Verification and Validation in Computational Science and Engineering

by

Patrick J. Roache

PO Box 9110 Albuquerque, New Mexico 87119-9110 USA http://www.hermosa-pub.com/hermosa

TABLE OF CONTENTS

Preface	iii 6
Acknowledgments	vii L
Part I Overview	1 v
Chapter 1 Introduction	3 ~
1.1 Sketch of Historical Development of CFD	
1.3 A Personal Anecdote Illustrating the Importance of Systematic Code Verification	
References for Chapter 1	
Chapter 2 Semantics: Terminology, Taxonomies, and Definitions	
2.2 Semantics	
2.3 Code Verification and Validation: Numerical vs. Conceptual Modeling	
2.4 Code Confirmation	
2.5 Benchmarks and Inter-Code Comparisons	
2.6 Code Certification, Quality Assurance, and Accreditation 2.7 Verification of Calculations	
2.8 Quantification of Uncertainty	
2.9 Grid Convergence vs. Iterative Convergence	
2.10 Error Taxonomies	

2.11 Truncation Error vs. Discretization Error	
2.12 Calibration and Tuning	
2.13 Quality assurance (QA) vs. Quality Work	
2.14 Customer Illusions vs. Customer Care	
2.15 Other Distinctions: Authors, Users, Modelers, Code and Software	
2.16 Sensitivity, Uncertainty, and Risk	
2.17 Etymology and Near Synonyms	
2.18 Accuracy vs. Reliability	
2.19 Additional Remarks on Verification	50
2.20 Conclusion: Limitations of Semantic Distinctions	
References for Chapter 2	52
Part II Verification	63
Chapter 3 A Methodology for Accuracy Verification of Codes: the Method of	
Manufactured Solutions	
3.1 Introduction	
3.2 Warnings: the Division of Labor in Code Development and Use	
3.3 Order of Convergence	66
3.4 A General Procedure for Generating an Analytical Solution for Code Accuracy Verification:	(7
the Method of Manufactured Solutions	67
3.5 Example: Verification of a 3-D Poisson Equation Code in Nonorthogonal Grid and a 3-D Grid Generation Code	70
3.6 Another Path to Manufactured Solutions	
3.7 Code Verification Including Shock Waves	
3.8 Need for a Theorem	
3.9 Specific Analytical Solutions	
3.10 Manufactured Solutions vs. Infinite Series Solutions.	
3.11 The Sensitivity of Grid Convergence Testing	
3.12 Examples of Unanticipated Convergence Rates Determined by Systematic Grid Convergence Tests.	
3.13 Special Considerations for Problems with Multiple Scales: Turbulence Modeling	
3.14 Warnings: What the Method Does Not "Verify"	
3.15 Robustness and Confidence	
References for Chapter 3	90
Chapter 4 Error Estimation for Quantification of Uncertainty;	
Verification of Calculations	
4.1 Introduction	95
4.2 Error Estimation for Grid Adaptation vs. Quantification of Uncertainty	
4.3 Taxonomy for Additional Information for Error Estimates	
4.4 Grid Refining and Coarsening	
4.5 Levels of Simulation Use	
4.6 Verification of Computer Round-off Errors	
4.7 Effect of Differing formulations	
References for Chapter 4	103
Chapter 5 Systematic Grid Convergence Studies and the	407
Grid Convergence Index (GCI)	
5.1 Introduction	107
5.2 Background on Grid Convergence Reporting	108

Table of Contents xi

5.3 Richardson Extrapolation	109
5.4 A Generalization of Richardson Extrapolation	
5.5 Richardson's Extrapolation for π	114
5.6 Grid Convergence Index for the Fine Grid Solution	
5.7 Grid Convergence Index for the Coarse Grid Solution	
5.8 Example GCI Calculation	
5.9 Should the Coefficient Be "1" Or "3" Or "1.25"?	120
5.10 Additional Features of Grid Convergence Studies for Verification of Codes and Calculations	123
5.11 Conclusion	
References for Chapter 5	136
Chantas & Applications of Systematic Crid Convergence Studies	
Chapter 6 Applications of Systematic Grid Convergence Studies and the Grid Convergence Index	143
6.1 Introduction	143
6.2 Two Further Examples of (Partial) Code Verification in Groundwater Flow	
6.3 Issues in Calculation Verification	
6.4 An Example of the Effective Grid Refinement Ratio.	
6.5 A Benchmark Problem for Driven Cavity Flow	
6.6 A Benchmark Problem for Free Convection	
6.7 Laminar Plane Jet Impinging on a Heated Flat Plate	
6.8 A k-ε Model of a Free Shear Layer	
6.9 Transonic Airfoil Calculations	
6.10 Ordered Estimation of Far-Field Boundary Error	
6.11 Artificial Dissipation Effects	
6.12 Single and Dual Porosity Contaminant Transport: Source Term Location	
6.13 Convergence Behaviors for Mixed-Order Methods	
6.14 Grid Convergence of Zero Drag Coefficient	
6.15 Anomalous Result Possibly Due to Grid Stretching	181
6.16 Non-Smooth Property Variation: Global Error Norms	182
6.17 Discrete Vortex Methods	
6.18 Observed Convergence Rates for Euler Equations with Shocks	
6.19 Completed Richardson Extrapolation	
6.20 Truncation Error in Elliptic Grid Generation	
6.21 One Dimensional Moving Adaptive Grid Problems	
6.22 GCl Application in Solution Adaptive Grids with Non-Integer Grid Refinement	
6.23 High Quality Grid Resolution Studies Leading to a Safety Factor of 1.25	
6.24 Transport Code Verifications Using the GCI: Partitioning the Option Matrix	190
6.25 Turbulent Separated Flow: the Error Estimator of Celik and Karatekin	
6.26 Level of Accuracy Estimates from Grid Convergence Studies	
6.27 Other Examples of Careful Use of Richardson Extrapolation	
6.28 Parameter Convergences of a Compressible Flow Code Near the Incompressible Limit	
6.29 Justification of the Dupuit Approximation	
6.30 Concluding Comment on Parameter Uncertainty vs. Numerical Uncertainty	
References for Chapter 6	207
Chapter 7 Single Grid Error Estimators	217
7.1 Error Estimation from Higher or Lower Order Accuracy Solutions on the Same Grid (Category B)	
7.2 Auxiliary PDE Solutions on the Same Grid (Category C)	
7.3 Auxiliary Algebraic Evaluations on the Same Grid: Surrogate Estimators (Category D)	
7.4 Time Accuracy Estimation	
7.5 Concluding Remarks on Single Grid Error Estimators	
References for Chapter 7	

Chapter 8 Hard Stories	237
8.1 Factors Influencing Convergence Rates	
8.2 Behavior of Quasi-Higher-Order Methods	245
8.3 Some Good News for Turbulence Modeling	250
8.4 The Myth of the Converged "Solution"	251
8.5 Esoteric Coding Mistakes	253
8.6 A False Verification Test of a Particle Tracker	253
8.8 Hard-Wired Data vs. User Input Data	
8.9 Degraded Rate of Convergence Due to User Modeling Errors	
8.10 Lessons from Nonlinear Dynamics	
8.11 Adaptive and Local Time Stepping, and Steady State	
8.12 Other Questions Related to the Steady State	
References for Chapter 8	264
Part III Validation	271 -
Oh O Diff: Miss Mith. From a document and Malistation	070
Chapter 9 Difficulties With Experiments and Validation	
9.2 Historical Methods of Validating Scientific Theories	
9.3 The Theory Laden Experiment	
9.4 Random and Systematic Errors in Experiments	
9.5 Experimental Errors in Physical Properties	
9.6 Boundary Conditions, Continuum and Numerical	
9.7 Trends, Computational and Experimental	
9.8 False Negatives and False Positives	280
9.9 "Nearby" Problems	
9.10 Difficulty of the Option Tree	282
9.11 Data Sparsity and Lack of Synchronicity: Groundwater, Ocean/Lake, and Meteorology Modeling	
9.12 The Effect of Parameter Resolution on Grid Convergence	284
9.13 Scale of Unsteadiness	
9.14 Spatial Scales, Scaling Up, and Dimensionality	
9.15 Assumptions of Periodicity	
9.16 Other Difficulties of Validation in Aerospace	
9.17 Universal Turbulence Models vs. Zonal Modeling	
9.18 Strong and Weak Model Definitions and Model Validation	
9.19 The Myth of the Totally Validated Code	
References for Chapter 9	293
Chapter 10 Methodologies and Examples of Validations,	
Calibrations, and Certifications	299
10.1 Sources of Physical Modeling Errors in Aerodynamics CFD	299
10.2 Accuracy Level for Validation	300
10.3 Generic Models vs. Realistic Models for Validation and Calibration: Phases of Validation	301
10.4 CFD and Experimental Facility Corrections	303
10.5 Verification Must Be Independent of Validation: Airfoil Calculations	304
10.6 Synergism Between Computation and Validation Experiments	304
10.7 The Difficulty of Defining a "Nearby" Problem	
10.8 Missing Experimental Details	309
10.9 Onset of 3 Dimensionality in Backstep Flow	
10.10 Gray Area: "Validation" from a Calculated Benchmark	
10.11 Gray Area: "Validation" of an Experimental Technique by a Computation	310

10.12 The MADE-2 Experience: Can Groundwater Flow Models Be Validated?	311
10.13 Dynamic Stall Wind Tunnel Data: Who Does the Tweaking?	
10.14 Consortium Effort at CFD Code Certification	314
10.15 Simulation Team Responsibilities in Validation	
10.16 Shifting Responsibilities and Gray Areas	324
10.17 WUA Benchmarks in 1994 and 1996	325
10.18 CFD Triathlons	326
10.19 Canadian CFD Society Test Case	326
10.20 Workshops	327
10.21 AGARD 1988 Validation of Computational Fluid Dynamics	327
10.22 A Case Study for CFD Code Validation Methodology	330
10.23 Joint Consideration of Experimental and Simulation Uncertainties	331
10.24 Dynamic Databases for Validation	
References for Chapter 10	
Part IV Broader Issues Chapter 11 Code Quality Assurance and Certification	
11.1 Introduction	
11.2 Quality Assurance (QA) vs. Quality Work	
11.3 QA vs. Creativity	
11.4 QA and Temperament Types	
11.5 The Prevalence of Errors in Scientific Software: Use of Static Analyzers	
11.6 Factors of Code Quality Assurance	
11.7 Some Components of Project Code Certification	
11.8 Engineering Teams and the Division of Labor	
11.9 Personnel Roles, Code Levels, and Code Sources	
11.10 Desirable (But Not Required) Code Characteristics	
11.11 Code Documentation	
11.12 Code Module Communication Structure	
11.13 Code Updates	
11.14 Built in Automatic Error Detection Tests	
11.15 Designing for Code Maintenance	
11.16 Commercial Codes and their Users	
11.17 Code to Code Comparisons	
11.18 General Software Certification and ISO-9000 Standards	
11.19 OA for Large Public Policy Projects	
11.20 QA of Analyses	
11.21 QA / Certification of Users and Regulators	
11.22 Assessment of Codes? Or Users?	
11.23 QA Procedures	
11.24 A Template for a QA System	
11.24 A Template for a QA System 11.25 Concluding Remarks On QA	
References for Chapter 11	
References for Chapter 11	380
Chapter 12 Conclusions	385
12.1 The Overall Process for Quantification of Uncertainty	
12.2 Internet Archive	
12.3 Eulfilling the Promise of Computational Power	387

Appendix A. Need for Control of Numerical Accuracy	389
I. Introduction	
II. Resistance and Objections	
III. Difficulties in Applications	
IV. Examples of What Can Be Done	
V. Conclusions and Recommendations	
Appendix: Editorial Policy Statement on the Control of Numerical Accuracy	
Acknowledgments	
References	
Appendix B. Other Journal Policy Statements	
on Control of Numerical Accuracy	403
Journal of Heat Transfer Editorial Policy Statement on Numerical Accuracy	
International Journal for Numerical Methods in Fluids-Editorial	
AIAA Editorial Policy Statement on Numerical Accuracy and Experimental Uncertainty	
Journal of Fluids Engineering-Editorial and Policy Statement	
Policy Statement on the Control of Numerical Accuracy	
Appendix C. Comment on Oreskes et al	413
Comment on "Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences"	
References	
Appendix D. CFD Parody: Will the Wind Tunnel Replace the Computer?	419
Original	
Response	
Response	720
Appendix E. A Biographical Sketch of Lewis Fry Richardson	423
References	427
Index	429