
Verification-Driven Slicing of UML/OCL Models

Asadullah Shaikh
Universitat Oberta de

Catalunya Barcelona, Spain

ashaikh@uoc.edu

Robert Clarisó
Universitat Oberta de

Catalunya Barcelona, Spain

rclariso@uoc.edu

Uffe Kock Wiil
The Maersk-McKinney

Moller Institute
University of Southern

Denmark Odense, Denmark
ukwiil@mmmi.sdu.dk

Nasrullah Memon
The Maersk-McKinney

Moller Institute
University of Southern

Denmark Odense, Denmark
memon@mmmi.sdu.dk

ABSTRACT

Model defects are a significant concern in the Model-Driven
Development (MDD) paradigm, as model transformations
and code generation may propagate errors to other nota-
tions where they are harder to detect and trace. Formal
verification techniques can check the correctness of a model,
but their high computational complexity can limit their scal-
ability. In this paper, we consider a specific static model
(UML class diagrams annotated with unrestricted OCL con-
straints) and a specific property to verify (satisfiability, i.e.,
“is it possible to create objects without violating any con-
straint?”). Current approaches to this problem have an ex-
ponential worst-case runtime. We propose a technique to
improve their scalability by partitioning the original model
into submodels (slices) which can be verified independently
and where irrelevant information has been abstracted. The
definition of the slicing procedure ensures that the property
under verification is preserved after partitioning.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.4 [Software Engineering]: Software/Program
Verification; D.3.2 [Programming Languages]: Language
Classifications; I.2.8 [Artificial Intelligence]: Problem Solv-
ing, Control Methods, and Search

General Terms

Verification

Keywords

MDD, UML, OCL, Model Slicing, Formal Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$10.00.

1. INTRODUCTION
Model-Driven Development (MDD) advocates for a shift

in the software engineering process: using models, instead
of code, as the primary development artifact. Within MDD,
tool support for model design, analysis and transformation
is essential and scalability is an important requirement.

There are formal verification tools for automatically check-
ing correctness properties on models, but the lack of scala-
bility is usually a drawback and its improvement will be the
goal of this paper. We will consider the analysis of the static
elements of a software specification, modeled as a UML class
diagram. Complex integrity constraints will be expressed in
the Object Constraint Language (OCL). In this context, the
fundamental correctness property of a model is satisfiabil-
ity [1,4,19]: “is it possible to instantiate the model without
violating any integrity constraint?”.

This property is important not only because it can point
out inconsistent models, but also because it can be used
to check other interesting properties like the redundancy of
an integrity constraint. For example, a pair of constraints
C1 and C2 are not redundant if the following is satisfiable:
(C1 ∧

¬ C2)∨ (¬C1 ∧C2), i.e., it is possible to satisfy C1 but
not C2 or vice versa.

Reasoning on UML class diagrams without OCL integrity
constraints is an EXPTIME-complete problem [2]. Further-
more, the addition of unrestricted1 OCL constraints makes
the problem undecidable. Current solutions for checking sat-
isfiability employ formalisms such as description logics [1],
higher-order logics [3], database deduction systems [19], lin-
ear programming [17], SAT [11] or constraint satisfaction
problems [2, 4]. However, all the approaches which support
general OCL constraints share a common drawback, a high
worst-case computational complexity. Their execution time
may depend exponentially on the size of the model, under-
standing size as the number of classes/attributes/associations
in the model and/or the number of OCL constraints.

A review of sample UML/OCL models highlights two ob-
servations which are relevant to this problem. First, models

1Some approaches restrict the set of supported OCL con-
structs, e.g., to make the verification decidable. In this pa-
per, we consider general OCL constraints with no limitations
on their expressivity.

185

Figure 1: High-level description of the slicing process.

typically contain elements which are either unconstrained or
constrained in a trivially satisfiable way. For instance, at-
tributes acting as identifiers should have unique values, but
often there are no other constraints on these attributes. A
second observation is that some constraints refer to indepen-
dent entities. For example, constraints about the password
of a user and the price of a product are likely to be unrelated.

These observations can be used to improve the scalabil-
ity of verification methods for satisfiability. Our proposal is
based on model slicing : given an input UML/OCL model,
the diagram and its constraints will be automatically parti-
tioned into submodels while abstracting unnecessary model
elements. The structure of the class diagram (associations
and class hierarchies) and the OCL invariants (abstract syn-
tax tree) will guide the partitioning process. Intuitively, the
underlying idea is that all constraints restricting the same
model element should be verified together and therefore be-
long to the same slice. Then, satisfiability of each slice is
checked independently and the results are combined to as-
sess the satisfiability of the entire model. Figure 1 illustrates
the overall flow. To ensure soundness, slicing should not al-
ter the outcome of the verification.

The remainder of the paper focuses on the definition of the
slicing algorithm and the evaluation of its benefits. Section 2
introduces a running example and a more detailed overview
of the slicing procedure. Section 3 focuses on the analysis
of OCL constraints while Section 4 explores the structural
analysis of the class diagram. Section 5 describes experimen-
tal results measuring how slicing reduces verification time.
Section 6 shows a larger real world case study where the
benefits of slicing are illustrated. In Section 7, related work
is presented. Finally, Section 8 provides the conclusions and
identifies directions of future work.

2. OVERVIEW OF UML/OCL SLICING
The approach: The input of our method is a UML class

diagram annotated with OCL invariants. As an example,
Figure 2 introduces class diagram that will be used through-
out the paper, modeling the information system of a bus
company. Several integrity constraints are defined as OCL
invariants.

Our goal is to determine whether the input class diagram
has legal instances, that is, instances that satisfy all integrity
constraints. An instance of a UML class diagram is a col-
lection of objects (according to the class definitions) and a
collection of links between them (according to the associa-
tions). The output of the tool will either be “satisfiable” or
“unsatisfiable”. In case of satisfiability, a sample instance
proving the satisfiability will be computed as well.

Two different notions of satisfiability will be considered
for verification: strong and weak satisfiability [1, 4, 19]. A

class diagram is weakly satisfiable if it is possible to create
a legal instance which is non-empty, i.e., it contains at least
one object from some class. On the other hand, strong sat-
isfiability is a more restrictive condition requiring that the
legal instance has at least one object from each class and
a link from each association. Some parts of the slicing al-
gorithm will work differently depending on the satisfiability
notion being verified.

The algorithm works by partitioning the UML/OCL class
diagram into a set of disjoint slices. A slice S of a UML/OCL
class diagram D is a subset of the original model: another
valid UML/OCL class diagram where any element (class,
association, inheritance, aggregation, invariant, . . .) ap-
pearing in S also appears in D, but the reverse does not
necessarily hold. Figure 3 represents the slices for strong
satisfiability. Each slice is verified independently and the
verification result of the whole model is obtained by com-
bining the results of all slices. If we are checking strong
satisfiability, it is necessary to check whether all slices are
strongly satisfiable. On the contrary, if we are checking weak
satisfiability, it is sufficient to ensure that at least one slice
is weakly satisfiable.

Preserving satisfiability: The fundamental requirement
of this procedure is that it should preserve the outcome of
the verification: the answer provided by the verification with
slicing should be the same as the one given by a verification
tool without slicing.

Each slice is a disjoint subset of the integrity constraints
and a disjoint fragment of the original class diagram. As
each slice is less constrained than the original model, it is
clear that if the original model was satisfiable, the slices will
also be satisfiable. Therefore, it is only necessary to ensure
that if the original model was unsatisfiable, the answer will
also be “unsatisfiable”: if we are checking strong satisfiabil-
ity, at least one slice will be strongly unsatisfiable, and if we
are checking weak satisfiability, all slices will be weakly un-
satisfiable. A formal proof is out of the scope of this paper
but we will try to provide some insight on how satisfiability
is preserved.

A class diagram can be unsatisfiable due to several rea-
sons. First, it is possible that the model provides inconsis-
tent conditions on the number of objects of a given type.
Inheritance hierarchies, multiplicities of association or ag-
gregation ends and textual integrity constraints (e.g., Type::
allInstances() −>size() = 7) can restrict the possible num-
ber of objects of a class. Second, it is possible that there
are no valid values for one or more attributes of an object in
the diagram. Within a model, textual constraints provide
the only source of restrictions on the values of an attribute,
e.g., self.x = 7. Finally, it is possible that the unsatisfiability
arises from a combination of both factors, e.g., the values of

186

context Coach inv MinCoachSize:
self.noOfSeats ≥ 10

context Coach inv MaxCoachSize:
self.trips −>forAll(t | t.passengers −>size() ≤ noOfSeats)

context Trip inv CorrectTripDestination:
not self.origin = self.destination

context Ticket inv UniqueTicketNumber:
Ticket::allInstances() −>isUnique (t | t.number)

context Ticket inv MachineNumber:
self.name=self.vendingMachine.bookingOffice.location.concat(self.number.toString())

context Passenger inv NonNegativeAge:
self.age ≥ 0

Figure 2: UML/OCL class diagram used as running example (model Coach).

some attributes require a certain number of objects to be
created which contradict other restrictions.

To sum up, an unsatisfiable model either contains an un-
satisfiable textual or graphical constraint or an unsatisfiable
interaction between one or more textual or graphical con-
straints, i.e., the constraints can be satisfied on their own
but not simultaneously. To ensure that unsatisfiability is
propagated into the slices, three conditions should be guar-
anteed:

1. No potentially unsatisfiable constraint should be re-
moved from the problem.

2. If there are two or more constraints whose interaction
could be unsatisfiable, none of them should be removed
from the problem.

3. All constraints referring to the same model element
should appear together in the same slice, i.e., their
interaction should not be split into different slices.

In order to ensure that conditions (1-3) hold, the UML/OCL
model has to be analyzed before slicing. The analysis should
reveal which parts of the model can be abstracted or parti-
tioned safely. The following sections focus on this analysis
at two levels: UML and OCL. In Section 3, a traversal of the
syntax tree of each OCL constraint identifies which classes,
attributes and navigations are being restricted. Additional
analysis identifies trivial constraints and constraints that can
be checked independently. In Section 4, dependencies among
the number of objects in each class, like inheritance hierar-
chies or multiplicity constraints, are studied.

3. ANALYSIS OF OCL CONSTRAINTS
OCL allows the definition of expressions on UML models.

An expression which evaluates to true or false, e.g., a class
invariant, will be called a constraint. OCL can also be used
to define the result of query operations, which can then be
invoked inside other expressions.

187

Invariant Support Attributes Navigations
MinCoachSize Coach Coach.noOfSeats None
MaxCoachSize Coach, Trip, Passenger Coach.noOfSeats Travels, Uses
CorrectTripDestination Trip Trip.(origin,destination) None
MachineNumber VendingMachine, Ticket(name,number) Sells, Has

BookingOffice, Ticket BO.location
UniqueTicketNumber Ticket Ticket.number None
NonNegativeAge Passenger Passenger.age None

Table 1: Support, attributes and navigations in the running example.

Figure 3: Slices for the verification of strong satisfi-
ability in the running example.

Any OCL expression is defined within the context of a
type. Typically, an OCL expression involves several ob-
jects from one or more classes of the model. To get a
starting object, we can use the keyword self, which denotes
an object of the context type; or the method allInstances()
which can be used to access all objects of a given type, e.g.,
Trip::allInstances() returns a set of all objects of class Trip.
Given an object, OCL provides operators to read the values
of its attributes (attribute access) and access the objects con-
nected to it through associations (navigation). Combining
these operators with arithmetic, logic and relational opera-
tors, iterators and user-defined query operations, it is possi-
ble to write complex constraints about UML models.

This section describes how to analyze OCL invariants in
order to extract information relevant to its satisfiability. We
are interested in identifying which model elements are con-
strained by an invariant, as interactions between constraints
appear when two or more constraints restrict the same model
elements.

3.1 Constraint Support
The support of an OCL expression is the subset of classes

of the class diagram referenced by the expression. If the
expression is a query operation, it contains the types whose
objects are explored to evaluate the query. For invariants,
the support describes the set of classes restricted by the con-
straint. This information will be used identify classes that
appear together in the same constraint and therefore must
be analyzed within the same slice. Formally, the support of
an expression E contains the following types:

1. The context type where E is defined and all its su-
pertypes, as long as the “self” variable appears within
E.

2. The type of each association end navigated within E.

3. Each type referenced explicitly in E by the opera-
tion Type::allInstances() or by a type check or con-
version operation, e.g., oclIsKindOf, oclIsTypeOf or
oclAsType.

4. The union of the supports of all query operations in-
voked from E.

Another piece of information required by the remaining
analysis steps is the set of attributes and navigations used
in each invariant. This information can be gathered with a
straightforward traversal of the OCL syntax tree. Table 1
summarizes all this data for the invariants of the running
example.

3.2 Local and Global Constraints
Some parts of a verification problem can be checked in iso-

lation within the boundaries of a class and without affecting
the big picture. Intuitively, if there is a constraint on an at-
tribute which is not used anywhere else in the model, we can
split the verification problem in two separate subproblems:
checking that the constraint on the attribute is feasible and
verifying the rest of the system. This section will present
the tools to identify these local constraints.

An expression is called local to a class C if it can be eval-
uated by examining only the values of the attributes in one

object of class C. Expressions that do not fit into this cate-
gory, because they need to examine multiple objects of the
same class or some objects from another class, are called
global.

In other words, a local expression can be defined as fol-
lows: (a) it does not use navigations through associations
and, (b) it does not call allInstances(), (c) it does not use
attributes defined in a superclass, (d) it does not call any
global query operation and (e) it does not perform any type
check or type conversion operation. Table 2 shows some ex-
amples of local and global expressions written in the context
of class Trip.

Some attributes may appear in local constraints, global
constraints or both. We are interested in detecting those
attributes that can be studied locally, like those that do not
appear in global constraints and are not related to attributes
that appear there. In this sense, the set of global attributes
will be iteratively defined as follows: (a) the attributes used
in global expressions plus (b) the attributes used in local
expressions where there is at least one global attribute. All
other attributes of the model will be called local. A local
expression which uses only local attributes will be called
strongly local.

It should be noted that according to our definition, the
result of a strongly local invariant does not depend on (a) at-
tributes outside those mentioned in the expression or (b) the

188

Type Expression (context Trip) Description
Local self.origin �= self.destination Attribute access
Global not self.passengers−>isEmpty() Navigation
Global Ticket::allInstances()−>isUnique(t|t.number) allInstances()
Global self.oclIsTypeOf(“PrivateTrip”) oclIsTypeOf()

Table 2: Examples of local and global invariants.

Pattern Condition
Type::allInstances() −>isUnique(at) Key constraint if attribute is not constrained

anywhere else.
self.at op exp Derived value constraint if attribute is not used

anywhere else and expression does not involve attribute.
A or B Trivially satisfiable if either A or B are satisfiable.
A and B Trivially satisfiable if either A and B are satisfiable.
A implies B =¬A∨B Trivially satisfiable if either ¬A or B are satisfiable.
Not A Trivially satisfiable if A is trivially satisfiable

and it is not a key constraint.
self.navigation−>isUnique(at) Trivially satisfiable if attribute is not used anywhere else.

Table 3: Patterns with Conditions

number of objects in any class. The only chance of poten-
tial interaction with other invariants is with other strongly
local invariants of the same class, if they have any attribute
in common. Therefore, strongly local invariants of a class
can be analyzed separately from the rest of the model. The
division into subproblems is the following:

• A problem defined by the class, its local attributes
and its strongly local invariants (which can be further
partitioned if these invariants restrict disjoint sets of
attributes).

• Another problem defined by the original model, remov-
ing the attributes and constraints that appear in the
first subproblem.

In our running example, invariants MinCoachSize, Non-
NegativeAge and CorrectTripDestination are all local invari-
ants. Of these, invariant MinCoachSize is not strongly lo-
cal as the attribute “noOfSeats” is also used in the global
invariant MaxCoachSize. The remaining invariants, Non-
NegativeAge and CorrectTripDestination can be abstracted
from the model together with the attributes they reference
and their satisfiability can be checked independently.

3.3 Trivially Satisfiable Constraints
A final analysis that can improve the efficiency of satisfia-

bility verification is the detection and removal of trivially
satisfiable invariants from the UML/OCL class diagram.
Detecting satisfiable constraints is as hard as satisfiability
itself, so we restrict ourselves to consider typical patterns
which may arise in different applications.

The first trivially satisfiable pattern which can be safely
removed is the key constraint, stating that a given attribute
must be unique, e.g., Type::allInstances() −>isUnique(obj
| obj.attr). If the attribute is of type Integer, Float or
String and it is not referenced by any other constraint, it
can be trivially satisfied: a different value can be assigned
to each potential instance, e.g., 1, 2, 3, . . . The verification
engine does not need to spend time computing the value of
the attribute in each object and enforcing uniqueness among
different objects.

Another trivially satisfiable pattern which can also be re-
moved is the derived value constraint, where the value of one
attribute depends on the values of other attributes. The pat-
tern is self.attrib op expression where attrib is an attribute
of a basic type (Boolean, Integer, Float, String) not con-
strained by any other constraint, op is a relational operator
(=, �=, <,>,≤,≥) and expression is a “safe”OCL expression
which does not include any reference to attrib. By “safe”
we mean a side-effect free expression which cannot evaluate
to the undefined value in OCL (OclUndefined). This means
that we do not allow divisions that can cause a division-by-
zero or collection operations which are undefined on empty
collections like first().

Intuitively, this constraint cannot make the model unsat-
isfiable: if an instance for the rest of the model can be cre-
ated, it is simply a matter of evaluating expression to find
out the right value of attrib. The conditions on expression
(no self-references, no undefined values) guarantee that the
evaluation always computes a feasible value for attrib. Table
3 briefly summarizes the patterns and conditions where the
column Pattern shows the possible expressions and the col-
umn Condition illustrates the criteria of the given patterns.

Regarding the feed-back provided to the user, it is possible
to hide the fact that these constraints have been abstracted.
If the verification tool provides an instance of the model as
an answer, a post-processing phase can add the abstracted
attributes and assign them correct values according to the
constraints.

Considering the running example, invariant MinCoachSize
is a derived value constraint where the expression is the con-
stant 0. However, this invariant is not trivially satisfiable
and therefore cannot be abstracted, because the attribute
“noOfSeats” is also constrained by the invariant MaxCoach-
Size. On the other hand, constraints NonNegativeAge, Cor-
rectTripDestination and MachineNumber are derived value
constraints which can be abstracted. Finally, invariant Uni-
queTicketNumber is a key constraint which can also be ab-
stracted.

189

Figure 4: Flow graph (left) and dependency graph (right) for the running example.

4. ANALYSIS OF UML CLASS DIAGRAMS
For the sake of brevity and without loss of generality, in

this section we will consider a UML class diagram composed
of binary associations and inheritance relations. The re-
maining features of class diagrams like associative classes or
n-ary associations can be expressed in terms of binary asso-
ciations (and potentially additional OCL constraints) [9].

In this phase, we will compute a graph-based representa-
tion (dependency graph) that captures the dependencies of
the elements within the UML/OCL class diagram. Then,
the computation of slices will simply consist of computing
the connected components of the graph, i.e., the maximal
subgraphs where there is a path among each pair of ver-
tices. Intuitively, each connected component represents a
set of interdependent constraints which have to be analyzed
as a whole.

A dependency graph is an undirected graph where each
vertex is a class of the model. The core challenge is the defi-
nition of the conditions under which two vertices will be con-
nected: they should be as aggressive as possible (removing
irrelevant dependencies) while being conservative (related
vertices will not be separated under any circumstance).

In order to define these relationships, we will use an aux-
iliary graph-based representation called flow graph. A flow
graph is a labeled directed pseudograph, i.e., there can be
arcs from one vertex to itself and multiple arcs between two
vertices. The vertices of the flow graph are the classes of the
class diagram and the labels in the arcs are non-negative in-
tegers. An arc X

n

→ Y has the meaning “if there is an object
in class X, at least n objects of class Y must exist”. Using
this definition, there is an arrow X

n

→ Y if:

• X is a subclass of Y (n = 1): Each object of a subclass
is also an object of the superclass.

• There is an association between X and Y and the lower
bound of the multiplicity of the association end in Y
is n.

Arcs with a label 0 can be removed because they are not
imposing any constraint. Multiple arcs between two vertices
can be replaced by a single arc labeled with maximum la-
bel among them. For example, Figure 4 illustrates the flow
graph for the running example after these simplifications.

Intuitively, a path in the flow graph among vertices X
and Y establishes a dependency from X to Y . A cycle
defines a cyclic dependency and it is therefore a possible

source of unsatisfiability. Any cycle where the maximum la-
bel is 1 is inherently satisfiable, and it will be called safe.
But cycles where (a) the maximum label ≥ 2 and (b) there
are two or more participating associations/inheritances re-
lations which also form a cycle in the class diagram can be
unsatisfiable. Such cycles will be called unsafe. In our run-
ning example (Figure 4), there are three cycles: Trip-Coach,
Trip-Passenger and Manager-Bonus. The first two are safe
(they only involve one association so there is no cycle in the
class diagram) while the third one is unsafe (two associa-
tions participate in the cycle and there is a multiplicity with
lower bound 2).

Using this information, the dependency graph will be cre-
ated in two steps. In the first step, we identify classes which
are potentially unsatisfiable, i.e., classes constrained by OCL
invariants and classes belonging to an unsafe cycle:

1. Create a vertex for each class that appears in the con-
straint support of an OCL constraint.

2. Add an edge X − Y if both X and Y belong to the
constraint support of the same constraint.

3. Create a vertex (if it does not previously exist) for each
class that appears in an unsafe cycle in the flow graph.

4. Add an edge X − Y among all vertices participating
in the same unsafe cycle.

In the second step, we iteratively add classes that con-
strain vertices already in the dependency graph. Let X and
Y be a pair of vertices in the dependency graph, where X
and Y can be the same vertex, and Z a class that does
not appear in the dependency graph. Then, if there is a
path from X to Z and from Z to Y in the flow graph, ver-
tex Z must added to the dependency graph together with
edges X − Z and Y − Z. This process propagates depen-
dencies between potentially unsatisfiable classes that cross
through other classes. In our running example, the result-
ing flow graph is shown in Figure 4, with two connected
components: one coming from the unsafe cycle in the flow
graph Manager-Bonus and another coming from the con-
straints Min/Max-CoachSize, formed by classes Coach, Trip
and Passenger.

From the dependency graph, it is possible to extract its
connected components. Each component defines a slice of
the class diagram that can be analyzed independently: the
set of classes from the class diagram, the set of associations

190

and inheritance hierarchies among them, the invariants that
have some of these classes in their support and the attributes
referenced by any of those invariants. For example, Figure
3 highlights the final slices passed to the verification tool for
strong satisfiability. Strikethrough text indicates attributes
from the original model which have been abstracted in the
slice. Notice how thanks to the detection of trivially sat-
isfiable invariants described in the previous Section, some
attributes like origin which were originally constrained by
an invariant can be simply abstracted.

With this approach, the slices of the class diagram corre-
spond to those fragments that could be unsatisfiable. The
implication is “if the slices can be populated, then the re-
maining classes can be populated as well”. But what hap-
pens if these slices cannot be populated? This does not
matter for strong satisfiability, as all classes must be popu-
lated so any failure means the whole model is unsatisfiable.
However, in weak satisfiability it could be the case that all
slices are unsatisfiable but some of the remaining classes can
be satisfied independently. Considering our running exam-
ple, let us consider class Employee: creating an employee
does not impose any obligation on any other class of the
model. Thus, it is clear that this class can be populated
and the model is weakly satisfiable. Formally, if there is
any class X such (a) X does not appear in the dependency
graph and (b) the flow graph has no path from X to a class
in the dependency graph, the model is weakly satisfiable. In
this case X and any classes which depend from X can be
populated even if no class if the dependency graph can be
populated. In our running example, class Employee is the
only class which exhibits this trait.

5. EXPERIMENTAL RESULTS
In this section, we attempt to quantify the speed-up achieved

by slicing. To this end, we have developed a prototype imple-
mentation of the slicing procedure on top of the tool UML-
toCSP [4]. UMLtoCSP transforms verification problems on
UML/OCL class diagrams into constraint satisfaction prob-
lems (CSP) which can be solved by a constraint solver. So-
lutions to the CSP are instances of the diagram which prove
or disprove the property being verified.

We compare the verification time of several UML/OCL
class diagrams using (1) the original tool UMLtoCSP and
(2) the tool UMLtoCSP with slicing. In each example,
the property being verified is strong satisfiability. Table
4 describes the set of benchmarks used for our compari-
son: the number of classes, associations, invariants and at-
tributes. For each class diagram, we also indicate whether
it is strongly satisfiable or not. The benchmarks “Com-
pany”, “Script” and “Cycle” were programmatically gener-
ated, in order to test large input models. Of these models,
we consider the “Script” models to be the best possible sce-
nario for slicing (large models with many attributes and very
few constraints). The models “Paper-Researcher”, “Atom-
Molecule”, “Company” and “Cycle” serve as worst-case sce-
narios (models with many interdependent constraints, de-
signed so they cannot be sliced).

UMLtoCSP has a set of parameters that can have a strong
influence on its runtime. These parameters set an upper
bound on the size of the instance (number of objects per
class, number of links per association) and the domain of
attributes (set of feasible values for each attribute). In UML-
toCSP, verification is not complete in the sense that it will

only explore potential instances within these bounds. Never-
theless, the size of the solution space to be explored by UML-
toCSP is exponential in terms of these parameters. There-
fore, large values of the parameters will make the comparison
more favorable towards slicing, as abstracting attributes and
classes will cause a larger reduction of the solution space. In
our analysis, we have considered small but reasonable val-
ues for parameters: at most 4 objects will be created for
each class, at most 10 links for each association and each
attribute will have at most 10 distinct values.

Table 5 shows the experimental results computed using a
Intel Core 2 Duo Processor 2.1Ghz with 2Gb of RAM. All
times are measured in seconds and a time-out limit has been
set at 2 hours (7200 seconds). For each example, we describe
the original verification time (OVT), the number of slices in
which the model is divided, the number of attributes that
we manage to abstract, the time required to perform all the
UML/OCL slicing analysis (ST) and the verification time
after the slicing (SVT).

The first conclusion is that slicing is a very fast procedure
even in diagrams with hundreds of classes. As expected, the
effectiveness of the technique depends on the specific model
being analyzed: small models and models where UMLtoCSP
already performed well gain little from slicing. This also
happens with models where there are no unconstrained at-
tributes and all classes and constraints are interdependent.
In the worst case, the verification time with slicing is the
same as that without slicing. But in models where slicing
manages to partition the model and abstract attributes, the
speed-up reaches several orders of magnitude. Therefore,
its success will depend on the type of models where it is ap-
plied. Small models which have been manually preprocessed
for verification will gain little from slicing. However, mod-
els created for other purposes or models generated through
automatic transformation can benefit greatly from the ap-
plication of slicing. The tiny overhead introduced by slicing
and the tool independent nature of this approach are addi-
tional reasons in favor of adding slicing to existing formal
verification toolkits.

6. SLICING ALLOY SPECIFICATION
In this section, we have applied our slicing technique to

the DBLP (Digital Bibliography and Library Project) struc-
tural schema programmed in the Alloy specification. The
schema of the DBLP system is modeled a UML class di-
agram [6]. It is a computer science bibliographical web-
site, and has existed since the 1980’s. The DBLP structural
schema deals with people and their publications, which can
be edited books and authored publications. The class dia-
gram has 17 classes and 26 integrity constraints. It is di-
vided into two types of integrity constraints: identification
and other integrity constraints. This case study is interest-
ing for our problem since it has complex invariants and is
a real world case study. Therefore, we intend to apply our
slicing approach to this DBLP case study in order to show
that our methods work upon external case studies and can
improve the efficiency of the verification process.

The approach is manually implemented over the DBLP
in order to show how fast it generates satisfying instances
of the example before and after the slicing is applied. The
same model is taken for slicing in the Alloy [10] to check
the advantages of slicing. The execution time is largely de-
pendent on the defined scope, therefore, in order to analyze

191

Example Classes Associations Attributes Invariants Satisfiable?
Atom-Molecule 2 1 6 1 Yes
Paper-Researcher 2 2 5 4 No
Coach 15 10 27 6 Yes
Production System 50 30 72 5 Yes
Company 100 100 100 100 Yes
Script 1 100 53 122 2 Yes
Script 2 500 227 522 5 Yes
Script 3 1000 505 1022 5 Yes
Cycle 1 10 10 10 10 No
Cycle 2 100 100 100 100 No

Table 4: Description of the UML/OCL benchmarks.

Example OVT Slices Attr ST SVT
Atom-Molecule 0.03s 1 3 0.00s 0.03s
Paper-Researcher 0.04s 1 0 0.00s 0.04s
Coach 5008.76s 2 26 0.00s 0.18s
Production System 3605.35s 4 59 0.02s 0.03s
Company 0.08s 1 0 0.00s 0.08s
Script 1 Time-out 2 117 0.02s 0.03s
Script 2 Time-out 4 509 0.09s 0.02s
Script 3 Time-out 4 1009 0.29s 0.34s
Cycle 1 Time-out 1 10 0.00s Time-out
Cycle 2 Time-out 1 100 0.00s Time-out
OVT Original Verification Time Attr # of abstracted attributes
SVT Total verification time for all slices ST Slicing Time

Table 5: Description of experimental results.

the efficiency of verification, scope 7 is limited. The Alloy
will examine the entire DBLP model with up to 7 objects,
and try to find one that violates the property. For example,
saying scope 7 means that Alloy will check the model whose
top level signatures have up to 7 instances. After apply-
ing the technique, two submodels are received: submodel 1
consists of 10 classes annotated with 8 OCL constraints and
submodel 2 comprises of 2 classes annotated with 2 OCL
constraints.

Table 6 summarizes the experimental results obtained us-
ing the Alloy analyzer before and after slicing, running on a
Intel Core 2 Duo Processor 2.1Ghz with 2Gb of RAM. All
times are measured in milliseconds (ms). For each scope (be-
fore slicing), the translation time (TT), solving time (ST)
and the summation of the TT and ST, which is the total
execution time, are described. Similarly, each scope, after
slicing time is also defined which is the sliced translation
time (STT), sliced solving time (SST) and the summation
of STT and SST, which is equivalent to the summation of
TT and ST. The only difference is that the total execution
time varies before and after slicing. Similarly, the column
speed up shows the efficiency obtained after the implementa-
tion of the slicing approach. The speedup is achieved using
the equation below:

[1− {(STT + SST)/(TT + ST)}] ∗ 100

Previously, it took 1453 ms (scope 7) for the execution of
the DBLP. Using the approach for the slice computed by

this method, it takes only 828 ms (scope 7) to generate a
satisfying instance for the slice. It is an improvement of
43% which is a marked progress in total execution time. In
addition, the improvement can also be achieved for larger
scopes as well. For instance, the results up to the scope of
35 can be achieved for the DBLP structural schema. How-
ever, without slicing we could run the analysis up to the
scope of 19.

7. RELATED WORK
Slicing techniques can be classified according to two crite-

ria: the entity being sliced (e.g., a program, a UML model,
an ontology, . . .) and the goal of the slicing process (e.g.,
synthesis, analysis, optimization, visualization, comprehen-
sion, . . .). Intuitively, all slicing techniques proceed in two
steps: first, the subset of elements of interest that should
appear in the slice is identified; second, elements which de-
pend on elements of the slice are iteratively added to the
slice. The notions of “element”, “element of interest” and
“dependency between elements” are completely determined
by what is being sliced and why.

Program slicing [23, 25] techniques work at the level of
source code. Given a set of variables of interest and a pro-
gram location which are provided as input, program slicing
computes the set of statements of the program that can af-
fect (backward) or be affected (forward) by those variables.
The applications of program slicing include program anal-
ysis, optimization, verification and comprehension. Slicing

192

Before Slicing After Slicing
Scope TT ST TT+ST STT SST STT+SST Speedup %

2 125ms 47ms. 172ms 110ms 31ms 141ms 18%
3 187ms 78ms 265ms 125ms 62ms 187ms 29%
4 281ms 172ms 453ms 219ms 78ms 297ms 34%
5 473ms 190ms 663ms 299ms 110ms 409ms 38%
6 671ms 344ms 1015ms 438ms 156ms 594ms 41%
7 969ms 484ms 1453ms 672ms 156ms 828ms 43%

TT Translation Time ST Solving Time
STT Sliced Translation Time SST Sliced solving Time

Table 6: Description of experimental results (Alloy).

has also been used in the analysis of architectural specifi-
cations of a software system [13, 21]. In this context, ex-
tracting the set of components related to a component of
interest can facilitate component reuse and provide a high-
level view of the architecture that helps in its comprehen-
sion. Another type of program slicing is used for Declarative
Specifications [24]. This work proposes a tool known as Kato
which relies on heuristics to identify “core” (slices) and it is
targeted towards the relational logic underlying Alloy. Few
details are provided on the set of heuristics being used.

Ontologies provide a formal description of a set of con-
cepts and their relationships. General purpose ontologies
may represent a large number of concepts and their size
makes them impractical for many applications. Several ap-
proaches [5,18,22] focus on pruning large ontologies to pro-
duce smaller ontologies which are more manageable. In this
case, concepts of interest are identified by the modeler and
provided as the input of the slicing method.

Slicing methods have also been proposed the management
of different types of UML models. Context-free slicing [12]
provides a framework for defining model slices in UML di-
agrams, e.g., class diagrams. This work proposes a general
theory of model slicing which has to be adapted to each spe-
cific goal by defining a slicing criterion suitable for our goal.
There is no discussion on the definition of suitable slicing cri-
teria for verification. A different approach focusing in class
diagram comprehension is the use of coupling metrics [14] to
slice large models for visualization. This type of approach
would not be well-suited for verification purposes, as metrics
do not provide guarantees about the properties satisfied by
the partitions. Finally, the slicing of models consisting of
both UML class diagrams and UML sequence diagrams is
considered in [15]. A common representation, called Model
Dependency Graphs, is used to encode both types of dia-
grams. Again, the slicing criterion must be provided as an
input to the algorithm.

In contrast to these previous works, this paper describes
a slicing criterion oriented towards the verification of satisfi-
ability of UML/OCL class diagrams. Previous works either
do not target UML class diagrams or do not consider OCL
(other than as a notation to express slicing criteria) and
none propose a slicing criterion for verification.

Another source of relevant work appears in the underly-
ing theorem provers and solvers used to check satisfiability
in UML/OCL models. At this level, similar concepts for par-
titioning, symmetry-breaking and other optimizations have
been considered extensively, for instance [7,16,24]. We claim
that slicing before the translation into a formalism like SAT

or CSP is worthwhile due to several reasons. First, slicing
analysis is independent of the underlying formalism, so it
can benefit a variety of tools. Furthermore, at this level
of abstraction the problem is smaller, so it is feasible to
perform more complex analysis. Finally, we can take advan-
tage of our knowledge of the semantics of UML/OCL and
the property being verified, information which can be lost
in the translation into the formalism. For instance, the re-
moval of derived value constraints proposed in Section 3.3
would not be possible without precise information about the
property being checked.

8. CONCLUSIONS AND FUTURE WORK
This paper presents an innovative slicing technique for

UML/OCL class diagrams aimed at making the verification
of satisfiability more efficient. The approach receives as in-
put a UML class diagram annotated with OCL constraints
and automatically breaks it into submodels whose satisfi-
ability can be analyzed independently. Then, the satisfia-
bility of the original model can be established by checking
if at least one submodel (weak satisfiable) or all submodels
(strong satisfiable) are satisfiable. A benefit of this approach
is that it is independent of the underlying formalism used
to check satisfiability and can therefore be applied in many
existing tools.

A prototype implementation of the slicing procedure has
been developed on top of the tool UMLtoCSP. The object
diagram of running example is shown in Figure 5. Exper-
imental results show that slicing can produce a significant
speed-up in the verification time. The amount of speed-up
achieved by this method depends on the specific model, from
none to several orders of magnitude.

As the overhead introduced by slicing analysis is neg-
ligible, we claim that slicing is a useful addition to any
UML/OCL satisfiability checking toolkit. Furthermore, we
demonstrated slicing technique on a real world case study
named as DBLP conceptual to analyze the benefits. This
real world case study is programmed in Alloy which is a
famous tool and widely used for verification of models. We
applied slicing and achieved drastic speed-up in another tool
as well.

As our future work, we plan to explore two research di-
rections. First, we plan to investigate more aggressive slic-
ing criteria which can still preserve the satisfiability of the
model after partitioning. The approach presented in this pa-
per is very conservative in several ways, for example it only
considers disjoint slices. Relaxing the proposed approach
(while ensuring the preservation of satisfiability) would pro-

193

(a) Submodel 1 of ‘Model Coach’

(b) Submodel 2 of ‘Model Coach’

Figure 5: UMLtoCSP Output of Model Coach

vide more opportunities for slicing a class diagram. Second,
the partition of a model into submodels can provide a useful
feedback in case of unsatisfiability: if a model is unsatis-
fiable, it is possible to identify in which submodel(s) that
happens. Designers can therefore focus their attention in
the incorrect submodels while ignoring the rest of the model.
This feedback is coarser than those approaches designed to
compute a“minimum set of conflicting constraints”, e.g., un-
sat cores in Alloy or [20], but it is computed with very little
overhead and it can still be useful to designers.

Acknowledgements

This work has been partly supported by the Ministerio de
Ciencia y Tecnologia under project TIN2008-00444 and by
an UOC-IN3 Doctoral Grant. We would like to thank Jordi
Cabot and Jordi Conesa for their useful comments.

9. REFERENCES
[1] M. Balaban and A. Maraee. A UML-based method for

deciding finite satisfiability in Description Logics. In
DL’2008, volume 353 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

[2] D. Berardi, D. Calvanese, and G. D. Giacomo.
Reasoning on UML class diagrams. AIntelligence,
168:70–118, 2005.

[3] A. D. Brucker and B. Wolff. The HOL-OCL book.
Technical Report 525, ETH Zurich, 2006.

[4] J. Cabot, R. Clarisó, and D. Riera. UMLtoCSP: a tool
for the formal verification of UML/OCL models using
constraint programming. In ASE’2007, pages 547–548.
ACM, 2007.

[5] J. Conesa and A. Olivé. Pruning ontologies in the
development of conceptual schemas of information
systems. In ER’2004, volume 3288 of LNCS, pages
122–135. Springer, 2004.

[6] DBLP. Digital bibliography andy library project.
http://guifre.lsi.upc.edu/DBLP.pdf.

[7] V. Durairaj and P. Kalla. Guiding CNF-SAT search
via efficient constraint partitioning. In ICCAD’04,
pages 498–501. IEEE Computer Society, 2004.

[8] M. Gogolla, J. Bohling, and M. Richters. Validating
UML and OCL models in USE by automatic snapshot
generation. Journal on Software and System Modeling,
4(4):386–398, 2005.

[9] M. Gogolla and M. Richters. Expressing UML Class
Diagrams Properties with OCL. In AOM with the
OCL, volume 2263 of LNCS, pages 86–115. Springer,
2001.

[10] D. Jackson. Alloy: a lightweight object modelling
notation. ACM Transactions on Software Engineering
and Methodology, 11(2):256–290, 2002.

[11] D. Jackson. Software Abstractions: Logic, Language
and Analysis. MIT Press, 2006.

[12] H. H. Kagdi, J. I. Maletic, and A. Sutton.
Context-free slicing of UML class models. In ICSM’05,
pages 635–638. IEEE Computer Society, 2005.

[13] T. H. Kim, Y. T. Song, L. Chung, and D. Huynh.
Software architecture analysis: A dynamic slicing
approach. International Journal of Computer &
Information Science, 1(2):91–103, 2000.

[14] R. Kollmann and M. Gogolla. Metric-based selective
representation of uml diagrams. In CSMR’02, pages
89–98. IEEE Computer Society, 2002.

[15] J. T. Lallchandani and R. Mall. Slicing UML
architectural models. In ACM / SIGSOFT SEN,
volume 33, pages 1–9, 2008.

[16] Y. C. Law and J. H. Lee. Symmetry breaking
constraints for value symmetries in constraint
satisfaction. Constraints, 11(2-3):221–267, 2006.

[17] A. Maraee and M. Balaban. Efficient reasoning about
finite satisfiability of UML class diagrams with
constrained generalization sets. In ECMDA-FA’2007,
volume 4530 of LNCS, pages 17–31. Springer, 2007.

[18] B. J. Peterson, W. A. Andersen, and J. Engel.
Knowledge bus: Generating application-focused
databases from large ontologies. In KRDB ’98,
volume 10 of CEUR Workshop Proceedings, pages
2.1–2.10. CEUR-WS.org, 1998.

[19] A. Queralt and E. Teniente. Reasoning on UML class
diagrams with OCL constraints. In ER’2006, volume
4215 of LNCS, pages 497–512. Springer-Verlag, 2006.

[20] G. Rull, C. Farré, E. Teniente, and T. Urṕı.
Computing explanations for unlively queries in
databases. In CIKM’07, pages 955–958. ACM, 2007.

[21] J. A. Stafford, D. J. Richardson, and A. L. Wolf.
Architecture-level dependence analysis in support of
software maintenance. In ISAW’98, pages 129–132,
1998.

[22] B. Swartout, P. Ramesh, K. Knight, and T. Russ.
Toward distributed use of large-scale ontologies. AAAI
Symp. on Ontological Engineering, pages 138–148,
1997.

[23] F. Tip. A survey of program slicing techniques.
Journal of Programming Languages, 3:121–189, 1995.

[24] E. Uzuncaova and S. Khurshid. Kato: A program
slicing tool for declarative specifications. In ICSE ’07,
pages 767–770. IEEE Computer Society, 2007.

[25] M. Weiser. Program slicing. IEEE Trans. Software
Eng., 10(4):352–357, 1984.

194

