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Abstract

Symbolic algebraic modeling and analysis tech-
niques for DEDS are applied to the landing gear
subsystem in the new Swedish fighter aircraft, JAS
39 Gripen. Our methods are based on polynomi-
als over finite fields. Polynomials are used to repre-
sent the basic dynamic equations for the processes
(controller and plant) as well as static properties of
these. Temporal algebra (or temporal logic) is used
to represent specifications of system behavior. We
use this approach to model the landing gear con-
troller from the complete implementation in Pascal.
We also provide temporal algebra interpretations of
the specifications made available to us. Finally we
perform a number of symbolic analyses on the com-
plete process (controller and plant). This project is
a first demonstration of possible uses of these meth-
ods and tools and it demonstrates that these meth-
ods and tools scale to problems of a non trivial size,
i.e. of the size found in complex system designs such
as the JAS 39.

1 Introduction

The interest in discrete event systems (DEDS) has
increased during the last years, due to the lack of
methods and tools that are capable to handle the
complexity of problems and tasks present in indus-
try today. To explore the usefulness of symbolic and
algebraic methods, we use polynomials over finite
fields (see section 2) applied to DEDS with industrial
sized complexity: The landing gear controller (LGC)
of the Swedish fighter aircraft JAS 39 Gripen.

This paper gives an overview of the project� of
doing static and dynamic analysis on the behavior
of the LGC. (See also [8].) This was made possible
by modeling the LGC by a polynomial, i.e. compil-
ing the Pascal implementation of the LGC to a poly-
nomial relation. For a complete description of this
project see [3, 6, 7, 4].

2 The Polynomial Framework

Quantities and relations in DEDS are of a finite na-
ture and can therefore be represented by finite rela-
tions. These relations are in turn represented math-
ematically by polynomials over finite fields Fq �Z�,
i.e. polynomials of variables in the set Z with coeffi-
cients from a finite field Fq . By further restricting the
class of polynomials we construct a quotient polyno-
mial ring (see [3]) that gives a one to one correspon-
dence between polynomials and relations as well as
a compact representation of the relations.

The computational framework used for manip-
ulating polynomials is based on binary decision dia-
grams (BDD), which give a powerful representation
as well as fast computations which allow us to ma-
nipulate rather complex systems.

For more information of polynomials over finite
fields and its tools see the tutorial paper [5].

3 System Description

The purpose of the LGC is to perform maneuvers
of the landing gears and the corresponding doors
which enclose the gears in retracted position, see fig-
ure 1. The controller is a software process that inter-
acts with 5 binary actuators, 30 binary landing gear
sensors, 2 binary pilot signals, and 5 integer mode
signals from other subsystems in the aircraft, see fig-
ure 2.

The only formal description of the controller
available to use was the actual implemented 1200
line Pascal code.
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Figure 1: The fighter JAS 39 Gripen.
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Figure 2: The landing gear system (number of sig-
nals in brackets).

4 Modeling

As mentioned in the introduction we build a poly-
nomial model from the implemented Pascal code.
To be able to represent the system by polynomials
the system must be a DEDS with finite state space.
Therefore some restriction on Pascal are needed.

4.1 Restrictions in the Modeling

The allowed data types are integer and boolean. The
integer range used is f�� � � � � ��g, which is enough to
represent all enumerable variables in the controller
code. The controller code also makes use of linear
arrays and abstract data types. It is possible to auto-
matically represent these data types by integers and
booleans, but in this case it has been done by hand.

Some of the Pascal primitives have also been
excluded. For a list of allowed primitives, see ta-
ble 1. For code primitives such as FOR-loops and
the OTHERWISE statement in conditionals, a man-
ual translation was made where the FOR-loop was
rewritten as a sequence of code (loop unrolling, see
e.g. [1]) and OTHERWISE replaced by explicit argu-
ments.

Timer variables and time conditions in the code
have been replaced by binary state variables (flip
flops) and corresponding input signals. A time
condition becoming true in the original code corre-
sponds to the timer input signal triggering the state
variable. Once triggered, the state variable will be
true until there is an explicit timer reset.

Comment Syntax Domains

Type BOOLEAN B

INTEGER I

Arithmetic expr. + I
�� I

- I
�� I

Relational expr. > I
�� B

< I
�� B

= I
�� B

NOT B � B

AND B
� � B

OR B
� � B

Control IF THEN ELSE

CASE OF

BEGIN � � � END

Miscellaneous := Ior B
VAR Ior B
PROGRAM

PROCEDURE

FUNCTION

Table 1: Allowed Pascal primitives. I and B

stands for integer and Boolean re-
spectively.

From the code module we have excluded the
procedures concerning alarm handling and pilot in-
formation since they do not affect the other proce-
dures in the controller directly. Since we have not
had access to all values of signals from other units
in the aircraft we have also defined some new input
signals that are aggregations of the unknown sig-
nals.

4.2 Input, Output and State Variables

The landing gear controller code is one part of the
software loop in the aircraft system. This means that
the state of the code is stored until next iteration of
the code. If we want to write the system as

x� � f�x� u�� y � g�x� u� (1)

we must determine which variables correspond to
system state x, next state x�, input u and output y.
The equations in (1) can be represented by a block di-
agram as in figure 3, where u� y and x are vectors for
input, output and state variables respectively. Any
part of the code (a single primitive or a complete
program) can also be regarded as a function which
computes and assigns values to output variables de-
pending on input variables, see figure 4. If we com-
pare figures 3 and 4, we find that the state variables
are equal to the variables in the set Inputs�Outputs.
In words we say that if there is an input variable
which is reassigned in the code, it should be consid-
ered as a state variable.

Temporary variables which are neither input nor
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Figure 3: Signal interaction with the code.

Inputs � Code � Outputs

Figure 4: Input-output view of the code.

output variables can be omitted in a model like the
one in figure 3, since we are only interested in the
output behavior of the system. Still, the compiler
must use the temporary variables in the code to com-
pute the relations between input and output vari-
ables.

4.3 Translating Pascal to Polynomial Relations

The polynomial model is denoted M�z� z��, where
z and z� are the system variables� for present and
next time instant respectively.

The translation from Pascal to Boolean
expressions� follows the control flow graph of
the program. The value of each program expression
is determined by the current values of symbols and
the actual program expression, i.e. the compilation
function is of the form:

	 
 Pascal� State� State

We store the current state of the program as a symbol
table of the form:

� � fv� �� e�� � � � � vn �� eng

where each vi is a variable or symbol and each ei is
a Boolean expression of input variables or the sym-
bol� indicating undefined values. The symbol table
� is initiated by variables that acts as place holders
for the input, and by� for the output variables. The
symbol table is then updated by traversing the con-
trol flow graph of the Pascal code.

Suppose we have the Pascal expression

pe �

�
BBBBBBB�

IF q THEN
y1 := c

ELSE
BEGIN
y1 := d;
y2 := e

END;

�
CCCCCCCA

�Input, state and output variables.
�Boolean expressions are essentially polynomials over the

field F� .

with the initial symbol table

� � fq �� q�� c �� c�� d �� d�� e �� e��

y� �� y��� y� �� y��g

we will get

�� � 	�pe�� � fq �� q�� c �� c�� d �� d��

e �� e�� y� �� �q� � c�� 	 �
q� � d���

y� �� �q� � y��� 	 �
q� � e��

The final Boolean relation is computed from the
final symbol table

��nal � fx� �� f�x� u�� y �� g�x� u�g

M�z� z�� � x� � f�x� u� � y � g�x� u�

where z � �x� y� u�.

The compilation of the LGC pascal code is per-
formed by a compiler package in Mathematica devel-
oped by the authors. The resulting relation for the
LGC has 26 state variables and the relation M�z� z��
has 105 variables altogether. The size of the relation
is approximately 320 000 nodes as a BDD and takes
approximately 35 minutes to compute on a regular
workstation.

5 Analysis – Verification

By analysis we mean that, given a polynomial model
M�z� z��, we answer questions about the possible
behavior of this model. There are two main types of
analysis:

One Step Analysis where we look at a single time
step of the system dynamics.

Multiple Step Analysis where we look at arbitrar-
ily many time steps of the system dynamics.

It is important to note that the underlying algebra
machinery that supports multiple step analysis has
to deal with a far more complex situation than what
is required in the one step analysis case.

We can use temporal algebra to formulate multiple
step analysis questions (and, of course, as a special
case of this, one step analysis questions).

5.1 One Step Analysis

By one step analysis we mean questions that can be
resolved as equation systems of the form:

M�z� z�� �Q��z� �Q��z
�� � � (2)

where M�z� z�� is the process description and Q��z�
and Q��z

�� are restrictions on z and z� respectively.



The analysis consists of solving the system of equa-
tions or to prove that no such solution exists.

Example 1 Suppose we use the process

�

�

��

�

�

and want to know if there is a transition from � to �? If we
formulate this in algebraic terms we get

M�x� x�� �Q��x� �Q��x
�� � �x�� � � � x� � u�� � x� � x

�

�

� � � u��

The solution to � � u� � � is u� � �, which means that
there is a transition from � to � for the input u� � �.
Unfortunately, solving Boolean equations is a fairly
tough problem in general. In fact it is impossible to
have a solution algorithm that behaves reasonably
well on all polynomial equations. Partly, this is due
to the potential size of the output, i.e. if we have
polynomials in n variables over some finite field Fp ,
there are pn possible solutions, and in the Boolean
case �n possible solutions. It is of course impossi-
ble to build an algorithm that works faster than it
can output its answer. However, even if we formu-
late the restricted problem of only telling us whether
or not there is a solution (without providing us with
such a solution), the problem is in all likelihood al-
most as hard, i.e. if NP �� P .

The results quoted above states that if we are
able to solve all possible equations in n variables,
then the worst time complexity cannot be reasonable
(polynomial in n). In practice one can deal with this
problem by using methods that avoid the worst case
complexity as often as possible. This is done by us-
ing BDDs with a good variabel ordering.

5.2 Multiple Step Analysis

By multiple step analysis we mean analysis ques-
tions that take an arbitrary number of time steps of
the system dynamics into account. An example is
the set of states that are reachable in zero or arbitrar-
ily many steps from some initial state. Given a pro-
cess modelM�z� z��we can compute the set of states
reachable in k steps or less from some initial set of
states, described by I�z� � �, as Rk�z�:

R��z� 
� I�z� (3)
Rk���z� 
� Rk�z� 	 �
�z �Rk��z� �M��z� z���

Since we are dealing with finite state systems this it-
eration will reach a fixed point, i.e. Rd���z� � Rd�z�
for some finite d. We will give some comments re-
garding this computation:

� The d for which we reach the fixed point above
is the depth of the system. An interpretation
of this is that in a maximum of d steps we can
reach any reachable state in the system. In
general, if we have n binary system variables
(z � �z�� � � � � zn�) then the maximal possible
depth is �n. In most engineering applications
the depth of a system seems to be far less than
the maximal possible depth, but a simple pro-
cess such as an n bit counter is one that has
maximal depth. One can also compare this to
an n state linear system, where it is possible
to reach any reachable state (from the origin)
within n steps.

� In order to compute the set of reachable states
(in arbitrarily many steps) we need to solve
an equation after each iteration, i.e. when we
check whether or not Rk�z� � Rk���z�. As
mentioned, this problem is NP complete so we
need to solve an NP complete problem in each
iteration.

� We need to perform some form of data re-
duction in each step above, otherwise we will
quickly overflow all available memory for all
except trivial processes. By using BDDs we al-
ways get data reduction in every step.

� In theory we could compute the set of reach-
able states by using a simulation routine.
However in practice this seems quite infea-
sible as we would have to keep track of all
the reached states and then re-initiate the
simulation from each of those states until we
cannot reach new states any more. Even in
moderately complex systems this is hardly
feasible, and in the landing gear controller we
have in the order of �� ��� reachable states
out of ��� potential reachable states. Hence
running a few simulation scenarios usually
says very little of the system behavior in
general.

Example 2 Suppose we have the simple system below:

0 1 2

We can obtain a polynomial model by e.g. introducing two
binary state variables x� and x� and encoding the states as
follows

x� x� State

0 0 0
0 1 1
1 0 2



Using this encoding we get the polynomial model

M�x� x�� � ���x� � �x�� � ��x�� � x
�

� �� �

���x� � x�� � �x�� � �x
�

� ��

We can now compute the set of reachable states from state
� as

R��x� �� I�x� � �x� � �x�

R��x� �� ���x�� � ��x��� � ���x�� � x��

R��x� �� ���x�� � ��x��� � ���x�� � x�� � �x� � ��x���

R��x� �� ���x�� � ��x��� � ���x�� � x�� � �x� � ��x���

We reach a fixed point for k � � steps, i.e. in two steps
we can reach any reachable state. This can readily be seen
from the graph above as well.

In this example we could not have found out that � is a
reachable state by just one step analysis of M�x� x�� and
the initial state information. In some cases this is impor-
tant, since some undesirable action might be performed by
the controller if it ever reaches state �. There are a multi-
tude of other types of multiple step analysis that are
possible and many of them are related to the idea of
reachable states, either backward or forward in time.

5.3 Temporal Algebra and Verification

Since many specifications are written in something
close to natural language, we could greatly simplify
our analysis task if we could more or less directly
translate this to a formal specification. In this ap-
plication we have used temporal algebra [3] (or tem-
poral logic since we use the binary Boolean algebra,
see e.g. [2]) to achieve this task. In table 2 some of
the most common temporal algebra constructs are
given. The expression “Q�z� holds” should be inter-
preted as Q�z� � � in terms of polynomials. The
verification is in general a multiple step analysis. For
each temporal algebra expression S�z� and process
model M�z� z�� we compute the set of states from
which the temporal algebra statement becomes true.

Example 3 Consider the process from example 2. We
wish to verify the specification:

”We should always be able to reach the safe
state � as the next state.”

In terms of temporal algebra this becomes:

EX	x� � �x�
�

The verification is the computation

Verify�M�x� x���EX	x� � �x�
� �

� �x�M�x� x�� � �x�� � �x
�

� �

� ��x�� � x��

As expected this returns the state � in its encoded form,
since this is the only state from which we can reach � in
one step.

Temporal Algebra Natural Language

Q�z� Q�z� holds in the initial state.
EX	Q�z�
 Q�z� can hold in the next time step.

EU	Q��z�� Q��z�

Q��z� will hold for finitely many
steps and then Q��z� can hold.

EF	Q�z�
 Q�z� can hold at some future time.

EG	Q�z�

Q�z� can hold at all future times,
i.e. from this point onwards.

AX	Q�z�

Q�z� must hold in the next time
step.

AU	Q��z�� Q��z�

Q��z� will hold for finitely many
steps and then Q��z� must hold.

AF	Q�z�

Q�z� must hold at some future
time.

AG	Q�z�

Q�z� must hold at all future times,
i.e. from this point onwards.

Table 2: Some of the most common temporal algebra
constructs.

Suppose that we have the process and an initial state
specified, then the above temporal algebra formula would
be verified iff the returned set of states was a superset
of the reachable states, i.e. we could reach � from every
reachable state. For the system above this is clearly not the
case if our initial state is �, since the set of reachable states
is f�� �� �g. Generally this extra level of reasoning is built
into the verifier.

There are some remarks to be made regarding
temporal algebra expressions and the verification of
these:

� The constructs P �z�, EX�P �z�� and AX�P �z��
essentially denotes what we have termed one
step analysis above.

� The remaining constructs enable multiple step
analysis as seen from the user perspective.
From the software tools perspective these con-
structs require the same type of fixed point
computations as in the reachability analysis
above.

� The temporal algebra statements can be nested
with themselves as well as ordinary Boolean
operations and thus provides great flexibility
in expressing specifications.

Example 4 As an example of the flexibility of temporal al-
gebra let us assume that we want to express the following
specification:

“If A can happen then B must never happen.”

LetQA�z� be a polynomial describing the condition for the
eventA, andQB�z� a polynomial describing the condition



for the event B. We can then express the specification as

EF	QA�z�
� AG	�QB�z�
� (4)

For more details regarding temporal algebra (or
temporal logic), see [2, 3].

5.4 Analysis of the Controller

We use the relation M�z� z�� to analyze the LGC be-
havior in a number of ways. First we compute the
set of reachable states in the LGC. This set is repre-
sented algebraically by a relation R�x�. The number
of reachable states turns out to be 10 015 which is far
below the possible number which is ��� � ���. We
can restrict the original relation through


M�z� z�� � R�x� �M�z� z�� � R�x��

which gives a significantly simpler relation.

The one step analysis of 
M�z� z�� is performed
by adding constraints P �u� to the inputs of the LGC,
and then analyze what effect this gives to the out-
puts. The constraints P �u� can e.g. be used to ex-
clude certain unrealistic input combinations. The
static analysis performed on the LGC gave corre-
sponding results as obtained by SAAB (developer of
JAS39).

Results on dynamic closed loop analysis is not
available yet. However we use the same tools as
to compute the set of reachable states. The specifi-
cations of the behavior are represented by temporal
logic expressions, used together with the model to
compute e.g. the set of behaviors that might reach a
forbidden state in the future.

6 Conclusions

In this case study we have given an example of how
one may verify a discrete dynamic control system by
building a model of the whole process. In this work
we have used the Boolean field to represent the poly-
nomial model M�z� z��. We can also build a simple
model of the function specification S�z� using tem-
poral algebra. Using the closed loop system model
M�z� z�� and the specification S�z� we can then ei-
ther verify or falsify the system behavior w.r.t. the
specification. In case we falsify the system behavior
we can also generate a sequence of inputs that ex-
hibits the failing behavior. This can then be indepen-
dently verified in a system simulator and the error
should be characterized well enough for modifica-
tion of the controller.

The developed methods and tools allow us to
analyze industrial scale discrete systems. In partic-
ular this allows us to prove (or disprove) that the
system behaves according to its specification. The

system should be automatically translated from an
internal model description language to the polyno-
mial format, which is suitable for analysis. This pro-
cedure eliminates potential discrepancies between
documents and the actual system. For dynamic sys-
tems, dynamic analysis will ultimately be needed
and hence an algebraic computation engine that can
handle dynamic analysis is necessary.
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