
Verification of Analog and Mixed Signal Designs
using Online Monitoring
Zhiwei Wang1, Naeem Abbasi1, Rajeev Narayanan1,

Mohamed H. Zaki2, Ghiath Al Sammane1, and Sofiène Tahar1
1Dept. ECE, Concordia University, Montreal, Quebec, Canada

Email: {zhiw wan, n ab, r naraya, sammane, tahar}@ece.concordia.ca
2Dept. CS, University of British Columbia, Vancouver, British Columbia, Canada

Email: mzaki@cs.ubc.ca

Abstract—Analog and mixed signal (AMS) circuits play an
important role in today’s System on Chip design. They pose,
however, many challenges in the verification of the overall
system due to their complex behavior. Among many developed
verification techniques, runtime verification has been shown to
be effective by experimenting finite executions instead of going
through the whole state space. In this paper, we present a
methodology for the specification and verification of AMS designs
using online monitoring at runtime based on the notion of System
of Recurrence Equations (SREs). We implement the proposed
methodology in a C language based tool, called C-SRE, and utilize
it to verify several properties of a PLL design. We compare our
proposed online monitoring techniques with the offline approach.
Finally, we apply the proposed methodology to monitor the jitter
noise associated with a voltage controlled oscillator.

I. INTRODUCTION

With the prominent evolution of semiconductor industry,
more and more System on Chip (SoC) architectures are
utilized in embedded systems. The design of Analog and
Mixed Signal (AMS) components, which connect the physical
world to digital space, plays an important role in SoC design.

Traditionally, the verification of AMS designs is carried
out using simulation to validate basic specifications. However,
with this approach it is not possible to experiment all the
combinations of inputs. For this purpose, formal methods,
such as model checking, have recently been employed for
the verification of AMS designs [17]. Model checking is
capable of validating the system by proving that the behavior
of the circuit satisfies a set of properties. Unfortunately, model
checking of AMS circuits is computationally expensive in
terms of memory and CPU time and suffers from the state
space explosion problem as well as long processing time which
make exhaustive verification very hard [17].

In order to overcome the above mentioned limitations,
runtime verification, which integrates program execution and
formal methods, has been advocated. Runtime verification
is a technique for checking whether an execution of the
design model violates the design specifications (properties).
Instead of exhaustively walking through the state space, run-
time verification considers finite executions. Consequently, the
computational resources and simulation time are saved dramat-
ically. There are two types of monitoring techniques [11]: (1)

Online monitoring, where the properties are observed while the
simulation is running, and hence the violation or satisfaction
of a property can be detected as soon as it occurs; (2) Offline
monitoring, where the properties are checked based on the
results stored at the end of the simulation. Online monitoring
costs less than offline by saving the space required for storage
of simulation results. Moreover simulation time is also saved
instead of running the whole simulation cycle.

In this paper, we propose an online monitoring approach
for the verification of AMS designs based on the notion of
Sequence of Recurrence Equations (SRE) [16]. SREs are a
form of difference equation used to model both the AMS
design under verification as well as the properties to be
monitored. We have implemented an SRE based simulator
to monitor specifications in PSL (Property Specification
Language) standard [2], which we translate into SREs. To
illustrate the feasibility of the proposed approach, we have
experimented with checking of several properties on a PLL
(Phase-Locked Loop) design as case study.

Related Work. The verification of AMS designs using
monitoring has attracted a lot of attentions in recent years.
The most prominent work is presented in [10], where the
authors presented an offline methodology for monitoring the
simulation of continuous signals. The monitoring technique
was based on an extension of PSL to support analog signals.
The PSL extension was synthesized into timed automata
to check for property violation of simulation traces using
Matlab. To demonstrate their approach, a tool AMT [14] was
built to support monitoring in both offline and incremental
fashion. This incremental procedure checks the simulation
traces only upon changes in the input signals, rather than in
an online fashion. This approach synthesizes the property in
terms of lower abstraction such as timed automata and FSM.
In this paper, we propose a higher level of abstraction and
a unified framework for both modeling and monitoring of
AMS designs.

In [6], an online monitoring technique is proposed, where
the authors take advantage of linear hybrid automata as
monitor to analyze the reachability of time domain features;
signal amplitude and jitter of an oscillator circuit were studied.

stratigo
Text Box
978-1-4244-4617-9/09/$25.00 ©2009 IEEE

The work in [6] assumes the existence of templates to build
the monitor. It does not provide a generic way to obtain the
monitors from the specification. In contrast to [6], the approach
we advance is capable of modeling and monitoring the AMS
design and supports PSL as specification language. In a related
work, an FPGA implementation of assertion based monitor
is presented in [13]. The authors utilize PSL to generate an
asynchronous monitor which is robust to process, temperature
and voltage variations. Moreover, the online monitoring is
suitable for ASIC designs. Nevertheless, the work in [13] was
unable to support both analog and mixed signal circuits nor
SERE expressions in PSL.

A more recent work in [7] introduces a methodology to
define mixed signal assertions (MSA) for verification by
combining PSL and STL (Signal Temporal Logic) [14], where
the specifications for digital and analog parts are translated
into PSL and STL, respectively, as either precondition or
postcondition. An MSA then is constructed by combining the
precondition and postcondition with an implication. Assertion
based verification or formal verification could be carried out
due to the formalized properties. The authors applied the MSA
to a first order Σ/∆ converter and several properties were
checked. The work was validated within the MLDesigner [12]
tool with an enhanced assertion monitoring library. Instead, in
this paper, one single formalism, namely SRE, is employed
to express PSL properties both for analog and digital part.
Additionally, we offer a whole package including simulator
and monitor. In [16], an offline assertion based verification is
introduced, where SREs are used to model the AMS design.
Our work is different from [16] in two aspects. First, we
use online monitoring to achieve verification. Secondly, we
present a tool, named C-SRE, which simulates AMS designs
modeled with SREs, reads PSL properties and realizes the
online monitoring.

The rest of the paper is organized as follows: in Section
II, we briefly review the fundamental notions of SRE and
PSL and describe how PSL properties can be expressed using
SRE. In Section III, we introduce our online monitoring
methodology for AMS design verification along with the SRE
based simulator. The Section IV is dedicated to the modeling
of PLL using SRE. The experimental results on verification of
a PLL design are illustrated in Section V. Finally, Section VI
concludes the paper.

II. PRELIMINARIES

A. System of Recurrence Equations (SRE)

A recurrence equation or a difference equation is the dis-
crete version of an analog differential equation. A recurrence
equation defines a relation between consecutive elements of
a sequence. In [16], the notion of recurrence equation is
extended to describe digital circuits as follows: Consider a
set of variables Xi

Xi(n) = fi(Xj(n− γ)), (j, γ) ∈ εi,∀n ∈ Z
where fi(Xj(n− γ) is a generalized If-formula which is
either a variable, an arithmetic operation, a logical formula, a

comparison formula or an If-Then-Else expression [16]. The
set εi is a finite non empty subset of 1, . . . , k×N. The integer
γ is called the delay.

A given AMS design consists of blocks both in analog and
digital. For digital blocks, the SRE can be expressed directly
from their logic functions. For continuous time components,
we have two possible ways to generate recurrence equations.
First, we can write the recurrence equation based on time
domain differential algebraic equations through discretization.
The second method is using Impulse-Invariant z transforma-
tion to find a discrete time approximation of the continuous
time transfer function. Then, we apply the inversion of z
transform to generate difference equation and convert it into
recurrence equation [1].

B. PSL in SREs

As an assertion language, PSL contains four layers [4]:
Boolean, temporal, verification and modeling layer. The ver-
ification layer provides the communication and interaction
between the properties and the verification tool. The modeling
layer is used to defined the verification environment for the
tool. The Boolean layer constructs the basic expressions for
the property. The temporal layer, where the temporal relations
between the signals are expressed, is the heart of PSL. PSL
exhibits the property with either linear logic or branching
logic. The Foundation Language (FL) is used to express the
sequences of the states of the property and the Optional
Branching Extension (OBE) is used to interpret the tree of
states [2]. However, these languages deal with digital design
verification. Due to the presence of analog signals in AMS
designs, it is difficult to monitor analog properties in PSL.
In order to overcome this obstacle, we propose to rewrite
the PSL property into SRE notation. The consistency between
the design and the properties allows us to observe the design
specifications while running the simulation. The Boolean layer
specifies propositions, from the design and signals, which
evaluate to the Boolean value true or false in a simulation
cycle. The signals of AMS systems may feature continuous
time natures. In PSL the analog description to a Boolean
variable is an inequation which is built using signals and
registers of the AMS design [16]. This expression is defined
as the Basic Property [16]:

Let x be the name of an AMS signal (or register), a basic
property p is a logical formula defined as follows: p = x ¦ y,
where ¦ ∈ {<,≤, >,≥, =, 6=} and y is a value, a name of a
signal (or a register) in the design or an arithmetic function
built using the design signals.

Let p be a basic property. For each signal (or register) x,
y in the basic property we associate a time instance of the
form x(n), where n ∈ Z. This instance corresponds to the
evaluation of the recurrence equation representing this value
at time n. We call p(n) the Trace of the Basic Property of
p. The nature of n depends on the SERE or temporal layer
operator preceding the basic property. It can be either a
numerical constant value, or a symbolic constant value, or a
time variable [16].

III. METHODOLOGY

In this section, we first present the online monitoring
methodology for AMS design verification, followed by details
of the SRE based simulator we use.

A. Online Monitoring Methodology

The online monitoring based runtime verification method-
ology we propose is shown in Figure 1. The AMS design
is modeled using SRE based on the circuit description and
implemented into our simulator (C-SRE). Design properties
are expressed in PSL. The PSL expression is converted to
SRE notation. Finally, the input stimulus and output traces
are delivered to the monitor. The monitor evaluates the inputs
and outputs of the simulator and checks whether the behavior
satisfies the design specification. The monitoring is performed
in an online fashion which means if the property is satisfied,
the monitor reports the satisfaction; otherwise, the monitor
terminates the simulation at the cycle when the violation
occurs. The input stimulus includes the input signal of the
system and environment such as control signals. The output
trace from the simulator can be either the system output or
the output from any component within the system. The AMS
specifications we focus on in this paper are written in temporal
logic. Hence, we use PSL to express the property initially
and then convert it to SRE notation. The evaluation on the
relation between input and output with the design specification
is carried out within the monitor.��� ����� �������	�
���	 �������
����� �����	�
�
���
������ �	�
������ ���	�
	�

INPUT

TRACE �	���
��OUTPUT

TRACE

PROPERTY

PROPERTY VIOLATEDPROPERTY VERIFIED

Fig. 1. Proposed Verification Methodology

The monitor is used to check whether the current simulation
behavior satisfies a given correctness property. Based on the
definitions of Basic Property and Trace of Basic Property [16],
the properties in PSL can be observed by translating them
into recurrence sequence notations. In our methodology, the
input and output traces are provided to the monitor at each
simulation time instant. Incorporated with the property checker
described above, at each time instant of the simulation, the
property satisfaction is checked. The process is carried out
as long as no violation is detected within enough simulation
length. Moreover, by taking advantage of the C-SRE simulator

(described in Section III-B) which records all the transient
data of all circuit blocks at runtime, the monitor is capable of
observing the property of individual block.

B. C-SRE Simulator

The proposed modeling technique and online monitoring are
implemented in a tool named C-SRE1. Figure 2 shows the C-
SRE simulator framework. The C-SRE tool basically solves a
system of recurrence equations describing the behavior of an
analog and mixed signal system. There are four main inputs
to the tool: (1) The AMS design behavior described using
continuous-time (CT), discrete-time (DT) and discrete-events
(DE) SRE notations; (2) PSL properties, in SRE notations,
expressed using C language; (3) Various inputs and initial
conditions to the design; and (4) Simulation parameters such
as minimum and maximum time step sizes, and simulation
duration etc. The tool output contains the result of executing
the monitor in an online fashion, along with various supporting
signal traces for easy visualization of the results.������ ������� �� 	 ����� �
��� �����
������ ������� ��� ��� � �
� �������
����
� ��	������
��� ��� ��	��
 ��	������	�� ��� ��� ��� �����
�����
� ���������� ���

Fig. 2. C-SRE Simulator Framework

The C-SRE solver is the core of the simulator. It guarantees
that the CT, DT or DE SREs are executed at an appropriate
instant of time to simulate the correct transient behavior of
the circuit. The scheduling algorithm is explained below: Let
TCT , TDT and TDE be the continuous time, discrete time, and
discrete event time steps, respectively. If we assume that TCT

is always the smallest time step taken during the simulation,
we can achieve both a desired time resolution and accuracy.
TDT is uniformly spaced in time and is known in advance.
The remaining two time step sizes are determined dynamically
during the simulation. In an AMS design, those three processes
may interact with each other. The discrete-time part of the
design only interacts at intervals of TDT with the other parts.
The simulation time advances by following four rules given
below:
• If TCT = TDT and TCT = TDE then update the DE and DT

SREs
• If TCT = TDT and TCT < TDE then update the DT SREs
• If TCT < TDT and TCT = TDE then update the DE SREs
• If TCT < TDT and TCT < TDE then update the CT SREs

where tCT = tCT + TCT , tDT = tDT + TDT , tDE = tDE +
TDE and Tcurrent = MIN(tDT , tCT , tDE). Figure 3 illus-
trates example time instants at which continuous-time (circle),

1The simulator is named C-SRE because all the components of the
simulator are coded in C/C++.

Tcurrent

1

2
3

4

5 6

7
8

9
10 11 12

13

14 15

16

17

18

19
20

tCT

tDT

2

tDE

Fig. 3. Timing Diagram

discrete-time (triangle), and discrete-event (square) SREs have
to be executed so as to simulate the correct behavior of
the system. The numbers in the figure show the sequence
of operations. The discrete time steps (triangle) are equally
spaced where as the continuous time (circle) and discrete event
(square) time steps are determined dynamically during the
simulation. The simulation starts with initialization and then
proceeds guided by the scheduling algorithm. It terminates
when the current simulation time (Tcurrent) either exceeds
or becomes equal to the maximum simulation time. The
algorithm described above guarantees that SREs execute in
proper sequence in order to simulate the correct behavior of
the circuit. For detailed description of the C-SRE simulator,
please refer to [1].

In the following sections, we present, respectively, the
SRE modeling and runtime verification of a PLL frequency
synthesizer as a case study.

IV. PLL MODELING USING SRE

A Phase Locked Loop (PLL) is one of the basic AMS
building blocks in modern communication systems. A PLL
based frequency synthesizer model, as shown in Figure 4, is
composed of a comparator (COMP), a phase and frequency
detector (PFD), a charge pump (CP), an analog filter (AF), a
voltage controlled oscillator (VCO) and a divider (DIV) [3]. If
the frequency control signal Freq sel is set to 0, the frequency
of the reference input and VCO output will be the same. If
Freq sel is set to 1, the VCO output frequency is two times
as the reference signal.

Ref_pf
d

UP

DN Charge_out Filter_out

VCO_out

VCO_out_div1

VCO_pfd

Freq_sel

AF VCOCPPFD

DIV COMP
0

COMP
Ref_sig

0

Fig. 4. PLL Frequency Synthesizer

In the following, we briefly describe the SRE models of
the important blocks. Please refer to [1] for a full description
of PLL in SRE.

Comparator
The comparator extracts the positive value of the input and

generates binary sequence with the same frequency as the
input. The comparator is a mixed signal component as the
input is analog and the output is digital. The SRE model of
the comparator is given by

Ref_pfd(n+1) = IF(Ref_sig(n) ≥ 0, 1, 0)
Ref_sig(n) = sin(ω0nT)

where Ref sig is one of the inputs to the comparator.

Phase and Frequency Detector
The phase and frequency detector (PFD) shown in Figure 5
is a pure digital block of the PLL system. Two input signals

VDD

D

CK
Q

Ref pfd
UP

CK

R t

_p

Reset

CK

D
Q

VCO_pfd
DN

D

VVDD

Fig. 5. Phase and Frequency Detector

Ref pfd and V CO pfd, which are the reference signal
and the feedback signal from VCO output and the divider,
respectively, act as the clocks of two flipflops. Each input
triggers at its rising edge and propagates the supply voltage
from data port D to output port Q. The outputs of interest,
UP and DN , reflect the difference in both frequency and
phase between the two input signals. When UP and DN are
simultaneously high, the AND gate resets both flipflops. The
rising edge trigger behavior can be express in SRE as:

UP(n+1) = IF{[UP(n)=1 ∧ DN(n)=1],
0,IF[Ref_pfd(n)=1∧Ref_pfd(n-1)=0,1,UP(n)]}

DN(n+1) = IF{[UP(n)=1 ∧ DN(n)=1],
0,IF[VCO_pfd(n)=1∧VCO_pfd(n-1)=0,1,DN(n)]}

Two If-formula SRE expressions are nested to model
the PFD. The outer SRE identifies the reset condition. The
inner one generates the difference of frequency and phase
according to the rising edge of the input signal.

Charge Pump
The charge pump is usually interposed between the PFD
and the analog filter to provide voltage or current for the
capacitance in the successive filter. In this case study, we
adopt the voltage VC as source supply. The resulting source
supply is proportional to the difference of the output signal
UP and DN from PFD. The SRE model of the charge pump
is given by

Charge_out(n) = VC × [UP(n-1) - DN(n-1)]

The SRE of the charge pump is the difference equation of
the functionality.

Analog Filter
An analog filter is usually constructed by combining
resistances and capacitances. In our frequency synthesizer,
a simple first order lowpass filter is employed. The
implementation of the analog filter is shown in Figure 6.

+ +

R

Filter_outCharge_out

+ +

C

--

Fig. 6. First Order Lowpass Filter

When modeling an analog filter, we are given the transfer
function in frequency domain as:

H(s) =
1

1 +
s

ωc

(1)

where ωc = 1
RC . ωc is the cutoff frequency of the lowpass

filter. After applying Impulse-Invariant z transform [3], we
obtain the z domain transfer function:

H(z) =
ωcT

1− z−1exp(−ωcT)
(2)

where T is the sampling time. Taking the inverse z transfor-
mation of Equation 2, we achieve the time domain difference
equation of the lowpass filter as

Filter out(n) =
T

RC × Charge out(n) + Filter out(n− 1)× e−
T

RC (3)

The corresponding SRE is expressed as:

Filter_out(n) = IF{true,
(T

RC)×Charge_out(n)+Filter_out(n-1)×e(− T
RC),0}

The SRE is the difference equation of the lowpass filter.

Voltage Controlled Oscillator
The voltage controlled oscillator (VCO) is the key component
of the PLL system. It is used to generate a periodic signal,
which has the frequency proportional to the control input
voltage. The mathematical model of VCO can be expressed
as [3]:

V COout(t) = Ac cos(ωrt + KV CO

∫ t

0

u(τ)dτ + φ0) (4)

where ωr is the VCO operating frequency, KV CO is the
VCO gain factor, u(t) is the control voltage coming from
the lowpass filter, and φ0 is the initial phase. In order to
convert voltage input to output frequency, the integral takes
place within the total phase. The SRE model of VCO is given
by

VCO_gain(n)=T×Filter_out(n)+VCO_gain(n-1),
VCO_out(n)=cos{ω0nT+KV CO×VCO_gain(n)+φ(n)},
VCO(n)=IF{VCO_out(n)≥0, 1, 0)}
where Filter out is the output of the analog filter, VCO out
is sinusoidal and VCO out div1 is square in shape. The first
SRE achieves the integral part of Equation 4. The second one
generates the continuous output of the VCO. The last one
acts as a comparator to generate the square signal with the
same frequency as V CO out.

Divider
The divider block works as frequency divider. In order to
achieve half frequency, the rising edge of the output occurs
every two periods of the input signal. In other words, the
output signal alternates at each rising edge of the input signal.
When the frequency select signal freq sel is activated, the
output of the divider holds the frequency as half as the input
signal. The entire functionality of the divider is modeled
using SRE as:

VCO_div(n+1)=IF{(VCO(n)=1)∧
(VCO(n-1)=0), ¬VCO_div(n), VCO_div(n)}

VCO_pfd(n+1)=IF{freq_sel(n)=1,
VCO_div(n), VCO(n)}

The first SRE performs the frequency divider function by
identifying the rising edge of the input signal. Once the rising
edge occurs, the output alternates itself. Otherwise, it retains
its previous value. The second SRE selects the V CO pfd
signal for the comparator.

V. PLL RUNTIME VERIFICATION

We simulated the PLL design shown in Figure 4 using the
C-SRE simulator framework described in Section III-B. The
simulation parameters are given in Table I. Several properties
were verified using the proposed methodology. In following,
we describe three example properties.

TABLE I
PLL PARAMETERS

Parameters Value Description

T(sec) 10−8 Sampling time
RC(sec) 0.0001 Filter RC parameter

α exp(-T/RC) Charge time parameter
Vc(V) 5 Voltage supply

ω0(rad·Hz) 2π × 106 Input signal frequency
K0(rad·Hz·V−1) 2ω0/V c VCO gain

New DC Level(V) 2.5 Filter output

Property 1. Consider the PLL in Figure 4, the lock time is
one of the most important properties. It determines how fast
the frequency synthesizer gets stable from one frequency to
another. No useful data can be transmitted during this time. A
large lock time can reduce the data rate of the system. This
is the key factor when designing PLL circuits. The lock time

property can be described as: after the Freq sel signal changes
from 0 to 1, the output of the lowpass filter will reach the new
DC value within the lock time. The PSL style definition of this
safety property is given below:

Property_1 = {Freq_sel==0;Freq_sel==1} |->
(Filter_out 6=New_DC_Level)[*1:LOCK_TIME]
The SERE concatenation operator (;) indicates that the

two Boolean expressions it connects hold consecutively [2].
Another SERE operator [*] constructs the consecutive concate-
nation of the Boolean expression which should hold according
to the range it specifies [2]. The property monitor implemented
in C language is shown below

while (freq_sel[i]==1 && freq_sel[i-1]==1)
{
for(int n=i; n!=N_max; ++n){
if (filter_out[n]==new_dc_level &&

T_sample*[n-i]<=Lock_time){
property_lock_time=1; // Satisfied

} else{
property_lock_time=0; // Violated

}}
i++;}

According to the parameters listed in Table I, the lock time
of the system is 1.5ms. It can be seen from Figure 7 that as
soon as the time reaches 1.5ms after Freq sel signal changes
from 0 to 1, the monitor reports a violation for the property.
The simulation then is suspended at 1.5ms. There is no need
to look at the simulation trace after 1.5ms in this case. Due
to the prompt violation alert, the simulation time is expected
to be saved. In addition, two more interesting properties are
described below (please refer to [1] for more properties).

0 1 2 3 4 5

x 10
-3

-1

0

1

2

3

4

L
o
w

p
a
s
s
 F

il
te

r
O

u
tp

u
t
(V

)

Time (sec)

Violation

Fig. 7. Locktime Verification Results (Property 1)

Property 2. If the Freq sel changes, the VCO output
signal should change to a new frequency eventually. The
VCO output stability can be decided by the filter output. This
is a liveness property, expressed in PSL as:

Property_2 = {Freq_sel==0;Freq_sel==1} |->
eventually! {Filter_out == New_DC_Level}

0 1 2 3 4 5

x 10
-3

-1

0

1

2

3

4

L
o
w

p
a
s
s
 F

il
te

r
O

u
tp

u
t
(V

)

Time (sec)

Satisfication

Fig. 8. Verification Results for Property 2

The ”eventually!” is an linear time temporal logic
(LTL) [5] style operator in PSL. It specifies that a property
holds at the current cycle or at some future cycle. The
verification result is shown in Figure 8. The monitor is
sensitive to satisfaction rather than violation. The reason
for that is because this is a liveness property which implies
that something good eventually happens. The detection of
satisfaction is more feasible than violation. The simulation is
terminated when the property is verified at 2.4ms.

Property 3. After reset, the Freq sel will be ’0’, and
Filter out will also be ’0’. If the Freq sel changes to ’1’,
the Filter out will increase until New DC Level. Hence, the
Freq sel will be ’0’ until Filter out is larger than ’0’. This is
a safety property, expressed in PSL as:

Property_3=(Freq_sel==0) until!(Filter_out>0)

The ”until!” is like the LTL operator until in strong form
which requires that the termination condition eventually hap-
pens. In context, the property 3 requires signal Filter out is
expected to change.

We compared our methodology to the work presented
in [16] and the experimental results are listed in Table II.
Thereafter, we notice that our proposed online monitoring
technique performs better than [16] in terms of simulation
time. The memory usage of our methodology is slightly higher
than that of [16] due to the computational efficiency in Matlab.
Both approaches were run on the same ULTRA SPARC-IIIi
server (177 MHz CPU, 1GB memory), where all properties
described above are satisfied. To further demonstrate the ability
of our proposed online monitoring technique, we present the
modeling and verification of the jitter property within the VCO
of the PLL.

Jitter is an undesired time variation of signals in most
communication systems. In a PLL, jitter can be found in the
phase and frequency detector (PFD), the frequency divider or
the voltage controlled oscillator (VCO). The jitter in the PFD
is caused by the uncertain changes in the delay between the
input and output signal. The VCO output depends not only
on the transitions at their inputs, but the previous output [9].

TABLE II
SIMULATION RESULTS

Online Monitoring Offline Monitoring
Property Simulation

Time(sec)
Memory
Use(MB)

Simulation
Time(sec)

Memory
Use(MB)

Verification
Status

Property 1 13.4 38 38.87 32.4 Violated
Property 2 13.4 38 37.61 32.4 Satisfied
Property 3 13.3 38 43.65 32.4 Satisfied

Therefore the lock time is most affected by the jitter in the
VCO. The jitter is defined as variation in the period and is
modeled as a variation in the frequency of the VCO. Assume
that the frequency of a periodic signal without jitter is given
by

f =
1
T

(5)

where T is the period of the ideal signal. The jittery frequency
can be represented as

fjitter =
1

T + ∆T
=

1
1
f

+ ∆T
=

f

1 + ∆T · f (6)

where ∆T = Jδ. J is the jitter deviation and δ is a zero mean
unit-variance Gaussian random process. Let φ(t) be the phase
of the integral term in Equation 4. We have

φ(t) = KV CO

∫ t

0

u(τ)dτ (7)

Suppose ω(t) = 2πf(t) = KV CO · u(t), we obtain

f(t) =
KV CO · u(t)

2π
(8)

which shows the VCO output frequency is linearly propor-
tional to the input control voltage u(t) and frequency f(t) by
multiplication of VCO gain factor. By substituting Equation 8
into Equation 6, we achieve

fjitter(t) =
f(t)

1 + ∆T · f(t)
=

f(t)

1 + ∆T · KV CO · u(t)
2π

(9)

The VCO model with jitter is shown in Figure 9. By substitut-
ing Equation 9 to Equation 4, we achieve mathematical model
of the VCO with jitter:

V COout(t) = Ac cos(ωrt+

KV CO

∫ t

0

u(τ)

1 +
Jδ ·KV CO · u(τ)

2π

dτ + φ0) (10)

The jitter in VCO usually causes uncertain shifts which result
from the phase change in the phase part of the formula above.
It is modeled as a random variation in the frequency of
the VCO. The lock ability of a PLL design under normal
distributed jitter conditions can be identified by our monitoring
technique. Figure 10 shows the output of the lowpass filter
when jitter was generated using jitter deviation factor J of
10−6s labeled as (2) and 7×10−6s labeled as (3), respectively.
The thick line labeled (1) represents the output of lowpass filter

)(tu)(tVCO
out)(t)(t)(

Integrator ModulatorVCO
K

)(

J

Fig. 9. Modeling of Jitter in VCO

without jitter noise. The thin line (2) shows that the lowpass
filter output almost settles to a new DC level but not stable at
the level. The line (3) exhibits that the low pass filter output
does not settle to the desired DC value and PLL is unable
to lock within the lock time specification of the PLL. It is
intuitive that larger jitter noise is expected to cause failures to
the PLL.

Most real life systems contain some source of randomness.
The behavior of PLL under uncertain conditions such as
jitter cannot be described by PSL as there is no statistical
or probabilistic layer in PSL at this time. We are currently
looking into how probabilistic properties can be described and
verified using monitoring techniques.

0 1 2 3 4 5

x 10
-3

-1

0

1

2

3

4

L
o
w

p
a
s
s
 F

il
te

r
O

u
tp

u
t
(V

)

Time (sec)

(1)

(2)

(3)

Fig. 10. Lowpass Filter Output Voltage with Jitter Noise in VCO

VI. CONCLUSION

In this paper, we presented a methodology for functional
verification of AMS designs using SRE at run-time. We also
described an SRE simulator developed for this purpose. Sev-
eral properties of a PLL frequency synthesizer were described
in PSL and then translated into SRE notations and then
checked by an online monitor during simulation. The runtime
verification offers a direct view of the process of transition
within the analog and mixed signal system. The monitoring
point can either be located at analog signals or digital signals.

The main advantages of our methodology are: (1) the SRE
algorithm is likely to be understood both by analog and digital
engineers; (2) since both the AMS design and PSL properties
are described with SREs, continuous time behavior can be
simulated and monitored together with the discrete time; and
(3) online monitoring saves cost in terms of memory usage
and simulation time.

There are also some limitations of the new simulator. For
example in the current implementation, the PSL expression
cannot be automatically translated into C language and input
to the simulator, which is the subject of our future work. Fur-
thermore, we would like to upgrade our simulator to support
various constructs from newly introduced Analog PSL [11].

REFERENCES

[1] N. Abbasi, R. Narayanan, G. Al Sammane, M.H. Zaki, and S. Tahar.
Enabling AMS Simulation using Recurrence Notations, Technical Report,
Department of ECE, Concordia University, Montreal, QC, Canada. May
2008. http://hvg.ece.concordia.ca/Publications/TECH REP/CSRE TR08

[2] Accellera PSL. http://www.accellera.org/
[3] R. E. Best. Phase-Locked Loops: Design, Simulation, and Applications.

McGraw-Hill, 2003.
[4] C. Eisner. PSL for Runtime Verification: Theory and Practice. Runtime

Verification, LNCS 4839, pp. 1-8, Springer, 2007.
[5] E.A. Emerson. Temporal and Modal Logic. Handbook of Theoretical

Computer Science, pages 995-1072. Elsevier, 1990.
[6] G. Frehse, B.H. Krogh, and R.A. Rutenbar. Time Domain Verification of

Oscillator Circuit Properties. Workshop on Formal Verification of Analog
Circuits, ENTCS, 153(3): 9-22, 2006.

[7] A. Jesser, S. Laemmermann, A. Pacholik, R. Weiss, J. Ruf, L. Hedrich, W.
Fengler, T. Kropf, and W. Rosenstiel. Advanced Assertion Based Design
for Mixed-Signal Verification. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E91(A12):3548-
3555, 2008.

[8] K. Kundert, H. Chang, D. Jefferies, G. Lamant, E. Malavasi, and F.
Sendig. Design of Mixed-Signal Systems-on-a-Chip. IEEE Trans. on
CAD, 19(12): 1561-1571, 2000.

[9] K. Kundert. Predicting the Phase Noise and Jitter of PLL-Based Fre-
quency Synthesizers. http://www.designers-guide.org/Analysis/PLLnoise
+jitter.pdf

[10] O. Maler, and D. Nickovic. Monitoring Temporal Properties of Contin-
uous Signals. Formal Modelling and Analysis of Timed Systems, LNCS
3253, pp. 152-166, Springer, 2004.

[11] O. Maler, D. Nickovic, and A. Pnueli. Checking Temporal Properties of
Discrete, Timed and Continuous Behavior. Pillars of Computer Science,
LNCS 4800, pp. 475-505, Springer, 2008.

[12] MLDesign Tech., Inc. http://www.mldesigner.com
[13] K. Morin-Allory, L. Fesquet, B. Roustan, and D. Borrione. Asyn-

chronous Online Monitoring of Logical and Temporal Assertions. Embed-
ded Systems Specification and Design Languages, LNEE 10, pp. 243-253,
Springer, 2008.

[14] D. Nickovic, and O. Maler. AMT: A Property-Based Monitoring Tool
for Analog System. Formal Modelling and Analysis of Timed Systems,
LNCS 4763, pp. 304-319, Springer, 2007

[15] B. Razavi. RF Microelectronics, Prentice Hall, 1997.
[16] G. Al Sammane, M.H. Zaki, Z.J. Dong, and S. Tahar. Towards Assertion

Based Verification of Analog and Mixed Signal Designs Using PSL.
Forum on Specification & Design Languages, pp. 293-298, 2007.

[17] M. Zaki, S. Tahar and G. Bois. Formal Verification of Analog and Mixed
Signal Designs: A Survey. Microelectronics Journal, 39(12):1395-1404,
Elsevier, 2008.

