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ABSTRACT

This paper discusses verification and validation of

simulation models. The different approaches to deciding

model validity are presented; how model verification and

validation relate to the model development process are

discussed; various validation techniques are defined;

conceptual model validity, model verification,

operational validity, and data validity are described; ways

to document results are given; and a recommended

procedure is presented.

1. INTRODUCTION

Simulation models are increasingly being used in

problem-solving and in decision-making. The developers

and users of these models, the decision-makers using

infonnation derived from the results of the models, and

people effected by decisions based on such models are all

rightly concerned with whether a model and its results are
"correct". This concern is addressed through model

verification and validation. Model validation is usually

defined to mean "substantiation that a computerized

model within its domain of applicability possesses a

satisfactory range of accuracy consistent with the

intended application of the model" (Schlesinger, et a1.
1979) and is the defmition used here. Model verification

is often defined as "ensuring that the computer program

of the computerized model and its implementation is

correct", and is the definition adopted here. A model

sometimes becomes certified or accredited which is an

"official" detennination that a model is acceptable with

respect to a set of explicit standards for a specific

purpose. A related topic is model acceptability (or

credibility), which is developing in the (potential) users

(e.g., decision-makers) of information (e.g., results)

from the models sufficient confidence in the information

that they are willing to use it.

• This paper is a modified version of "Verification and

Validation of Simulation Models", Proceedings of the 1994

Winter Simulation Conference, pp. 77-87.
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A model should be developed for a specific purpose (or

application) and its validity detennined with respect to

that purpose. If the purpose of a model is to answer a

variety of questions, the validity of the model needs to be

detennined with respect to each question. Several sets of

experimental conditions are usually required to define the

domain of a model's intended applicability. A model

may be valid for one set of experimental conditions and

be invalid in another. A model is considered valid for a
set of experimental conditions if the model's accuracy is

within its acceptable range of accuracy, which is the

amount of accuracy required for the model's intended

purpose. This generally requires that the model's output

variables of interest (Le., the model variables used to be
used in answering the questions that the model is being

developed to answer) be identified and that their required

amount of accuracy be specified. The amount of

accuracy required should be specified prior to starting the

development of the model or very early in the model

development process. If the variables of interest are

random variables, then properties and functions of the

random variables such as their means and variances are

usually what is of primary interest and are what are used

in determining model validity. Several versions of a

model are usually developed prior to obtaining a

satisfactory valid model. The substantiation that a model

is valid, i.e., model verification and validation, is

generally considered to be a process and is usually part of

the model development process.

It is often too costly and time consuming to

detennine that a model is absolutely valid over the
complete domain of its intended applicability. Instead.

tests and evaluations are conducted until sufficient

confidence is obtained that a model can be considered

valid for its intended application (Sargent 1982, 1984 and
Shannon 1975, 1981). The relationships of cost (and a
similar relationship holds for the amount of time) of

perfonning model validation and the value of the model

to the user as a function of model confidence are

illustrated in Figure 1. The cost of model validation is
usually quite significant; in particular when extremely
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2 . VALIDATION PROCESS

high confidence is required because of the consequence of

an invalid model.

The remainder of this paper is organized as follows:

Section 2 discusses the three basic approaches used in

deciding model validity; Section 3 defines the validation

techniques used; Sections 4, 5, 6, and 7 contain

descriptions of data validity, conceptual model validity,

computerized model verification, and operational validity,

respectively; Section 8 describes ways of presenting

results; Section 9 contains a recommended validation

procedure; and Section 10 gives the conclusions.

(1986) makes is that a complete IV&V evaluation ~ s
extremely costly and time consuming for what IS

obtained. This author's view is that if a third party is to

be used, they should be involved during the model

development process. If the model has already been

developed, this author believes that a third party should

usually only evaluate the verification and validation that

has already been performed. (Also see Davis (1986) for

an approach that simultaneously specifies and validates a
model).

The last approach to determine whether a model is

valid is to use a scoring model (see, e.g., Balci 1989,

Gass 1979, and Gass and Joel 1987). Scores (or

weights) are determined subjectively when conducting

various aspects of the validation process. Then these

scores are combined to determine category scores and an

overall score for the simulation model. A simulation

model is considered valid if its overall and category

scores are greater than some passing score(s). This

approach is infrequently used in practice.

This author does not believe in the use of a scoring

model for determine validity. One reason is that the

subjectiveness of this approach tends to be hidden and

thus it appears to be objective. A second reason is "how

are passing scores" to be determined. A third reason is

that a model may receive a passing score and yet have a

defect that needs correction. A fourth reason is that the

score(s) may cause over confidence in a model or be used

to argue one model is better than another.

We now discuss how model verification and

validation relate to the model development process.

There are two common ways to view this relationship.

One way uses a detail model development process and the

other uses a simple model development process. Banks,

Gerstein, and Searles (1988) reviewed work in both of

these ways and concluded that the simple way more

clearly illuminates model verification and validation.

This author recommends the use of the simple way (see

e.g., Sargent 1982) and is the way presented here.

Consider the simplified version of the modelling

process in Figure 2. The problem entity is the system

(real or proposed), idea, situation, policy, or phenomena

to be modelled; the conceptual model is the

mathematicalnogical/verbal representation (mimic) of the

problem entity developed for a particular study; and the

computerized model is the conceptual model

implemented on a computer. The conceptual model is

developed through an analysis and modelling phase, the

computerized model is developed through a computer

programming and implementation phase, and inferences

about the problem entity are obtained by conducting

computer experiments on the computerized model in the

experimentation phase.

We will now relate model validation and verification

to this simplified version of the modelling process (See

Figure 2). Conceptual model validity is defined as

determining that the theories and assumptions underlying

the conceptual model are correct and that the model

VALUE
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Figure 1: Model Confidence
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There are three basic approaches used in deciding

whether a simulation model is valid or invalid. Each of

these approaches require the model development team to

conduct verification and validation as part of the model

development process and this is discussed below in some

detail. The most common approach is for the model

development team to make the decision whether the

model is valid. This decision is a subjective decision

based on the results of the various tests and evaluations

conducted as part of the model development process.

Another approach, often called independent

verification and validation (IV& V), uses a third

(independent) party to decide whether the model is valid.

The third party is independent of both the model

development team and the model sponsor/user(s). After

the model has been developed, the third party conducts an
evaluation to determine whether the model is valid.

Based upon this validation, the third party makes a

subjective decision on the validity of the model. This

approach is usually used when there is a large cost

associated with the problem the simulation model is

being used for and/or to help in model acceptability. (A

third party is also usually used for model certification or

occreditation.)

The evaluation perfonned in the IV&V approach

ranges from simply reviewing the verification and

validation conducted by the model development team to a

complete verification and validation effort. WDOd (1986)

describes experiences over this range of evaluation by a

third party on energy models. One conclusion that Wood
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Figure 2: Simplified Version of the Modelling Process

3. VALIDATION TECHNIQUES

Animation: The model's operational behavior is

displayed graphically as the model moves through time.

For example, the movements of parts through a factory

during a simulation are shown graphically.

Comparison to Other Models: Various results (e.g.,

outputs) of the simulation model being validated are

compared to results of other (valid) models. Examples

are (i) simple cases of a simulation model may be
compared to known results of analytic models, and (ii)

the simulation model may be compared to other

simulation models that have been validated. (Sometimes

the simulation model being validated requires

modification to allow comparisons to be made.)

Degenerate Tests: The degeneracy of the model's

behavior is tested by removing portions of the model or

by appropriate selection of values of the input and

internal parameters. For example, does the average

number in the queue of a single server continue to

increase with respect to time when the arrival rate is

larger than the service rate.

Event Validity: The "events" of occurrences of the

simulation model are compared to those of the real

system to determine if they are the same. An example of

events are deaths in a fIfe department simulation.

Extreme-Condition Tests: The model structure and

output should be plausible for any extreme and unlikely

combination of levels of factors in the system; e.g., if

in-process inventories are zero, production output should

be zero.

Face Validity: Face validi ty is asking people

knowledgeable about the system whether the model

and/or its behavior are reasonable. This technique can be

used in determining if the logic in the conceptual model

is correct and if a model's input-output relationships are

reasonable.

Fixed Values: Fixed values (e.g., constants) are

used for all model input and internal variables. This

should allow checking the model results against values

easily calculated.

Historical Data Validation: If historical data exist

(or if data is collected on a system for building or testing

the model), part of the data is used to build the model and

the remaining data is used to determine (test) if the model

behaves as the system does. (This testing is conducted

by driving the simulation model with either

Distributions or Traces (Balci and Sargent 1982a, 1982b,

1984b).)

Historical Methods: The three historical methods of

validation are Rationalism, Empiricism, and Positive

Economics. Rationalism assumes that everyone knows

whether the underlying assumptions of a model are true.

Then logic deductions are used from these assumptions

to develop the correct (valid) model. Empiricism requires

every assumption and outcome to be empirically

validated. Positive Economics requires only that the

model be able to predict the future and is not concerned

with a model's assumptions or structure (causal

relationships or mechanisms).
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representation of the problem entity is "reasonable" for

the intended purpose of the model. Computerized model

verification is defined as ensuring that the computer

programming and implementation of the conceptual

model is correct. Operational validity is defined as
determining that the model's output behavior has

sufficient accuracy for the model's intended purpose over

the domain of the model's intended applicability. Data

validity is defmed as ensuring that the data necessary for

model building, model evaluation and testing, and

conducting the model experiments to solve the problem

are adequate and correct

Several versions of a model are usually developed in

the modelling process prior to obtaining a satisfactory

valid model. During each model iteration, model

verification and validation are performed (Sargent 1984).

A variety of (validation) techniques are used, which are

described below. No algorithm or procedure exists to

select which techniques to use. Some attributes that

effect which techniques to use are discussed in Sargent

(1984).

This section describes various validation techniques

(and tests) used in model verification and validation.

Most of the techniques described here are found in the

literature (see Balci and Sargent (1984a) for a detailed

bibliography), although some may be described slightly

different. They can be used either subjectively or

objectively. By objectively, we mean using some type

of statistical test or mathematical procedure, e.g.,

hypothesis tests and confidence in tervals. A

combination of techniques is generally used. These

techniques are used for validating and verifying the

submodels and overall model.
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I nterfUll Validity: Several replications (runs) of a

stochastic model are made to detennine the amount of
(internal) stochastic variability in the model. A high
amount of variability (lack of consistency) may cause the
model's results to be questionable, and, if typical of the

problem entity, may question the appropriateness of the

policy or system being investigated.
Multistage Validation: Naylor and Finger (1967)

proposed combining the three historical methods of

Rationalism, Empiricism, and Positive Economics into

a multistage process of validation. This validation

method consists of (1) developing the model's

assumptions on theory, observations, general knowledge,

and function, (2) validating the model's assumptions

where possible by empirically testing them, and (3)

comparing (testing) the input-output relationships of the

model to the real system.
Operational Graphics: Various performance

measures, e.g., number in queue and percentage of

servers busy, are shown graphically as the model moves

through time; i.e., the dynamic behavior of perfonnance

indicators are visually displayed as the simulation model

moves through time.

Parameter Variability - Sensitivity Analysis: This

technique consists of changing the values of the input

and internal parameters of a model to determine the effect

upon the model behavior and its output. The same

relationships should occur in the model as in the real

system. Those parameters that are sensitive, i.e., cause

significant changes in the model's behavior or output,

should be made sufficiently accurate prior to using the
model. (This may require iterations in model

development)

Predictive Validation: The model is used to predict

(forecast) the system behavior and then comparisons are

made between the system behavior and the model's

forecast to determine if they are the same. The system

data may come from an operational system or from

experiments perfonned on the system, e.g., field tests.

Traces: The behavior of different types of specific

entities in the model are traced (followed) through the

model to detennine if the model's logic is correct and if

the necessary accwacy is obtained.

Turing Tests: People who are knowledgeable about

the operations of a system are asked if they can

discriminate between system and model outputs.

(Schruben (1980) contains statistical tests for use with

Turing tests.)

4. DATA VALIDITY

Even though data validity is usually not considered

part of model validation, we discuss it because it is

usually difficult, time consuming, and costly to obtain

s u f f i c i e n ~ accurate and appropriate data, and is frequently

the reason that attempts to validate a model fail. Data

are needed for three purposes: for building the conceptual

model, for validating the model, and for performing

Sargent

experiments with the validated model. In model
validation, we are concerned only with the frrst two types

of data.
To build a conceptual model, we must have

sufficient data on the problem entity to develop theories

that can be used in building the model, to develop the

mathematical and logical relationships in the model for it

to adequately represent the problem entity for its intended

purpose, and to test the model's underlying assumptions.

In addition, behavior data is needed on the problem entity

to be used in the operational validity step of comparing

the problem entity's behavior with the model's behavior.

(Usually, these data are system input/output data.) If

these data are not available, high model confidence

usually cannot be obtained because sufficient operational

validity cannot be achieved.
The concern with data is that appropriate, accurate,

and sufficient data are available, and if any data

transformations are made, such as disaggregation, they

are correctly performed. Unfortunately, there is not

much that can be done to ensure that the data are correcl

The best that can be done is to develop good procedures

for collecting and maintaining data, test the collected data
using techniques such as internal consistency checks, and

screen for outliers and determine if they are correct. If

the amount of data is large, a data base should be

developed and maintained.

5. CONCEPTUAL MODEL VALIDATION

Conceptual model validity is determining that (i) the

theories and assumptions underlying the conceptual

model are correct and (ii) the model representation of the

problem entity and the model's structure, logic, and

mathematical and causal relationships are "reasonable"

for the intended purpose of the model. The theories and

assumptions underlying the model should be tested using

mathematical analysis and statistical methods on

problem entity data. Examples of theories and

assumptions are linearity, independence, stationary, and

Poisson arrivals. Examples of applicable statistical

methods are fitting distributions to data, estimating

parameter values from the data, and plotting the data to

determine if they are stationary. In addition, all theories

used should be reviewed to ensure they were applied

correctly; for example, if a Markov chain is used, does

the system have the Markov property and are the states

and transition probabilities correct

Next, each submodel and the overall model must be
evaluated to determine if they are reasonable and correct

for the intended purpose of the model. This should

include determining if the appropriate detail and aggregate

relationships have been used for the model's intended

purpose, and if the appropriate structure, logic, and

mathematical and causal relationships have been used.

The primary validation techniques used for these

evaluations are face validation and traces. Face validation

is having experts on the problem entity evaluate the
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conceptual model to detennine if they believe it is correct
and reasonable for its purpose. This usually requires
examining the flowchart or graphical model, or the set of
model equations. The use of traces is the tracking of
entities through each submodel and the overall model to

determine if the logic is correct and the necessary
accuracy is maintained. If any errors are found in the
conceptual model, it must be revised and conceptual
model validation perfonned again.

6. COMPUTERIZED MODEL VERIFICATION

Computerized model verification is ensuring that the
computer programming and implementation of the

conceptual model is correct. To help ensure that a
correct computer program is obtained, program design
and development procedures found in the field of
Software Engineering should be used in developing and
implementing the computer program. These include
such techniques as top-down design, structured
programming, and program modularity. A separate
program module should be used for each submodel, the
overall model, and for each simulation function (e.g.,
time-flow mechanism, random number and random
variate generators, and integration routines) when using
general purpose higher order languages, e.g.,

FORTRAN, PASCAL or C, and where possible when
using simulation languages (Chattergy and Pooch 1977).

(See Whitner and Balci (1989) for a more detailed

discussion on model verification. )
One should be aware that the type of computer

language used effects the probability of having a correct

program. The use of a special purpose simulation
language, if appropriate, generally will result in having
less errors than if a general purpose simulation language
is used, and using a general purpose simulation language
will generally result in having less errors than if a
general purpose higher order language is used. Not only

does the use of simulation languages increase the
probability of having a correct program, they usually

reduce programming time significantly. (However,

flexibility is usually reduced.)
After the computer program has been developed,

implemented, and hopefully most of the programming

"bugs" removed, the program must be tested for

correctness and accuracy. First, the simulation functions

should be tested to see if they are correct Usually

straightforward tests can be used here to detennine if they

are working properly. Next, each submodel and the
overall model should be tested to see if they are correct

Here the testing is more difficult There are two basic

approaches to testing: static and dynamic testing
(analysis) (Fairley 1976). In static testing the computer
program of the computerized model is analyzed to

determine if it is correct by using such techniques as
correctness proofs, structured walk-through, and

examining the structure properties of the program. The
commonly used structured walk-through technique

consists of each program developer explaining their
computer program code statement by statement to other
members of the modelling team until all are convinced it
is correct (or incorrect).

In dynamic testing, the computerized model is
executed under different conditions, and the resulting
values obtained are used to determine if the computer
program and its implementations are correct. This
includes both the values obtained during the program
execution and the final values obtained. There are three

different strategies used in dynamic testing: bottom-up
testing which means, e.g., testing the submodels first

and then the overall model; top-down testing which
means, e.g., testing the overall model first using

programming stubs (sets of data) for each of the
submodels and then testing the submodels; and mixed
testing, which is using a combination of bottom-up and
top-down testing (Fairley 1976). The techniques
commonly used in dynamic testing are traces,
investigations of input-output relations using different
validation techniques, internal consistency checks, and

reprogramming critical components to detennine if the
same results are obtained. If there are a large number of
variables, one might aggregate to reduce the number of
tests needed or use certain types of design of experiments
(Kleijnen 1987), e.g., use factor screening experiments

(Smith and Mauro 1982) to identify the key variables, in
order to reduce the number of experimental conditions

that need to be tested.
One must continuously be aware while checking the

correctness of the computer program and its
implementation that errors may be caused by the data,

the conceptual model, the computer program, or the
computer implementation.

7 0 OPERATIONAL VALIDITY

Operational validity is primarily concerned with
determining that the model's output behavior has the
accuracy required for the model's intended purpose over

the domain of its intended applicability. This is where

most of the validation testing and evaluation takes place.

The computerized model is used in operational validity
and thus any deficiencies found may be due to an
inadequate conceptual model, an improperly programmed
or implemented conceptual model (e.g., due to
programming errors or insufficient numerical accuracy),

or due to invalid data.

All of the validation techniques discussed in Section
3 are applicable to operational validity. Which

techniques and whether to use them objectively or
subjectively must be decided by the model development
team and other interested parties. The major attribute
effecting operational validity is whether the problem

entity (or system) is observable or not, where observable
means it is possible to collect data on the operational

behavior of the program entity. Figure 3 gives a

classification of the validation approaches for operational
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7 .1 Graphical Comparison of Data

Figure 3: Operational Validity Classification
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4 and examples of behavior graphs are shown in Figures
5 and 6. A variety of graphs using different types of
measures and relationships are required such as (i) means,

variances, maximums, distributions, and time series of

each output variable, (ii) relationships between

parameters of each output variable, e.g., means and

variances, and (iii) relationships between different output

variables. It is important that appropriate measures and

relationships be used in validating a model and that they

be determined with respect to the model's intended

purpose. See Anderson and Sargent (1974) for an

example of a set of graphs used in the validation of a

simulation model.
These graphs can be used in model validation in

three ways. First, the model development team can use

the graphs in the model development process to make a
subjective judgement on whether the model does or does

not possess sufficient accuracy for its intended purpose.

Secondly, they can be used in the face validity technique

where experts are asked to make subjective judgements

on whether a model does or does not possess sufficient

accuracy for its intended purpose. The third way the

graphs can be used is in Turing Tests.
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The model's and system's behavior data are graphed

for various sets of experimental conditions to determine

if the model's output behavior has sufficient accuracy for

its intended purpose. Three types of graphs are used:

Histograms, Box (and Whisker) Plots (Johnson 1994),

and Behavior Graphs. (See Sargent (1996) for a

thorough discussion on the use of these for model

validation.) An example of a box plot is given in Figure

validity. "Comparison" means comparing/testing the

model and system input-output behaviors, and "explore

model behavior" means to examine the output behavior

of the model using appropriate validation techniques and

usually includes parameter variability-sensitivity

analysis. Vacious sets of experimental conditions from

the domain of the model's intended applicability should

be used for both comparison and exploring model
behavior.

To obtain a high degree of confidence in a model and

its results, comparison of the model's and system's input

output behaviors for at least two different sets of

experimental conditions is usually required. There are

three basic comparison approaches used: (i) graphs of

the model and system behavior data, (ii) confidence inter

vals, and (iii) hypothesis tests. Graphs are the most

commonly used approach and confidence intervals are

next

Figure 4: Box Plot Figure 5: Disk Access



Verifying and Validating Simulation l\Iodels Gl

2.0

REAL SYSTEM -0

SIMULATION MODEL -6- 0

w
~

1.5i=
z
0 6~
u

0~
w

6-0::

66-"'- 1.0 0

0
0 0

:>

~~
6- 6

laJ
0

ci
0

0.....

~6j/6
en

0.5
~ 0 6

~o

~
0.0

0.5 1.0 1.5 2.0

AVERAGE VALUEOFREACTION TIME (SECONDS)

The lengths and the sizes (i) are affected by the values of
confidence levels, variances of the model and system
response variables, and sample sizes and (ii) can be made
smaller by decreasing the confidence levels or increasing
the sample sizes. (Variance reduction techniques (Law
and Kelton 1991) can be used when collecting data from
a simulation model to decrease the variability of an
estimate and thus obtain a smaller c.i., s.c.i., or j.c.r.)
A tradeoff needs to be made among the sample sizes,
confidence levels, and estimates of the length or sizes of
the model range of accuracy, i.e., c.i., s.c.i., or j.c.r.
Tradeoff curves can be constructed to aid in the tradeoff
analysis.

Details on the use of c.i., s.c.i. and j.c.r. for
operational validity, including a general methodology,
are contained in Balci and Sargent (1984b). A brief
discussion on the use of c.i. for model validation is also
contained in Law and Kelton (1991).

7 .3. Hypothesis Tests
Figure 6: Reaction Time

7 .2 Confidence Intervals

Confidence intervals (c.i.), simultaneous confidence
intervals (s.c.i.), and joint confidence regions G.c.r.) can
be obtained for the differences between the population
parameters (e.g., means and variances) and distributions
of the model and system output variables for each set of
experimental conditions. These c.i., s.c.i., and j.c.r. can
be used as the model range of accuracy for model
validation.

To construct the model range of accuracy, a
statistical procedure containing a statistical technique and
a method of data collection must be developed for each
set of experimental conditions and for each parameter of
interest The statistical techniques used can be divided
into two groups: (A) univariate statistical techniques and
(B) multivariate statistical techniques. The univariate
techniques can be used to develop c.i. and with the use of
the Bonferroni inequality (Law and Kelton 1991) s.c.i.
The multivariate techniques can be used to develop s.c.i.
and j.c.r. Both parametric and nonparametric techniques
can be used.

The method of data collection must satisfy the
underlying assumptions of the statistical technique being
used. The standard statistical techniques and data
collection methods used in simulation output analysis
(Banks, Carson and Nelson 1996, Law and Kelton 1991)
can be used for developing the model range of accuracy;
namely (1) replication, (2) batch means, (3) regenerative,
(4) spectral, (5) time series, (6) standardized time series,
and (7) overlapping batch means.

It is usually desirable to construct the model range
of accuracy with the lengths of the c.i. and s.c.i. and the
sizes of the j.c.r. as small as possible. The shorter the
lengths or the smaller the sizes, the more useful and

meaningful the model range of accuracy will usually be.

Hypothesis tests can be used in the comparison of
parameters, distributions, and time series of the output
data of a model and a system for each set of experimental
conditions to determine if the model's output behavior
has an acceptable range of accuracy. An acceptable range
of accuracy is the amount of accuracy that is required of a
model to be valid for its intended purpose.

The first step in hypothesis testing is to state the
hypotheses to be tested:

HO: Model is valid for the acceptable range of

accuracy under the set of experimental conditions. (1)
HI: Model is invalid for the acceptable range of

accuracy under the set of experimental conditions.
Two types of errors are possible in testing the

hypotheses in (I). The first or type I error is rejecting
the validity of a valid model; the second or type II error
is accepting the validity of an invalid model. The
probability of a type error I is called model builder's risk,
a, and the probability of type II error is called modeI
user's risk, ~ (Balci and Sargent 1981). In model vali
dation, model user's risk is extremely important and
must be kept small. Thus both type I and type II errors
must be carefully considered in using hypothesis testing
for model validation.

The amount of agreement between a model and a
system can be measured by a validity measure. The
validity measure is chosen such that the model accuracy
or the amount of agreement between the model and the
system decreases as the value of the validity measure
increases. The acceptable range of accuracy can be used

to determine an acceptable validity range, 0 ::; A::; A*.
The probability of acceptance of a model being

valid, Pa, can be examined as a function of the validity

measure by using an Operating Characteristic Curve
(Johnson 1994). Figure 7 contains three different

operating characteristic curves to illustrate how the

sample size of observations affect Pa as a function of A.
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8. DOCUMENTATION

Model verification and validation are critical in the
development of a simulation model. Unfortunately,
there are no set of specific tests that can be easily applied
to determine the "correctness" of the model.
Furthermore, no algorithm exists to determine what
techniques or procedures to use. Every new simulation
project presents a new and unique challenge.

There is considerable literature on verification and
validation. (See the following UHL on the WWW for a

10. SUMMARY

9. RECOMMENDED PROCEDURE

Sargent (1994) for examples of evaluation tables of
conceptual model validity and overall summary.) The
columns of the table are self explanatory except for the
last column which refers to the confidence the evaluators
have in the results or conclusions and this is often
expressed as low, medium, or high.

This author recommends that, as a minimum, the
following steps be perfonned in model validation:
(1) An agreement be made between (i) the model
development team and (ii) the model sponsors and users
(if possible) on the basic validation approach and on a
minimum set of specific validation techniques to be used
in the validation process prior to developing the model.
(2) The amount of accuracy required of the model's
output variables of interest for the model's intended
application be specified prior to starting the development
of the model or very early in the model development

process.
(3) The assumptions and theories underlying the model
be tested, when possible.
(4) In each model iteration, at least face validity be
performed on the conceptual model.
(5) In each model iteration, explore the model's behavior
using the computerized model.
(6) In at least the last model iteration, comparisons be

made between the model and system behavior (output)
data for at least two sets of experimental conditions,
when possible.
(1) Validation documentation be included in the model
documentation.
(8) If the model is to be used over a period of time, a
schedule for periodic review (and possible revalidation) of
it be made and followed.

Models occasionally are developed to be used more
than once. A procedure for reviewing the validity of
these models over their life cycles needs to be developed
as specified by step (8). No general procedure can be
given as each situation is different. For example, if no
data were available on the problem entity (e.g., a system)
when the model was initially developed and validated,
then revalidations of it should take place prior to each
time the model is used if additional data or system
understanding has occurred since its last validation.

SMAll
SAMPLE
SIZE

O----__~ - - - L . . = _ _ - - - - - = : : : : : : : : : : : : : : : : :

o ,,*
VAU olTY MEASURE (,,)

Figure 7: Operating Characteristic Curves

As can be seen, an inaccurate model has a high
probability of being accepted if a small sample size of
observations are used and an accurate model has a low
probability of being accepted if a large sample size of
observations are used. The location and shape of the
operating characteristic curves is a function of the
statistical technique being used, the value of a chosen
for A= 0, Le., 0.*, and the sample size of observations.
Once the operating characteristic curves are constructed,
the intervals for the model user's risk ~(A) and the model
builder's risk a can be determined for a given A as
follows:

a ~ model builder's risk a ~ (1- ~ *) (2)

o ~ model user's risk peA) ~ ~*.

Thus, there is a direct relationship among builder's risk,
model user's risk, acceptable validity range, and sample
size of observations. A tradeoff among these must be

made in using hypothesis tests in model validation.
Details of the methodology of using Hypothesis

Tests in comparing model's and system's output data for
model validations are given in Balci and Sargent (1981).
Examples of the application of this methodology in the
testing of output means for model validation are given in
Balci and Sargent (1982a, 1982b, 1983). Also see
Banks, Carson, and Nelson (1996).

Documentation on model verification and validation
is usually critical in convincing users of the
"correctness" of a model and its results, and should be
included in the simulation model documentation (For a
general discussion on documentation of computer-based
models, see Gass (1984).) Both detailed and summary
documentation is desired. The detailed documentation
should include specifies on the tests, evaluations made,

da~ results, etc. The summary documentation should
contain a separate evaluation table for data validity,
conceptual model validity, computer model verification,
operational validity, and an overall summary. See
Figure 8 for the evaluation table of computer model
verification as an example of the first four tables. (See
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AS VALID
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(3.
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Figure 8: Evaluation Table for Computer Model Verification

recent bibliography: http://manta.cs.vt.edu/biblio/.)
Articles given in the limited bibliography can be used as
a starting point for furthering your knowledge on model
verification and validation.
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