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Abstract

Most formalized model verification and validation tech-
niques come from industrial and system engineering for
discrete-event system simulations. These techniques are
widely used in computational science. The agent-based
modeling approach is different from discrete event modeling
approaches largely used in industrial and system engineer-
ing in many aspects. Since the agent-based modeling ap-
proach has recently become an attractive and efficient way
for modeling large-scale complex systems, there are few for-
malized validation methodologies existing for agent-based
model validation. In this paper, we design, develop, adapt,
and apply various existing verification and validation tech-
niques to an agent-based scientific model and investigate
the sufficiency and importance of these techniques for the
validation of agent-based models.

Keywords: Agent-based modeling, Model verification,
Model validation. Scientific simulation models

1 Introduction

One of the main valuable aspects of a simulation study
is to explain and understand real world phenomena that are
costly to perform in the laboratory or difficult to collect in
field experiments. A successful simulation that is able to
produce a sufficiently credible solution can be used for pre-
diction. Since it is impossible (performance concern) and
unnecessary (including elements that do not have much ef-
fect on the system) to construct a simulation model that rep-
resents all the detail and behavior of the real system, some
assumptions must be made about the system to construct a
simulation model. Therefore, a simulation model is an ab-
stract representation of a physical system and intended to

enhance our ability to understand, predict, or control the
behavior of the system. However, the abstractions and as-
sumptions introduce inaccuracies to the simulation model.
One of the important tasks for a simulation study becomes
determining how accurate a simulation model is with re-
spect to the real system. The difficulty for the validation
task is that there is no a universal approach. There are many
principles and techniques of model verification and valida-
tion that have been presented. However, it is difficult and
time consuming to use all possible techniques for validat-
ing every model that is developed. Modelers are depended
on to choose appropriate techniques that can assure the ac-
ceptable accuracy and credibility of their model. The ob-
jective of our work is exploring the new validation schemes
for agent-based scientific models based on the existing ver-
ification, validation, and calibration techniques presented in
various literatures.

The organization of this paper is as follows. We first
introduce a few classical verification and validation tech-
niques that are used in industrial and system engineering
fields in Section 2. The development of the NOM simula-
tion model, a test project for our agent verification and vali-
dation research, is illustrated in Section 3. In Section 4, we
demonstrate the verification and validation processes for the
NOM model. Summary and proposed works are described
in Section 5.

2 Model Verification and Validation

Model verification is a process that determines whether
the programming implementation of the abstract or concep-
tual model is correct. This process includes debugging soft-
ware, looking for incorrect implementation of conceptual
models, and verifying the calculations. Model validation is
a process that determines whether the conceptual model is
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a reasonably accurate representation of the real world [11]
and the output of simulations is consistent with real world
output. Calibration is an iterative process adjusting the un-
measured or poorly characterized experimental parameters
in the programming implementation. The purpose of the
calibration process is to improve the agreement with exper-
imental data. Model verification, validation, and calibration
are generally considered to be parts of the model develop-
ment process. Model validation is achieved through the cal-
ibration of the model until model accuracy is acceptable.

2.1 Model Verification and Validation Techniques

Balci [2] [3] presents 75 validation, verification and test-
ing techniques that are largely used in validating the mod-
els of manufacturing, engineering, and business processes.
These models are mostly discrete event simulation models
and are intended to control the total costs of the system,
problem solving, and decision-making. There is a taxon-
omy that classifies the techniques into four primary cat-
egories: informal, formal, static, and dynamic. Some of
these techniques come from the software engineering disci-
pline that is not our focus in our verification and validation
process. We next present some relevant techniques.

Face validity is asking the domain experts whether the
model behaves reasonably and makes subjective judgments
on whether a model is sufficiently accurate. There are two
ways to allow the experts to give the correct judgments eas-
ily:

1) Animation is the graphical display of the behavior of
the model over time. Some simulation software, such as
Swarm and Repast, have built-in features for animation and
can even track the individual’s properties while the simula-
tion is running.

2) Graphical Representation is representing the model’s
output data (mean, distribution, and time series of a vari-
able) with various graphs. These graphs can help in making
subjective judgments.

Model developers also use Animation and Graphical
Representation for code verification in the model imple-
mentation process. Face validity is the first step of the three-
step approach formulated by Naylor and Finger [14] and
widely followed in industrial and systems engineering.

Tracing is a technique similar to Animation. The behav-
ior of entities in the model is followed to determine if the
logic of the model is correct. Although tracing is extremely
useful in isolating the strange behavior of the model, it
causes considerable additional processing overhead.

Internal Validity involves comparing the results of sev-
eral replications of a stochastic simulation model using dif-
ferent random seeds. If the random seeds used for the ran-
dom number generators cause the inconsistency (large vari-
ability) of the sample points, the model is questionable ei-

ther in the programming model or the conceptual model.

Historical Data Validation is used when historical data
exists (or if data is collected on a system for building or
testing the model). Part of the data (the training sets) is
used to build the model and the remaining data (test sets) is
used to determine if the model behaves as the system does.

Parameter Variability - Sensitivity Analysis is a valida-
tion technique where one changes the values of the input
and internal parameters of a model to determine the ef-
fect upon the model and its output. The same relationship
should occur in the model as in the real system. Those pa-
rameters that are sensitive, i.e., cause significant changes in
the model’s behavior, should be made sufficiently accurate
prior to using the model.

Predictive Validation is used to compare the model’s pre-
diction with actual system behavior. The system data may
come from an operational system or specific experiments.
For instance, the data may come from a laboratory or from
field experiments.

To perform Turing Tests, experts of a system are given
both real system and model outputs and asked if they can
discriminate the real system output and the model outputs.

2.2 Model-to-Model Comparison

Model-to-model comparison, also known as back-to-
back testing or docking, is a technique that compares var-
ious results of the simulation model to results of other mod-
els [1]. Different conceptual models can represent a real
world phenomenon. For instance, the cell behaviors in the
biological process, such as the cell growth and division pro-
cess, can be modeled using either an agent-based model-
ing approach [22] or a cellular potts model (CPM) [9]. A
real world phenomenon can be represented by one concep-
tual model, but different research groups or individuals can
implement conceptual models using different programming
languages or different simulation toolkits. These computa-
tional models may be run on different platforms. The out-
put comparison between different simulation models with
the same input data is conducted using this technique. Dif-
ferences in the outputs reveal problems with model accu-
racy. When the compared model is a valid model, the agree-
ment between these two models can infer the validity of the
model. When the compared model has not been validated,
the comparison between these two models can support the
code verification process if these two models are imple-
mented from the same conceptual model. One of the big
advantages for the model-to-model comparison technique
is for the non-observable system, i.e., all data required for
model validation cannot be collected from the real-world
system.
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2.3 Statistical Tests

Compared to subjective validation techniques, such as
face validation and turing test, statistical analysis is a quan-
titative method. Incorporating statistical analysis tech-
niques in the validation process can significantly increase
the credibility of the model. Model validation is conducted
by using the statistical techniques to compare the model
output data with the corresponding system or with the out-
put data of other models when the model is run with the
same input data. Some discussions on applying the statis-
tical techniques to the validation process can be found in
Sanchez [18] and Kleijnen [10].

The first step for starting the statistical test is determin-
ing a set of appropriate output measures that can answer
user questions. After a set of output measures is collected,
various statistical techniques can be applied to complete the
validation process. Time series, means, variances, and ag-
gregations of each output measures can be presented as a set
of graphs for model development, face validation, and Tur-
ing tests. Confidence intervals (c.i.) and hypothesis tests
can be used in the comparison of parameters, distributions,
and time series of output data for each set of experimental
conditions. These statistical tests can help model develop-
ers to determine if the model’s behavior has an acceptable
range of accuracy.

3 Case Study: Agent-based Modeling for
NOM Evolution

Natural organic matter (NOM) is a polydisperse mix-
ture of molecules with different structures, compositions,
functional group distributions, molecular weights, and re-
activities, that forms primarily as the breakdown product of
animal and plant debris. NOM is ubiquitous in terrestrial
ecosystems and has been widely reported in marine envi-
ronments. Its structure, chemical composition, and reactiv-
ity vary both spatially and temporally. NOM plays a crucial
role in ecological and bio-geochemical processes such as
the evolution of soils, the transport of pollutants, and the
global bio-geochemical cycling of elements [5]. NOM is
a primary food source to microorganisms, and it can act
as a natural “sunblock,” attenuating potentially damaging
UV radiation [20] in lakes and streams. While passing
through an ecosystem, NOM may be acted upon and po-
tentially altered by a wide array of processes, such as mi-
crobial biodegradation, adsorption to mineral surfaces, re-
dox reactions, photochemical processes, and aggregation or
coagulation. The evolution of NOM over space and time
from precursor molecules to eventual mineralization (pri-
marily as

�����
) is an important research area in a wide

range of disciplines, including biology, geochemistry, ecol-
ogy, hydrology, soil science, and water resources. Given

the widespread abundance and importance of NOM to many
hydro- bio- geochemical processes, predictive modeling of
its evolution in structure, composition, and reactivity are
fundamental to many areas of environmental research.

Because of the complex nature of NOM, and the multi-
tude of possible reactions it may undergo in natural envi-
ronments, we have only a limited knowledge of the detailed
mechanisms by which it forms from precursor molecules,
or how its structure, composition, and reactivity evolve over
space and time. Perhaps most notably, the fact that NOM is
a polydisperse mixture of molecules which themselves have
complex structures means that it defies characterization by
established analytical methods. Previous models of NOM
formation and evolution have been important for predict-
ing certain types of reactions or interactions, but they have
not been able to describe both the quantitative aspects of
organic carbon transfer and the semi-quantitative or quali-
tative aspects of NOM structure and functional heterogene-
ity. Predicting NOM interactions and their consequences to
other environmental processes requires a clear understand-
ing both of how a single NOM component behaves and how
the entire NOM mixture at a given site evolves over space
and time.

Agent-based modeling (ABM) is a method used to track
the actions of multiple agents that can be defined as objects
with some type of autonomous behavior [12] [7]. By using
the ABM approach, the higher-level behaviors of a system,
called “emergent behaviors,” can be discovered without be-
ing explicitly coded into the simulation. The technique of
building and using agent-based models is an essential tool
for understanding complex systems and is increasingly ap-
plied to biological, ecological, and sociological issues.

3.1 The Conceptual Model

Based on the observational and experimental studies on
the behavior of NOM in the environment, we designed a
conceptual agent-based stochastic model. In this model,
NOM, microorganisms, and their environment form a com-
plex system. The evolution of NOM over discrete time and
space from precursor molecules (such as cellulose, lignin,
and protein) to eventual mineralization involves various
molecular transformations. These transformations involve
chemical reactions, adsorption, aggregation and physical
transport in soil, ground, or surface waters. NOM is pre-
sented as a large number of discrete molecules with vary-
ing chemical and physical properties. Individual molecules,
modeled as individual agents, are given a set of simple rules
on how to move through soil pores and how to interact with
each other.

Agent: In the NOM complex system, the agents are
NOM molecules. These NOM molecules are hypothe-
sized to be derived from macromolecules such as pro-
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teins, polynucleotides, cellulose, lignin, or small organic
molecules such as phospholipids, sugars, and amino acids.
It is impractical to define precise molecular representa-
tions that involve descriptions of atomic location, electron
density maps, and force field constants given our goal of
modeling thousands or even up to one million individual
molecules. We therefore need an intermediate level molec-
ular representation, which is more specific than simply “per-
cent carbon” but less detailed than a precise molecular con-
nectivity map. Also, the representations of structures should
be detailed enough to illustrate the heterogeneity of the
NOM. The data used for constructing representations of the
NOM molecules includes the following components:

� Elemental formula, i.e. the number of C, H, O, N, S,
and P atoms in the molecule. The molecular weight
MW can be easily calculated from the elemental for-
mula.

� Functional group count, e.g. carboxylic acid, alco-
hol, and ester groups. There are a total of 19 possi-
ble functional groups in our model for each molecular
structure.

� A record of the molecular “origin,” i.e. the initial
molecule, its starting position, and its time of entry into
the system. This allows for the calculation of sepa-
rate “turnover times” and apparent ages for individual
molecules or fractions. The x- and y-coordinates of
a 2-dimensional lattice represent the location of each
molecule in the simulation.

Behaviors: In the environment, NOM can move with
percolating water down a soil column and into the ground-
water, and interact with other molecules and their environ-
ment. As molecules are transported by water through soil
pores, they can sorpt to and desorpt from mineral surfaces.
Sorption behavior of molecules is not a transformation of
molecular structure; however, it will affect the probability
of other reactions by changing the environment of a given
molecule. Chemical reactions result in structural changes
in the molecule, such as the addition of groups to a NOM
molecule. New molecules can be generated from the pre-
decessor molecules and those predecessor molecules may
leave the system. Twelve types of chemical reactions, in-
cluding first-order and second-order chemical reactions are
modeled as described in Table 1. Others will be added as
needed.

These twelve chemical reactions are separated into four
categories:

� First order reactions with a split: The predecessor
molecule A is split into two successor molecules B and
C. Molecule B occupies the position of molecule A,
and one of the empty cells nearest molecule B is filled
with molecule C.

Table 1. Chemical Reactions in the Concep-
tual Model

Reaction Name Reaction Type
Ester condensation Second order
Ester hydrolysis First order with split
Amide hydrolysis First order with split
Microbial uptake First order with molecule

disappear
Dehydration First order with split
Strong C=C oxidation First order with split (

�����

of the time)
Mild C=C oxidation First order without split
Alcohol(C-O-H) oxidation First order without split
Aldehyde C=O oxidation First order without split
Decarboxylation First order without split
Hydration First order without split
Aldol condensation Second order

� First order reactions without a split: The transfor-
mation only changes the structure of the predecessor
molecule A.

� First order reactions with the disappearance of a
molecule: The predecessor molecule A disappears
from the system. This reaction occurs when the
molecule is small enough that a microorganism like
fungi or bacteria can envelop it.

� Second order reactions: Two molecules A and B
are combined to form a new molecule C. The new
molecule C replaces molecule A while the other pre-
decessor molecule B disappears from the system.

Space: In this conceptual model, the individuals are as-
sociated with a location in geometrical space and can move
around their environment. The geometrical space is de-
scribed as a discrete 2D grid space represented by integer
values. Each molecule can occupy one grid cell. Each grid
cell can host multiple molecules up to a certain threshold.

Reaction Probabilities: The probability for each reac-
tion type is expressed in terms of intrinsic and extrinsic
factors. Intrinsic factors are derived from the molecular
structure including the number of functional groups and any
other structural factors. Extrinsic factors arising from the
environment include concentrations of inorganic chemical
species, light intensity, availability of surfaces, presence of
microorganisms, presence and concentration of extracellu-
lar enzymes, and the presence and reactivity of other NOM
molecules. The intrinsic and extrinsic factors are combined
in probabilistic functions.

Molecular Properties: The reactivity of the resulting
NOM over time can be predicted based on the distribu-

ADS'05 50 ISBN-1-56555-291



Table 2. Molecular properties

Name Comments
Number of Molecules Number of molecules in the sys-

tem. It changes as molecules
condense, split, or are con-
sumed.

MWn The number-average molecular
weight.

MWw The weight-average molecular
weight.

Z average The average charge on each
molecule at pH 7.

Element Mass Weight of C, O, H, etc. in the
system.

Percent of Element The weight percentages of each
element.

Reactions (1...n) Number of reactions that occur
for each type of reaction.

tions of molecular properties. Some molecular properties of
NOM can be calculated and predicted. These properties are
quantities that can be calculated from the elemental com-
position and functional group data. They represent a mea-
surable quantity that can be used as a predictor for an en-
vironmental function. They are also useful and interesting
both as part of scientific inquiry and for the calibration and
verification of our conceptual model and simulation. Some
properties are easy to calculate, such as molecular weight,
molecular charge, and charge density. On the other hand,
some involve non-trivial computations. In addition, some
properties are exact calculations, (e.g., molecular weight)
while others must be estimated by empirical relationships
that will introduce additional uncertainty (e.g., ����� ). Table
2 summarizes some molecular properties that can be used
for answering user questions.

Simulation Process: The conceptual model is a stochas-
tic synthesis model of NOM evolution. It serves as a design
framework for the computer simulations described later in
this paper. In a stochastic process, the state of the system is
represented by a set of values with a certain probability dis-
tribution, such that the evolution of the system is dependent
on a series of probabilistic discrete events. At each time
step, for each molecule, a uniform random number is gener-
ated. This number determines whether a reaction will occur,
and if one does occur, it determines the reaction type. After
a reaction takes place, the attributes for the current molecule
are updated and reaction probabilities are recalculated. The
molecule structure is changed to affect the outcome of the
reaction and a new probability table entry is added for newly
formed molecules, if there are any.

3.2 Implementations

There are five implementations derived from the concep-
tual model.

AlphaStep is a reference implementation that is coded in
Delphi 6 and runs under Windows XP. It is a demonstration
of the comprehensive conceptual model that doesn’t have
web or collaboration features. AlphaStep simulates a va-
riety of chemical and biological transformations, but does
not simulate any type of transport and does not represent
the spatial properties of NOM. Hence, it represents a batch
or closed system without porous media. AlphaStep is in-
tended as a stand-alone application to allow ecologists, geo-
chemists, and environmental scientists to explore possible
routes of NOM transformation. It is available for download
from http://www.nd.edu/ñom/software.

The other four implementations are coded using the Java
programming language (Sun JDK 1.4.2) and Swarm [21]
[13] and Repast[16] software. Swarm is a software package
for simulating complex systems that was developed at the
Santa Fe Institute. It is a set of libraries that facilitates the
implementation of agent-based models. RePast is a Swarm-
like agent-based simulation toolkit written in Java. It was
developed by the University of Chicago and Argonne Na-
tional Laboratory. Swarm and Repast provide versatile ran-
dom number generators and distributions that are essential
to stochastic computer simulations. Also, these toolkits pro-
vide high-level visualization capabilities. A control panel
allows a running model to be stopped, restarted, or executed
step by step. They also allow modelers to visualize the cur-
rent state of the running model and probe every object in
the model. An animation window shows the location of in-
dividual agents in a space. Line graphs and histograms are
used to illustrate changes in collections of model objects
that occur during the simulation. Additionally, simulation
data, such as population size over time, can be reported pe-
riodically as the model executes.

The Flow and No-Flow implementations respectively
model laboratory column and batch experiments. Flow im-
plementations simulate the column experiments. Molecules
are continually added from the top of the grid at a constant
rate to simulate their mobility with water flow including ad-
vection and dispersion. These molecules move along with
the water flow, experience physical and chemical reactions,
and leave the system from the bottom of the grid. No-
Flow implementations simulate the batch experiment with
all molecules added to the system at the beginning and then
diffusing throughout the medium. There are no molecules
entering into or leaving the system. Furthermore, accord-
ing to the scientific interests of different reactions, sorption
behaviors and chemical reactions of molecules are imple-
mented separately.
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4 Validation of NOM simulation model

Verification and validation (V&V) are processes used to
increase confidence in simulations. Verification concerns
solving “the problem right” while validation concerns solv-
ing “the right problem .” Although neither process guar-
antees absolute confidence, we used numerous V&V tech-
niques on the NOM simulation. We describe these tech-
niques using an adapted version of Sargent’s V&V process
shown in Figure 1 [19].

Figure 1. Verification and Validation Pro-
cesses of the Agent-based Stochastic Model

The modeling process starts by identifying research
questions of interest. Through analysis and modeling, we
developed a conceptual NOM model that includes the fea-
tures relevant to the questions. The conceptual model is
based on theory and domain knowledge from environmen-
tal chemistry, soil science, and geomicrobiology. This the-
oretical knowledge which guided the model development
includes the following as examples: 1) the heterogeneity of
NOM molecules, 2) the important NOM interactions with
mineral surfaces such as adsorption, hemi-micelle forma-
tions, acid or complexion dissolution, and reductive dis-
solution, 3) NOM interaction with pollutants, 4) relation-
ships between NOM adsorption to mineral surfaces and the
molecular weight of the NOM molecules, and 5) probabilis-
tic reaction kinetics based on elemental composition and the
nature of functional groups in the molecules The incorpora-
tion of such theory and domain knowledge provides us ini-
tial face validity, i.e., the logic of the conceptual model ap-
pears to domain experts to include appropriate mechanisms
and properties of the research problem. Six scientists on the
project - two biologists, a chemist, a geomicrobiologist, and
two soil scientists - evaluated the conceptual model for face

validity.
Once the conceptual model achieved its initial validation,

coding of the agent-based simulation took place. In this
step, verification methods such as code walk-through, trace
analysis, input-output testing, pattern tests, boundary test-
ing, code debugging, and calculation verification were used
to verify the correctness of the simulation. Visualization

Figure 2. Example of a snapshot from a
FlowSorption simulation. Left side displays
molecules moving through the column: ad-
sorbed (closed circles) or in solution (open
circles). In a colored version, colors rep-
resent different MW intervals. Right side
displays the corresponding MW distribution
of adsorbed (higher peak) versus in-solution
molecules. Adsorption is preferential for
intermediate-to high MW components. In
this example, the model input was molecular
weight distribution of the NOM with adsorp-
tion controlled by molecular weight. Specific
chemical reactions were not explicitly consid-
ered.

of the behavior of the simulation is another useful tech-
nique used for simulation validation [8]. A snapshot of an
animated visualization of the flow of molecules through a
soil column depicting the adsorption and desorption of the
molecules to mineral surfaces in the simulation is shown
in Figure 2. In addition to the color-coding of molecules
by molecular weight, the adsorbed or desorbed states are
depicted by solid and hollow circles respectively. A cor-
responding animated graph of the molecular weight distri-
bution shows how the molecular weight distribution shifts
with time: initially favoring lower weight molecules in
the early stages of the simulation and gradually shifting
to larger molecular weights as the simulated time passes.
These same behaviors were observed in laboratory experi-
ments, increasing the confidence in the simulation. Figure
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2 is a screen shot of a FlowSorption simulation used by the
authors for verification and validation of the simulation.

4.1 Internal Validity

A simulation model that uses random seeds must have
statistical integrity in that independent simulations with the
same input data should have similar results. If the simula-
tion model produced large variabilities because of the ran-
dom seeds, there would be a considerable problem with it.
To test this, we performed 450 simulations with our NOM
simulator, each with a different random seed. We chose the
total number of molecules in the system after the simula-
tion had completed as a point of comparison. We found that
our simulations produced the expected normal curve upon
analysis of the data. Figure 4 shows the histogram for this
data. By verifying the independency of the random seeds in
the NOM simulator, we were able to conclude that it is sta-
tistically robust in terms of repeatability. Further statistical
analysis needs to be performed to verify how reliably our
simulator conforms to a normal distribution.
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Figure 3. Histogram showing the distributions
of the number of molecules after 1000 simu-
lated hours. This histogram is based on 450
individual simulations, each with a different
random seed.

4.2 Alpha Step vs. No-Flow Reaction implemen-
tations

As we stated before, Alpha step and No-flow Reaction
are independent implementations that follow most features

Table 3. Differences of features in Alpha step
and No-flow Reaction implementations

Features Alpha Step No-flow Reaction
Programming
Language

Delphi 6, Pascal Java (Sun JDK
1.4.2)

Platforms Windows Red hat Linux clus-
ter

Running
mode

Standalone Web based, Stan-
dalone

Simulation
packages

None Swarm, Repast li-
braries

Initial popula-
tion

Actual number of
different molecules

Distribution of dif-
ferent molecules

Animation None Yes
Spatial repre-
sentation

None 2D grid

Second order
reaction

Random pick one
from list

Choose the nearest
neighbor

First order
with split

Add to list Find empty cell
nearby

of the conceptual model we have described in previous sec-
tions. We summarize some differences between these two
implementations in Table 3. It is valuable to conduct the
model-to-model comparison. At the beginning of this dock-
ing process, we experienced big differences in the outputs
of these two models. The main reason that caused the re-
sults to be different was that the techniques used to calculate
reaction probabilities were not the same.

Since these two implementations are stochastic simula-
tions, it is not enough to compare both implementations
with one simulation run. We conducted 25 replications us-
ing different random seeds for both implementations given
the same initial condition. There are many molecular vari-
ables, as shown in Table 2, that we can choose as mea-
sures for this comparison purpose. Some of them can be
derived from others using simple mathematic calculations.
We chose Number of Molecules, MWn, MWw, Carbon
Mass, and Carbon percentage for comparison. Also, the
main purpose for NOM simulations is to mimic the NOM
evolution over time, as the comparison of properties at one
time point is not enough to capture the trend of the evolu-
tion. The comparison of ensemble averages of each mea-
sured over time for two implementations is shown as Figure
4. These ensemble averages are computed from 25 replica-
tions using different random seeds.

Despite the good agreement between these two imple-
mentations visually, the operational validity requires statis-
tical significance tests. Some Goodness-of-Fit Tests (such
as Chi-Square testing, Kolmogorov-Smirnov test) and fac-
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Figure 4. The figure shows a comparison of
five molecular properties for two implementa-
tions. Since they are stochastic simulations,
the output is ensemble average of 25 replica-
tions for each implementation.

torial ANOVA test need to be conducted to assure that an
observed difference are statistically different.

5 Conclusion and Future Work

In this paper, we applied various techniques for valida-
tion of an agent-based stochastic simulation model. We
achieved the preliminary validation of the model by con-
ducting a model-to-model comparison.

Verification and validation techniques used in industrial
and systems engineering fields (such as queuing models) are
also discussed in the computational science field [6] [15]
[17] [4]. We observe that discrete event modeling approach
is the most closely approach as agent-based modeling ap-
proach with differences in several aspects:

1) Entities in the system. Agent-based modeling ap-
proach focus on systems that contain large number of het-
erogeneous objects (people, business units, animals, vehi-
cles) and time events ordering or other kind of individual
behavior associated with them. Discrete event modeling
approach tends to model relatively homogenenious entities
with variability captured in the service time of the system’s
servers.

2) Spatial representation. In most of agent-based models,
the individuals are associated with a location in a geometri-
cal space. This geometrical space can be described as either
continuous space (represented by partial differential equa-
tions) or as discrete grid space (represented by integer val-
ues). In industrial and systems engineering field, the spatial
representation is typically a network of servers and queues.

3) Discovery of global behavior. Industrial and systems
engineering models know the behavior of a system in ad-
vance. This is either because a system already exists from
which observational data can be collected, or the system
is being designed for desired behavior (e.g., performance
level). In a complex adaptive system, the emerging behav-
ior cannot be known in advance. Whenever there is strange
behavior, it is hard to distinguish if it is a program bug or
the real world phenomena.

4) Degree of interactivity and communication among the
entities. Agents in the agent-based models have many ac-
tivities. They can interact with each other and their envi-
ronment. In the industrial and systems engineering field,
entities may only have low interactivity among each other.

We believe that model-to-model comparison is an effi-
cient validation method for agent-based scientific models.
Comparing the output of simulations with empirical data is
the next step that we intend to do.

Although agent-based modeling approach is becoming
more and more attractive and has been adopted for model-
ing various complex systems, it is still lacking mathematical
foundations as well as a formalized validation methodology.
The formalized verification and validation techniques are

ADS'05 54 ISBN-1-56555-291



derived from the industrial and system engineering. These
systems are structured systems with well-understood rules
and the behavior of the system is transparent to modelers.
Complex systems that are suitable for using an agent-based
modeling approach are unstructured with incomplete under-
standing of behavior by modelers. Validation methods that
are less important for one modeling approach maybe more
important and useful for another one. The objective of our
work is systematically evaluate a subset of these techniques
and answer the following questions: (1) Are the classical
verification and validation techniques sufficient for validat-
ing agent-based models? (2) Which subset of these tech-
niques that are more cost-effective for validating of agent-
based models?
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