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Abstract

In previous work, we explored the interaction between different formal hardware development techniques in the
implementation of a fault-tolerant clock synchronization circuit. This case study presents a clever optimization of the
earlier design and illustrates how we have extended our framework to support its incremental design refinement. The
primary design tool represents circuits as systems of stream equations, where each stream corresponds to a signal
within the circuit. These signals are annotated with invariants which can be established using proof by co-induction.
These invariants are exploited to verify localized design refinements. This study lays groundwork for a more formal
integration of disparate reasoning tools.

1 Introduction

A significant amount of effort within the formal methods community has been focused on how to verify hardware
using particular verification systems. Not as much time has been spent asking what type of reasoning support we need
to formalize the design process. The case study presented here is subject to the same criticism. The exercise began as
an attempt to derive a clock synchronization circuit using the Digital Design Derivation (DDD [1]) system. When it
became clear that DDD could not handle all the development steps, the effort evolved into exploring how a mechanical
theorem proving system (PVS [8]) could support the derivation process. Lost in the effort was the question of how to
best use formal techniques in the hardware development process. Much of this process is tedious and does not require
sophisticated reasoning support. Our mission as researchers in this field should be to identify the types of reasoning
that are useful to this process, and to develop those. These efforts toward developing a verified synchronization circuit
have led to the position that a formal design process should be as simple as possible, but should allow sufficient
flexibility to the designer to make aggressive optimizations to the design.

Early research in applied formal methods was concerned with basic questions of design and implementation
correctness. We are now beginning to explore how formal reasoning interacts with intelligent design processes. This
case study addresses a clever refinement to a design that is already well along the path toward realization. The goal is
to preserve or reestablish the implementation’s correctness while sustaining a secure verification path. The cleverness
of the refinement lies in its exploitation of undisclosed properties of both the implementation and the environment
in which it is to operate. Consequently, the formal characterizations of both the design and the implementation are
extended.

Effective automated support of formal methods must accommodate multiple distinct modes of reasoning. One
motive of this study is to explore heterogeneous reasoning and contribute to the growing experience with it. Derivation
based formalisms—reasoning systems that employ transformations rather than logical inference—are relatively effec-
tive for routine design refinement. However, because they are dedicated to preserving specific refinement relations,
they are not as general as deduction based systems, where the implementation relation can be expressed within the
formalism. The developers of the DDD system were confronted with this limitation in contrasting a formal derivation
of the FM8502 [4] and FM9001 [1, 2] microprocessors with Hunt’s proofs of correctness in the theorem prover Nqthm.
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In particular, Hunt’s implementation of a functional memory model by an explicitly synchronized process exposed a
gap in the derivation path. While this particular kind of problem has been addressed [17, 10], we believe that derivation
gaps are an inevitable consequence of creativity in design and engineering.

On the other hand, generality hardly justifies the use of a theorem prover for all verification tasks. Even if one has
somehow incorporated automatic provers and rewriters for lower level tasks, we believe that reasoning environments
should support a variety of reasoning formalisms. At some point, such a system may employ the more unified view of
a logical framework, but, for the present, experience is needed in the coordinated use of multiple interactive systems.

The technique presented here to augment DDD style derivation with PVS theorem proving support is not restricted
to either DDD or PVS. Essentially, we present an effective means to establish invariants on signals within a circuit
so that we can verify context-dependent optimizations of a circuit design. These invariants (assertions on signals) are
established using co-induction, as is the verification of the optimization. Our goal is to develop a formalized design
environment that supports annotation of signals with invariants (and handles all the associated bookkeeping aspects),
so that a designer can explore various optimizations in a rigorous manner.

2 Related Work and Prior Developments

In the study described here, the DDD system provides mechanized support for behavioral and structural transformations,
while PVS supports theorem proving activities. The interaction between these systems requires manual support at
present, althoughwe are laying the groundwork for mechanizing it. We view DDD and PVS as examples of autonomous
reasoning peers. They are each useful tools in a formal hardware development process.

A case study by O’Leary, Leeser, Hickey and Aagaard, outlining the verification of a binary non-restoring square
root implementation, reflects a contrasting perspective on heterogeneous reasoning [3]. The design and its proof of
correctness develop through several stages of program transformation before a structural description emerges. These
structures are then refined in several stages toward a realizable hardware description. Their study, like ours, exhibits
both derivational and deductive reasoning processes, but within the unified framework of Nuprl. We believe the authors
would argue in favor of such a framework as a prerequisite for heterogeneous reasoning.

Miner presents a verified class of fault-tolerant clock synchronization algorithms and an informal sketch of a
hardware realization [5]. The general algorithm was verified using the mechanized proof system EHDM [11]. A
hardware realization of the verified algorithm was developed and tested, but the hardware was not formally verified
with respect to the algorithm [6, 14]. In [7], a core circuit design was developed using a variety of formal reasoning
systems. The circuit was developed using a combination of the Prototype Verification System (PVS) developed at
SRI [8], the DDD system developed at Indiana University [1], and a BDD-based tautology checker. This formal
development identified a small improvement over the original design. While that work was in progress, Torres-
Pomales identified a more significant improvement [15]. This paper explores how Torres-Pomales’ optimization can
be incorporated into the formal design framework proposed in [7]. This optimization trades space for time in a clever
manner and led us to the conclusion that a formal design environment should be flexible enough to accommodate
engineering insight. The argument justifying the optimization requires arithmetic reasoning including integer division,
so its justification requires more than simple transformational techniques and also places the optimization outside the
realm of model-checking approaches.

Specifically, we look at how the optimization can be incorporated with minimal impact on the surrounding proof.
In essence, we want a transformation rule in DDD that allows a subsystem to be replaced by a behaviorally equivalent
variant as established in PVS. To accomplish this, we need the means to transfer expressions between DDD and PVS,
a theory of streams built into PVS, and a mechanism for sanctioning ad hoc transformations in DDD.

Since the goal of our verification activities is developing working hardware, a VLSI implementation of the formally
developed circuit design has been fabricated and tested. The circuit layout was manually generated using conventional
design tools, so the link between the fabricated circuit and the design is not completely formal. The VLSI realization
has been incorporated into the full fault-tolerant clock synchronization system described by Torres-Pomales [15]. The
circuit worked perfectly on all tests.

3 Verification Strategy

In order to carry out the verification reported here, we needed to identify what role each formal system would play
in the development process. Ideally, the hardware development should not depend directly upon a general purpose
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proof system. Most theorem proving systems require a great deal of experience before they can be used effectively.
However, such a system is indispensable in exploring the reasoning required for a formalized design process.

The principle design tool is DDD, and we wish to use it in a manner to minimize the application of general purpose
verification activities. For the effort reported here, we used a shallow embedding of DDD’s representation of hardware
in PVS. Our primary motivation was justification of custom refinements, not in reasoning about the DDD approach to
hardware design.

Figure 1 depicts our view of the design hierarchy and illustrates where each tool contributes to the design process.
At the top-most level are mathematical properties that the resulting design must satisfy. A general purpose mechanical
theorem proving system supports the verification of algorithms that ensure these requirements. The verified algorithm
should be as general as is reasonably possible, so that the design space is not unduly restricted. The verified algorithm
is (manually) translated to a DDD specification. This specification is refined within DDD and then transformed into
an architecture. A sequence of basic DDD transformations, augmented with localized PVS verifications, determines
the final architecture. At the final stage, DDD maps the abstract representations of data into boolean representations.
Additional transformations may be applied prior to using conventional design tools to produce a physical realization
of the design.

3.1 Overview of DDD

DDD implements a formal design algebra for developing correct digital circuit descriptions. The designer interactively
transforms high level behavioral specifications into a description suitable for entry into hardware synthesis tools. The
top level describes the intended behavior of the circuit using a collection of mutually recursive function definitions
in tail-form. Each function corresponds to a control state and arguments to the functions represent the visible
storage elements in the design. Transformations at this level allow the designer to modify the control structure of
an architecture while preserving the functional correctness, relative to synchronization constraints. Once the control
structure is determined, DDD automatically transforms the behavioral specification into an initial architectural level
description.

DDD represents the structure of a digital system using a system of mutually recursive stream equations. A stream
in DDD is an infinite sequence of uniformly typed values,

X = [x0; x1; x2; . . .]

The stream constructor ‘cs’ adds an element to the front of the sequence

cs(z;X) = [z; x0; x1; x2; . . .]

Function ‘cs’ models a delay element with initial value z. Functions extend to sequences so that f(X;Y ) denotes
[f(x0; y0); f(x1; y1); :::]. DDD uses a system of equations to define a network of streams; recursion in such systems
represents feedback in the circuit. For example, the following stream equation defines a loadable counter circuit.

COUNT = cs(i;MUX(S; L; INC(COUNT))) (1)

where i is the initial integer value of the counter, INC and MUX are the increment and selection functions lifted to
streams, and streams S and L are the multiplexor select signal and load input respectively. Within DDD, free variables
in a system of stream equations are bound by a system level abstraction. This abstraction defines the input signals for
the circuit. The circuit’s output is a subset of the named streams in the system of equations.

3.2 Overview of PVS

PVS is a general purpose verification system developed at SRI International [8]. It consists of an expressive specification
language coupled with a powerful mechanical theorem prover. The PVS specification language is based on higher-order
logic. The base types include the booleans and the real numbers. The language includes predicate sub-types. The
other numeric types are defined as sub-types of the reals. One consequence of introducing predicate sub-types is that
the resulting type system is undecidable. Thus, PVS automatically generates proof obligations called type-correctness
conditions (TCCs) when it type-checks a theory. Theories can be parameterized, providing some support for parametric
polymorphism. PVS also allows for dependent types and several standard computer science type constructors such as
records, tuples, and lists. PVS includes a prelude theory that defines a large collection of useful results. User defined
libraries provide a mechanism to extend PVS with domain-specific theories.
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Abstract Architecture

Concrete Architecture

Abstract Specification

General Algorithm

PVS

DDD Specification

DDD

Boolean Realization

DDD / PVS

DDD / BDDs / PVS

Figure 1: Abstract View of Design Hierarchy
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PVS provides an interactive theorem proving environment using a sequent calculus presentation of the proof goals.
The prover includes decision procedures for ground linear arithmetic and equality. There is a strategy language similar
to LCF-style tactics. Thus, the user can define high-level proof procedures. There are several powerful strategies
distributed with PVS that automatically verify a large number of results. PVS allows the user to prove lemmas in any
order. It maintains proof dependency analysis to ensure that all obligations have been discharged. Included in the
analysis is an enumeration of all axioms used by the proof chain.

4 Reasoning about Streams in PVS

Recursive stream definitions are not directly supported by PVS. It was necessary to identify a mechanism to allow such
objects to be defined in PVS. Although streams over type � can be represented as functions from natural numbers to
�, this representation does not lend itself to direct definition by stream equations. The equational style of definition
illustrates that streams can be viewed as a co-inductive type. Just as inductively generated types give rise to recursive
function definitions and proofs by induction, co-inductive types allow for definition by co-recursion and proofs by
co-induction [9]. Co-induction is a categorical dual of induction; induction principles are justified using least fixed
point arguments, co-induction principles are justified using greatest fixed point arguments. Although the underlying
formal basis of co-induction is an interesting area of study, our work is primarily concerned with the application of
these techniques to hardware verification.

4.1 Stream Definition

Streams in PVS are defined as parameterized uninterpreted types constrained by a set of axioms. For X;Y; S of type
Stream[�], and a : �, the following axioms hold:

Stream_cs_eta: AXIOM cs(hd(S), tl(S)) = S
Stream_hd_cs: AXIOM hd(cs(a, S)) = a
Stream_tl_cs: AXIOM tl(cs(a, S)) = S
Stream_eq: AXIOM (X = Y) <=> (FORALL n: nth(X, n) = nth(Y, n))

For f : �! �, g : �! �, and a : �, define function corec(f;g) : �! Stream[�] using the following axiom:

corec_def: AXIOM corec(f, g)(a) = cs(f(a), corec(f, g)(g(a)))

The standard representation of streams, N ! �, augmented with explicit function definitions for cs, hd, tl, nth,
and corec, provides a model for these axioms.

Function corec provides us with enough machinery to define any DDD stream equation. For example, one
possible PVS declaration defining a stream function that satisfies equation (3.1) is

COUNT((S : Stream[boolean]),
(L : Stream[integer]),
(i : integer)): Stream[integer] =

corec(LAMBDA S, L, i : i,
LAMBDA S, L, i : (tl(S), tl(L), mux(hd(S),hd(L),inc(i)))
)(S, L, i)

In this definition, type � is instantiated using the tuple type

[Stream[boolean], Stream[integer], integer]

and � is instantiated with type integer. The following two facts are easily proven about COUNT.

hd_COUNT: LEMMA
hd(COUNT(S, L, i)) = i

tl_COUNT: LEMMA
tl(COUNT(S, L, i)) =
COUNT(tl(S), tl(L), mux(hd(S), hd(L), inc(i)))

The proofs consist of expanding the definition of COUNT followed by rewriting with the stream axioms. To simplify
subsequent proofs, we adopt the convention that for every stream defined in PVS, we introduce lemmas for simplifying
the hd and tl. The next section introduces a proof principle that simplifies proofs of stream equality.
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4.2 Stream Equivalence

Definition of streams using co-recursion enables a useful technique for proving two streams equal. A stream bi-
simulationR is a sub-relation of the equality relation such that for any two streamsx and y, ifx R y thenhd(x) = hd(y)
and tl(x) R tl(y). The PVS type declaration defining the type of bi-simulations between streams over � is:

Bisimulation: TYPE =
{R: PRED[[Stream[alpha], Stream[alpha]]] |

FORALL X, Y: R(X, Y) =>
hd(X) = hd(Y) & R(tl(X), tl(Y))}

PVS automatically generates proof obligations for any object declared to be of this type. The following theorem
provides a tool for proving stream equivalence by exhibiting a suitable bi-simulation.

co_induct: THEOREM
(EXISTS (R: Bisimulation): R(X, Y)) => X = Y

The PVS proof of theorem co induct consists of rewriting with axiom Stream eq followed by induction on the
natural numbers. We can now use co-induction to prove (in PVS) that the co-recursive definition of COUNT satisfies
equation (3.1).

COUNT_eqn: LEMMA
FORALL (S : Stream[bool]), (L : Stream[int]), (i : int):
COUNT(S, L, i) = cs(i, MUX(S, L, INC(COUNT(S, L, i))))

Proof: The proof consists of rewriting with theorem co induct, constructing a simple relation between integer
valued streams from the given goal, and then showing that the constructed relation is a bi-simulation. The relationR is

{(I, J : Stream[integer]) |
EXISTS (S : Stream[bool]), (L : Stream[int]), (i : int):
I = COUNT(S, L, i) &
J = cs(i, MUX(S, L, INC(COUNT(S, L, i))))}

This relation is constructed using information from the original goal. For every S, L, and i, this relation contains the
pair

( COUNT(S, L, i), cs(i, MUX(S, L, INC(COUNT(S, L, i)))) )

All that remains is to show that this relation satisfies the type constraints of a bi-simulation. Take an arbitrary pair that
is in the relation

( COUNT(S’, L’, i’), cs(i’, MUX(S’, L’, INC(COUNT(S’, L’, i’)))) )

There are two cases to consider:

Heads: The PVS proof for this case consists of rewriting with lemma hd COUNT and axiom hd cs.

hd(COUNT(S’, L’, i’)) = i’ = hd(cs(i’, MUX(S’, L’, INC(COUNT(S’, L’, i’)))))

Tails: The goal is to show that the pair

( tl(COUNT(S’, L’, i’)), tl(cs(i’, MUX(S’, L’, INC(COUNT(S’, L’, i’))))) )

is contained in the relation R. The proof consists of rewriting these two streams with tl COUNT, tl cs, MUX def,
hd INC, tl INC, and hd COUNT, producing the following equivalences.

tl(COUNT(S’, L’, i’)) = COUNT(tl(S’), tl(L’), mux(hd(S’), hd(L’), inc(i’)))

tl(cs(i’, MUX(S’, L’, INC(COUNT(S’, L’, i’)))))
= MUX(S’, L’, INC(COUNT(S’, L’, i’)))
= cs(mux(hd(S’), hd(L’), hd(INC(COUNT(S’, L’, i’)))),

MUX(tl(S’), tl(L’), tl(INC(COUNT(S’, L’, i’)))))
= cs(mux(hd(S’), hd(L’), inc(i’)),

MUX(tl(S’), tl(L’),
INC(COUNT(tl(S’), tl(L’), mux(hd(S’), hd(L’), inc(i’))))))
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By instantiatingSwithtl(S’), Lwithtl(L’), and iwithmux(hd(S’), hd(L’), inc(i’)), we estatblish
that the tails are in the relation. 2

We have written a PVS strategy named (CO-INDUCT-AND-SIMPLIFY) that completely automates the above
proof steps. This strategy suffices to automatically discharge several standard stream identities.

4.3 Signal Invariants

In order to justify some refinements, it is necessary to establish invariants on the input signals. The following PVS
theory fragment defines predicate Invariant to be true for any boolean valued stream that is true at every finitely
accessible point. At first glance, this appears to be a useless definition. However, when used in conjunction with PVS’
dependent type mechanism it provides a useful means to define an invariant relating a collection of signals.

Invariant(A : Stream[bool]) : bool = (A = const(true))

Invariant_hd: LEMMA Invariant(A) => hd(A)

Invariant_tl: LEMMA Invariant(A) => Invariant(tl(A))

CoInductive_Assertion: TYPE =
{P| forall A: P(A) => hd(A) & P(tl(A))}

co_induct: THEOREM
(EXISTS (P: CoInductive_Assertion): P(A)) => Invariant(A)

An example of how predicate Invariant may be used, consider the following parameterized type declaration (A
and R are boolean valued streams):

S(R): TYPE =
{A| Invariant(IF R THEN NOT tl(A)

ELSE A => tl(A) ENDIF)}

A stream of type S(R) corresponds to a signal that once asserted remains asserted, unless it is reset by boolean stream
R.

Theorem co induct provides a mechanism for proving that an arbitrary boolean valued streams is always true.
To establish an invariant property about a stream, it is sufficient to show that that property is contained in some
coinductive assertion. The PVS strategy (CO-INDUCT-AND-SIMPLIFY) automatically verifies many invariant
properties.

5 Fault-Tolerant Clock Synchronization

In a fault-tolerant computer architecture, the clocks of the redundant computing elements need to be synchronized to
ensure that they operate in a coordinated manner. The synchronization algorithm must also tolerate a bounded number
of failures. The property that a synchronization algorithm must ensure is that:

For any two clocks Cp and Cq that are nonfaulty at time t

jCp(t) �Cq(t)j � �

Clock synchronization algorithms are designed so that by periodically exchanging values of clocks and executing a
fault-tolerant averaging function, the above property is guaranteed.

Schneider [12] demonstrates that many fault-tolerantclock synchronizationalgorithms can be treated as refinements
of a general protocol. Shankar [13] and Miner [5] have provided mechanically checked proofs of Schneider’s paradigm.
Miner’s verification is the top-level specification for the circuit developed here. A generalized view of the algorithm
employed by each participant in the protocol is:

Designing Correct Circuits, Båstad 1996 7
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do forever f
exchange clock values
determine adjustment for this interval
determine local time to apply correction
when time, apply correction g

Schneider’s paradigm is parameterized by

� N—the number of clocks participating in the protocol, N > 0

� F—the number of faults tolerated

� A mechanism for exchanging clock values. The relationship between N and F depends on this mechanism.
Usually, N > 3F .

We use � to denote a collection of readings from clocks in the system. In the mechanically verified theory, � is
a function from clock indices to clock readings.

� R—the nominal duration of a synchronization interval.

� cfn—a convergence function that must satisfy three properties:

Translation Invariance The function depends only on the relative magnitude of the readings, not the absolute
magnitude.

Precision Enhancement For any two good clocks with similar estimates of other clock’s values, the result of
computing the convergence function is similar.

Accuracy Preservation If the readings from good clocks are sufficiently similar, then the computed value of
the convergence function is close to all good clocks.

The fault-tolerant midpoint convergence function,

cfn
MID

(�) =

�
�(F+1) + �(N�F )

2

�
; where �(m) = the mth largest value in collection �

employed in the Welch and Lynch [16] clock synchronization algorithm, possesses the required properties of a
convergence function [5].

In previous work [7], we developed a hardware realization of this verified algorithm using a combination of
formal design techniques. The verified algorithm was manually translated into a DDD behavioral level specification.
A standard technique was chosen for exchanging values between the redundant clocks. At a fixed offset into each
synchronization interval, a signal is broadcast to the other participants in the protocol. The estimate for a remote clock’s
value is computed by determining the difference between the expected offset for receiving this signal and the actual
offset when it is received. Using standard DDD transformations, an ad hoc refinement verified using PVS, and BDD-
based tautology checking, we developed a hardware description suitable for realization using a field-programmable
gate-array.

In a separate effort, Torres-Pomales [15] discovered a more efficient realization of the core synchronization circuit.
We were faced with the problem of how to incorporate this optimization into our existing verification. We isolated the
sub-circuit affected by the optimization, and then verified a localized refinement with respect to the existing design
description.

5.1 Description of the sub-circuit

Figure 2 illustrates the core circuit computing the convergence function presented in [7]. The signal RD is the output
of a counter. The signals F1 and NF are boolean valued signals that indicate receipt of a synchronization signal from
at least F + 1 and N � F distinct participants in the protocol, respectively. Here, N represents the number of clocks
in the protocol and F represents the number of physical faults tolerated by the system. By discarding readings from
the F fastest and F slowest clocks, this protocol can tolerate F Byzantine failures.
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/2

F1 NF

RD

+

THETA-F1 THETA-NF

Figure 2: Core Circuit for Computing Convergence Function

The two registers capture the current value of the counter when the surrounding hardware receives signals from
appropriately selected remote clocks. The verification discussed in [7] establishes that capturing just two readings in
each synchronization interval is sufficient for correct execution of the algorithm. The proof technique employed for
the ad hoc refinement in the earlier effort was not easily generalized. The difficulties encountered led us to refine our
proof technique for verifying these custom transformations.

6 Optimization

Torres-Pomales discovered that the convergence function has a much more efficient realization [15]. He recognized that
he could exploit the time interval between the (F + 1)th and (N � F )th signals to partially compute the convergence
function. His optimization consists of capturing the (F + 1)th reading as before, but he then increments the captured
value every other clock tick until the signal from the (N � F )th clock arrives. At this point the stored value is exactly
the required value of the convergence function.

This next section will outline a technique to transform our previous design into Torres-Pomales’ design. The
optimized convergence function is depicted in Figure 3. This optimization requires assumptions about the input

NF

F1
HOLD

0

F1

CIN

CIN

RD
+

OPT

OPT

Figure 3: Optimized Convergence Function
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signals. We already know that the integer stream RD is the output of a counter, so it increases by 1 each tick of the
clock during the interval between resets. We can also show that the Boolean streams F1 and NF follow the behavior
shown in Figure 4. The next section outlines a proof that this transformation is correct.

reset

i1 i2 i3

F1

NF

Figure 4: Signal Assumptions

6.1 Verification

The original circuit (Figure 2) is described by the following collection of stream equations:

THETA-F1 = cs(i;MUX(F1, RD, THETA-F1))

THETA-NF = cs(i;MUX(NF, RD, THETA-NF))

CFN =

�
THETA-F1+ THETA-NF

2

�

The optimized circuit (Figure 3) is described by these stream equations:

HOLD = cs(b, F1 & :HOLD)

CIN = HOLD & :NF

OPT = cs(i;MUX(F1, RD, INC(OPT,CIN)))

We wish to prove that OPT = CFN, given some assumptions about the input streams F1, NF, and RD. Streams CFN
and OPT can be defined as functions from two Boolean streams, F1 and NF; an integer stream, RD; and initial values
for the state—CFN has two integer-valued storage elements and OPT has one Boolean and one integer storage location.
The following declarations define the necessary stream functions in PVS.

THETA(A,I,i): Stream[int] =
corec(lambda A,I,i:i,

lambda A,I,i:(tl(A),tl(I),mux(hd(A),hd(I),i)),
(A,I,i))

CFN(A,B,I,i,j): Stream[int] = DIV2(THETA(A,I,i)+THETA(B,I,j))
HOLD(A,a): Stream[bool] =

corec(lambda A,a:a,
lambda A,a:(tl(A),hd(A) and not a),
(A,a))

CIN(A,B): Stream[bool] = A AND NOT B
OPT(A,B,I,i): Stream[int] =

corec(lambda A,C,I,i: i,
lambda A,C,I,i: (tl(A),tl(C),tl(I),

mux(hd(A),hd(I),
inc_c(i,hd(C)))),

(A,C,I,i))
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Sub-circuits that involve feedback are defined using corec. The other functions are defined using composition of
simple functions lifted to streams. Each of the defined stream expressions satisfies the corresponding stream equation
from above, e.g. the equations

THETA(A; I; i) = cs(i,MUX(A; I;THETA(A; I; i)))

HOLD(A; a) = cs(a, A & :HOLD(A; a))

OPT(A;C; I; i) = cs(i, MUX(A; I,INC(OPT(A;C; I; i),C)))

have been proven in PVS using (CO-INDUCT-AND-SIMPLIFY). In addition, lemmas for simplifying both the head
and tail of each stream function have been proven.

We need to prove that

CFN(F1, NF, RD, i, i) = OPT(F1,CIN(HOLD(F1,b),NF), RD, i)

given suitable assumptions about the parameters. Figure 4 illustrates the assumptions about F1 and NF with respect to
a (true low) reset signal. Signal RD is the output of a counter; in the absence of a reset, it increments by one each tick
of the local clock. We define the following parameterized types in PVS.

S(R): TYPE =
{A| Invariant(IF R THEN NOT tl(A)

ELSE A => tl(A) ENDIF)}

C(R): TYPE =
{I| Invariant(NOT R => EQ(tl(I),INC(I)))}

S(R) is the type of Boolean valued signals that will remain asserted, if ever asserted, until one tick after the next reset
event signaled by R. Streams F1 and NF are both of type S(R). C(R) defines the type of all streams that are outputs
of a counter that may be reset (to some unspecified value) by R. Stream RD is of type C(R). In addition to these
invariants on the input streams, we must also constrain both the relationship between F1 and NF. This is accomplished
via the PVS dependent type mechanism. The correctness theorem is:

Optimize_correct: THEOREM
FORALL (R : Stream[boolean]),

(RD : C(R)),
(F1 : S(R) | NOT hd(F1)),
(NF : S(R) | Invariant(NF => F1)),
(i : integer),
(b : boolean):

CFN(F1, NF, RD, i, i) =
OPT(F1, CIN(HOLD(F1, b), NF), RD, i)

In order to prove the optimization correct, it is sufficient to exhibit a bi-simulation between CFN and OPT.
A suitable bi-simulation,B, for proving theorem Optimize correct is:

{(I, J)|
EXISTS (R : Stream[boolean]),

(RD : C(R)),
(F1 : S(R)),
(NF : S(R) | Invariant(NF => F1)),
(i : integer),
(j : integer | hd(F1) and not hd(NF) => (j + 1 = hd(RD))),
(b : boolean | hd(F1) and not hd(NF) => (b = odd?(i + j))):

I = CFN(F1, NF, RD, i, j) &
J = OPT(F1, CIN(HOLD(F1, b), NF), RD, floor((i + j) / 2))

}

The definition of this bi-simulation makes use of the PVS dependent type mechanism in the declaration of existentially
quantified variables. Streams RD, F1, and NF are all dependent on R. The type of Boolean stream NF is further
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constrained by F1. Stream NF cannot be asserted until after F1 is asserted. These type constraints are the same
as presented in the statement of Theorem Optimize correct. Also, Boolean variable b is constrained to equal
odd?(i + j) whenever hd(F1) is asserted and hd(NF) is not. Under the same conditions, j + 1 = hd(RD).
These restrictions on b and j in the bi-simulation essentially state invariants about HOLD and THETA-NF during the
sub-interval i2 depicted in Figure 4. In addition, the current state of the optimized sub-circuit is functionally related to
the current state of the original circuit. These invariant properties constitute the primary reason that this refinement is
correct. All of these constraints are used in the following proof by co-induction.

Proof: (of Optimize correct)
A co-inductive proof subdivides into two major cases. The first case consists of showing that the pair of streams

to be proven equal are included in the candidate bi-simulation. The second case consists of showing that the given
relation is indeed a bi-simulation.

The first step is to show

(CFN(F1, NF, RD, i, i), OPT(F1, CIN(HOLD(F1, b), NF), RD, i)) 2 B

This consists of proving the following goal:

EXISTS (R : Stream[boolean]),
(RD : C(R)),
(F1 : S(R)),
(NF : S(R) | Invariant(NF => F1)),
(i : integer),
(j : integer | hd(F1) and not hd(NF) => (j + 1 = hd(RD))),
(b : boolean | hd(F1) and not hd(NF) => (b = odd?(i + j))):

CFN(F1’, NF’, RD’, i’, i’) = CFN(F1, NF, RD, i, j)
&

OPT(F1’, CIN(HOLD(F1’, b’), NF’), RD’, i’)
= OPT(F1, CIN(HOLD(F1, b), NF), RD, floor((i + j) / 2))

We instantiate R, RD, F1, NF, i, j, and b with R’, RD’, F1’, NF’, i’, i’, and b’ respectively. PVS strategy
(INST?) automatically guesses these instantiations. The type constraint on stream F1’ in the statement of the
theorem ensures NOT hd(F1’), thus, there are no constraints on j or b. PVS decision procedures complete the
proof. All that remains is to show that relation B is a bi-simulation. There are two cases:

Heads: Rewriting with hd CFN, hd DIV2, hd plus, hd THETA, and hd OPT establishes for any (X;Y ) 2 B,
hd(X) = hd(Y ) = b(i + j)=2c.

Tails: For any (X;Y ) 2 B, show (tl(X),tl(Y ))2 B. Rewriting with all of the available lemmas about hd and
tl simplify the tails of X and Y as follows:

tl(CFN(F1’, NF’, RD’, i’, j’))
= CFN(tl(F1’), tl(NF’), tl(RD’),

mux(hd(F1’), hd(RD’), i’),
mux(hd(NF’), hd(RD’), j’))

tl(OPT(F1’, CIN(HOLD(F1’, b’), NF’), RD’, floor((i’ + j’) / 2)))
= OPT(tl(F1’),

CIN(HOLD(tl(F1’), hd(F1’) AND NOT b’), tl(NF’)),
tl(RD’),
mux(hd(F1’), hd(RD’),

mux((b’ AND NOT hd(NF’)), floor((i’ + j’) / 2),
1 + floor((i’ + j’) / 2))))

To show that this pair of streams is in B, we instantiate the existentially quantified variables of B appropriately.
The PVS strategy (INST?) guesses incorrectly here. Appropriate instantiations are determined from the right-hand
side of the equations above. Streams tl(R’). tl(RD’). tl(F1’), and tl(NF’) instantiate R. RD. F1, and NF,
respectively. The expressions “mux(hd(F1’), hd(RD’), i’)” and “mux(hd(NF’), hd(RD’), j’)”
instantiate integers i and j. Expression “hd(F1’) AND NOT b’” instantiates boolean variable b.

The main branch of the proof reduces to showing
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mux(hd(F1’), hd(RD’),
mux((b’ AND NOT hd(NF’)), floor((i’ + j’) / 2),

1 + floor((i’ + j’) / 2)))
=

floor((mux(hd(F1’), hd(RD’), i’)
+ mux(hd(NF’), hd(RD’), j’))

/ 2)

The PVS proof consists of bringing the type constraints on NF’, j’ and b’ into the sequent, simplifying the resulting
expressions, and then applying PVS’ brute-force strategy (GRIND).

The rest of the proof involves satisfying the type correctness conditions generated by PVS when we instantiated
the variables constrained by dependent type declarations. The correctness conditions for RD, F1, and NF follow from
the fact that these streams satisfy an invariant. The correctness of the instantiations for b and j depends on the fact that
RD is the output of a counter and that F1 is asserted before (or simultaneously with) NF. 2

The above argument may seem difficult. However, the only real difficulty lies in determining the appropriate
invariants for the input streams and state variables. Once these are correctly chosen, the proof of stream equality by
exhibiting a bi-simulation is mostly mechanical. This approach to verifying a local replacement forced us to focus
directly on the mathematical justification for the replacement. The routine aspects of the verification are discharged in
a mechanical fashion.

7 Establishing Invariants

The verification presented above is only valid if the input signals satisfy the corresponding invariants. These can also
be established using a co-inductive proof. The signal RD is generated by the sub-circuit shown in Figure 5. This
behavior of this circuit is described by the stream equation:

LC = cs(i,
SELECT(STATUS, INC(LC), INC(LC), INC(LC),

CLR(LC), INC(LC)))

LC

INCCLR

STATUS

RD

Figure 5: Counter Sub-Circuit

This is a variation of the counter circuit defined by equation (3.1). It is defined in PVS using co-recursion. We use
the PVS judgement mechanism to assert that LC satisfies the type required by the verification of the optimization.

C(R): TYPE = {I| Invariant(NOT R => EQ(tl(I),INC(I)))}

JUDGEMENT LC HAS_TYPE [S:Stream[status_type],int->C(RST(S))]

The type judgement generates the PVS proof obligation:

FORALL (S:Stream[status_type], i:int):
Invariant(NOT RST(S) => EQ(tl(LC(S,i)),INC(LC(S,i))))
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This is proven automatically using the PVS strategy (CO-INDUCT-AND-SIMPLIFY). The requirements on F1
and NF are discharged in a similar manner.

Since these proof obligations are often discharged automatically, it would be more productive to add a function to
the derivational system to attempt a simple co-inductive proof prior to generating the necessary PVS theories. There
is no need to use the power of a general purpose prover when a simple function added to the design tool can provide
the same level of assurance.

8 Concluding Remarks

Optimizations of hardware designs often exploit implicit properties of the surrounding system. Approaches for formal
hardware development need to include an effective means to represent and reason about changes in an evolving hardware
design. Derivation-based formalisms provide a suitable framework for managing the routine design refinements, but
cannot be expected to cover the possible design space. General purpose theorem proving systems, on the other hand,
provide sufficient generality to capture arbitrary design refinements, but can be cumbersome for the more routine
aspects of design. Formal design environments need to strike a balance between the two extremes.

In this paper, we presented a scenario where the generality of a general purpose proof system is necessary to
complete the verification. However, the verification effort also identified a plausible extension to a derivational
reasoning system. It is possible that a trivial bi-simulation is sufficient to justify an ad hoc refinement. In this
case, it is not necessary to use the full power of a mechanized proof system. A simple extension to the derivation
system can automatically attempt a trivial co-inductive proof. If it succeeds, the refinement is allowed, otherwise the
necessary proof obligation is generated. In cases of design modifications resulting from clever engineering insight, the
verification strategy presented here focuses effort on the mathematical justification for the refinement. The mundane
aspects of the verification are handled automatically.
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