mpls-airport honeywell)[1] a6

152:(arrive-taxi mpls-taxi mpls-airport honeywell)[20]

172:(leave-taxi me mpls-taxi honeywell)[1] a7

(a) Plan for failure scenario.

atpgh-taxi,cmu

atme,cmu

has -reservationme,plane

a1 a9

has -reservationme,plane

a2 a8

..

.

(b) Repaired policy.

Figure 8.5: (a) Plan for failure scenario in Figure 8.4 using the second state as initial state, and (b) the policy after

incorporating the training examples from the plan in (a). If the taxi is at CMU but we are not, then it is assumed that

we are in the taxi. In that case, we leave the taxi (a8) if we do not have a reservation. The right subtree of the root

node is identical to that of the initial policy in Figure 8.2(b), and is only indicated by three vertical dots.

8.4 Statistical Policy Comparison

The procedure BETTER-POLICY is supposed to compare the policies π and π′, returning the better of the

two. Given a UTSL goal condition P≥ θ[ϕ], let p be the probability measure of the set of trajectories that

satisfy ϕ for model M[π] and let p′ be the probability measure of the set of trajectories that satisfy ϕ for

model M[π′]. We can use a statistical approach to implementing BETTER-POLICY such that it returns π

with high probability if p is significantly greater than p′, π′ with high probability if p is significantly less

than p′, and either of the two policies with roughly equal probability if p is close to p′.

The problem of comparing two policies can be posed as a hypothesis testing problem. We want to test

the hypothesis H : p ≥ p′ against the alternative hypothesis K : p < p′. Acceptance of H should result in us

choosing π over π′, while acceptance of K would lead us to prefer π′. We can use a technique described by

Wald (1945, pp. 165) to transform this into a hypothesis testing problem that can be solved using techniques

described in previous chapters. The basic idea is to pair the observations made for the two model checking

problems. Let x1, . . . , xm be the observations obtained by verifying ϕ over sample trajectories forM[π] and

let x′
1, . . . , x

′
m′ be the observations obtained by verifying ϕ over sample trajectories forM[π′]. We create
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BETTER-POLICY(M, s0, φ, π, π′)
k ⇐ min(|~x|, |~x′|) ✄ ~x are observations for π and ~x′ are observations for π′

d⇐ 0, n⇐ 0
for i⇐ 1 to k do

if xi = 1 ∧ x′
i = 0 then

d⇐ d + 1, n⇐ n + 1
else if xi = 0 ∧ x′

i = 1 then

n⇐ n + 1
if 2d ≥ n then

return π ✄ p-value F (n − d;n, 0.5)
else

return π′
✄ p-value F (d;n, 0.5)

Algorithm 8.3: Statistical comparison of two policies.

pairs 〈xi, x
′
i〉 of the first min(m,m′) observations. Each pair 〈1, 0〉 is counted as an observation yi = 1 of

a Bernoulli variate Yi for a new hypothesis testing problem, and a pair 〈0, 1〉 is counted as an observation

yi = 0. Pairs with matching observations are discarded. It is easy to verify that if π and π′ are equally good,

then Pr[Yi = 1] = 0.5 (cf. Wald 1945, p. 166). Let p̃ = Pr[Yi = 1]. We test H against K by testing the

hypothesis H̃ : p̃ ≥ 0.5 against the alternative hypothesis K̃ : p̃ < 0.5 using the observations yi.

For efficiency, we can reuse the observations already generated by TEST-POLICY. This gives us a

predetermined sample of size n, where n is the number of paired observations that differ in value. We can

use the same approach as described in Chapter 7 for “black-box” probabilistic verification to test H̃ : p̃ ≥ 0.5

against K̃ : p̃ < 0.5 using a predetermined sample. This gives us a p-value for the decision we make. With
∑n

i=1 yi = d, the p-value for H̃ is F (n − d;n, 0.5), while the p-value for K̃ is F (d;n, 0.5). Because the

threshold is 0.5, the lower p-value is obtained by accepting H̃ if and only if at least half of the observations

are positive. Algorithm 8.3 shows code for implementing the procedure BETTER-POLICY in this way.

8.5 Formal Properties of Planning Algorithm

When describing a new planning algorithm, it is common to consider soundness and completeness of the

algorithm. A planning algorithm is sound if every plan that it generates is a valid solution to the planning

problem it is given. The algorithm is complete if it generates a plan for every problem that has a solution.

A planning algorithm that is both sound and complete is guaranteed to produce a valid plan whenever a
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solution exists, and it is guaranteed not to produce a plan for problems that lack solutions.

Our proposed planning algorithm is sound, so long as TEST-POLICY never accepts a policy that does

not satisfy the goal condition. Since we rely on statistical techniques, our planner can give only probabilistic

guarantees regarding soundness. For a given policy π, our statistical model checking algorithm guarantees

that Pr
[

M[π], s0 ⊢ φ | M[π], s0 |≈⊥ φ
]

≤ β. This means that, in each iteration of the algorithm, we are

guaranteed that a policy π is accepted with probability at most β if π is not satisfactory (i.e.M[π], s0 |≈⊥ φ).

Since the algorithm halts once we accept a policy, we get an overall bound of β on the probability that FIND-

POLICY returns an unsatisfactory policy. We say that the planning algorithm is β-sound.

By adopting hill-climbing for policy search, we sacrifice completeness. Even with exhaustive search of

the policy space, however, we may still not be able to guarantee completeness. This is because the statistical

model checking algorithm could fail to identify a satisfactory policy. We are guaranteed that Pr
[

M[π], s0 ⊢
φ | M[π], s0 |≈⊤ φ

]

≥ 1 − α. If we consider each policy at least once, and there are k satisfactory

policies, then the probability is at least 1 − αk that some policy is accepted as a solution. This does not

mean that the accepted policy is satisfactory (that is a matter of soundness rather than completeness). We

can increase the probability of producing a policy by visiting policies multiple times during the search. If,

for example, we could guarantee that a satisfactory policy was visited an infinite number of times, then the

algorithm would produce a policy with probability 1, which in the limit would give us a complete algorithm,

assuming that each policy verification is carried out independently. Without an independence assumption,

we could guarantee only a 1 − α probability of accepting some policy (cf. Theorem 5.4). For instance, the

independence assumption would be violated if we reused sample trajectories for the verification of multiple

policies.3 This leads to a (1− α)-complete planning algorithm.

8.6 Experimental Results

The results in this section were generated on a PC with a 650 MHz Pentium III processor running Linux. A

search limit of 10,000 explored nodes was set for the deterministic planner VHPOP. We used the additive

heuristic described by Younes and Simmons (2002a, 2003), which is an adaptation for POCL planning of

3Younes and Musliner (2002) describe a probabilistic extension of CIRCA where policies are constructed incrementally. While

reuse of sample trajectories is not mentioned explicitly by Younes and Musliner, it is present in the implementation of their approach.
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Event Rank Value µe + σe Trajectories

(fill-plane plane pgh-airport) 1.0 -24.1 -0.36 41.8

first policy (lose-package me pkg mpls-airport) 2.0 -14.7 -0.76 15.0

(lose-package me pkg pgh-airport) 3.2 -6.8 -0.15 36.4

(lose-package me pkg mpls-airport) 1.0 -94.3 -0.70 101.6

second policy (arrive-plane plane pgh-airport mpls-airport) 2.4 -19.9 0.04 99.4

(move-taxi mpls-taxi mpls-airport) 2.6 -18.2 0.06 107.4

Table 8.2: Top ranking “bugs” for the first two policies of the transportation problem. All numbers are averages over

five runs. A rank of 1.0 means that a “bug” was determined to be the worst in all five runs.

the additive heuristic for state space planning first proposed by Bonet et al. (1997).

Consider the transportation problem described earlier in this chapter. There are several things that can

go wrong with the initial policy in Figure 8.2(b): the plane can become full or depart before we get to the

Pittsburgh airport to check in, the Minneapolis taxi can be serving other customers when we arrive at the

Minneapolis airport, and the package can get lost if we stand with it at an airport for too long. The top

part of Table 8.2 shows the worst three “bugs” for the initial policy as determined by the sample trajectory

analysis. The numbers in the table are averages over five runs with different random seeds, and we used

the parameters α = β = 0.01 (error probability) and δ = 0.005 (half-width of indifference region) with

the verification algorithm. By a wide margin, the worst bug is that the plane becomes full before we have

a chance to check in. Losing the package at Minneapolis airport comes in second place. Note that the

package is more often lost at Pittsburgh airport than at Minneapolis airport, but this bug is not ranked as

high because it tends to happen only when the plane already has been filled. The value of the state where the

“lose-package” event at Pittsburgh airport occurs is already close to −1 due to an earlier “fill-plane” event,

resulting in a mean value of only −0.15 for the “lose-package” event at Pittsburgh airport.

The “fill-plane” bug is repaired by making a reservation before leaving CMU, resulting in the policy

shown in Figure 8.5(b). The top three bugs for this policy are shown in the bottom part of Table 8.2. Now,

losing the package at Minneapolis airport appears to be the only severe bug left. Note that losing the package

at Pittsburgh airport no longer ranks in the top three because the repair for the “fill-plane” bug fortuitously

took care of this bug as well. The package is lost at Minneapolis airport because the taxi is not there when

we arrive, and the repair found by the planner is to store the package in a safety box until the taxi returns.

The policy resulting from this repair satisfies the goal condition, so we are done.

Table 8.3 shows running times for the different parts of the planning algorithm on two variations of the
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first policy second policy third policy

α = β Verify Analyze Repair Verify Analyze Repair Verify

10−1 0.044 0.008 0.642 0.232 0.012 0.014 0.176

problem 1 10−2 0.084 0.014 0.640 0.470 0.012 0.018 0.344

10−4 0.160 0.004 0.646 0.974 0.020 0.022 0.698

10−1 0.072 0.006 0.666 2.372 0.036 2.468 0.606

problem 2 10−2 0.140 0.006 0.670 5.490 0.074 2.496 1.318

10−4 0.272 0.010 0.682 10.036 0.128 2.568 2.494

Table 8.3: Running times, in seconds, for different stages of the planning algorithm for the original transportation

problem (problem 1) and the modified transportation problem (problem 2) with varying error bounds (α and β). All

numbers are averages over five runs.

transportation problem. The first problem uses the original transportation domain, while the second problem

replaces the possibility of storing a package with an action for reserving a taxi and uses the probability

threshold 0.85 instead of 0.9. We can see that the sample trajectory analysis takes very little time. The time

for the first repair is about the same for both problems, which is not surprising as exactly the same repair

applies in both situations. The second repair takes longer for the second problem because we have to go

further back in the failure scenario in order to find a state where we can apply the taxi reservation action

so that it has desired effects. The planner tries each initial state for a failure scenario before considering a

lower ranked scenario. The search limit determines the amount of effort that is spent on finding a solution

for a specific initial state before proceeding with the next alternative. We observe that the sample trajectory

analysis finds the same major bugs despite random variation in the sample trajectories across runs and

varying error bounds. Verification takes longer for the second policy for problem 2 because the policy is

close to satisfactory. In all other cases, the policy is either clearly satisfactory or clearly unsatisfactory.

There is no guarantee that each repair step takes us any closer to a solution. We currently only take

the most recent trajectories into account in the failure analysis, which makes it possible to reintroduce a

previous bug in an attempt to address a new bug. It is also not clear when to give up on a failure scenario,

and imposing a fixed search limit per attempt appears arbitrary. We believe that the failure analysis could be

more useful as an aid to human system analysts and engineers designing stochastic systems, as the failure

scenarios represent a convenient summary of a large number of trajectories.



Chapter 9

Decision Theoretic Planning

In decision theoretic planning, rewards are introduced that represent positive or negative value to a decision

maker, who has to decide on a course of action in light of uncertainty. For example, there is a small chance

that we win $1,000,000 on the lottery, but each ticket costs $1. The objective for the decision maker is,

roughly speaking, to maximize expected reward.

We introduce the generalized semi-Markov decision process (GSMDP), based on the GSMP model of

discrete event systems, as a model for decision theoretic planning with asynchronous events and actions.

To solve a GSMDP, we present an approximation technique that transforms an arbitrary GSMDP into a

continuous-time Markov decision process (MDP). Each non-exponential delay distribution in the GSMDP

is approximated by a continuous phase-type distribution (see Section 2.1.3). The resulting continuous-time

MDP can then be solved using standard solution techniques such as value iteration. We demonstrate our

approximation technique on models of different size and complexity and we show that the introduction of

phases indirectly allows us to take into account the time spent in a state when selecting actions, which can

lead to policies with higher expected reward than if we make selections based only on the current state.

9.1 Generalized Semi-Markov Decision Processes

The generalized semi-Markov process (GSMP), described in Section 2.3.3, is an established formalism

in queuing theory for modeling continuous-time stochastic discrete event systems. We add a decision di-

mension to the formalism by distinguishing a subset of the events as controllable and introducing rewards,

143
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thereby obtaining the generalized semi-Markov decision process (GSMDP). We limit our attention to time

homogeneous models with finite state and event sets. For simplicity, we assume that event trigger time

distributions are state independent.

9.1.1 Actions, Policies, and Rewards

As in Chapter 8, we associate an enabling condition φe with each event e and identify a set A ⊂ E of

controllable events, or actions. The remaining events E \A are referred to as exogenous events. An arbitrary

event e, which can be either an action or an exogenous event, is disabled in any state s such that the enabling

condition φe does not hold in s. An exogenous event e is always enabled in a state s if the event’s enabling

condition φe holds in s. For an action a, on the other hand, satisfaction of the enabling condition is only a

necessary condition for a to be enabled, but a can be kept disabled in s even if φa holds. A decision maker,

or agent, can influence system behavior during execution by enabling and disabling actions at will.

A control policy, denoted π, determines which action or set of actions should be enabled in any given

situation during execution. We allow the action choice to depend on the current state of the process, as well

as its entire execution history. The execution history can be captured by a vector ~u, with an element ue for

each event e recording the time that e has remained enabled without triggering. The situation space for a

process with state space S and event set E is therefore the set O = S × [0,∞)|E|. A policy is a mapping

from situations to sets of actions: π : O → 2A. In situation o = 〈s, ~u〉, events Eπ
o = Es \

(

A \ π(o)
)

are enabled, i.e. actions not in π(o) are disabled. The choice π(o) = ∅ represents idleness. Note that the

current situation changes continuously as time progresses, which means that the action choice could change

continuously as well. In practice, it can be useful to restrict the size of the action sets that a policy can keep

enabled. For example, in a single agent system, we would typically allow at most one action to be enabled

at any time.

While in theory it could be beneficial to change the action choice continuously in certain cases, it can

hardly be considered practically feasible to do so. We will limit out attention to piecewise constant policies,

where the action choice is required to remain constant for a duration of time before it can be changed. We

can represent such a policy with a mapping τ from situations to positive distribution functions, in addition

to the mapping π. At the triggering of an event, we find ourselves in situation o. We enable actions π(o) at

this point, and keep this choice for a duration of time governed by τ(o) if no event triggers first. The pair
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〈π, τ〉 represents a piecewise constant policy. In some situations, as we will see, it is sufficient to consider

stationary policies, where the action choice is permitted to depend only on the current state and not in any

other way on the execution history of the process.

In addition to actions, we specify a reward structure to obtain a GSMDP. We assume a traditional reward

structure with a lump sum reward ke(s, s
′) associated with the transition from state s to s′ caused by the

triggering of event e, and a continuous reward rate cA′(s) associated with the set of actions A′ ⊂ A being

enabled in s.

Example 9.1. Consider a network of two computers that each can be either up or down. With each computer

we associate a crash event ci, enabled when computer i is up, and a reboot action ri, enabled when computer

i is down. The decision maker plays the role of a system administrator in this example. We can associate

an action independent reward rate of c ∈ {0, 1, 2} with states where c machines are up. A reasonable

policy for this GSMDP would be to enable reboot action ri whenever machine i is down. If we can reboot

only one machine at a time, due to resource constraints, we could choose to reboot a machine as soon as it

crashes. This is reasonable if the reboot time distribution for each computer is memoryless. If reboot time

distributions are not memoryless and one machine crashes while we are rebooting another machine, then it

may be better to complete the current reboot action before switching to reboot the machine that just crashed.

9.1.2 Optimality Criteria

We will now derive the “Bellman equation” for GSMDPs with piecewise constant policies. The general case

leads to a recurrence that we do not expect can be solved exactly. If all delay distributions are exponential,

however, a GSMDP is simply a continuous-time MDP. We show how the recurrence equation for such

models can be solved using value iteration. This result is relevant for Section 9.2, where we present a

technique for approximating a GSMDP that has general delay distributions with one where all delays are

exponentially distributed.

We consider two optimality criteria—expected finite-horizon total reward and expected infinite-horizon

discounted reward—both of which can be represented by a universally enabled event that terminates execu-

tion in the GSMDP framework. A finite planning horizon can be represented by an event with a deterministic

distribution. In the infinite-horizon case, reward earned t time units into the future is discounted by a factor

γt. This is equivalent to having a termination event with delay distribution Exp(α), such that γ = e−α
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(Howard 1960, p. 114). We thus represent termination by an event e⊥ that always leads to an absorbing state

s⊥. No reward is earned after termination, so cA′(s⊥) is zero for all action sets.

To express the expected future reward for a situation o = 〈s, ~u〉, given a fixed piecewise constant policy

〈π, τ〉, we consider all possible schedules (assignments of trigger times) of enabled events that are consistent

with the situation at hand. To the enabled events in situation o under policy 〈π, τ〉, denoted E
〈π,τ〉
o , we count

e⊥ of course, but also another virtual event eτ with delay distribution τ(o). The event eτ represents the point

in time when a change of action choice is scheduled by the piecewise constant policy 〈π, τ〉 without a state

transition occuring. A schedule for the events is a vector ~t of size |E| + 2. We can define a probability

density function over possible schedules as follows:

(9.1) f 〈π,τ〉(~t; 〈s, ~u〉) =
∏

e∈E
〈π,τ〉
o

he(te;ue) ·
∏

e∈E\E
〈π,τ〉
o

δ(te −∞)

Here, δ(t − t0) is the Dirac delta function (Dirac 1927, p. 625) with the property that
∫ x
−∞ δ(t − t0) dt is 0

for x < t0 and 1 for x ≥ t0. In particular,
∫ x
−∞ δ(t−∞)dt is 0 for any finite x and 1 for x =∞. We use it

in (9.1) to assign zero weight to schedules with a finite trigger time for disabled events. Let t∗ = min~t and

let e∗ = arg min~t. The expected future reward for a non-terminal situation o = 〈s, ~u〉 can now be defined

using the recurrence

v〈π,τ〉(o) =

∫

[0,∞)|~t|

t∗
∫

0

cπ(o)(s) dt +
∑

s′∈S

pe∗(s
′; s)
(

ke∗(s, s
′) + v〈π,τ〉(O(o,~t, s′))

)

df 〈π,τ〉(~t; o)

=

∫

[0,∞)|~t|

t∗cπ(o)(s) + k̄e∗(s) +
∑

s′∈S

pe∗(s
′; s)v〈π,τ〉(O(o,~t, s′)) df 〈π,τ〉(~t; o) ,

(9.2)

where k̄e(s) =
∑

s′∈S pe(s
′; s)ke(s

′, s) is the expected transition reward in s when a transition is caused by

e, and O is a function providing the next situation. The next situation is 〈s′, ~u′〉, with u′
e increased by t∗ if e

remains enabled without triggering and otherwise reset to zero. Equation 9.2 is the “Bellman equation” for

GSMDPs with piecewise constant policies.

Equation 9.2 involves a high-dimensional probability integral, which suggests that finding an optimal

piecewise linear policy for a GSMDP may be hard in the general case. If all delay distributions are ex-

ponential, however, then the GSMDP is just a continuous-time MDP, and the recurrence becomes more

manageable. We call this a Markovian GSMDP to stress the event structure. The requirement on all delay
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distributions to be exponential rules out the finite-horizon criterion, which requires a deterministic distribu-

tion, but we can handle the infinite-horizon discounted criterion.

The exponential distribution is memoryless, and this means that he(t;ue) = he(t) for an event e with an

exponential delay distribution. As a consequence, it is of no value to know for how long events have been

enabled, as the future behavior of the system depends only on the current state s. A policy for a Markovian

GSMDP can be a mapping from states to sets of actions, and there is no need for a τ -component since the

relevant situation does not change as time progresses in a state. This means that we need to consider only

the class of stationary policies in order to act optimally.

In state s, with actions A′ chosen to be enabled, the events Es(A
′) = Es \

(

A \ A′
)

are enabled, not

counting the termination event e⊥ which is enabled in all states. Let λe denote the rate of the exponential

delay distribution associated with event e, and let α be the rate of the termination event. The time we spend

in state s before an event triggers is exponentially distributed with rate

λA′(s) = α +
∑

e∈Es(A′)

λe .

The probability that event e triggers first is λe/λA′(s), and the probability that termination occurs before any

event has time to trigger is α/λA′(s). These conditions are easily derived for the exponential distribution,

permitting us to write the recurrence for a Markovian GSMDP, defining the expected future reward of a state

s under a given policy π, as follows:

vπ(s) =

∞
∫

0

λπ(s)(s)e
−λπ(s)(s)t

(

tcπ(s)(s) +
∑

e∈Es(π(s))

λe

λπ(s)(s)

∑

s′∈S

pe(s
′; s)
(

ke(s, s
′) + vπ(s′)

)

)

dt

=
1

λπ(s)(s)

(

r̄π(s)(s) +
∑

e∈Es(π(s))

λe

∑

s′∈S

pe(s
′; s)vπ(s′)

)

In the above equation, r̄A′(s) denotes the quantity cA′(s) +
∑

e∈Es(A′) λe
∑

s′∈S pe(s
′; s)ke(s, s

′), which

essentially is the expected reward per time unit in state s until the next state is reached. We can swap the

order of the two summations to obtain

vπ(s) =
1

λπ(s)(s)

(

r̄π(s)(s) +
∑

s′∈S

∑

e∈Es(π(s))

λepe(s
′; s)vπ(s′)

)

=
1

λπ(s)(s)

(

r̄π(s)(s) +
∑

s′∈S

wπ(s)(s
′; s)vπ(s′)

)

,

(9.3)
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where wA′ =
∑

e∈Es(A′) λepe(s
′; s).

The maximum expected reward is obtained by choosing the set of actions that maximizes the reward in

the current state and act optimally in subsequent states. We can express this with the recurrence

(9.4) v∗(s) = max
A′⊂A

1

λA′(s)

(

r̄A′(s) +
∑

s′∈S

wA′(s′; s)v∗(s′)

)

,

derived from (9.3). Equation 9.4 forms the basis for value iteration for Markovian GSMDPs. Note the

striking resemblance with (2.24) for discrete-time MDPs. Remember that the discount factor, γ = e−α, is

present in λA′(s). We can also write (9.4) using matrix notation:

(9.5) V ∗ = max
~A′⊂A|S|

H~A′ ◦
(

R̄~A′ + W ~A′V
∗

)

The operator ◦ represents Hadamard product (element-wise matrix multiplication). This form is conve-

nient, for example, when implementing value iteration using MTBDDs. The row vector H~A′ represents the

expected holding time in each state.

9.2 Approximate Solution Technique

The previous section provided a dynamic programming formulation of optimal GSMDP planning. We noted

that the general case involves a high-dimensional probability integral, which limits the practical use of the

formulation. If all delay distributions are exponential, however, a GSMDP is simply a continuous-time MDP,

and the dynamic programming formulation becomes manageable as shown in (9.4). We now take advantage

of this fact, presenting an approximate solution technique for GSMDPs that uses phase-type distributions.

To find a policy for a GSMDP, we first approximate it with a continuous-time MDP by approximating

each non-exponential delay distribution with a phase-type distribution. Recall that phase-type distributions

(Section 2.1.3) represent the time from entry until absorption in a Markov process with n transient states

(phases) and a single absorbing state. The continuous-time MDP can be solved exactly, for example by

using value iteration. We can also use uniformization to obtain a discrete-time MDP, in case we want to use

an existing solver for discrete-time models. The resulting policy, in either case, may be phase-dependent.

Phase transitions do not occur in the actual model, so in order to execute the policy in the real world, we

simulate phase transitions. Our solution method is summarized in Figure 9.1.



9.2. APPROXIMATE SOLUTION TECHNIQUE 149

GSMDP
phase-type distributions

(approximation)
Continuous-Time MDP

uniformization

(optional)
Discrete-Time MDP

GSMDP policy
simulate phase transitions

MDP policy

e.g., value iteration

Figure 9.1: Schematic view of solution technique for GSMDPs.

9.2.1 From GSMDP to MDP

We first present our method for approximating a GSMDP with an MDP. We have noted that if all events

of a GSMDP have exponential delay distributions, then the GSMDP is simply a continuous-time MDP

with a factored transition model. By using phase-type distributions, we can replace each non-Markovian

event in the GSMDP with one or more Markovian events, thereby obtaining a continuous-time MDP that

approximates the original GSMDP.

A GSMDP event is represented by a triple 〈φe, Ge, pe〉, and we assume a factored representation of the

state space with state variables V . We also assume that pe is implicitly represented by an effect formula effe,

using the effect formalism described in Section 8.2.1 with the addition of numeric state variables.

For each non-Markovian event e with delay distribution Ge, we find a phase-type distribution of order

ne approximating Ge. We add a phase variable phe to V for each event e with ne > 1 and replace e with

one or more Markovian events. A phase-type distribution consists of a set of phase transitions. Each phase

transition can be represented by a Markovian event. We assume that the initial phase is always phe = 1, as

this will simplify the handling of interacting events. A phase transition from phase i to phase j with rate λij

is represented by an event with enabling condition φe ∧ phe=i and delay distribution Exp(λij). The effect

formula for the phase transition event, ignoring for the moment possible event interactions, is phe ← j if

j ≤ ne and effe ∧ phe ← 1 otherwise (a transition to phase ne + 1 represents the triggering of the original

event e and resets the phase to its initial value). We associate a transition reward of zero with pure phase

transitions and ke(s, s
′) with phase transitions representing the triggering of event e.

The triggering of an event e in state s can cause another event e′, enabled in s, to become disabled

in the state following the triggering of e. When e disables a non-Markovian event e′, we should reset the

phase of the phase-type distribution for e′ (i.e. set phe′ to one). We can think of the phases as a partitioning
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into random-length intervals of the time, ue, that an event e has remained continuously enabled without

triggering. Resetting the phase of an event corresponds to resetting ue to zero. To account for this sort of

interaction between events, we need to modify the effects of events that do not simply change the value of

a phase variable. Let φ′
e represent the condition of an event e, but evaluated in the next state rather than the

current state. The final effect formula for an event e is obtained by adding the effect (φe′ ∧¬φ′
e′)✄phe′ ← 1

to effe for all non-Markovian events e′ 6= e.

We now have a method for approximating a GSMDP with a continuous-time MDP. If there is a close

match between the delay distributions of the GSMDP and the phase-type distributions used in the MDP,

then we expect the approximation to be close, although we have no quantitative measure for how good the

approximation is. Section 9.3 provides evidence that the approximation technique works well in practice.

9.2.2 Policy Execution

The execution history of a GSMDP can be represented by a set of real-valued variables, one for each event

e ∈ E representing the time e has been continuously enabled without triggering. The phases introduced

when approximating a GSMDP with a continuous-time MDP can be thought of as a randomized discretiza-

tion of the time events have remained enabled. For example, approximating G with an n-phase Erlang

distribution with parameters p and λ represents a discretization of the time G has been enabled into n

random-length intervals. The length of each interval is a random variable with distribution Exp(λ). A pol-

icy for the continuous-time MDP with phase transitions is therefore approximately a mapping from states

and the times events have been enabled to actions for the original GSMDP. We can also think of phase tran-

sitions as a factored representation of the distribution τ(o), which governs the time to spend in a state before

considering a change of action choice.

Phase transitions are not part of the original model, so we have to simulate them when executing the

policy obtained for the approximate model. When a GSMDP event or action e becomes enabled during

execution, we sample a first phase transition time t1 for the phase-type distribution used to approximate

Ge. If e remains enabled for t1 time units without triggering, we increment the phase associated with e and

sample a second phase transition time t2. This continues until e triggers or is disabled, in which case the

phase is reset to one, or we reach the last phase, in which case the phase does not change until e triggers or

is disabled. The action choice can change every time a simulated phase transition occurs, although phase
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transitions do not change the actual state of the process. This allows us to take into account the time spent

in a state when selecting which action to enable. We will see in the next section that this can produce better

policies than if actions are chosen only at actual state transitions.

The phases can also be thought of as partially observable state variables. We cannot observe the phase

of a trigger time distribution. We can observe actual state transitions, however, so we know how much time

we have spent in a state. At any given time, we can compute a probability distribution over phases, which

can be used to select the action to enable at that time. This is analogous to the QMDP solution technique for

partially observable MDPs (Littman et al. 1995), and could result in higher expected value during execution

than if phase transitions are simulated. One disadvantage, however, is that time is continuous, which means

that the belief distribution over phase assignments changes continuously. In practice, we could select a

frequency at which to update the belief distribution and reconsider the current action choice, but there is no

clear choice for such an update frequency. It may be wasteful to update the belief state with high frequency,

and we risk missing important phase changes if the update frequency is too low. Belief tracking may be

computationally expensive as well. We leave it to future research to explore this, and other alternative ways,

of executing a phase-dependent policy.

9.3 Experimental Results

We have implemented a basic GSMDP planner based on the solution procedure outlined in Figure 9.1. Our

implementation uses MTBDDs to represent matrices and vectors, similar to the approach proposed by Hoey

et al. (1999) for discrete-time MDPs. MTBDDs use Boolean state variables, and we need ⌈log s⌉ bits to

represent the phase of a phase-type distribution with s phases. The experimental results were generated on

a 3 GHz Pentium 4 PC running Linux, and with an 800 MB memory limit set per process.

9.3.1 Preventive Maintenance (“The Foreman’s Dilemma”)

Our first test case is a variation of Howard’s “the Foreman’s Dilemma” (Howard 1960), where we have a

machine that can be working (s0), failed (s1), or serviced (s2). This example is meant to show that it can

be beneficial to delay the enabling of an action in a state, and phases allow us to do so. A failure event

with delay distribution G is enabled in s0 and causes a transition to s1. Once in s1, the repair time for
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the machine has distribution Exp(1/100). At any time in s0, the foreman can choose to enable a service

action with delay distribution Exp(10). If this action triggers before the failure event, the system enters s2

where the machine is being serviced with service time distribution Exp(1). Given reward rates c(s0) = 1,

c(s1) = 0, and c(s2) = 1/2, independent of action choice, and no transition rewards, the problem is to

produce a service policy that maximizes the expected infinite-horizon discounted reward in s0.

Depending on the failure time distribution G, it may be beneficial to enable the service action at some

point in s0. This is because it takes a long time to recover from failure, while the return to s0 from the

service state is quick. Still, the reward rate is highest in s0, so there is an incentive to delay the enabling

of the service action. The optimal policy in this case is to enable the service action after spending t0 time

units in s0, where the best choice for t0 depends on the shape of G. The lower the probability is that failure

occurs early, the later we can schedule to enable the service action.

We can model this problem as an SMDP, noting that the probability of the service action triggering before

the failure event is p02 = 1 −
∫∞
t0

10e−10(t−t0)F (t) dt (where F (t) is the cumulative distribution function

for G) if we enable the service action after t0 time units in s0. We can solve the SMDP using the techniques

described by Howard (1971b), but then we can choose to enable the action in s0 only immediately (t0 = 0)

or not at all (t0 = ∞). Alternatively, we can express the expected reward in s0 as a function of t0 and use

numerical solution techniques to find the value for t0 that maximizes the expected reward. Depending on

the shape of F (t), both approaches may require numerical integration over semi-infinite intervals.

Figure 9.2 plots the expected discounted reward, as a percentage of optimal, for policies obtained using

standard SMDP solution techniques as well as our technique for approximating a (G)SMDP with an MDP

using phase-type distributions. A uniform failure time distribution over the interval (5, b) was used. The

optimal value and the value for the SMDP solution were computed numerically using MATLAB, while the

other values were computed by simulating execution of the phase-dependent policies and taking the average

discounted reward over 5000 sample trajectories. We used γ = 0.95 as the discount factor.

Note that the SMDP solution is well below the optimal solution because it has to enable the service

action either immediately, or not at all, in s0. For small values of b, the optimal SMDP policy is to enable

the action in s0, but as b increases so does the expected failure time, so for larger b it is better not to enable

the action because it allows us to spend more time in s0 where the reward rate is highest. The performance

of the policy obtained by matching a single moment of G is almost identical to that of the SMDP solution.
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Figure 9.2: Policy value, as a percentage of the optimal

value, for the Foreman’s Dilemma with the failure time

distribution G being U(5, b).
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Figure 9.3: Number of phases required to match two mo-

ments of a uniform distribution over the interval (5, b).
The dotted lines indicate 4 and 8 phases.

This policy is also restricted to enabling the action either immediately or nor at all in s0, since there is

just one phase in the approximation. Due to the approximation of G, the performance is slightly worse

around the point where the optimal SMDP policy changes. We can see that by matching two moments

(with a generalized Erlang distribution), the quality of the policy can be increased significantly. Note that

the number of phases required to match two moments of U(5, b) varies with b, as is shown in Figure 9.3.

For b = 6, over 300 phases are needed, which helps to explain the high quality at this point for the policy

obtained by matching two moments. We also show the value for policies obtained by fixing the number

of phases and using the EM algorithm to find a phase-type distribution with good fit. Note that using 8

phases instead of 4 actually hurts the quality of the policy for some values of b. In these cases, the 8-phase

distribution causes the enabling of the service action to be delayed for too long.

Figure 9.4 shows the performance of policies for a different failure time distribution—a Weibull distri-

bution with parameters 1.6a and 4.5. In this case, a 16-phase generalized Erlang distribution is sufficient

to match two moments for all values of a. We can see the policy obtained by using 8 phases and EM fit-

ting actually outperforms the policy obtained by matching two moments, if only slightly, and we can get

even better performance by using 24 phases. For a = 10, the solution obtained with 8 phases gives us a

34 percent increase in value compared to the SMDP solution, and the value increase is 50 percent with 24

phases. The SMDP and single moment solutions again have almost identical performance, and are for the
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Figure 9.4: Policy value, as a percentage of the optimal value, for the Foreman’s Dilemma with the failure time

distribution G being W (1.6a, 4.5).

most part significantly worse than the other solutions. The only exception is for low values of a, in which

case the phase-type distributions underestimate the probability that failure will occur at a very early stage,

so the enabling of the service action comes later than needed to perform well. In most situations, however,

using more phases gives better policies, mainly because the additional phases allow us to better account for

the fact that G is not memoryless. For the Foreman’s Dilemma, this is crucial as it allows us to delay the

enabling of the service action in s0, taking into account the fact that failure is unlikely to occur early on.

9.3.2 System Administration Problem

Our second test case is a system administration problem, loosely based on a similar problem described by

(Guestrin et al. 2003). While the first test case illustrated that phases can result in better policies by delaying

the enabling of an action in a state, this test case illustrates that phases can help by keeping an action enabled

if it has already been enabled for some time. In both cases, phases introduce memory into the state space.

In the system administration problem, there is a network of n computers, with each computer being

either up or down. There is a crash event for each computer that can cause a computer that is currently

up to go down at a random point in time. The delay of the crash event is governed by an exponential

distribution with unit rate. To make this a decision problem, we add a reboot action for each machine that

can be enabled whenever a machine is down. The delay distribution for this action is U(0, 1). The reward
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Figure 9.5: Expected discounted reward for the system administration problem with n machines. The expected reward

is reported for state s0 with all n machines up.

rate for a state is equal to the number of machines that are up, so in a state with all machines up we earn

a reward of n per time unit. We assume that there is a single system administrator managing the network,

so only a single reboot action can be enabled at any point in time. Unlike the previous test case, this is not

an SMDP, except for n = 1, because a reboot action may remain enabled across state transitions (caused

by a crash event). We therefore cannot solve this problem using existing SMDP solution techiques. The

obvious solution is to reboot a machine whenever it goes down, and wait until rebooting is finished before

going on to reboot another machine. The problem is that in a Markov formulation we would not know that

we have been rebooting a machine when another machine goes down. The introduction of phases gives us

that information and therefore enables us to obtain better policies.

Figure 9.5 plots the expected discounted reward (γ = 0.95) of the policy obtained by our GSMDP

planner when approximating each uniform distribution with a phase-type distribution. We report the values

obtained when matching one and two moments (using a three phase Erlang distribution), and when fixing

the number of phases per uniform distribution to 2, 4, and 8. By using the EM algorithm with at least two

phases, we can increase the expected reward by up to 10 percent compared with the solution obtained by

matching only a single moment. When matching a single moment, we can enable a reboot action based only

on which machines are currently down, and the resulting policy reboots machine i before machine j if i < j.

In contrast, the policy obtained when using multiple phases keeps a reboot action enabled if it is in a phase
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Figure 9.6: Planning time for the system administration

problem.
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Figure 9.7: Size of potentially reachable state space for

the system administration problem.

other than one, because it is expected to trigger soon. By using more than two phases, we can increase the

expected reward even further, although the increase is not as significant.

By increasing the number of phases used to represent a non-exponential distribution, we increase the

accuracy of the approximation, but we also increase the state space. In terms of planning time, a larger state

space means that a solution will take longer to obtain. Thus, as one can expect, in general, better policies

are obtained at the price of longer solution times. The solution time for the system administration problem,

not including phase-type fitting1 and model construction, is shown in Figure 9.6. Figure 9.7 plots the size

of the potentially reachable state space (from the state with all machines up) as a function of the number of

machines, n. If we use s phases to represent a non-exponential distribution, then the size of the reachable

state space is at most ((s− 1)n/2 + 1) · 2n. Note that d = (⌈log s⌉+ 1)n Boolean state variables are used

for a problem with n machines, but the reachable state space is significantly smaller than 2d for s > 1. For

n = 13 and s = 8, we have d = 52, while the size of the state space is under 4 · 105 (< 219).

9.3.3 State Filtering and Uniformization

We conclude the empirical evaluation of our planning approach with a discussion of techniques for reducing

planning time. The first technique is related to the use of Boolean state variables to encode the phase of a

distribution. If the number of phases is not a power of 2, then we are potentially introducing spurious states

1The time for phase-type fitting ranges from a few milliseconds (2 phases) to a few minutes (8 phases) for the EM approach.
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into the model. This could mean that we are wasting time computing the optimal action choice for irrelevant

states. It is also the case that the phase associated with the delay distribution for an action or event is not

significant when the action or event is disabled. By convention we set the phase to one for disabled actions

and events, so a different phase assignment for a diabled action or event corresponds to a spurious state.

Consider the recurrence in (9.5), which we use in our implementation of value iteration for continuous-

time MDPs. To avoid computing the optimal action choice for evidently spurious states, we can apply a

filter to the vectors and/or the matrix involved in the computation. For example, we can set all row elements

of H~A′ to zero for spurious states, or we could set to zero all entries of W ~A′ corresponding to such states.

Applying a filter to a vector or matrix represented by an MTBDD could result in a larger representation,

which could result in increased planning times. Figure 9.8 shows the effect of filtering for the system

administration problem, with different choices of s (the number of phases to use for each non-exponential

distribution). We can see that filtering just the H~A vectors results in the best performance, while using no

filter at all leads to a noticeable performance degradations as n increases. Filtering helps even when s is a

power of 2, because the phase is forced to be one for reboot actions that are not enabled.

We can solve a continuous-time MDP directly, using the recurrence in (9.4). Alternatively, we can

use uniformization to transform the continuous-time MDP into a discrete-time MDP, and solve the result-

ing problem. Uniformization is a technique by which we transform a continuous-time MDP with state-

dependent exit rates into an equivalent continuous-time MDP with the same (uniform) exit rate for all states.

The uniform continuous-time MDP can then be treated as a discrete-time MDP resulting from observing

the original continuous-time MDP at a constant rate. Uniformization introduces self-transitions not present

in the original model, because it is possible that we remain in the same state from one observation to an-

other. While uniformization seems to be promoted as the standard solution technique for continuous-time

MDPs (cf. Puterman 1994), it is not clear what the benefit is of using uniformization rather than solving

the continuous-time MDP directly. In fact, as Figure 9.9 indicates, uniformization can actually hurt perfor-

mance. The introduction of virtual self-transitions increases the complexity of the transition matrix, which

makes each iteration of value iteration take longer time.

In conclusion, we have shown that phase-type distributions are useful for solving decision theoretic

planning problems with asynchronous events and actions. Using more phases often results in better policies,

but also increased planning times. State filtering can help to reduce planning times.
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Figure 9.8: The effect of state filtering for the system

administration problem.
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Figure 9.9: Performance with and without uniformiza-

tion for the system administration problem.



Chapter 10

Conclusion and Future Work

At the outset of this thesis, we embarked on an ambitious endeavor to develop algorithms for both plan-

ning and verification with asynchronous events. We believe our research effort to be a good start in the

direction towards practical solution techniques for asynchronous stochastic systems, but we most certainly

acknowledge that we have only scraped the surface of this vast area of research.

In verification, we have established the foundations of statistical probabilistic model checking. A key

observation is that probabilistic model checking can be modeled as a hypothesis testing problem. We can

therefore use well-established and efficient statistical hypothesis testing techniques, in particular sequential

acceptance sampling, for probabilistic model checking. Our model checking approach is not tied to any

specific statistical test. The only requirement is that we can bound the probability of an incorrect answer

(either a false positive or a false negative). A potential benefit of statistical techniques is that they tend to be

highly amenable to parallelization. We show this to be the case for statistical model checking, although some

care must be take so as not to introduce bias in the sampling process. Our solution to this problem results

in a distributed algorithm for probabilistic model checking that can take full advantage of a heterogeneous

computing environment without the need for any explicit communication of performance characteristics.

We have considered only transient properties of stochastic systems. The logic CSL, as described by Baier

et al. (2003), can also express steady-state properties. Statistical techniques for steady-state analysis exist,

including batch means analysis and regenerative simulation (Bratley et al. 1987). Although these techniques

have been used for statistical estimation, we are confident that they could be adapted for hypothesis testing,

159
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as well. Extending our work on statistical probabilistic model checking to steady-state properties is therefore

a prime candidate for future work. To more efficiently handle probability thresholds close to zero and one,

the use of importance sampling (Heidelberger 1995) may also be possible. It would moreover be worthwhile

exploring Bayesian techniques for acceptance sampling, in particular the test developed by Lai (1988). It

is well-known that the sequential probability ratio test, while generally very efficient, tends to require a

large sample size if the true probability lies in the indifference region of the test, which is unfortunate

because we spend the most effort where we are indifferent of the outcome. This shortcoming is addressed

by Bayesian hypothesis testing. The challenge would be to devise a Bayesian test for conjunctive and nested

probabilistic operators. A final topic for future work, which we have not discussed much in this thesis,

is to improve the efficiency of discrete event simulation for our representation of stochastic discrete event

systems. A bottleneck in our current implementation is the determination of enabled events in a state. Our

solution is to scan through the list of all events and evaluate the enabling condition for each event. This is

not efficient for models with many events. We think that perhaps the use of symbolic data structures, such

as BDDs and MTBDDs, could speed up the generation of sample trajectories.

Our contribution to the artificial intelligence community is a formalism for planning with asynchronous

events in stochastic environments. We base this formalism on an established model in queuing theory, the

generalized semi-Markov process. Asynchronous stochastic systems have been largely absent in AI research

on planning. We hope that we can inspire further research on this topic with the establishment of a formal

model for stochastic decision processes with asynchronous events. We have presented two approaches to

planning with asynchronous events, both with merits and limitations.

For goal directed planning, we have developed an approach based on the Generate, Test and Debug

paradigm. Statistical model checking is used to verify policies, and the simulation traces generated during

verification are used to guide policy repair. We have demonstrated that this approach can be used for auto-

mated policy repair. However, there is no guarantee that a repair step takes us closer to a solution, and the

selection of repair steps is hard to automate for more complex bugs. We believe that the analysis techniques

would be more useful as an aid to human system analysts and engineers. To make this work, we need to

develop tools for visualizing the information gathered from the simulation traces. The failure scenarios that

we extract could be valuable information to a system analyst trying to debug a faulty system design.

To solve decision theoretic planning problems with asynchronous events, we have used phase-type dis-
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tributions. We have experimented with different methods for approximating a general distribution with a

phase-type distribution, and we have shown that the introduction of phases makes it possible to generate

policies of higher quality than if we simply assume that all events have exponential delay distributions. A

limitation of our approach is that we cannot guarantee that the approximate solution is approximately opti-

mal, although using more phases generally results in better policies. It is not even clear what the shape of an

optimal policy for a GSMDP is, nor is it evident that optimal GSMDP planning is decidable in the general

case. We take a pragmatic approach by at least generating a policy that almost always is better than the one

obtained by simply ignoring history dependence. A thorough theoretical analysis of the GSMDP formalism

is currently lacking, and is a clear candidate for future research. We would also like to explore alternative

approximate solution techniques for GSMDPs, including value function approximation.

It is clear that there are systems in the real world for which the Markov assumption is inappropriate.

This is, in particular, the case for many systems with asynchronous events. We have provided practical

techniques for verification and planning for such systems. We have presented a statistical approach to

probabilistic verification, which is applicable to any stochastic discrete event system. The user is given

only probabilistic correctness guarantees, but the alternative is to use an approximate model amenable to

numerical verification techniques and it is generally hard to quantify the effect that a model approximation

has on the validity of the verification result. For planning, we have demonstrated that the use of phase-type

distributions can allow us to generate control policies with greater expected value than if we ignored history

dependence. Models with phase information are more complex and therefore take longer time to solve. In

many situations, however, we need to generate a control policy only once for a system and the same policy

can be used repeatedly. Even a small increase in efficiency of a manufacturing process, for instance, can lead

to a large profit increase for a business. In future research, we plan to identify several real-world applications

for the techniques we have developed.
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Appendix A

Input Language for Model Checker

The experimental results presented in Chapter 6 were generated by the probabilistic model checker YMER.1

The input language used by YMER is based on the PRISM language (Parker 2002), which takes inspiration

from Alur and Henzinger’s (1999) Reactive Modules formalism.

A.1 Modular Specification of Stochastic Discrete Event Systems

The model of a stochastic discrete event system is specified as a set of asynchronous modules. Figure A.1

shows a GSMP model of a tandem queuing network and its representation in the YMER input language. The

model has two modules: serverC and serverM. A set of local state variables SVm and a set of events Em is

associated with each module m. The state variables sc and sm in our simple example are used to record the

number of items currently stored in each of the queues. A model can also have a set of global state variables

SVg. For the tandem queuing network, SVg is empty. The set of all state variables, SV = SVg ∪
⋃

m SVm,

constitutes a factored representation of the state space for the model.

Each event e has an enabling condition φe, which is a logic formula over the state variables SV . An

event e is enabled in a state s if and only if s |= φe. The enabled events in a state race to trigger first.

The trigger time for each event e is determined by a positive distribution Ge. YMER currently supports the

exponential, Weibull, lognormal, and uniform distributions. Only continuous distributions are permitted in

order to avoid complications arising from the simultaneous triggering of multiple events, which could be a

1YMER web site: http://www.cs.cmu.edu/˜lorens/ymer.html
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Exp(λ )

1
2

..

.

n

W (η , β )

1
2

..

.

n

Exp(κ )

serverC

serverM

gsmp

const n = 63;

rate lambda = 252; // 4*n

rate eta = 1;

rate beta = 1/2;

rate kappa = 4;

module serverC

sc : [0..n];

[] (sc<n) –> lambda : sc’=sc+1;

[route] (sc>0) –> W(eta,beta) : sc’=sc−1;

endmodule

module serverM

sm : [0..n];

[route] (sm<n) –> 1 : sm’=sm+1;

[] (sm>0) –> kappa : sm’=sm−1;

endmodule

Figure A.1: A tandem queuing network (left) and its representation in the input language used by YMER (right).

source of nondeterminism. The triggering event in a state updates the values of state variables local to the

module that the event is associated with. An event is also permitted to update global state variables, but

cannot change the value of state variables that belong to a different module.

It is possible to synchronize the update of state variables from different modules. The event with a

Weibull distribution that routes messages from serverC to serverM is an example of this in the specification

of Figure A.1. There is one event in each module with a synchronization label “route”, and these two events

are paired into a single event. The condition for the composite event is the conjunction of the individual

event conditions, and the update list for the composite event is the concatenation of the update lists for the

individual events. All but one of the individual events must have an exponential trigger time distribution with

unit rate, specified as 1. The trigger time distribution for the composite event is taken from the individual

event that has a different trigger time distribution. In the tandem queuing network model, the trigger time

distribution for the composite event is taken from the event in the serverC module. Synchronizing events are

not permitted to update the same global variable in an inconsistent manner, as this would lead to an under

specified model.
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A.2 BNF Grammar

This section presents the full syntax for YMER’s input language using an extended BNF notation with the

following conventions:

• Each rule is of the form 〈non-terminal〉 ::= expansion.

• Alternative expansions are separated by a vertical bar (“|”).

• An asterisk (“*”) following a syntactic element x means zero or more occurrences of x.

• Terminals are written using typewriter font.

• Case is significant. For example, X and x are separate identifiers.

• Parentheses and square brackets are an essential part of the syntax and have no semantic meaning in

the extended BNF notation.

• Any number of whitespace characters (space, newline, tab, etc.) may occur between tokens.

There are two top-level syntactic elements that may occur in an input file: 〈model〉 and 〈property〉. A 〈name〉
is a string of characters starting with an alphabetic character followed by a possibly empty sequence of

alphanumeric characters, hyphens (“-”), and underscore characters (“ ”). A 〈pname〉 is a name immediately

followed by a prime symbol (“’”). An 〈integer〉 is a non-empty sequence of digits. A 〈number〉 is a sequence

of numeric characters, possibly with a single decimal point (“.”) at any position in the sequence, or two

integers separated by a slash “/”. A 〈probability〉 is a number with a value in the interval [0, 1].

〈model〉 ::= 〈model-type〉 〈declaration〉* 〈module〉*
〈model-type〉 ::= stochastic | ctmc | gsmp
〈declaration〉 ::= const 〈name〉 = 〈integer〉 ;

| rate 〈name〉 = 〈number〉 ;
| global 〈name〉 : 〈range〉 ;
| global 〈name〉 : 〈range〉 init 〈expr〉 ;

〈range〉 ::=[ 〈expr〉 .. 〈expr〉 ]
〈module〉 ::= module 〈name〉 〈variable-decl〉* 〈command〉* endmodule



166 APPENDIX A. INPUT LANGUAGE FOR MODEL CHECKER

| module 〈name〉 = 〈name〉 [ 〈substitution-list〉 ] endmodule
〈substitution-list〉 ::= 〈name〉 = 〈name〉 | 〈name〉 = 〈name〉 , 〈substitution-list〉
〈variable-decl〉 ::= 〈name〉 : 〈range〉 ;

| 〈name〉 : 〈range〉 init 〈expr〉 ;
〈command〉 ::= 〈synchronization〉 〈formula〉 -> 〈distribution〉 : 〈update〉 ;
〈synchronization〉 ::= [ ] | [ 〈name〉 ]
〈formula〉 ::= 〈formula〉 & 〈formula〉 | 〈formula〉 | 〈formula〉 | ! 〈formula〉

| 〈expr〉 〈binary-comp〉 〈expr〉 | ( 〈formula〉 )
〈binary-comp〉 ::= < | <= | >= | > | = | !=
〈distribution〉 ::= 〈rate-expr〉 | Exp ( 〈rate-expr〉 ) | W ( 〈rate-expr〉 , 〈rate-expr〉 )

| L ( 〈rate-expr〉 , 〈rate-expr〉 ) | U ( 〈rate-expr〉 , 〈rate-expr〉 )
〈update〉 ::= 〈pname〉 = 〈expr〉 | 〈update〉 & 〈update〉 | ( 〈update〉 )
〈expr〉 ::= 〈integer〉 | 〈name〉 | 〈expr〉 〈binary-op〉 〈expr〉 | ( 〈expr〉 )
〈binary-op〉 ::= + | - | *
〈rate-expr〉 ::= 〈integer〉 | 〈name〉 | 〈rate-expr〉 〈rate-op〉 〈rate-expr〉 | ( 〈rate-expr〉 )
〈rate-op〉 ::= * | /

〈property〉 ::= true | false | P 〈pr-comp〉 〈probability〉 [ 〈path-formula〉 ]
| 〈property〉 〈logic-op〉 〈property〉 | ! 〈property〉 | 〈expr〉 | ( 〈property〉 )

〈pr-comp〉 ::= < | <= | >= | >
〈logic-op〉 ::= => | & | |
〈path-formula〉 ::= 〈property〉 U 〈property〉 | X 〈property〉

| 〈property〉 U <= 〈number〉 〈property〉
| 〈property〉 U [ 〈number〉 , 〈number〉 ] 〈property〉
| X <= 〈number〉 〈property〉 | X [ 〈number〉 , 〈number〉 ] 〈property〉



Appendix B

PPDDL+: An Extension to PDDL for

Modeling Stochastic Decision Processes

PDDL (Ghallab et al. 1998; McDermott 2000; Fox and Long 2003) is an established formalism for ex-

pressing deterministic planning domains and problems. We present PPDDL+, based on PDDL extensions

proposed by Younes (2003) and PPDDL (Younes and Littman 2004). The latter was developed for the prob-

abilistic track of the 2004 International Planning Competition. PPDDL+ extends PPDDL with facilities for

modeling actions and events with delayed effects.

B.1 Delayed Actions, Reward Rates, and UTSL Goals

In PPDDL, time is measured in discrete steps, with each time step corresponding to the execution of an

action. Rewards are associated with state transitions. This is sufficient for modeling discrete-time MDPs,

but not continuous-time MDPs or GSMDPs. PPDDL+ introduces delayed actions for this purpose.

A delayed action defines a transition probability matrix Pa and a reward vector Ra in the same way as a

regular PPDDL action. Pa and Ra can be computed from the effect formula for a as described by Younes

and Littman (2004). Pa(i, j) is the probability of transitioning to state j when a triggers in state i and Ra(i)

is the expected reward for a state transition caused by a in i. A positive distribution Ga is also associated

with each delayed action a. Let Fa(t) be the cumulative distribution function of Ga. If a becomes enabled at
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time t0 and remains continuously enabled until a triggers, then Fa(t−t0) is the probability that the triggering

of a occurs in the interval (t0, t]. In addition to delayed actions, PPDDL+ supports delayed events, which

have the same semantics as delayed actions except that they cannot be controlled by a decision maker.

With delayed actions and events, we are quantitatively measuring the time that is spent in a state before

a state transition occurs. Therefore, PPDDL+ permits the specification of state-dependent reward rates

in problem definitions. The PPDDL+ statement (:reward-rate φ k) specifies that a reward of k is

awarded for every time unit that is spent in a state satisfying the formula φ.

A final extension of PPDDL facilitates the specification of temporally extended goals in the form of

UTSL goal conditions. The statement (:pctl-goal (pr 0.9 (until 100 Φ Ψ))), for exam-

ple, corresponds to the UTSL formula P≥ 0.9

[

Φ U [0,100] Ψ
]

. We can use this language feature to express

the plan objective P≥ θ[✸ φ], i.e. that φ is eventually achieved with probability at least θ, commonly used

by probabilistic planners (cf. Farley 1983; Blythe 1994; Goldman and Boddy 1994b; Kushmerick et al.

1995; Lesh et al. 1998). A regular PDDL goal condition (:goal φ) corresponds to the UTSL formula

P≥ 1[✸ φ].

B.2 BNF Grammar

We provide the full syntax for PPDDL+ using an extended BNF notation with the following conventions:

• Each rule is of the form 〈non-terminal〉 ::= expansion.

• Alternative expansions are separated by a vertical bar (“|”).

• A syntactic element surrounded by square brackets (“[“ and “]”) is optional.

• Expansions and optional syntactic elements with a superscripted requirements flag are available only

if the requirements flag is specified for the domain or problem currently being defined. For example,

[〈types-def 〉]:typing in the syntax for domain definitions means that 〈types-def 〉 may occur only in

domain definitions that include the :typing flag in the requirements declaration.

• An asterisk (“*”) following a syntactic element x means zero or more occurrences of x; a plus (“+”)

following x means at least one occurrence of x.
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• Parameterized non-terminals, for example 〈typed list (x)〉, represent separate rules for each instantia-

tion of the parameter.

• Terminals are written using typewriter font.

• The syntax is Lisp-like. In particular this means that case is not significant (e.g. ?x and ?X are

equivalent), parentheses are an essential part of the syntax and have no semantic meaning in the

extended BNF notation, and any number of whitespace characters (space, newline, tab, etc.) may

occur between tokens.

B.2.1 Domains

The syntax for domain definitions is the same as for PDDL2.1, except that durative actions have been

replaced by delayed actions. Declarations of constants, predicates, and functions are allowed in any order

with respect to one another, but they must all come after any type declarations and precede any action

declarations. A 〈name〉 is a string of characters starting with an alphabetic character followed by a possibly

empty sequence of alphanumeric characters, hyphens (“-”), and underscore characters (“ ”). A 〈variable〉
is a 〈name〉 immediately preceded by a question mark (“?”). For example, in-office and ball 2 are

names, and ?gripper is a variable.

〈domain〉 ::= ( define ( domain 〈name〉 )
[〈require-def 〉]
[〈types-def 〉]:typing

[〈constants-def 〉]
[〈predicates-def 〉]
[〈functions-def 〉]:fluents

〈structure-def 〉* )
〈require-def 〉 ::= ( :requirements 〈require-key〉* )
〈require-key〉 ::= See Section B.2.4

〈types-def 〉 ::= ( :types 〈typed list (name)〉 )
〈constants-def 〉 ::= ( :constants 〈typed list (name)〉 )
〈predicates-def 〉 ::= ( :predicates 〈atomic formula skeleton〉* )
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〈atomic formula skeleton〉 ::= ( 〈predicate〉 〈typed list (variable)〉 )
〈predicate〉 ::= 〈name〉
〈functions-def 〉 ::= ( :functions 〈function typed list (function skeleton)〉 )
〈function skeleton〉 ::= ( 〈function symbol〉 〈typed list (variable)〉 )
〈function symbol〉 ::= 〈name〉
〈structure-def 〉 ::= See Section B.2.2

〈typed list (x)〉 ::= 〈x〉* |:typing 〈x〉+ - 〈type〉 〈typed list (x)〉
〈type〉 ::= ( either 〈primitive type〉+ ) | 〈primitive type〉
〈primitive type〉 ::= 〈name〉
〈function typed list (x)〉 ::= 〈x〉* |:typing 〈x〉+ - 〈function type〉 〈function typed list (x)〉
〈function type〉 ::= number

B.2.2 Actions

Action definitions and goal descriptions have the same syntax as in PDDL2.1, with the addition of delayed

actions and events. A 〈number〉 is a sequence of numeric characters, possibly with a single decimal point

(“.”) at any position in the sequence. Negative numbers are written as (- 〈number〉), i.e. is using negation.

〈structure-def 〉 ::= 〈action-def 〉
|:delayed-actions 〈delayed-action-def 〉
|:exogenous-events 〈delayed-event-def 〉

〈action-def 〉 ::= ( :action 〈name〉
[:parameters ( 〈typed list (variable)〉 )]

[:precondition 〈GD〉]
[:effect 〈effect〉] )

〈delayed-action-def 〉 ::= ( :delayed-action 〈name〉
[:parameters ( 〈typed list (variable)〉 )]

:delay 〈delay-distribution〉
[:condition 〈GD〉]
[:effect 〈effect〉] )
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〈delayed-event-def 〉 ::= ( :delayed-event 〈name〉
[:parameters ( 〈typed list (variable)〉 )]

:delay 〈delay-distribution〉
[:condition 〈GD〉]
[:effect 〈effect〉] )

〈GD〉 ::= 〈atomic formula (term)〉 | ( and 〈GD〉* )
|:equality ( = 〈term〉 〈term〉 )
|:equality ( not ( = 〈term〉 〈term〉 ) )
|:negative-preconditions ( not 〈atomic formula (term)〉 )
|:disjunctive-preconditions ( not 〈GD〉 )
|:disjunctive-preconditions ( or 〈GD〉* )
|:disjunctive-preconditions ( imply 〈GD〉 〈GD〉 )
|:existential-preconditions ( exists ( 〈typed list (variable)〉 ) 〈GD〉 )
|:universal-preconditions ( forall ( 〈typed list (variable)〉 ) 〈GD〉 )
|:fluents 〈f-comp〉

〈atomic formula (x)〉 ::= ( 〈predicate〉 〈x〉* ) | 〈predicate〉
〈term〉 ::= 〈name〉 | 〈variable〉
〈f-comp〉 ::= ( 〈binary-comp〉 〈f-expr〉 〈f-expr〉 )
〈binary-comp〉 ::= < | <= | = | >= | >
〈f-expr〉 ::= 〈number〉 | 〈f-head (term)〉

| ( 〈binary-op〉 〈f-expr〉 〈f-expr〉 ) | ( - 〈f-expr〉 )
〈f-head (x)〉 ::= ( 〈function symbol〉 〈x〉* ) | 〈function symbol〉
〈binary-op〉 ::= + | - | * | /

The syntax for effects has been extended to allow for probabilistic effects, which can be arbitrarily

interleaved with conditional effects and universal quantification. A 〈probability〉 is a 〈number〉 with a value

in the interval [0, 1]. Reward updates are limited to constant increments and decrements.

〈effect〉 ::= 〈p-effect〉 | ( and 〈effect〉* )
|:conditional-effects ( forall ( 〈typed list (variable)〉 ) 〈effect〉 )
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|:conditional-effects ( when 〈GD〉 〈effect〉 )
|:probabilistic-effects ( probabilistic 〈prob-effect〉+ )

〈p-effect〉 ::= 〈atomic formula (term)〉 | ( not 〈atomic formula (term)〉 )
|:fluents ( 〈assign-op〉 〈f-head (term)〉 〈f-expr〉 )
|:rewards ( 〈additive-op〉 〈reward fluent〉 〈f-expr〉 )

〈prob-effect〉 ::= 〈probability〉 〈effect〉
〈assign-op〉 ::= assign | scale-up | scale-down | 〈additive-op〉
〈additive-op〉 ::= increase | decrease
〈reward fluent〉 ::= ( reward ) | reward

Five families of parametric distributions are supported by PPDDL+. A delay distribution that is simply

a constant expression corresponds to a deterministic distribution. Implementations may not support all the

distributions, and should report an error if they encounter an unsupported distribution in a domain definition.

For example, a planning system for continuous-time MDPs would support only the one-parameter exponen-

tial distribution. Furthermore, support for deterministic distributions should be implemented with care. If

two events with deterministic delay can be enabled simultaneously, there could be a non-zero probability

that both events trigger at the same time.

〈delay-distribution〉 ::= 〈const-expr〉
| ( exponential 〈const-expr〉 [〈const-expr〉] )
| ( weibull 〈const-expr〉 [〈const-expr〉] [〈const-expr〉] )
| ( lognormal 〈const-expr〉 〈const-expr〉 )
| ( uniform 〈const-expr〉 〈const-expr〉 )

〈const-expr〉 ::= 〈number〉
| ( 〈binary-op〉 〈const-expr〉 〈const-expr〉 ) | ( - 〈const-expr〉 )

B.2.3 Problems

The syntax for problem definitions includes the extensions of PPDDL to PDDL2.1 that allow for the speci-

fication of a probability distribution over initial states, and also permit the association of a one-time reward
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with entering a goal state. In PPDDL+, it is also possible to specify a goal condition as a UTSL formula.

〈problem〉 ::= ( define ( problem 〈name〉 )
( :domain 〈name〉 )
[〈require-def 〉]
[〈objects-def 〉]
[〈init〉]
[〈reward-rate-spec〉]:rewards

〈goal〉 )
〈objects-def 〉 ::= ( :objects 〈typed list (name)〉 )
〈init〉 ::= ( :init 〈init-el〉* )
〈init-el〉 ::= 〈p-init-el〉 |:probabilistic-effects ( probabilistic 〈prob-init-el〉* )
〈p-init-el〉 ::= 〈atomic formula (name)〉 |:fluents ( = 〈f-head (name)〉 〈number〉 )
〈prob-init-el〉 ::= 〈probability〉 〈a-init-el〉
〈a-init-el〉 ::= 〈p-init-el〉 | ( and 〈p-init-el〉* )
〈reward-rate-spec〉 ::= ( :reward-rate 〈state-reward〉* )
〈state-reward〉 ::= 〈GD〉 〈const-expr〉
〈goal〉 ::= 〈goal-spec〉 [〈metric-spec〉] | 〈metric-spec〉
〈goal-spec〉 ::= ( :goal 〈GD〉 ) [( :goal-reward 〈ground-f-expr〉 )]:rewards

|:utsl-goals ( :utsl-goal 〈pctl-formula〉 )
〈metric-spec〉 ::= ( :metric 〈optimization〉 〈ground-f-expr〉 )
〈optimization〉 ::= minimize | maximize
〈ground-f-expr〉 ::= 〈number〉 | 〈f-head (name)〉

| ( 〈binary-op〉 〈ground-f-expr〉 〈ground-f-expr〉 )
| ( - 〈ground-f-expr〉 )
| ( total-time ) | total-time
| ( goal-achieved ) | goal-achieved
|:rewards 〈reward fluent〉

〈pctl-formula〉 ::= ( pr 〈probability〉 〈path-formula〉 )
| ( not ( pr 〈probability〉 〈path-formula〉 ) )



174 APPENDIX B. PPDDL+

〈path-formula〉 ::= ( until [〈number〉] [〈number〉] 〈GD〉 〈GD〉 )
| ( weak-until [〈number〉] [〈number〉] 〈GD〉 〈GD〉 )
| ( eventually [〈number〉] [〈number〉] 〈GD〉 〈GD〉 )
| ( continuously [〈number〉] [〈number〉] 〈GD〉 〈GD〉 )

B.2.4 Requirements

Below is a table of all requirements in PPDDL+. Some requirements imply others; some are abbrevia-

tions for common sets of requirements. If a domain stipulates no requirements, it is assumed to declare a

requirement for :strips.

Requirement Description

:strips Basic STRIPS-style adds and deletes

:typing Allow type names in declarations of variables

:equality Support = as built-in predicate

:negative-preconditions Allow negated atoms in goal descriptions

:disjunctive-preconditions Allow disjunctive goal descriptions

:existential-preconditions Allow exists in goal descriptions

:universal-preconditions Allow forall in goal descriptions

:quantified-preconditions = :existential-preconditions

+ :universal-preconditions

:conditional-effects Allow when and forall in action effects

:probabilistic-effects Allow probabilistic in action effects

:rewards Allow reward fluent in action effects and

optimization metric

:fluents Allow numeric state variables

:utsl-goals Allow UTSL goal conditions

:delayed-actions Allow actions with random delay

:exogenous-events Allow uncontrollable events with random delay

:adl = :strips + :typing + :equality
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+ :negative-preconditions

+ :disjunctive-preconditions

+ :quantified-preconditions

+ :conditional-effects

:mdp = :probabilistic-effects + :rewards

:gsmdp = :mdp + :delayed-actions

+ :exogenous-events
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Bonet, Blai, Gábor Loerincs, and Héctor Geffner. 1997. A robust and fast action selection mechanism for

planning. In Proceedings of the Fourteenth National Conference on Artificial Intelligence, 714–719,

Providence, Rhode Island. AAAI Press.

Boutilier, Craig, Thomas Dean, and Steve Hanks. 1999. Decision-theoretic planning: Structural assump-

tions and computational leverage. Journal of Artificial Intelligence Research 11: 1–94.

Boutilier, Craig and Richard Dearden. 1994. Using abstractions for decision-theoretic planning with time

constraints. In Proceedings of the Twelfth National Conference on Artificial Intelligence, 1016–1022,

Seattle, Washington. AAAI Press.

Boutilier, Craig, Richard Dearden, and Moisés Goldszmidt. 1995. Exploiting structure in policy construc-

tion. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, edited

by Chris S. Mellish, 1104–1111, Montreal, Canada. Morgan Kaufmann Publishers.

Boyan, Justin A. and Michael L. Littman. 2001. Exact solutions to time-dependent MDPs. In Advances in

Neural Information Processing Systems 13: Proceedings of the 2000 Conference, edited by Todd K.

Leen, Thomas G. Dietterich, and Volker Tresp, 1026–1032. Cambridge, Massachusetts: The MIT

Press.

Bratley, Paul, Bennett L. Fox, and Linus E. Schrage. 1987. A Guide to Simulation. 2nd ed. Berlin:

Springer.



BIBLIOGRAPHY 181

Brown, Lawrence D., T. Tony Cai, and Anirban DasGupta. 2001. Interval estimation for a binomial pro-

portion. Statistical Science 16, no. 2: 101–133.

Bryant, Randal E. 1986. Graph-based algorithms for Boolean function manipulation. IEEE Transactions

on Computers C-35, no. 8: 677–691.

Buchholz, Peter. 1998. A new approach combining simulation and randomization for the analysis of large

continuous time Markov chains. ACM Transactions on Modeling and Computer Simulation 8, no. 2:

194–222.

Buchholz, Peter, Joost-Pieter Katoen, Peter Kemper, and Carsten Tepper. 2003. Model-checking large

structured Markov chains. The Journal of Logic and Algebraic Programming 56, no. 1–2: 69–97.

Cantaluppi, Laurent. 1984. Optimality of piecewise-constant policies in semi-Markov decision chains.

SIAM Journal on Control and Optimization 22, no. 5: 723–739.

Chitgopekar, S. S. 1969. Continuous time Markovian sequential control processes. SIAM Journal on

Control 7, no. 3: 367–389.

Chow, Y. S. and Herbert Robbins. 1965. On the asymptotic theory of fixed-width sequential confidence

intervals for the mean. Annals of Mathematical Statistics 36, no. 3: 457–462.

Cimatti, Alessandro, Marco Roveri, and Paolo Traverso. 1998. Automatic OBDD-based generation of

universal plans in non-deterministic domains. In Proceedings of the Fifteenth National Conference on

Artificial Intelligence, 875–881, Madison, Wisconsin. AAAI Press.
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