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ABSTRACT
System on a chip design results in the integration of digi-
tal, analog, and mixed-signal circuits on the same substrate
which further complicates the already difficult validation
problem. This paper presents a new model, labeled hybrid
Petri nets (LHPNs), that is developed to be capable of mod-
eling such a heterogeneous set of components. This paper
also describes a compiler from VHDL-AMS to LHPNs. To
support formal verification, this paper presents an efficient
zone-based state space exploration algorithm for LHPNs.
This algorithm uses a process known as warping to allow
zones to describe continuous variables that may be chang-
ing at variable rates. Finally, this paper describes the appli-
cation of this algorithm to a couple of analog/mixed-signal
circuit examples.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—Verification

General Terms
Verification, design

Keywords
Formal methods, hybrid Petri nets

1. INTRODUCTION
System on a chip (SoC) designs are becoming common

in the marketplace. These designs often include both dig-
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ital and analog/mixed-signal (AMS) circuits that must in-
teract presenting a challenge to traditional validation work-
flows. Digital validation methods are based on relatively
long time steps and simulation times while analog validation
uses comparatively short time steps and simulation times.
As a result, digital validation methods are typically applied
to digital blocks while analog validation methods are ap-
plied to analog blocks. Such strict divisions, however, are
rarely possible, since blocks validated using analog methods
often contain digital components which are inadequately val-
idated during analog verification and vice versa. Therefore,
it is necessary to develop new functional validation methods
that can support the heterogeneous nature of SoC designs.

Formal verification is a validation method that has shown
advantages over simulation based methodologies for digital
systems [4]. Based on this success there has recently been
some research on applying formal verification based meth-
ods to AMS circuits [5, 8–16, 18, 21]. The major challenge
in verifying AMS circuits is that continuous values such as
voltages and currents must be tracked accurately compli-
cating an already difficult state space exploration process.
Hartong, Hedrich, and Barke create a Boolean abstraction
for the system and then use standard digital verification
methods to do the analysis [12–15]. While a promising
approach, this technique loses significant accuracy in the
abstraction to a Boolean model. Frehse’s PHAVer model
checker analyzes linear hybrid automata models of AMS cir-
cuits using convex polyhedra to represent the continuous
state space [8, 9]. While these polyhedra can become quite
complex, one unique feature of PHAVer is that it allows for
performance to be tuned at the expense of a conservative
state space. Previously, we developed a tool that leverages
efficient verification algorithms for time/timed Petri nets to
analyze hybrid Petri net models of AMS circuits using a pro-
cess known as warping that normalizes the advancement of
all continuous variables to a rate of one [18].

Crucial to the acceptance of a new formal verification
methodology by AMS designers is the ability to specify their
circuits of interest using a familiar language. The previous
approaches require the designer to describe their AMS cir-
cuit using either hybrid automata or hybrid Petri nets. This
paper presents a new labeled hybrid Petri net (LHPN) model
that has been developed such that it can be readily gen-
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erated from VHDL-AMS, a standard hardware description
language for AMS circuits. To support formal verification,
this paper also describes an efficient zone-based state space
exploration algorithm for LHPNs. This algorithm uses the
warping process described in [18] to allow zones the capa-
bility of representing continuous variables that are changing
at variable rates. A compiler from VHDL-AMS to LHPNs
and a formal verification tool for LHPNs have been imple-
mented. Verification results on AMS circuits are promising.

2. MOTIVATING EXAMPLE
The switched capacitor integrator circuit shown in Fig. 1

is a circuit used as a component in many AMS circuits such
as ADCs and DACs. Although only a small piece of these
complex circuits, the switched capacitor integrator proves to
be a useful example illustrating the type of problems that
can be present in AMS circuit designs. Discrete-time inte-
grators typically utilize switched capacitor circuits to accu-
mulate charge. Capacitor mismatch can cause gain errors in
integrators. Also, the CMOS switch elements in switched-
capacitor circuits inject charge when they transition from
closed to open. This charge injection is difficult to control
with any precision, and its voltage-dependent nature leads
to circuits that have a weak signal-dependent behavior. This
can cause integrators to have slightly different gains depend-
ing on their current state and input value. Circuits using
integrators run the risk of the integrator saturating near one
of the power supply rails. It is essential to ensure that this
never happens during operation under any possible permu-
tation of component variations. Therefore, the verification
property to check for this circuit is whether or not the volt-
age Vout can rise above 2V or fall below −2V. For this ex-
ample, we assume due to noise and uncertainty in model
parameters that the output slew rate has a variance of ±10
percent (i.e., ±(18 to 22) mV/µs). This circuit, therefore,
must be verified for all values in the range [20].

Φ1

freq(Vin) = 5 kHz
Vin = ±1V

Φ2

C1

Q1

Vin
Vout

C2

C2 = 25 pF

C1 = 1 pF

freq(Φ1) = freq(Φ2) = 500 kHz

dVout/dt = ±(18 to 22) mV/µs

Q2

−

+

Figure 1: A switched capacitor integrator.

Fig. 2 depicts a VHDL-AMS description for an integrator.
This model tracks the real quantities Vout , that represents
the output voltage, and c, that represents a clock tracking
the timing of changes in the input voltage. This model rep-
resents the range in output slew rate using a piecewise lin-
ear approximation controlled by the Boolean variables inc18
and inc22. Another Boolean variable, clkrst , is used to re-
set the clock, c, at the end of each half cycle. The initial
conditions are that Vout is −1V (i.e., −1000 mV) and that
c is 0 indicating the start of the input cycle. The clock c
increases at a rate of 1 until it reaches the completion of
half an input cycle (i.e., 100 µs). At this point, it receives
a clkrst signal and is reset to 0. The if-use statement and
process statement control the rate of change of Vout . The

process begins by assigning inc18 to ’1’ (this uses the assign
function defined in the handshake package [19]) which starts
Vout increasing at a rate of 18 mV/µs. After a randomly
selected time period between 0 and 100 µs, it sets inc22
to ’1’ changing the rate of increase to 22 mV/µs. It then
waits until the first half cycle has completed indicated by c
reaching 100 µs. At this point, it resets c by toggling the
clkrst signal. Next, it sets inc18 to ’0’ causing Vout to be-
gin decreasing at a rate of 18 mV/µs. The remainder of the
process modeling the decrease of Vout is similar.

library IEEE;
use IEEE.std logic 1164.all;
use work.nondeterminism.all;
use work.handshake.all;
entity integrator is
end integrator;
architecture switchCap of integrator is

quantity Vout,c:real;
signal inc18,inc22,clkrst:std logic:=’0’;

begin
break Vout=> -1000.0, c=> 0.0; --Init vals
c’dot == 1.0; -- Constant clock rate
break c=> 0.0 when clkrst and

c’above(100.0);
if inc18=’0’ use

if inc22=’0’ use Vout’dot == -22.0;
else Vout’dot == -18.0;
end use;

else
if inc22=’0’ use Vout’dot == 18.0;
else Vout’dot == 22.0;
end use;

end use;
process begin
assign(inc18,’1’,0,0);
assign(inc22,’1’,0,100);
wait until c’above(100.0);
assign(clkrst,’1’,0,0);
wait until not c’above(100.0);
assign(clkrst,’0’,0,0);
assign(inc18,’0’,0,0);
assign(inc22,’0’,0,100);
wait until c’above(100.0);
assign(clkrst,’1’,0,0);
wait until not c’above(100.0);
assign(clkrst,’0’,0,0);

end process;
end switchCap;

Figure 2: VHDL-AMS for an integrator.

3. LABELED HYBRID PETRI NETS
An LHPN is a Petri net model developed to represent

AMS circuits. The model is inspired by features in both
hybrid Petri nets [6] and hybrid automata [1]. This model
has also been developed in such a way that it can be easily
generated from VHDL-AMS descriptions. An LHPN is a
tuple N = 〈P, T,B, V, F, L,M0, S0, Q0, R0〉:

• P : is a finite set of places;

• T : is a finite set of transitions;

• B : is a finite set of Boolean signals;

• V : is a finite set of continuous variables;

• F ⊆ (P × T ) ∪ (T × P ) is the flow relation;
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• L : is a tuple of labels defined below;

• M0 ⊆ P is the set of initially marked places;

• S0 : is the set of initial Boolean signal values;

• Q0 : is the set of initial continuous variable values;

• R0 : is the set of initial continuous variable rates.

A key component of LHPNs are the labels. Some labels
contain restricted hybrid separation logic (HSL) formulas
which are a Boolean combination of Boolean variables and
separation predicates (inequalities relating continuous vari-
ables and rates to constants). These formulas satisfy the
following grammar:

φ ::= true | false | bi | ¬φ | φ ∧ φ | vi ./i ki | v̇i ./i ki

where bi is a Boolean variable, vi is a continuous variable, v̇i

is the rate of a continuous variable, ki is a rational constant
from the set of rational numbers Q, and ./i is a relational op-
erator from the set: {≤,≥}. The labels permitted in LHPNs
are represented using a tuple L = 〈En,D,BA,VA,RA〉:

• En : T → φ labels each transition t ∈ T with an
enabling condition;

• D : T → |Q| × (|Q| ∪ {∞}) labels each transition with
a lower and upper bound delay value, [dl, du];

• BA : T → 2(B×{0,1}) labels each transition t ∈ T with
Boolean assignments made when t fires;

• VA : T → 2(V ×Q) labels each transition t ∈ T with
continuous variable assignments made when t fires;

• RA : T → 2(V ×Q) labels each transition t ∈ T with
continuous rate assignments made when t fires.

An example LHPN is shown in Fig. 3 which is automati-
cally generated from the VHDL-AMS model in Fig. 2. The
VHDL-AMS to LHPN compiler is built using a method sim-
ilar to the one in [22]. The first two lines of the architecture
in Fig. 2 set the initial values for Vout and c and sets the rate
of change for c to 1. The second break statement is com-
piled into the LHPN shown in Fig. 3(a). This LHPN resets
c to 0 when clkrst is high and c reaches 100 µs. The if-use
statement is compiled into the LHPN shown in Fig. 3(b).
This LHPN sets the rate of change of Vout based upon the
current value of the Boolean variables inc18 and inc22. This
net essentially checks the current values of these variables
and fires a transition whenever the rate needs to change.
The process statement is compiled into the LHPN shown
in Fig. 3(c). This LHPN performs the assignments to the
Boolean signals inc18, inc22, and clkrst . Note that since
LHPNs require the rate of each continuous variable to be
constant within a discrete state only piecewise linear sys-
tem models are currently supported.

The state of an LHPN is defined using a 6-tuple of the
form ψ = 〈M,S,Q,R, I, C〉 where:

• M ⊆ P is the set of marked places;

• S : B → {0, 1} is the value of each Boolean signal;

• Q : V → Q is the value of each continuous variable;

• R : V → Q is the rate of each continuous variable;

• I : ineq(En) → {0, 1} is the value of each inequality
of the form vi ./i ki used in En.

• C : T → Q is the value of each transition clock.

The function ineq(En) returns the set of inequalities of the
form vi ./i ki used in transition enabling conditions. The
current state of an LHPN can change via a transition firing
or time advancement.

Every transition t ∈ T has a preset denoted by •t = {p |
(p, t) ∈ F} and a postset denoted by t• = {p | (t, p) ∈ F}.
A transition t ∈ T is enabled when all of the places in its
preset are marked (i.e., •t ⊆ M), and the enabling condi-
tion on t evaluates to true (i.e., Eval(En(t), ψ) where the
function Eval evaluates an HSL formula on a given state).
The function E(ψ) is defined to return the set of enabled
transitions for the given state. When a transition t becomes
enabled, its clock is initialized to zero. The transition t can
then fire at any time after its clock satisfies its lower de-
lay bound and before it exceeds its upper delay bound (i.e.,
dl(t) ≤ C(t) ≤ du(t)) as long as it remains continuously en-
abled. From a state ψ, a new state ψ′ can be reached by
firing a transition t found in E(ψ). This new state is defined
as follows:

• M ′ = (M − •t) ∪ t•;

• S′(bi) =


s if ∃(bi, s) ∈ BA(t)
S(bi) otherwise

• Q′(vi) =


x if ∃(vi, x) ∈ VA(t)
Q(vi) otherwise

• R′(vi) =


x if ∃(vi, x) ∈ RA(t)
R(vi) otherwise

• I ′(ii) = (Q′(vi) ./i ki)

• C′(ti) =


0 if ti ∈ E(ψ′) ∧ ti 6∈ E(ψ)
C(ti) otherwise

In other words, the Boolean, variable, and rate assignments
associated with transition ti are executed, and the clocks
associated with newly enabled transitions are reset to 0.

In a state ψ, time can advance by any value τ which is less
than τmax(ψ). The value of τmax(ψ) is the largest amount of
time that may pass before a transition is forced to fire (i.e.,
the clock associated with it exceeds its upper bound) or an
inequality changes value (i.e., its continuous variable’s value
vi crosses the constant ki). It is defined as follows:

τmax(ψ) = min

8<:
C(ti)− du(ti) ∀ti ∈ E(ψ)

∀vi ./i ki ∈ ineq(En).
ki−Q(vi)

R(vi)
I(ii) 6= (R(vi) ./i 0)

The new state after time advancement is defined as follows:

• Q′(vi) = Q(vi) + τ ·R(vi)

• I ′(ii) =


R(vi) ./i 0 if Q′(vi) = ki

I(ii) otherwise

• C′(ti) =


0 if ti ∈ E(ψ′) ∧ ti 6∈ E(ψ)
C(ti) + τ otherwise

All other parts of the state are unaffected.
The semantics of the LHPN model are now illustrated us-

ing the LHPN example shown in Fig. 3. In the initial state,
p0, p1, and p2 are marked; inc18, inc22, and clkrst are false;
c is 0 and Vout is −1,000; and the rate of c is 1 and the
rate of Vout is −22 mV/µs. The only transition enabled
in the initial state is t5 which fires without any time ad-
vancement since it has a delay bound of [0, 0]. The firing
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{clkrst ∧ t0

〈c := 0〉

p0

c ≥ 100}

V̇out 6= −18}

p1

t1

t2

t3

t4

{inc18 ∧ inc22∧

{inc18 ∧ inc22∧

V̇out 6= 22}
〈V̇out := 22〉

{inc18 ∧ inc22∧

〈V̇out := 18〉
V̇out 6= 18}

〈V̇out := −22〉
V̇out 6= −22}

〈V̇out := −18〉

{inc18 ∧ inc22∧

{c ≥ 100}

[0, 100]

p3

t6

p4

〈inc22 := T 〉

t7

[0, 100]

p7

t9

p6

p8

〈inc18 := T 〉

〈inc18 := F 〉

{c ≥ 100}
〈clkrst := F 〉

t8p5

t10

t11t5

〈inc22 := F 〉

〈clkrst := F 〉

{c ≥ 100}
〈clkrst := T 〉

〈clkrst := T 〉
{c ≥ 100}p9

t12p2

(a) (b) (c)

Figure 3: An LHPN for the switched capacitor integrator example. Note that transitions without a delay
bound are assumed to have a [0,0] bound. Also note that v̇i 6= ki is a shorthand for v̇i ≤ ki ∧ v̇i ≥ ki.

of t5 sets inc18 to true. When inc18 is set to true, transi-
tion t1 becomes enabled and fires immediately changing the
rate of Vout to 18 mV/µs. At this point, the only enabled
transition is t6 which has a delay bound of [0, 100]. There-
fore, time can advance from 0 to 100 µs before transition
t6 must fire. When t6 fires, inc22 is set to true. This en-
ables t2 which fires immediately changing the rate of Vout
to 22 mV/µs. At the end of the first half of the input cycle
(indicated by c reaching 100 µs), the transition t7 becomes
enabled and fires immediately setting clkrst to true. This
enables transition t0 which fires immediately resetting c to
0. This enables transition t8 which fires immediately setting
clkrst back to false. Operation continues in this manner for
the decreasing period of Vout .

4. ANALYSIS OF LHPNS
To analyze and verify properties of LHPNs, state space

exploration needs to be performed. This analysis is compli-
cated by the fact that LHPNs typically have an infinite num-
ber of states. Therefore, to perform state space exploration
on LHPNs, it is necessary to represent this infinite number
of states using a finite number of state equivalence classes
called state sets. Our analysis method uses zones defined
using difference bound matrices (DBMs) [7] to represent the
continuous portion of the state space. Our methodology is
based upon one for analyzing timed systems [2,3] with exten-
sions necessary to deal with continuous quantities changing
at variable rates. The state sets are represented with the
tuple ψ = 〈M,S,Q,R, I, Z〉 where:

• M ⊆ P is the set of marked places;

• S : B → {0, 1} is the value of each Boolean signal;

• Q : V → Q×Q is the value of each inactive variable;

• R : V → Q is the rate of each continuous variable;

• I : ineq(En) → {0, 1} is the value of each inequality
of the form vi ./i ki used in En;

• Z : (T ∪ V ∪ {c0}) × (T ∪ V ∪ {c0}) → Q is a DBM
composed of active transition clocks, active continuous
variables, and c0 (a reference clock which is always 0).

State sets and states differ in two ways. First, a DBM Z
represents the ranges of values for clocks and active contin-
uous variables. Second, inactive continuous variables (i.e.,
R(vi) = 0) may also have a range of values. The algorithms
below use the notation x ∈ Z to check if the DBM Z is
defined for x where x is a transition or continuous variable.
The notation nlb(Z, x) accesses the negative of the lower
bound for x in Z and ub(Z, x) accesses its upper bound.

The DBM based method for state space exploration of
LHPNs is shown in Algorithm 1. The algorithm is a depth
first search of the state space. The algorithm begins by
constructing the initial state set for the LHPN and adding
it to the set of reachable state sets, Ψ. In the initial state set,
M = M0, S = S0, and R = R0. Initially, Q includes inactive
continuous variables set to their initial value, Q0. The DBM
Z includes active continuous variables (i.e., R0(vi) 6= 0) set
to their initial value and clocks for enabled transitions set to
zero. Finally, I contains the initial value for all inequalities
(i.e., I(ii) = (Q0(vi) ./i ki)). The algorithm then calls
findPossibleEvents which determines all possible events
that can result in a new state set. Given this set of events,
E, an event, e, is arbitrarily chosen by the select function.
After the selection of an event, if events still remain in E,
the remaining events and the current state set are pushed
onto the stack. Given the current state set, ψ, and possible
event, e, the state set is updated. If the resulting state
set has not been seen before then it is added to the state
space, new events are found, and the loop continues. If the
state set has been seen before, the stack is popped and the
loop continues. If the stack is empty, the reachable state
space has been found and is returned. The remainder of
this section explains these steps in more detail.

The findPossibleEvents algorithm shown in Algorithm 2
determines which events are possible from the current state.
There are two types of possible events: a transition firing
or an inequality changing value due to the advancement of
time. A transition may fire anytime after the lower bound
of the delay for that transition has been reached, and it
must fire before the upper bound of the delay is exceeded.
Clocks are activated when a transition becomes enabled and
only enabled transitions are in Z. Therefore, any transition
in Z whose clock can reach its lower bound may fire (i.e.,
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Algorithm 1: reach()

ψ = initialStateSet();1

Ψ = {ψ};2

E = findPossibleEvents(ψ);3

while true do4

e =select(E);5

if E − {e} 6= ∅ then push(E − {e}, ψ);6

ψ′ = updateState(ψ, e);7

if ψ′ 6∈ Ψ then8

Ψ = Ψ ∪ {ψ′};9

ψ = ψ′;10

E = findPossibleEvents(ψ);11

else12

if stack not empty then (E,ψ) = pop();13

else return Ψ;14

ub(Z, t) ≥ dl(t)). An inequality may change value when time
can advance to the point where the value of the continuous
variable associated with the inequality crosses the constant
in the inequality. This is determined by the ineqCanChange

function by examining the current values of R, I , and Z.
Once an event has been selected as a possible event, the
addSetItem function is called to determine if this event can
be the next to occur. There are two possible outcomes. The
first outcome is that the newly found event cannot actually
happen before some other event already in the set E, and
it is not added to the set. The second outcome is that the
newly found event can occur next, so it is added in the event
set, E. Adding it to this set may cause other events already
in E to need to be removed from E as this newly added
event may occur before previously added events.

Algorithm 2: findPossibleEvents(ψ)

E = ∅;1

forall t ∈ Z do2

if ub(Z, t) ≥ dl(t) then3

E = addSetItem(E, t);4

forall i ∈ ineq(En) do5

if ineqCanChange(R, I, Z, i) then6

E = addSetItem(E, i);7

return E;8

Algorithm 3 updates the state set, ψ, as a result of an
event, e. The algorithm begins by calling the restrict func-
tion to modify Z to reflect that time must have advanced
to the point necessary for the event to have occurred (i.e.,
the clock for the transition firing reaches its lower bound, or
the continuous variable reaches the constant in the inequal-
ity changing value). Next, the recanonicalize function is
called to apply Floyd’s all-pairs shortest path algorithm to
restore Z to a canonical form. When an inequality changes,
the next step is to simply update the value of I. When
a transition fires, however, the state update required is a
bit more involved as shown in Algorithm 4 described below.
Next, the transitions are checked to see if they have become
newly enabled or disabled. A clock for a transition t not
in Z that is enabled must be added to Z while a clock for
a transition t in Z that is not enabled must be removed
from Z. Finally, time is advanced using Algorithm 5, Z is
recanonicalized again, and the new state set is returned.

Algorithm 3: updateState(ψ, e)

Z = restrict(Z, e);1

Z = recanonicalize(Z);2

if e 6∈ T then3

ψ = updateIneq(ψ, e);4

else5

ψ = fireTransition(ψ, e);6

forall t ∈ T do7

if t 6∈ Z ∧ t ∈ E(ψ) then8

Z = addT(Z, t);9

else if t ∈ Z ∧ t 6∈ E(ψ) then10

Z = rmT(Z, t);11

Z = advanceTime(Z,R, I);12

Z = recanonicalize(Z);13

return ψ;14

The updateState function calls Algorithm 4 to fire a tran-
sition t in state set ψ. This algorithm first updates the
marking by removing the tokens from all places in •t and
adding tokens to all places in t•. Next, the transition t
must be removed from Z. Then, all assignments labeled on
t must be performed. This includes variable assignments,
rate assignments, and Boolean signal assignments. The rate
assignments may have activated or deactivated a continuous
variable, so all continuous variables are checked and added
or removed from Z as necessary. Finally, Z is warped using
Algorithm 6 to properly account for any rate changes that
may have occurred.

Algorithm 4: fireTransition(ψ, t)

M = (M − •t) ∪ t•;1

Z = dbmRemove(Z,t);2

(Z,Q) = doVarAsgn(Z,Q,VA(t));3

R′ = doRateAsgn(R,RA(t));4

S = doBoolAsgn(S,BA(t));5

forall v ∈ V do6

if v 6∈ Z ∧R′(v) 6= 0 then7

(Z,Q) = addV(Z,Q, v);8

else if v ∈ Z ∧R′(v) = 0 then9

(Z,Q) = rmV(Z,Q, v);10

(Z,R) = dbmWarp(Z,R,R′);11

return ψ;12

The updateState function calls Algorithm 5 to advance
time in Z. The basic idea is that time should be allowed to
advance as far as possible without missing an event. To en-
sure that the firing of an enabled transition t is not missed,
advanceTime sets the upper bound value for the clock asso-
ciated with t to the upper delay bound for t. To ensure that
a change in inequality value is not missed on a variable v, all
inequalities involving variable v are checked by the function
checkIneq, and the largest amount of time that can advance
before one of these inequalities changes value is assigned to
the upper bound value for v.

State sets for an LHPN cannot be represented exactly in
a DBM due to the requirement that all dimensions advance
at rate one. While clocks associated with transitions al-
ways increase at rate one, continuous variables may increase
or decrease with any rate. Therefore, an approximation is
necessary to analyze the state space using DBMs. When
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Algorithm 5: advanceTime(Z,R, I)

forall t ∈ Z do1

ub(Z, t) = du(t);2

forall v ∈ Z do3

ub(Z, v) = checkIneq(Z,R, I, v);4

return Z;5

a continuous variable advances with a rate other than one,
a variable substitution is performed which has the effect of
warping the DBM in the given dimension such that it ad-
vances with rate one. For example, in Fig. 4(a) a zone with
two continuous variables, x and y, is shown. If x begins in-
creasing at a rate of 2 and y begins increasing with a rate of
3, the warp occurs by substituting x with x

2
and y with y

3
.

This has the effect of warping the zone as shown in Fig. 4(b).
A DBM can only represent polygons made with 45◦ and 90◦

angles. Therefore, the zone in Fig. 4(b) must be conser-
vatively encapsulated in a larger zone which satisfies this
requirement. The lighter gray box in Fig. 4(c) shows the
encapsulation that includes this zone while using only 45◦

and 90◦ angles. The final result of the zone being warped
is shown in Fig. 4(d). This example shows how a zone is
warped in two dimensions. The general problem of warp-
ing the zone for n dimensions can be reduced to warping
the zone in two dimensions multiple times. When a rate is
negative, the DBM is first warped as described above and
this zone is then warped into the negative space. This is ac-
complished by first swapping the minimum and maximum
entries in the zone. In the resulting zone, all 45◦ angles
become 225◦ angles which cannot be represented in a zone.
This can be seen in the darker box shown in Fig. 5(a). To
address this problem, the algorithm must encapsulate the
zone in a box. The gray box shown in Fig. 5(b) is the result
of this encapsulation.
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Figure 4: Warping a zone in two dimensions.
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Figure 5: Warping a zone by a negative rate.

The algorithm for warping a DBM is shown in Algorithm 6.
The first part of the algorithm performs the warping and
encapsulation as described earlier. The third loop in Al-
gorithm 6 (line 13) is used when a rate is negative which
requires that the values calculated in the previous parts of
the algorithm to be warped into the negative space. The re-
sulting DBM Z is recanonicalized and returned. The warp

function is shown below:

warp(z1, z2, r1, r2) = r1 · z2 − r1 · z1 + r2 · z1

Algorithm 6: dbmWarp(Z,R,R′)

forall {x, y}|x ∈ Z, y ∈ Z, x 6= y do1

a = |R(x)/R′(x)|;2

b = |R(y)/R′(y)|;3

if a > b then4

Z(x, y) = warp(ub(Z, x), Z(x, y), b, a);5

Z(y, x) = warp(nlb(Z, x), Z(y, x), b, a);6

else7

Z(x, y) = warp(nlb(Z, y), Z(y, x), a, b);8

Z(y, x) = warp(ub(Z, y), Z(x, y), a, b);9

forall x ∈ Z do10

nlb(Z, x) = |R(x)/R′(x)| ∗ nlb(Z, x);11

ub(Z, x) = |R(x)/R′(x)| ∗ ub(Z, x);12

forall x ∈ Z do13

if R(x)/R′(x) < 0 then14

Z = swap(Z,nlb(Z, x),ub(Z, x));15

forall y ∈ Z do16

if x 6= y ∧ y 6= c0 then17

Z(x, y) = Z(y, x) = ∞;18

Z = recanonicalize(Z);19

return (Z,R′);20

5. EXPERIMENTAL RESULTS
A compiler from VHDL-AMS to LHPNs and the state

space exploration algorithms for LHPNs described in this
paper have been implemented and used to verify the exam-
ples in Table 1. Results are compared with the HyTech
tool. Our tool verifies VHDL-AMS versions of these exam-
ples while HyTech analyzes hybrid automata models.

For the integrator example used in this paper, the prop-
erty that we wish to verify is that it does not saturate. In
other words, Vout should never fall below −2V (−2000mV)
or rise above 2V (2000mV). This property can be expressed
using the following VHDL-AMS assert statement:
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Table 1: Verification results.

New Method HyTech
Example |Ψ| Time Verifies? Time

Integrator (Sat.) 103 0.24 No 0.06
Integrator (No sat.) 142 0.23 Yes 0.08
Diode (Osc.) 115 0.84 Yes n/a
Diode (No osc.) 132 1.20 No n/a

assert vout’above(-2000) and
not vout’above(2000)
report "Integrator saturates"
severity failure;

The assert statement has two effects on the LHPN model.
First, the assert statement is compiled into the LHPN shown
in Fig. 6 which fires a transition to set the Boolean signal fail
to true when the assertion is violated. Second, all enabling
conditions in all other transitions are extended to include
fail. The result of this is that when a failure is detected all
transitions in the LHPN are disabled resulting in a deadlock.
This deadlock is detected and reported as a failure during
state space exploration.

〈fail := T 〉
t13

p10

{(vout ≥ −2000) ∧ (vout ≤ 2000)}

Figure 6: An LHPN for the assert statement.

With the addition of this assert statement, a deadlock is
found during state space exploration of the integrator which
means that the circuit can saturate. This can happen, for
example, when Vout always increases at 22 mV/µs and al-
ways decreases at 18 mV/µs. The result is that charge builds
up during each cycle until eventually the op amp saturates.

Saturation of the integrator can be prevented using the
circuit shown in Fig. 7. In this circuit, a resistor constructed
using a switched capacitor is inserted in parallel with the
feedback capacitor. With this addition, Vout tends to drift
back to 0V. In other words, if Vout is increasing, it increases
faster when it is far below 0V than when it is near or above
0V. To model this affect, the VHDL-AMS is modified to use
a range of Vout increase of 22 to 24mV/µs when it is below
−1000mV, and it uses a range of 16 to 22mV/µs when it
is above −1000mV. A similar modification is made for the
ranges of rates when Vout is decreasing. With these changes,
the verification finds that the circuit no longer saturates.
While these results can be rapidly found by both tools, the
HyTech tool requires the user to translate the VHDL-AMS
descriptions by hand into a hybrid automata model.

The remaining results in Table 1 are versions of the tun-
nel diode oscillator shown in Fig. 8 [13]. The numerical
parameters used for this example are from [11]. The goal of
verification is to ensure that Il oscillates for specific circuit
parameters and initial conditions. Continuous variables in
LHPNs can only change at constant rates. Therefore, to an-
alyze more complicated systems, the continuous operating
ranges must be decomposed into regions in which the rate

Q4

Φ1

Q1
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freq(Vin) = 5 kHz
Vin = ±1V

Φ2

C1

Q2 Vout

C2
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Φ2

C3

C3 = 0.1 pF

dVout/dt = ±(16 to 24) mV/µs

freq(Φ1) = freq(Φ2) = 500 kHz

−

+

Figure 7: A non-saturating integrator.

of change is assumed to be constant. This is accomplished
using a differential equation discretization method similar
to that proposed in [12,13].

IlR L

CVin Vc

Figure 8: Tunnel diode oscillator circuit (Vin=0.3v,
L=1µH, and C=1pF).

In the model for the tunnel diode oscillator, sixteen dis-
crete regions are required to model the oscillatory and non-
oscillatory behavior of the circuit. The property is verified
for a range of initial conditions in which Il is between 0.45 to
0.55mA and Vc is between 0.4 and 0.47V. As expected, the
property verifies with R = 200Ω in 0.84s after finding 115
state sets, and the property does not verify with R = 242Ω
in 1.20s after finding 132 state sets. We also attempted this
verification using the HyTech tool [17], but it is unable to
complete due to arithmetic overflow errors. HyTech can
complete analysis with less precision on the rates, but the
model of the circuit no longer produces oscillation. There-
fore, the verification results are incorrect. Our method also
outperforms the PHAVer model checker on the diode oscilla-
tor which verifies it in 72.8s [9]. This demonstrates that our
method can provide a significant performance improvement
over exact methods without loss in verification accuracy.

Another advantage of the LHPN model over our previ-
ously published HPN models is that the systems can be mod-
eled more compactly which results in smaller state spaces.
In particular, the HPN diode models presented in [18] re-
quire over 2000 zones to represent the state space while the
LHPN models require 132 zones or less.
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6. CONCLUSION
To gain acceptance of formal verification by AMS design-

ers, it is crucial to allow them to describe circuits using a
method they are comfortable with. To this end, this paper
describes a method for formally verifying AMS circuits de-
scribed using a subset of VHDL-AMS. These VHDL-AMS
descriptions are compiled into LHPNs which are then an-
alyzed with an efficient zone-based state space exploration
algorithm. Zones are extended to represent continuous vari-
ables that change at variable rates by using a process known
as warping. These warped zones allow for a simpler approx-
imation of the state space while still being able to verify
interesting properties of the sample circuits in this paper.

While the results in the paper are promising, there is much
research that is still necessary. First, we are developing a
SPICE-deck compiler to LHPNs to further improve the abil-
ity of AMS designers to use our tool. We are also planning to
investigate methods to improve user feedback when a failure
is detected or to provide coverage metrics when no failure
is found. Finally, we are working on developing complete
system models using LHPNs that include both analog and
digital hardware as well as embedded software.
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