ELECTRONIC WORKSHOPSIN COMPUTING
Series edited by Professor C.J. van Rijsbergen

Mary Sheeran, Chalmers Technical University, Sweden, and Satnam Singh,
University of Glasgow, UK (EdS)

Designing Correct Circuits

Proceedings of the 3rd Workshop on Designing Correct Circuits
(DCC96), Bastad, Sweden, 2-4 September 1996

ISBN: 3-540-76102-0

Paper:

Verification of an Optimized Fault-T olerant
Clock Synchronization Circuit

Paul S. Miner and Steven D. Johnson

Published in collaboration with the
British Computer Society

& Springer

©Copyright in this paper belongs to the author(s)

Verification of an Optimized Fault-Tolerant Clock
Synchronization Circuit

Paul S. Miner
Flight Electronics Technology Division, NASA Langley Research Center
Hampton, VA, USA

Steven D. Johnson
Department of Computer Science, IndianaUniversity
Bloomington, IN, USA

Abstract

In previous work, we explored the interaction between different formal hardware development techniques in the
implementation of afault-tolerant clock synchronization circuit. This case study presentsaclever optimization of the
earlier design and illustrates how we have extended our framework to support its incremental design refinement. The
primary design tool represents circuits as systems of stream equations, where each stream correspondsto a signal
within the circuit. These signals are annotated with invariants which can be established using proof by co-induction.
Theseinvariants are exploited to verify localized design refinements. This study lays groundwork for a more formal
integration of disparate reasoning tools.

1 Introduction

A significant amount of effort within the formal methods community has been focused on how to verify hardware
using particul ar verification systems. Not as much time has been spent asking what type of reasoning support we need
to formalize the design process. The case study presented here is subject to the same criticism. The exercise began as
an attempt to derive a clock synchronization circuit using the Digital Design Derivation (DDD [1]) system. When it
became clear that DDD could not handle all the devel opment steps, the effort evolved into exploring how a mechanical
theorem proving system (PVS[8]) could support the derivation process. Lost in the effort was the question of how to
best use formal techniquesin the hardware devel opment process. Much of this processis tediousand does not require
sophisticated reasoning support. Our mission as researchers in this field should be to identify the types of reasoning
that are useful to this process, and to develop those. These efforts toward devel oping a verified synchronization circuit
have led to the position that a forma design process should be as simple as possible, but should alow sufficient
flexibility to the designer to make aggressive optimizationsto the design.

Early research in applied forma methods was concerned with basic questions of design and implementation
correctness. We are now beginning to explore how formal reasoning interacts with intelligent design processes. This
case study addresses a clever refinement to adesign that is already well along the path toward redlization. The god is
to preserve or reestablish the implementation’s correctness while sustaining a secure verification path. The cleverness
of the refinement lies in its exploitation of undisclosed properties of both the implementation and the environment
in which it isto operate. Consequently, the formal characterizations of both the design and the implementation are
extended.

Effective automated support of formal methods must accommodate multiple distinct modes of reasoning. One
motive of thisstudy isto explore heterogeneous reasoning and contributeto the growing experience withit. Derivation
based formalisms—reasoning systems that employ transformationsrather than logica inference—arerelatively effec-
tive for routine design refinement. However, because they are dedicated to preserving specific refinement relations,
they are not as genera as deduction based systems, where the implementation relation can be expressed within the
formalism. The devel opers of the DDD system were confronted with thislimitationin contrasting aformal derivation
of the FM 8502 [4] and FM 9001 [1, 2] microprocessorswith Hunt’s proofsof correctnessin the theorem prover Ngthm.

Designing Correct Circuits, Bastad 1996 1

Verification of an Optimized Fault-Tolerant Clock Synchronization Circuit

In particular, Hunt'simplementation of a functional memory mode by an explicitly synchronized process exposed a
gap inthederivation path. Whilethisparticular kind of problem has been addressed [17, 10], we believe that derivation
gaps are an inevitable consequence of creativity in design and engineering.

On the other hand, generality hardly justifies the use of atheorem prover for al verification tasks. Even if one has
somehow incorporated automatic provers and rewriters for lower level tasks, we believe that reasoning environments
should support avariety of reasoning formalisms. At some point, such a system may employ the more unified view of
alogica framework, but, for the present, experience is needed in the coordinated use of multipleinteractive systems.

The technique presented hereto augment DDD style derivation with PV S theorem proving support is not restricted
to either DDD or PVS. Essentially, we present an effective means to establish invariants on signals within a circuit
so that we can verify context-dependent optimizations of acircuit design. These invariants (assertions on signals) are
established using co-induction, as is the verification of the optimization. Our goa is to develop a formalized design
environment that supports annotation of signals with invariants (and handles al the associated bookkeeping aspects),
so that a designer can explore various optimizationsin arigorous manner.

2 Related Work and Prior Developments

Inthestudy described here, the DDD system provides mechani zed support for behaviora and structural transformations,
while PV'S supports theorem proving activities. The interaction between these systems requires manua support at
present, althoughwe arelaying thegroundwork for mechanizing it. Weview DDD and PV S as exampl es of autonomous
reasoning peers. They are each useful toolsin aformal hardware devel opment process.

A case study by O’ Leary, Leeser, Hickey and Aagaard, outlining the verification of a binary non-restoring square
root implementation, reflects a contrasting perspective on heterogeneous reasoning [3]. The design and its proof of
correctness devel op through several stages of program transformation before a structural description emerges. These
structures are then refined in several stages toward a realizable hardware description. Their study, like ours, exhibits
both derivationa and deductive reasoning processes, but withinthe unified framework of Nuprl. We believe the authors
would argue in favor of such aframework as a prerequisite for heterogeneous reasoning.

Miner presents a verified class of fault-tolerant clock synchronization agorithms and an informal sketch of a
hardware readlization [5]. The genera agorithm was verified using the mechanized proof system EHDM [11]. A
hardware redization of the verified algorithm was developed and tested, but the hardware was not formally verified
with respect to the algorithm [6, 14]. In [7], a core circuit design was developed using a variety of formal reasoning
systems. The circuit was developed using a combination of the Prototype Verification System (PVS) developed at
SRI [8], the DDD system developed at Indiana University [1], and a BDD-based tautology checker. This formal
development identified a small improvement over the origina design. While that work was in progress, Torres-
Pomales identified a more significant improvement [15]. This paper explores how Torres-Pomales’ optimization can
be incorporated into the formal design framework proposed in [7]. This optimization trades space for timein a clever
manner and led us to the conclusion that a forma design environment should be flexible enough to accommodate
engineering insight. The argument justifying the optimization requires arithmetic reasoning includinginteger division,
S0 itsjustification requires more than simple transformational techniques and a so places the optimization outside the
realm of model-checking approaches.

Specifically, we look at how the optimization can be incorporated with minimal impact on the surrounding proof.
In essence, we want atransformation rulein DDD that allows a subsystem to be replaced by a behaviorally equivalent
variant as established in PVS. To accomplish this, we need the means to transfer expressions between DDD and PV'S,
atheory of streams built into PV'S, and a mechanism for sanctioning ad hoc transformationsin DDD.

Sincethegoal of our verification activitiesis devel oping working hardware, aVL S| implementation of theformally
devel oped circuit design has been fabricated and tested. The circuit layout was manually generated using conventional
design tools, so the link between the fabricated circuit and the design is not completely formal. The VLSI realization
has been incorporated into the full fault-tolerant clock synchronization system described by Torres-Pomales[15]. The
circuit worked perfectly on al tests.

3 Verification Strategy

In order to carry out the verification reported here, we needed to identify what role each formal system would play
in the development process. ldedlly, the hardware development should not depend directly upon a genera purpose

Designing Correct Circuits, Bastad 1996 2

Verification of an Optimized Fault-Tolerant Clock Synchronization Circuit

proof system. Most theorem proving systems require a great deal of experience before they can be used effectively.
However, such a system isindispensablein exploring the reasoning required for aformalized design process.

The principledesign tool isDDD, and wewish to useit in amanner to minimize the application of general purpose
verification activities. For the effort reported here, we used a shallow embedding of DDD’s representation of hardware
in PVS. Our primary motivation was justification of custom refinements, not in reasoning about the DDD approach to
hardware design.

Figure 1 depictsour view of the design hierarchy and illustrateswhere each tool contributesto the design process.
At thetop-most level are mathematical propertiesthat the resulting design must satisfy. A genera purpose mechanical
theorem proving system supportsthe verification of algorithmsthat ensure these requirements. The verified algorithm
should be as general asisreasonably possible, so that the design space is not unduly restricted. The verified algorithm
is (manually) trandated to a DDD specification. This specification is refined within DDD and then transformed into
an architecture. A sequence of basic DDD transformations, augmented with localized PV S verifications, determines
the final architecture. At thefina stage, DDD maps the abstract representations of data into boolean representations.
Additional transformations may be applied prior to using conventional design toolsto produce a physical realization
of the design.

3.1 Overview of DDD

DDD implements aformal design algebrafor developing correct digital circuit descriptions. The designer interactively
transforms high level behavioral specifications into a description suitablefor entry into hardware synthesistools. The
top level describes the intended behavior of the circuit using a collection of mutually recursive function definitions
in tail-form. Each function corresponds to a control state and arguments to the functions represent the visible
storage elements in the design. Transformations at this level allow the designer to modify the control structure of
an architecture while preserving the functiona correctness, relative to synchronization constraints. Once the control
structure is determined, DDD automatically transforms the behavioral specification into an initial architectura level
description.

DDD represents the structure of a digital system using a system of mutually recursive stream equations. A stream
in DDD is an infinite sequence of uniformly typed values,

X = [l‘o, X1,X2, ..]
The stream constructor ‘cs’ adds an e ement to the front of the sequence
cs(z,X) = [z, x0, 21, 22,...]

Function ‘cs’ models a delay element with initial value z. Functions extend to sequences so that f(X,Y") denotes
[f(xo0,y0), f(x1,31), ...]. DDD uses asystem of equations to define a network of streams; recursion in such systems
represents feedback in the circuit. For example, the following stream equation defines a loadabl e counter circuit.

COUNT = cs(i, MUX(S, L, INC(COUNT))) ©

where i is the initia integer value of the counter, INC and MUX are the increment and selection functions lifted to
streams, and streams S and L are the multiplexor select signal and load input respectively. Within DDD, free variables
in asystem of stream equations are bound by a system level abstraction. This abstraction defines theinput signalsfor
the circuit. The circuit’s output is a subset of the named streams in the system of eguations.

3.2 Overview of PVS

PV Sisagenera purposeverification system devel oped at SRI International [8]. It consistsof an expressive specification
language coupled with apowerful mechanical theorem prover. The PV S specification languageisbased on higher-order
logic. The base types include the booleans and the real numbers. The language includes predicate sub-types. The
other numeric types are defined as sub-types of the reals. One consequence of introducing predicate sub-typesis that
theresulting type system isundecidable. Thus, PV'S automatically generates proof obligationscalled type-correctness
conditions(TCCs) whenit type-checksatheory. Theories can be parameterized, providing some support for parametric
polymorphism. PVS also alows for dependent types and severa standard computer science type constructors such as
records, tuples, and lists. PV S includes a prelude theory that defines alarge collection of useful results. User defined
libraries provide a mechanism to extend PV S with domain-specific theories.

Designing Correct Circuits, Bastad 1996 3

Verification of an Optimized Fault-Tolerant Clock Synchronization Circuit

Abstract Specification

PVS

General Algorithm

DDD Specification

DDD

Abstract Architecture

DDD / PVS

Concrete Architecture

DDD /BDDs / PVS

Boolean Realization

Figure 1: Abstract View of Design Hierarchy

Designing Correct Circuits, Bastad 1996 4

Verification of an Optimized Fault-Tolerant Clock Synchronization Circuit

PV S provides an interactive theorem proving environment using a sequent cal cul us presentation of the proof goals.
The prover includes decision procedures for ground linear arithmetic and equality. Thereisa strategy language similar
to LCF-style tactics. Thus, the user can define high-level proof procedures. There are severa powerful strategies
distributed with PV Sthat automatically verify alarge number of results. PV'S alowsthe user to prove lemmas in any
order. It maintains proof dependency analysis to ensure that all obligations have been discharged. Included in the
analysisis an enumeration of all axioms used by the proof chain.

4 Reasoning about Streamsin PVS

Recursive stream definitionsare not directly supported by PV S. It was necessary to i dentify amechanism to alow such
objects to be defined in PVS. Although streams over type « can be represented as functionsfrom natural numbers to
«, this representation does not lend itself to direct definition by stream equations. The eguational style of definition
illustratesthat streams can be viewed as a co-inductive type. Just as inductively generated types give riseto recursive
function definitions and proofs by induction, co-inductive types alow for definition by co-recursion and proofs by
co-induction [9]. Co-induction is a categorical dua of induction; induction principles are justified using least fixed
point arguments, co-induction principles are justified using greatest fixed point arguments. Although the underlying
formal basis of co-induction is an interesting area of study, our work is primarily concerned with the application of
these techniques to hardware verification.

4.1 Stream Definition

Streams in PV S are defined as parameterized uninterpreted types constrained by a set of axioms. For X, Y, S of type
Streani «] ,and a : «, thefollowing axioms hold:

Stream cs_eta: AXIOM cs(hd(S), tI(S)) =S
Stream hd_cs: AXIOM hd(cs(a, S)) = a
Streamtl_cs: AXIOMtl(cs(a, S)) =S

Stream eq: AXIOM (X = Y) <=> (FORALL n: nth(X, n) = nth(Y, n))
Forf:a—f,9:a—a,ada: o, definefunctioncor ec; ,) : o — St r eanjs] using the following axiom:
corec_def: AXI OM corec(f, g)(a) = cs(f(a), corec(f, g)(g(a)))

The standard representation of streams, N — «, augmented with explicit function definitionsfor cs, hd, t |, nt h,
and cor ec, providesamodel for these axioms.

Function cor ec provides us with enough machinery to define any DDD stream equation. For example, one
possible PV S declaration defining a stream function that satisfies equation (3.1) is

COUNT((S : Streanibool ean]),
(L : Streaniinteger]),

(i : integer)): Streaniinteger] =
corec(LAMBDA S, L, i : i,
LAMBDA S, L, i : (tlI(S), tl(L), mux(hd(S), hd(L),inc(i)))
)(S, L, i)

In thisdefinition, type « isinstantiated using the tuple type
[Strean bool ean], Streanfinteger], integer]
and g isingstantiated with typei nt eger . The following two facts are easily proven about COUNT.
hd_COUNT: LEMVA
hd(COUNT(S, L, i)) =i

t1 _COUNT: LEMVA
t1 (COUNT(S, L, i)) =
COUNT(t1(S), tl(L), mux(hd(S), hd(L), inc(i)))

The proofs consist of expanding the definition of COUNT followed by rewriting with the stream axioms. To simplify
subsequent proofs, we adopt the convention that for every stream defined in PV'S, we introduce lemmas for simplifying
thehd and t | . The next section introduces a proof principlethat simplifies proofs of stream equality.

Designing Correct Circuits, Bastad 1996 5

Verification of an Optimized Fault-Tolerant Clock Synchronization Circuit

4.2 Stream Equivalence

Definition of streams using co-recursion enables a useful technique for proving two streams equal. A stream bi-
simulation R isasub-relation of theequality relation such that for any twostreams andy, if z R ythenhd(z) = hd(y)
andt | (z) Rt (y). The PVStype declaration defining the type of bi-simulationsbetween streams over « is:

Bi si nul ati on: TYPE =
{R PRED [Streanial pha], Streanfal pha]]] |
FORALL X, Y: R(X, Y) =>
hd(X) = hd(Y) & R(tI(X), t1(Y))}

PVS automatically generates proof obligations for any object declared to be of this type. The following theorem
provides atool for proving stream equival ence by exhibiting a suitabl e bi-simulation.

co_i nduct: THEOREM
(EXISTS (R Bisinulation): R(X Y)) => X=Y

The PV'S proof of theorem co_i nduct consists of rewriting with axiom St r eameq followed by induction on the
natural numbers. We can now use co-induction to prove (in PVS) that the co-recursive definition of COUNT satisfies
equation (3.1).

COUNT_eqn: LEMVA
FORALL (S : Streambool]), (L : Streanfint]), (i : int):
COUNT(S, L, i) =cs(i, MIX(S, L, INC(COUNT(S, L, i))))
Proof: The proof consists of rewriting with theorem co_i nduct , constructing a simple relation between integer
valued streams from the given goal, and then showing that the constructed relationisabi-simulation. Therelation R is

{(1, J : Streanfinteger]) |
EXISTS (S : Streambool]), (L : Streanfint]), (i : int):
I COUNT(S, L, i) &
J cs(i, MIX(S, L, INC(COUNT(S, L, i))))}

This relation is constructed using information from the original goal. For every S, L, and i , thisrelation containsthe
pair
(COUNT(S, L, i), cs(i, MIX(S, L, INC(COUNT(S, L, i)))))

All that remainsisto show that thisrelation satisfies the type constraints of a bi-simulation. Take an arbitrary pair that
isintherelation

(COUNT(S, L', i), cs(i’, MIX(S, L', INC(COUNT(S, L', i')))))
There are two cases to consider:

Heads: The PV'S proof for this case consists of rewriting with lemmahd_COUNT and axiom hd_cs.

hd(COUNT(S, L', i’)) =i’ = hd(ecs(i’, MIX(S, L, INCCOQUNT(S, L, i')))))
Tails: The goal isto show that the pair
(tI(COUNT(S, L', i")), tl(es(i’, MIX(S, L', INC(COUNT(S, L', i'))))))

is contained in therelation R. The proof consists of rewriting these two streasmswitht | _.COUNT, t | _.cs, MJX_def ,
hd_I NC, t | _I NC, and hd_COUNT, producing the following equival ences.

tI (COUNT(S, L', i’)) = QOUNT(tI(S), tI(L), mux(hd(S), hd(L'), inc(i')))
tl(es(i’, MIX(S, L', INQ(COUNT(S, L', i')))))
= MUX(S, L', ING(COUNT(S, L, i')))
= cs(nmux(hd(S'), hd(L'), hd(INC(COUNT(S, L', i')))),
MIX(t1 (S), tI(L), tI(INC(COUNT(S , L', i')))))

cs(mux(hd(S), hd(L'), inc(i’)),
MUX(t1(S), tI(L),
I NG COUNT(t1(S), tI(L), mux(hd(S), hd(L'), inc(i’))))))

Designing Correct Circuits, Bastad 1996 6

Verification of an Optimized Fault-Tolerant Clock Synchronization Circuit

By instantiatingSwitht | (S) ,Lwitht| (L) ,andi withmux(hd(S), hd(L'), inc(i’)),weestatblish
that thetailsarein therelation. O

We have written a PV S strategy named (CO- | NDUCT- AND- SI MPLI FY) that completely automates the above
proof steps. This strategy suffices to automatically discharge several standard stream identities.

4.3 Signal Invariants

In order to justify some refinements, it is necessary to establish invariants on the input signals. The following PVS
theory fragment defines predicate | nvar i ant to be true for any boolean valued stream that istrue at every finitely
accessible point. At first glance, this appearsto be a usel ess definition. However, when used in conjunction with PVS
dependent type mechanism it provides a useful means to define an invariant relating a collection of signals.

I nvariant (A : Streani{bool]) : bool = (A = const(true))
I nvari ant _hd: LEMVA Invariant (A) => hd(A)
Invariant _tl: LEMMA Invariant(A) => Invariant(tl (A))

Col nductive_Assertion: TYPE =
{P| forall A P(A) => hd(A & P(tl(A))}

co_i nduct: THEOREM
(EXI STS (P: Col nductive_Assertion): P(A)) => Invariant(A)

An example of how predicate | nvar i ant may be used, consider the following parameterized type declaration (A
and R are boolean valued streams):

S(R): TYPE =
{A] Invariant(IF R THEN NOT tl (A)
ELSE A => tI(A) END F)}

A stream of type S(R) correspondsto asignal that once asserted remains asserted, unlessit isreset by boolean stream
R.

Theorem co_i nduct provides amechanism for proving that an arbitrary boolean valued streams is aways true.
To establish an invariant property about a stream, it is sufficient to show that that property is contained in some
coinductive assertion. The PVS strategy (CO- | NDUCT- AND- SI MPLI FY) automatically verifies many invariant
properties.

5 Fault-Tolerant Clock Synchronization

In afault-tolerant computer architecture, the clocks of the redundant computing elements need to be synchronized to
ensure that they operate in a coordinated manner. The synchronization algorithm must a so tolerate a bounded number
of failures. The property that a synchronization agorithm must ensure isthat:

For any two clocks €, and C, that are nonfaulty at time¢
Co(t) = Cy(B)] <6

Clock synchronization agorithms are designed so that by periodically exchanging values of clocks and executing a
fault-tolerant averaging function, the above property is guaranteed.

Schneider [12] demonstrates that many fault-tol erant clock synchronizationa gorithmscan be treated asrefinements
of agenera protocol. Shankar [13] and Miner [5] have provided mechanically checked proofsof Schneider’s paradigm.
Miner’s verification is the top-level specification for the circuit developed here. A generalized view of the algorithm
employed by each participant in the protocol is:

Designing Correct Circuits, Bastad 1996 7

Verification of an Optimized Fault-Tolerant Clock Synchronization Circuit

do forever {
exchange clock values
determine adjustment for this interval
determine local time to apply correction
when time, apply correction }

Schneider’s paradigm is parameterized by
e N—thenumber of clocks participating in the protocol, N > 0
e F—thenumber of faultstolerated

o A mechanism for exchanging clock values. The relationship between N and I depends on this mechanism.
Usualy, N > 3F.

We use 6 to denote a collection of readings from clocks in the system. In the mechanicaly verified theory, ¢ is
afunction from clock indices to clock readings.

e R—thenomina duration of a synchronization interval.
¢ cfn—aconvergence function that must satisfy three properties:

Trandation Invariance The function depends only on the relative magnitude of the readings, not the absolute
magnitude.

Precision Enhancement For any two good clocks with similar estimates of other clock’s values, the result of
computing the convergence function issimilar.

Accuracy Preservation If the readings from good clocks are sufficiently similar, then the computed val ue of
the convergence functionis close to al good clocks.

The fault-tol erant midpoint convergence function,

6 On—
cfny p(0) = {WJ , where 0,y = themth largest valuein collection ¢

employed in the Welch and Lynch [16] clock synchronization algorithm, possesses the required properties of a
convergence function [5].

In previous work [7], we developed a hardware realization of this verified agorithm using a combination of
formal design techniques. The verified agorithm was manually trandated into a DDD behavioral level specification.
A standard technique was chosen for exchanging values between the redundant clocks. At a fixed offset into each
synchronizationinterval, asigna isbroadcast to the other participantsin the protocol. The estimatefor aremoteclock’s
value is computed by determining the difference between the expected offset for receiving this signa and the actual
offset when it isreceived. Using standard DDD transformations, an ad hoc refinement verified using PVS, and BDD-
based tautology checking, we developed a hardware description suitable for realization using a field-programmable
gate-array.

In aseparate effort, Torres-Pomal es [15] discovered amore efficient realization of the core synchronization circuit.
We were faced with the problem of how to incorporate this optimizationinto our existing verification. Weisolated the
sub-circuit affected by the optimization, and then verified a localized refinement with respect to the existing design
description.

5.1 Description of the sub-circuit

Figure 2 illustrates the core circuit computing the convergence function presented in [7]. The signal RDis the output
of acounter. The signalsF1 and NF are boolean valued signalsthat indicate receipt of a synchronization signa from
aleast F' + 1and N — F distinct participantsin the protocol, respectively. Here, N represents the number of clocks
in the protocol and F' represents the number of physical faultstolerated by the system. By discarding readings from
the ' fastest and F* dlowest clocks, thisprotocol can tolerate F' Byzantinefailures.

Designing Correct Circuits, Bastad 1996 8

Verification of an Optimized Fault-Tolerant Clock Synchronization Circuit

RD

F1 NF

THETA-F1 THETA-NF

N

Figure 2: Core Circuit for Computing Convergence Function

The two registers capture the current value of the counter when the surrounding hardware receives signals from
appropriately selected remote clocks. The verification discussed in [7] establishes that capturing just two readingsin
each synchronization interva is sufficient for correct execution of the algorithm. The proof technique employed for
the ad hoc refinement in the earlier effort was not easily generalized. The difficulties encountered led us to refine our
proof technique for verifying these custom transformations.

6 Optimization

Torres-Pomal es discovered that the convergence function hasamuch moreefficient realization [15]. Herecognized that
he could exploit thetime interval between the (F' + 1)th and (N — F')th signalsto partially compute the convergence
function. His optimization consists of capturing the (7' + 1)th reading as before, but he then increments the captured
value every other clock tick until the signal fromthe (N — F')th clock arrives. At this point the stored vaueis exactly
the required value of the convergence function.

This next section will outline a technique to transform our previous design into Torres-Pomaes design. The
optimized convergence function is depicted in Figure 3. This optimization requires assumptions about the input

S Y

OPT

Figure 3: Optimized Convergence Function

Designing Correct Circuits, Bastad 1996 9

Verification of an Optimized Fault-Tolerant Clock Synchronization Circuit

signals. We already know that the integer stream RD is the output of a counter, so it increases by 1 each tick of the
clock during the interval between resets. We can also show that the Boolean streams F1 and NF follow the behavior
shown in Figure 4. The next section outlines a proof that thistransformation is correct.

reset

il i2 i3

Figure4: Signa Assumptions

6.1 Verification
The origina circuit (Figure 2) is described by the following collection of stream equations:
THETA-F1 = cs(i,MUX(F1, RD, THETA-F1))

THETA-NF = cs(i, MUX(NF, RD, THETA-NF))
THETA- F1 + THETA- NFJ

CFN =
S

The optimized circuit (Figure 3) is described by these stream equations:

HOLD = c¢s(b, F1 & —-HOLD)
CIN = HOLD & —-NF
OPT = cs(i,MJX(F1, RD, INC(OPT,CIN)))
We wish to prove that OPT = CFN, given some assumptions about the input streams F1, NF, and RD. Streams CFN
and OPT can be defined as functions from two Boolean streams, F1 and NF; an integer stream, RD; and initial values

for the state—CFN has two i nteger-val ued storage elements and OPT has one Boolean and one integer storage location.
The following declarations define the necessary stream functionsin PVS.

THETA(A, I,i): Streanfint] =
corec(lanmbda A I,i:i,

lambda A, 1,i:(tI(A),tl (1), mux(hd(A), hd(1),i)),
(A1,0))
CFN(A, B, 1,i,j): Streanfint] = DI V2(THETA(A I ,i)+THETA(B, 1,j))

HOLD(A, a): Streanbool] =
corec(l anbda A a: a,
| anbda A a: (tl (A), hd(A) and not a),
(A a))
CIN(A B): Streanfbool] = A AND NOT B
OPT(A B, 1,i): Streanfint] =
corec(lanmbda A CI,i: i,
lambda A/ C Il,i: (tI(A,tI1(Q,tlI(l),
mux(hd(A), hd(1),
inc_c(i,hd(Q)))),
(ACl,i))

Designing Correct Circuits, Bastad 1996 10

Verification of an Optimized Fault-Tolerant Clock Synchronization Circuit

Sub-circuits that involve feedback are defined using cor ec. The other functions are defined using composition of
simplefunctionslifted to streams. Each of the defined stream expressions satisfies the corresponding stream equation
from above, e.g. the equations

THETA(A, I,7) = cs(i, MIX(A, I,THETA(4,1,7)))
HOLD(A4,a) = cs(a, A & —HOLD(A4,4q))
OPT(A,C,I,i) = cs(i, MIX(A I, INC(OPT(A,C 1,i),C)))

have been proven in PV Susing (CO- | NDUCT- AND- SI MPLI FY) . In addition, lemmas for simplifying both the head
and tail of each stream function have been proven.
We need to prove that

CFN(F1, NF, RD, i, i) = OPT(F1, CI N(HOLD(F1,b), NF), RD, i)

given suitable assumptions about the parameters. Figure4 illustratesthe assumptionsabout F1 and NF with respect to
a(truelow) reset signal. Signal RD isthe output of a counter; in the absence of areset, it increments by one each tick
of thelocal clock. We define the following parameterized typesin PV S.

S(R): TYPE =
{A] Invariant(IF R THEN NOT tl (A)
ELSE A => tI(A) END F)}

C(R): TYPE =
{1l Invariant(NOT R => EQtl(I),INC(1)))}

S(R) isthetype of Boolean valued signalsthat will remain asserted, if ever asserted, until onetick after the next reset
event signded by R. Streams F1 and NF are both of type S(R). C'(R) definesthetype of al streams that are outputs
of a counter that may be reset (to some unspecified value) by R. Stresm RDis of type C'(R). In addition to these
invariants on theinput streams, we must a so constrain both the rel ationship between F1 and NF. Thisis accomplished
viathe PV S dependent type mechanism. The correctness theoremis:

Optim ze_correct: THEOREM
FORALL (R : Streanibool ean]),
(RD: R),
(F1 : S(R | NOT hd(F1)),
(NF : S(R) | Invariant(NF => F1)),

(i : integer),
(b : bool ean):
CFN(F1, NF, RD, i, i) =

OPT(F1, CIN(HOLD(F1, b), NF), RD, i)

In order to prove the optimization correct, it is sufficient to exhibit a bi-simulation between CFN and OPT.
A suitable bi-simulation, B, for proving theorem Opt i ni ze_corr ect is:

{1, Il
EXISTS (R : Streanbool ean]),

(RD: (R)),
(F1: S(R)),
(NF : S(R) | Invariant(NF => F1)),
(i : integer),
(j : integer | hd(F1) and not hd(NF) => (j + 1 = hd(RD))),
(b : boolean | hd(F1) and not hd(NF) => (b = odd?(i + j))):

| = CFN(F1, NF, RD, i, j) &

J = OPT(F1, CIN(HOLD(F1, b), NF), RD, floor((i +j) / 2))

}

The definition of thisbi-simulation makes use of the PV S dependent type mechanism in the declaration of existentially
quantified variables. Streams RD, F1, and NF are all dependent on R. The type of Boolean stream NF is further

Designing Correct Circuits, Bastad 1996 11

Verification of an Optimized Fault-Tolerant Clock Synchronization Circuit

congtrained by F1. Stream NF cannot be asserted until after F1 is asserted. These type constraints are the same
as presented in the statement of Theorem Opt i ni ze_correct . Also, Boolean variable b is constrained to equal
odd?(: + j) whenever hd(F1) is asserted and hd(NF) is not. Under the same conditions, j + 1 = hd(RD) .
These restrictionson b and j in the bi-simulation essentialy state invariants about HOLD and THETA- NF during the
sub-interval :2 depicted in Figure 4. In addition, the current state of the optimized sub-circuit isfunctionally related to
the current state of the origina circuit. These invariant properties constitute the primary reason that thisrefinement is
correct. All of these constraints are used in the following proof by co-induction.

Proof: (of Opti m ze_correct)

A co-inductive proof subdividesinto two major cases. The first case consists of showing that the pair of streams
to be proven equal are included in the candidate bi-simulation. The second case consists of showing that the given
relation isindeed a bi-simulation.

Thefirst step isto show

(CFN(F1, NF, RD, i, i),0PT(F1, CIN(HOLD(F1, b), NF), RD, i))eB
This consists of proving the following goal:
EXISTS (R : Streanbool ean]),

(RD: (R)),

(F1: S(R)),

(NF : S(R) | Invariant(NF => F1)),

(i : integer),

(j : integer | hd(F1) and not hd(NF) => (j + 1 = hd(RD))),

(b : boolean | hd(F1) and not hd(NF) => (b = odd?(i + j))):
CFN(F1', NP, RD, i’, i') = CFN(F1, NF, RD, i, j)

&

OPT(F1', CIN(HOLD(F1', b’), NF'), RD, i’)
= OPT(F1, CN(HOLD(F1, b), NF), RD, floor((i +j) / 2))

We ingtantiate R, RD, F1, NF, i ,j,and b withR ,RD ,F1' ,NF’ ,i’,i’,and b’ respectively. PVS strategy
(1 NST?) automatically guesses these instantiations. The type constraint on stream F1' in the statement of the
theorem ensures NOT hd(F1'), thus, there are no constraintson j or b. PVS decision procedures complete the
proof. All that remainsisto show that relation B isabi-simulation. There are two cases:

Heads. Rewriting with hd_CFN, hd_DI V2, hd_pl us, hd_THETA, and hd_OPT establishes for any (X,Y) € B,
hd(X) = hd(Y) = [(i+j)/2].

Tails: Forany (X,Y) € B,show (t1 (X),tl (Y)) € B. Rewritingwith dl of the available lemmas about hd and
t | simplify thetailsof X and Y asfollows:

tI(CFN(F1', NP, RD, i’', j'))
= CFN(tI(F1'), tI(NF), ti(RD),
mux(hd(F1’), hd(RD'), i’),
mux(hd(NF’), hd(RD'), j'))
t1 (OPT(F1', CIN(HOLD(F1', b’), NF'), RD, floor((i’ +j') / 2)))
= OPT(tl (F1'),
CIN(HOLD(t1 (F1'), hd(F1') AND NOT b’), tl(NF)),
tI(RD),

mux(hd(F1'), hd(RD),
mux((b’ AND NOT hd(NF')), floor((i' +j') /I 2),
1+ floor((i” +j') /1 2))))

To show that this pair of streams isin B, we ingtantiate the existentially quantified variables of B appropriately.
The PV S strategy (| NST?) guesses incorrectly here. Appropriate instantiations are determined from the right-hand
side of the equations above. Streamst| (R) .tl1 (RD).tl (F1'),andt| (NF) instantiate R. RD. F1, and NF,
respectively. The expressions “mux(hd(F1’), hd(RD), i’)” and “nux(hd(NF'), hd(RD), j')”
instantiateintegersi andj . Expression“hd(F1’) AND NOT b’ " instantiates boolean variable b.

The main branch of the proof reduces to showing

Designing Correct Circuits, Bastad 1996 12

Verification of an Optimized Fault-Tolerant Clock Synchronization Circuit

mux(hd(F1'), hd(RD),
mux((b’ AND NOT hd(NF')), floor((i' +j') /I 2),
1+ floor((i” +j') [/ 2)))

roor((va(hd(Fl’), hd(RD'), i)
+ mux(hd(NF"), hd(RD'), j'))
/I 2)

The PVS proof consists of bringing the type constraintsonNF’ ,j * and b’ into the sequent, simplifying the resulting
expressions, and then applying PVS' brute-force strategy (GRI ND) .

The rest of the proof involves satisfying the type correctness conditions generated by PVS when we instantiated
the variables constrained by dependent type declarations. The correctness conditionsfor RD, F1, and NF follow from
the fact that these streams satisfy an invariant. The correctness of the instantiationsfor b and j depends on the fact that
RD isthe output of a counter and that F1 is asserted before (or simultaneously with) NF. |

The above argument may seem difficult. However, the only real difficulty lies in determining the appropriate
invariants for the input streams and state variables. Once these are correctly chosen, the proof of stream equality by
exhibiting a bi-simulation is mostly mechanical. This approach to verifying alocal replacement forced us to focus
directly on the mathematical justification for the replacement. The routine aspects of the verification are discharged in
amechanical fashion.

7 Establishing Invariants

The verification presented above isonly valid if the input signals satisfy the corresponding invariants. These can aso
be established using a co-inductive proof. The signa RD is generated by the sub-circuit shown in Figure 5. This
behavior of thiscircuit is described by the stream equation:

LC = cs(i,
SELECT(STATUS, INC(LC), INC(LC), INC(LO,
CLR(LO), INC(LC)))

[|
CLR INC
I

ST ATUSX ;

D LC

RD

Figure5: Counter Sub-Circuit
Thisisavariation of the counter circuit defined by equation (3.1). It is defined in PV S using co-recursion. We use
the PV S judgement mechanism to assert that L C satisfies the type required by the verification of the optimization.
C(R): TYPE = {I| Invariant(NOT R => EQtl(1),INC(1)))}

JUDGEMENT LC HAS TYPE [S: Streanfstatus_type],int->C(RST(S))]
The type judgement generates the PV S proof obligation:

FORALL (S:Streanfstatus_type], i:int):
I nvariant (NOT RST(S) => EQtI (LC(S,i)),INC(LC(S,i))))

Designing Correct Circuits, Bastad 1996 13

Verification of an Optimized Fault-Tolerant Clock Synchronization Circuit

Thisis proven automatically using the PV S strategy (CO- | NDUCT- AND- SI MPLI FY) . The requirements on F1
and NF are discharged in a similar manner.

Since these proof obligationsare often discharged automatically, it would be more productive to add a function to
the derivational system to attempt a simple co-inductive proof prior to generating the necessary PV S theories. There
is no need to use the power of a genera purpose prover when a simple function added to the design tool can provide
the same level of assurance.

8 Concluding Remarks

Optimizations of hardware designs often exploit implicit properties of the surrounding system. Approachesfor formal
hardware devel opment need to include an eff ective meansto represent and reason about changesin an evolving hardware
design. Derivation-based formalisms provide a suitable framework for managing the routine design refinements, but
cannot be expected to cover the possible design space. General purpose theorem proving systems, on the other hand,
provide sufficient generality to capture arbitrary design refinements, but can be cumbersome for the more routine
aspects of design. Formal design environments need to strike a balance between the two extremes.

In this paper, we presented a scenario where the generality of a genera purpose proof system is necessary to
complete the verification. However, the verification effort aso identified a plausible extension to a derivational
reasoning system. It is possible that a trivia bi-simulation is sufficient to justify an ad hoc refinement. In this
case, it is not necessary to use the full power of a mechanized proof system. A simple extension to the derivation
system can automatically attempt a trivia co-inductive proof. If it succeeds, the refinement is allowed, otherwise the
necessary proof obligationis generated. In cases of design modifications resulting from clever engineering insight, the
verification strategy presented here focuses effort on the mathematical justification for the refinement. The mundane
aspects of the verification are handled automatically.

Acknowledgments

Bob Burger participated in the devel opment and testing of the VLS realization of the above circuit and also devel oped
an Oct tool sscript that generates alayout from afunctional descriptionthat iseguival ent to theabove circuit description.
Wilfredo Torres-Pomales was instrumental in incorporating the circuit described here into the clock synchronization
system. Jean-Y ves Marion provided invaluable support during theinitial development of the PVS Streams library.

References

[1] Bhaskar Bose. DDD-FM9001: Derivation of a verified microprocessor. PhD thesis, Computer Science Depart-
ment, Indiana University, USA, 1994.

[2] Bhaskar Bose and Steven D. Johnson. DDD-FM9001: Derivation of a verified microprocessor. an exercise in
integrating verification with formal derivation. In Proceedings of |FIP Conference on Correct Hardware Design
and \erification Methods. Springer, 1993.

[3] J. O'Leary, M. Leeser, J. Hickey, and M. Aagaard. Non-restoring integer square root: A case study in design
by principled optimization. In T. Kropf and R. Kumar, editors, Proc. 2nd Inter national Conference on Theorem
Provers in Circuit Design (TPCD94), volume 901 of Lecture Notes in Computer Science, pages 52—71, Bad
Herrenalb, Germany, September 1994. Springer Verlag. published 1995.

[4] Steven D. Johnson, R.M. Wehrmeister, and B. Bose. On the interplay of synthesisand verification: Experiments
with the FM 8501 processor description. In Claesen, editor, Applied Formal Methods for Correct VLS Design,
pages 385-404. Elsevier, 1989. IMEC 1989.

[5] Paul S. Miner. Verification of fault-tolerant clock synchronization systems. Technical Paper 3349, NASA,
Langley Research Center, Hampton, VA, November 1993.

[6] Paul S. Miner, Peter A. Padilla, and Wilfredo Torres. A provably correct design of a fault-tolerant clock
synchronization circuit. In Proceedings 11th Digital Avionics Systems Conference, pages 341-346, Sesttle, WA,
October 1992.

Designing Correct Circuits, Bastad 1996 14

Verification of an Optimized Fault-Tolerant Clock Synchronization Circuit

[7] Paul S. Miner, Shyamsundar Pullela, and Steven D. Johnson. Interaction of formal design systems in the
development of a fault-tolerant clock synchronization circuit. In Proceedings 13th Symposium on Reliable
Distributed Systems, pages 128-137, Dana Point, CA, October 1994.

[8] Sam Owre, John Rushby, Natargjan Shankar, and Friedrich von Henke. Formal verification for fault-tolerant
architectures: Prolegomena to the design of PVS. |EEE Transactions on Software Engineering, 21(2):107-125,
February 1995.

[9] Lawrence C. Paulson. Co-inductionand co-recursion in higher-order logic. Technical Report 304, University of
Cambridge Computer Laboratory, July 1993.

[10] Kamlesh Rath. Sequential-System Factorization. PhD thesis, Computer Science Department, Indiana University,
USA, 1995.

[11] John Rushby, Friedrich von Henke, and Sam Owre. An introduction to formal specification and verification
using EHDM. Technical Report SRI-CSL-91-2, Computer Science Laboratory, SRI Internationa, Menlo Park,
CA, February 1991.

[12] Fred B. Schneider. Understanding protocols for Byzantine clock synchronization. Technical Report 87-859,
Department of Computer Science, Cornell University, Ithaca, NY, August 1987.

[13] Natargjan Shankar. Mechanica verification of ageneralized protocol for byzantine fault-tolerant clock synchro-
nization. In Second International Symposium on Formal Techniques in Real Time and Fault Tolerant Systems,
volume 571 of Lecture Notesin Computer Science, pages 217-236. Springer-Verlag, January 1992.

[14] Wilfredo Torres-Pomales. A hardware implementation of a provably correct design of a fault-tolerant clock
synchronization circuit. Technical Memorandum 109001, NASA, Langley Research Center, Hampton, VA, July
1993.

[15] Wilfredo Torres-Pomales. An optimized implementation of afault-tolerant clock synchronization circuit. Tech-
nical Memorandum 109176, NASA, Langley Research Center, Hampton, VA, February 1995.

[16] J. Lundelius Welch and N. Lynch. A new fault-tolerant algorithm for clock synchronization. Information and
Computation, 77(1):1-36, April 1988.

[17] Zheng Zhu. Sructured Hardware Design Transformations. PhD thesis, Computer Science Department, Indiana
University, USA, 1992,

Designing Correct Circuits, Bastad 1996 15

