
Verification of Distributed
Object-Based Systems�

Fernando L. Dotti2, Luciana Foss1,
Leila Ribeiro1, and Osmar M. dos Santos2

1 Instituto de Informática, Universidade Federal do Rio Grande do Sul
Porto Alegre, Brazil

{lfoss,leila}@inf.ufrgs.br
2 Faculdade de Informática, Pontif́ıcia Universidade Católica do Rio Grande do Sul

Porto Alegre, Brazil
{fldotti,osantos}@inf.pucrs.br

Abstract. Distributed systems for open environments, like the Inter-
net, are becoming more frequent and important. However, it is difficult
to assure that such systems have the required functional properties. In
this paper we use a visual formal specification language, called Object-
Based Graph Grammars (OBGG), to specify asynchronous distributed
systems. After discussing the main concepts of OBGG, we propose an ap-
proach for the verification of OBGG specifications using model checking.
This approach consists on the translation of OBGG specifications into
PROMELA (PROcess/PROtocol MEta LAnguage), which is the input
language of the SPIN model checker. The approach we use for verification
allows one to write properties based on the OBGG specification instead
of on the generated PROMELA model.

1 Introduction

The development of distributed systems is considered a complex task. In par-
ticular, assuring the correctness of distributed systems is far from trivial if we
consider the characteristics open systems, like: massive geographical distribu-
tion; high dynamics (appearance of new nodes and services); no global control;
faults; lack of security; and high heterogeneity. It is therefore necessary to pro-
vide methods and tools for the development of distributed systems such that
developers can have a higher degree of confidence in their solutions.

We have developed a formal specification language [6], called Object-Based
Graph Grammars (OBGG), suitable for the specification of asynchronous dis-
tributed systems. Currently, models defined in this formal specification language
can be analyzed through simulation [3] [4]. Moreover, starting from a defined
model we can generate code for execution in a real environment, following a
straightforward mapping from an OBGG specification to the Java programming
� This work is partially supported by HP Brasil - PUCRS agreement CASCO (24◦

TA.), ForMOS (FAPERGS/CNPq), PLATUS (CNPq), IQ-Mobile II (CNPq/CNR)
and DACHIA (FAPERGS/IB-BMBF) Research Projects.

E. Najm, U. Nestmann, and P. Stevens (Eds.): FMOODS 2003, LNCS 2884, pp. 261–275, 2003.
c© IFIP International Federation for Information Processing 2003



262 Fernando L. Dotti et al.

language [4]. In order to deal with open environments, we have worked on an
approach to consider classical failure models still during the specification phase,
allowing one to reason about a given model in the presence of a selected failure
[7]. Investigations about the complexity of verifying properties of OBGG spec-
ifications considering message passing as the main operation were done in [12].
By using the methods and tools mentioned above we have defined a framework
to assist the development of distributed systems. The innovative aspect of this
framework is the use of the same formal specification language (OBGG) as the
underlying unifying formalism [5].

In this paper we focus on the verification of object-based distributed sys-
tems. More specifically, we add to our framework the possibility of model check-
ing distributed systems written according to the OBGG formalism. To achieve
that, we propose a mapping from OBGG specifications to PROMELA (PRO-
cess/PROtocol MEta LAnguage, which is the input language of the SPIN model
checker), showing the semantic compatibility of the original OBGG specifica-
tion with the PROMELA generated model. After that, we show how to specify
properties using LTL (Linear Temporal Logic) over the OBGG specification. An
important aspect is that the user does not need to know the generated PRO-
MELA model to specify properties.

This paper is organized as follows: Section 2 presents the formal specification
language OBGG together with an example (modeling the dining philosophers
problem); Section 3 shortly introduces PROMELA; in Section 4 the translation
from OBGG to a PROMELA model is presented together with a discussion of its
semantic compatibility; in Section 5 we present our approach for the verification
of OBGG models using SPIN and then conclude in Section 6.

2 The Specification Language OBGG

Graphs are a very natural means to explain complex situations on an intuitive
level. Graph rules may complementary be used to capture the dynamical as-
pects of systems. The resulting notion of graph grammars generalizes Chomsky
grammar from strings to graphs [8, 14]. The basic concepts behind the graph
grammars specification formalism are:

– states are represented by graphs;
– possible state changes are modeled by rules, where the left- and right-hand

sides are graphs; each rule may delete, preserve and create vertices and edges;
– a rule have read access to items that are preserved by this rule, and write

access to items that are deleted/changed by this rule;
– for a rule to be enabled, a match must be found, that is, an image of the

left-hand side of a rule must be found in the current state;
– an enabled rule may be applied, and this is done by removing from the

current graph the elements that are deleted by the rule and inserting the
ones created by this rule;

– two (or more) enabled rules are in conflict if their matches need write access
to common items;



Verification of Distributed Object-Based Systems 263

– many rules may be applied in parallel, as long as they do not have write
access to the same items of the state (even the same rule may be applied in
parallel with itself, using different matches).

Here we will use graph grammars as a specification formalism for concurrent
systems. The construction of such systems will be done componentwise [13]: each
component (called entity) is specified as a graph grammar; then, a model of the
whole system is constructed by composing instances of the specified components
(this model is itself a graph grammar). Instead of using general graph grammars
for the specification of the components, we will use Object-Based Graph Gram-
mars (OBGG) [6]. This choice has two advantages: on the practical side, the
specifications are done in an object-based style that is quite familiar to most of
the users, and therefore are easy to construct, understand and consequently use
as a basis for implementation; on the theoretical side, the restrictions guarantee
that the semantics is compositional, reduce the complexity of matching (allowing
an efficient implementation of the simulation tool), as well as ease the analysis
of the grammar. Basically, we impose restrictions on the kinds of graphs that
are used and on the kind of behaviors that rules may specify.

Each graph in an OBGG is composed of instances of the vertices and edges
shown in Figure 1. These vertices represent entities and elements of abstract
data types. Elements of abstract data types are allowed as attributes of entities
and/or parameters of messages (in the visual representation, such attributes are
drawn inside the entity). Messages are modeled as (hyper)arcs which have one
entity as target and as sources the message parameters (that may be references
to other entities or values).

Fig. 1. Object-Based Type Graph.

For each entity, a graph containing information about all its attributes, re-
lationships to other entities, and messages sent/received by this entity is built.
This graph, called type graph, is an instantiation of the object-based type graph
described above. All rules that describe the behavior of this entity may only
refer to items defined in this type graph. Instances of entities are called objects.

A rule describes the reaction of objects to the receipt of a message. A rule
of an OBGG must delete exactly one message (trigger of the rule), may create
new messages to all objects involved in the rule, as well as change the values
of attributes of the object to which the rule belongs. A rule shall not delete
or create attributes, only change their values. At the right-side of a rule, new
objects may appear (instances of entities can be dynamically created). Besides,
a rule may have a condition, which is an equation over the attributes of its left-
and right-hand sides. A rule can only be applied if this condition is true.



264 Fernando L. Dotti et al.

An OBGG consists of a type graph, an initial graph and a set of rules.
The type graph is actually the description of the (graphical) types that will be
used in this grammar (it specifies the kinds of objects, messages, attributes and
parameters that are possible – like the structural part of a class description).
The initial graph specifies the start state of the system. Within the specification
of an entity, this state may be specified abstractly (for example, using variables
instead of values, when desired), and will only become concrete when we build
a model containing instances of all entities (objects) involved in this system. As
described above, the rules specify how the instances of an entity will react to
the messages they receive.

According to the graph grammars formalism, the computations of a graph
grammar are based on applications of rules to graphs. Rules may be applied
sequentially or in parallel. Each state of a computation of an OBGG is a graph
that contains instances of entities (with concrete values for their attributes) and
messages to be treated. In each execution state, several rules (of the same or
different entities) may be enabled, and are therefore candidates for execution.
Rule applications only have local effects on the state. However, there may be
several rules competing to update the same portion of the state. To determine
which set of rules will be applied, we need to choose a set of rules that is consis-
tent, i. e., a set in which no two or more rules have write access to (delete) the
same resources. Due to the restrictions imposed in OBGG, write-access conflicts
can only occur among rules of the same entity. When such a conflict occurs, one
of the rules is (non-deterministically) chosen to be applied. This semantics is
implemented in the simulation tool PLATUS [3, 4].

We can describe this semantics as a labeled transition system (LTS) in which
the states are the reachable graphs, and each transition represents a rule appli-
cation, having as label the name of the rule that was applied. Actually, there are
many possible choices for the labels of transitions, ranging from very simple ones,
like just the name of the rule, to more complex ones, containing also the identity
of the object and message involved in the rule application, and even names and
values of attributes changed by this computation step. As these labels are the
events that can be observed in the semantics, if we have richer labels, we will
be able to describe more complex properties over the system represented by this
transition system. However, the number of types of events (labels) has a direct
impact in the size of the state space of the (translated PROMELA) system, and
the risk of state explosion during verification is quite high if we have many differ-
ent labels. The choice of just having rule names as labels is a trade off between
expressiveness for describing properties and the limitations of verification tools.

2.1 The Dining Philosophers Problem

In this Section we model the dining philosophers problem using OBGG. The
type graph, and rules for the objects that compose the specification are pre-
sented in Fig. 2. Using the same type graph and set of rules, we present two
different models for this problem, given by two different initial graphs, describ-
ing a symmetric and an asymmetric solution. We use these solutions in Section
5 in order to illustrate our approach for the verification of properties.



Verification of Distributed Object-Based Systems 265

Traditionally the dining philosophers problem is described in the following
scenario. In a table there are N philosophers and N forks (a fork between every
philosopher). The philosophers spend some time thinking, and from time to
time a philosopher gets hungry. In order to eat a philosopher must, exclusively,
acquire its left and right forks. After eating a philosopher release both left and
right forks and starts thinking again.

(c)

Fig. 2. Type Graph (a) and Rules of Fork (b) and Phil (c) Objects.

In OBGG we model the problem with two entities: Fork and Phil. The
messages that objects of these entities can receive and their attributes are de-
scribed in Fig. 2 (a)1. The Fork entity represents the forks and is composed of

1 The numbers inside the circles are used to indicate the type of each entity. They are
defined in the type graph and are used as a type information for the instances that
appear in the rules and state graphs.



266 Fernando L. Dotti et al.

(a) (b)

Fig. 3. Initial Graph for Symmetric (a) and Asymmetric (b) Solutions.

a boolean attribute (acquired) that determines if the fork is currently in use by
a philosopher (acquired true) or not (acquired false). The Phil entity represents
the philosophers and is composed of five boolean attributes: acquire (the philoso-
pher is trying to acquire the forks), eat (the philosopher is eating), release (the
philosopher is releasing its acquired forks), asym (indicates if the philosopher
starts getting the left fork (false), or the right fork (true)), and forks (used to
control the number of acquired forks). Each Phil object also have two references
to Fork objects that are its left (leftFork) and right (rightFork) forks.

The rules for the Fork objects are shown in Fig. 2 (b), and the rules for the
Phil objects are presented in Fig. 2 (c). The behavior of the specification is as
follows. A philosopher starts execution, rules SymStart or AsymStart, trying to
acquire its left (asym false) or right (asym true) forks (rules AcquireLeft and
AcquireRight). If the philosopher can acquire the fork (rule Acquire), he tries
to acquire the other fork (rules SymLeft or AsymRight). If the philosopher can
acquire it too (rules SymRight or AsymLeft), he starts eating (rule Eating). After
eating the philosopher release his forks and starts all over again.

In Fig. 3 (a) we show an initial graph for a symmetric solution of the problem.
This solution is symmetric because all the philosopher has his asym attribute set
to false, meaning that all of them will try to acquire the left fork first. Fig. 3 (b)
illustrates an asymmetric solution for the problem. This solution is asymmetric
because the philosopher Phil2 has its asym attribute set to true, meaning that
he will try to acquire the right fork first, differently from the other philosophers.

3 Process/Protocol MEta LAnguage

PROMELA [17] is a process based language, being used by the SPIN model
checker [9] for the specification of models. In SPIN, from a PROMELA spec-
ification it is possible to define properties using LTL (Linear Temporal Logic)
formulas, and verify if the formulas are true for a given specification.

The language has a C-like syntax and constructs for receiving and sending
messages similar to the ones found in the specification language CSP (Communi-
cation Sequential Processes). Processes in PROMELA can be created statically
or dynamically (proctype keyword). There is a special process, called init, used
to initialize a specification. Processes can exchange information through mes-



Verification of Distributed Object-Based Systems 267

sage channels (chan keyword) or global variables (variables declared outside the
scope of the processes). The message channels can be synchronous (the buffer of
the message channel has 0 messages) or asynchronous (the buffer of the message
channel can have N messages, being N > 0). Message channels are typed, in
the sense that one has to explicitly declare the types of variables a channel might
receive. Besides, PROMELA offers several functions used to check, for example,
if a channel is not full (nfull(channel)), how many messages a channel has in its
buffer (len(channel)), and others [17].

In PROMELA, non-determinism, i.e. the existence of more than one possi-
ble execution path, is modeled in condition (if ... fi) or repetition (do ... od)
structures. The entries of condition and repetition structures are composed of
guarded commands. Once the condition of a guarded command is not satisfied,
the entry is blocked, possibly blocking the process that contains it. This blocking
occurs until the condition is satisfied. In condition and repetition structures, non-
determinism occurs when several entries have their conditions satisfied. In this
case, one of the possible paths is chosen in a non-deterministic way. It is possible
to define atomic structures (atomic { ... }) for a specification, i.e., a sequence
of statements that must be executed without interleaving with the execution of
statements of other processes. However, if there are guarded commands inside
an atomic structure and they are not satisfied, the structure will lose its atom-
icity characteristic and will interleave its statements with other processes. We
can define enumeration types in PROMELA (mtype keyword). The language
provides a goto statement that enables a developer to jump into the body of
a process. Finally, one can insert assertions in a PROMELA specification. An
assertion statement evaluates an expression (assert(expression)) to true or false,
each time the statement is executed. If the expression evaluates to false, an error
is generated and the verification procedure stops.

We can describe the operational semantics of PROMELA by a labeled transi-
tion system (LTS). This semantics can be found in [15]. A state of a PROMELA
program consists of a fragment of this program (its still unexecuted code), a
function that relates each global variable (or channel) name with its value and
a function that relates each channel identifier with its current value (length of
channel buffer and values stored in it). Moreover, the state stores information
about definitions of processes, about active processes and about which processes
are currently executing atomic blocks. Each proctype statement defines a process.
A process definition consists of the process body and a parameter function that
defines the name and the type of its parameters. A process instantiation (active
process) stores the following information: the body of the process and its current
unexecuted code fragment, the values of all local variables (or channels) and a
continuation stack that stores program fragments (used for do statements).

Each transition of a PROMELA LTS has as label some statement of the
language. These transitions are defined by the SOS-rules of [15], which describe
the behavior of each statement of PROMELA. The initial state for every LTS
is (π, G⊥, C⊥, pdef⊥, act⊥,⊥), where π is a program body; G⊥, C⊥, pdef⊥ and
act⊥ are the mappings of global variables, channels, definitions and instantiations



268 Fernando L. Dotti et al.

of process, respectively (all these functions are undefined for all values of their
domains); and ⊥ is a process identifier that is executing atomically.

4 Translation of OBGG into PROMELA

The translation of OBGG into PROMELA defines how the abstractions of
OBGG are mapped to PROMELA, in a way that the semantics of OBGG is
preserved. In Section 4.1 we present how the abstractions of object, message,
rule and initial graph present in OBGG are translated to PROMELA, and in
Section 4.2 we discuss how semantic compatibility is achieved. We do not show
neither the concrete syntax of this mapping nor the proofs of compatibility due
to space constraints.

4.1 Syntactical Mapping of OBGG into PROMELA

Objects and Messages. Objects in OBGG are translated into processes in
PROMELA (we call such processes object process(es)). Attributes of an object
are mapped to variables, passed as arguments in the definition of an object pro-
cess. For verification purposes, attributes of OBGG objects are restricted to the
types supported in PROMELA. A reference to an OBGG object is mapped to a
PROMELA channel. Messages in OBGG are translated into messages in PRO-
MELA. The receipt of messages is done through an asynchronous channel, called
object process channel, that is also passed as an argument in the definition of
an object process. The object process channel is typed according to: the name
of a message (an mtype in PROMELA, composed of the name of all messages
in the system type graph), and the parameters of all messages that an object
can receive. The parameters of all messages that an object can receive become
variables declared inside an object process. The dynamic creation of objects cor-
responds to the dynamic creation of processes and their associated channels in
PROMELA.

Concurrency among objects is naturally preserved by the concurrency be-
tween object processes. Nevertheless, in OBGG it is possible to have intra-object
concurrency. That is, when an object has several non-conflicting messages to be
processed we may have the parallel reception of these messages. We face two
main problems when translating this feature to PROMELA.

The first problem is due to the way messages are received in OBGG, i.e.
messages are not stored in a specific place, they are simply connected to the
object in the system state graph. Since we translate OBGG messages to messages
sent through PROMELA channels, we require the user to set a buffer size for
the object process channel of object processes. The problem occurs when a small
size is set, introducing possible points of synchrony in the model (that do not
exist in the original OBGG model because an object may receive an unbounded
number of messages at each moment). We handled this problem by inserting
assertions that, just before sending a message in the translated model, evaluate
an expression to determine if the destination channel is not full. Thus, when
verifying a model with a small buffer size, an error is generated when the object
process channel is full, requiring the user to increase the buffer size.



Verification of Distributed Object-Based Systems 269

The second problem is related to the non-deterministic reception of messages
in OBGG. Because PROMELA channels work in a first-in first-out manner, we
have to introduce a structure that non-deterministically receive messages to be
processed. This is done by creating an internal buffer in every object process that
is responsable for receiving a message in a non-deterministic way.

Thus, we define the generic behavior of an object process as follows: (i)
wait for new messages in the object process channel ; (ii) once new messages
are received, send them to an internal buffer of the object process; (iii) non-
deterministically choose a message from the internal buffer and try to apply a
rule to process that message (see Rules below); (iv. a) if a message is processed
and the object process channel is empty, return to (iii); (iv. b) if no message is
processed or the object process channel is not empty, return to (i).

Rules. For an OBGG object there may exist several rules that are capable of
handling the same message type. When receiving a message, one of the enabled
rules that can handle the message is chosen in a non-deterministic way. We use
a condition structure inside the object process to implement such abstraction.
This condition structure has in its entries the necessary conditions to trigger the
rules of the object (the match). Thus, an object with N rules will have N entries
in this structure.

Initial Graph. The OBGG initial graph is composed of the instances of objects
and the (initial) messages of the model. In our translation, the initial graph
becomes an init process in PROMELA. This init process has three stages: (i)
create the object process(es) channel(s) for objects that appear in the initial
graph; (ii) execute the object process(es) defined in the initial graph, passing as
arguments the values of its attributes and its object process(es) channel(s); (iii)
send defined (initial) messages using the object process(es) channel(s).

4.2 Semantic Compatibility

To assure that the translation preserves the OBGG semantics we have to prove
(i) that every behavior in the OBGG-LTS can be found in the PROMELA-LTS
of its translation and (ii) that no new behavior is added in the PROMELA-LTS.
Due to a difference in the granularity of the LTSs, the latter proof can not be
done, only a weaker version of it.

In order to carry out these proofs we translate the paths of the OBGG-LTS
into paths of PROMELA-LTS (i) and vice-versa (ii). For this, we must translate
the states of the first into states of the second LTS, that is, we must find a
correspondence between graphs and PROMELA states. We can always translate
an OBGG state into a PROMELA state, but the opposite is not true. In the
PROMELA-LTS of a program which results from the translation of an OBGG
specification there are several states that do not correspond to any states of the
OBGG-LTS. This is due to the fact that the treatment of messages in OBGG
occurs atomically (in only one step), while in PROMELA this treatment occurs
in several steps. Thus, in the PROMELA-LTS, there are states that represent
the partial treatment of messages and these states do not have any corresponding



270 Fernando L. Dotti et al.

state in OBGG-LTS. A PROMELA state that corresponds to some OBGG state
will be called well-formed state. In a well-formed state, every instantiated process
(act(i) = (π1, π2, L, ε)) must: not be more active (π1 = ε); or not be executing
(π1 = π2); or be ready to execute a labeled statement in the next step. The fist
situation is the case of init process. The latter situation occurs when processes
are waiting for messages or looking for enabled messages in the buffer. For a
PROMELA-LTS state to correspond to a graph (OBGG-LTS state), it must
have one active process (but not executing or with a labeled statement) for each
object in the graph and one element in the channel or the buffer of an object
process for each message in graph.

pdef(Fork) = (π3, fFork),
fFork(1) = (opc Fork, CHAN)
fFork(2) = (atr acquire, BOOL)

pdef(Phil) = (π5, fPhil),
fPhil(1) = (opc Phil, CHAN)
fPhil(2) = (atr acquire, BOOL)
fPhil(3) = (atr eat, BOOL)
fPhil(4) = (atr release, BOOL)
fPhil(5) = (atr asym, BOOL)
fPhil(6) = (atr forks, BOOL)
fPhil(7) = (atr Fork leftFork, CHAN)
fPhil(8) = (atr Fork rightFork, CHAN)

pdef(init) = (π7, f0)

G(event RuleName) = (MTYPE, 0)

C(0) = (MTYPE, Phil Start · ε, 3)
C(1) = (MTYPE, Phil Start · ε, 3)
C(2) = (MTYPE, Phil Start · ε, 3)
C(3) = (MTYPE × CHAN, ε, 3)
C(4) = (MTYPE × CHAN, ε, 3)
C(5) = (MTYPE × CHAN, ε, 3)

(a)
act(0) = (ε, π7, L1, ε)

L1(Phil1) = (CHAN, 0)
L1(Phil2) = (CHAN, 1)
L1(Phil3) = (CHAN, 2)
L1(Fork1) = (CHAN, 3)
L1(Fork2) = (CHAN, 4)
L1(Fork3) = (CHAN, 5)

act(1) = (π5, π5, L2, ε)
L2(opc Phil) = (CHAN, 0)
L2(atr acquire) = (BOOL, 1)
L2(atr eat) = (BOOL, 0)
L2(atr release) = (BOOL, 0)
L2(atr asym) = (BOOL, 0)
L2(atr forks) = (BOOL, 0)
L2(atr Fork leftFork) = (CHAN, 5)
L2(atr Fork rightFork) = (CHAN, 3)

act(2) = (π5, π5, L3, ε)
L3(opc Phil) = (CHAN, 1)
L3(atr acquire) = (BOOL, 1)
L3(atr eat) = (BOOL, 0)
L3(atr release) = (BOOL, 0)
L3(atr asym) = (BOOL, 1)

L3(atr Forks) = (BOOL, 0)
L3(atr Fork leftFork) = (CHAN, 3)
L3(atr Fork rightFork) = (CHAN, 4)

act(3) = (π5, π5, L4, ε)
L4(opc Phil) = (CHAN, 2)
L4(atr acquire) = (BOOL, 1)
L4(atr eat) = (BOOL, 0)
L4(atr release) = (BOOL, 0)
L4(atr asym) = (BOOL, 0)
L4(atr Forks) = (BOOL, 0)
L4(atr Fork leftFork) = (CHAN, 4)
L4(atr Fork rightFork) = (CHAN, 5)

act(4) = (π3, π3, L5, ε)
L5(opc Fork) = (CHAN, 3)
L5(atr acquire) = (BOOL, 0)

act(5) = (π3, π3, L6, ε)
L6(opc Fork) = (CHAN, 4)
L6(atr acquire) = (BOOL, 0)

act(6) = (π3, π3, L7, ε)
L7(opc Fork) = (CHAN, 5)
L7(atr acquire) = (BOOL, 0)

(b)

Fig. 4. PROMELA State for OBGG Specification: Definitions, Global Variables and
Channels (a) and Active Processes (b).

The initial state of an OBGG-LTS is the initial graph of the OBGG, which
contains all objects and messages of the initial configuration of the system.
The PROMELA-LTS initial state does not correspond to the OBGG-LTS initial
state, because there is no running process in the initial state of the PROMELA-
LTS. The state corresponding to the initial graph is the output state of the first
transition labeled end atomic (indicating that the init process (0) has ended and
all processes corresponding to objects and messages present in the initial state
of the system are running). The PROMELA state corresponding to the initial



Verification of Distributed Object-Based Systems 271

1G

2G 3G

4G
r2 r1

r2r1

(a)

event_RuleName=r1
rule_applied=true

event_RuleName=r2
rule_applied=true

event_RuleName=r2
rule_applied=true

event_RuleName=r1
rule_applied=true π3

π2

π1

~~ π54π

(c)

atomic,1 atomic,2

end_atomic,2end_atomic,1

atomic,2 atomic,1

end_atomic,2 end_atomic,1

rule_applied=false

π1 π2

π4

~~π5 π6

event_RuleName=r1
rule_applied=true

event_RuleName=r1
rule_applied=true

event_RuleName=r2
rule_applied=true

1G

3G

2G

r1

r2

π3

atomic,1

atomic,2 end_atomic,2

rule_applied=false

end_atomic,1

atomic,2

end_atomic,2

atomic,1

end_atomic,1

end_atomic,2

rule_applied=false

(d)(b)

atomic,2

Fig. 5. OBGG-LTS’s (a)(b) and PROMELA-LTS’s (c)(d) of its Translation.

graph of Fig. 3 (b) is the state ST = (ε, G, C, pdef, act,⊥), whose definitions
are shown in Fig. 4 (π’s definitions are omitted). The function act defines the
instantiated and active processes. In Fig. 4, we can see that there is one active
process for each object in the initial graph (1 − 6). The functions Ln define the
values of object attributes. For example, in the initial graph (Fig. 3 (b)) the
asym attribute of Phil2 is true and in PROMELA-LTS state this same value
can be seen in L3(atr asym) = (BOOL, 1). The messages and their parameters,
present in the initial graph, are defined by function C, that defines the channel
value of each object. All messages (and their parameters) sent to each object are
in these channels.

The information described in the type graph of the OBGG can be found via
the pdef function, that associates to each type of object (process name) a process
body modeling its behavior. We can also obtain the object’s attributes, as well
as their types through functions fname process. The message types of system can
be found in the mtype construct, that enumerates all types of messages and rule
names of an entity. The message parameters and their types can also be obtained
from the process body associated with each object by the function pdef . The
first statements in the object process body are the declarations of parameters of
all message types that the object can treat.

Besides translating the states we must translate the transitions of the LTS’s.
In the OBGG-LTS there is one transition for each rule application, but in the
PROMELA-LTS there are several transitions that represent the same rule appli-
cation. The behavior of an object process can result into two kinds of transition



272 Fernando L. Dotti et al.

sequences, a matching sequence, corresponding to testing whether a rule can be
applied (without applying the rule), and a rule application sequence testing and
applying a rule. The matching sequence corresponds to situations when there
is no match to apply a rule, and therefore it is only tested and not applied. As
this transition sequence only makes tests, the part of the PROMELA state that
corresponds to an OBGG state (graph) is not changed. Both sequences start
with an “atomic” and end with an “end atomic” transition. In the rule applica-
tion sequence, in the final state of the “end atomic” transition, the local variable
rule applied is true, whereas in the matching sequence the value of this variable
is false.

Figure 5 shows examples of OBGG-LTSs and the PROMELA-LTS of their
translations. In (a) and (c), we can apply r1 and r2 in parallel (r1 and r2 are
independent) and, in (b) and (d), we can apply r2 only after r1 (r2 depends
on r1). In (a) and (c), we can observe that the two rules can be applied in
any order. The states π4 and π5 are equivalent, in this context, because they
differ only in the value of the global variable event RuleName and the local
variable rule applied of one object process. These variables do not interfere in
the message or process states, and therefore the OBGG states corresponding
to these two different PROMELA states are the same (isomorphic). In (d), the
transitions represented by the dashed arrows correspond to idle transitions in
the OBGG (because this corresponds to a matching sequence) and states π5 and
π6 (and also π3 and π4) are equivalent, because the differences between them
are not in message or object states.

The messages, in the states of PROMELA-LTS, do not have identifiers, so
we are not capable of distinguishing, in a state, two messages with same type
and parameters. In an OBGG, however, messages have unique identifiers. This
means that the OBGG-LTS have a richer representation concerning the causal-
ity relationships among messages than the PROMELA-LTS. For each OBGG
path there is one corresponding PROMELA path, but for the same PROMELA
path there may be many different corresponding OBGG paths, each one repre-
senting a different causal relation between messages that is compatible with the
PROMELA path. What is important to notice is that all these OBGG paths are
in the transition system of the original OBGG-LTS, and therefore we are not
adding new behavior with the translation of OBGG into PROMELA.

5 Verification of OBGG Specifications

The model checker SPIN is a state-based verification tool. The property formulas,
written using LTL, are specified over the state of the system. More specifically,
the developer must have global variables in the PROMELA model to specify
and verify properties over it.

For the verification of OBGG specifications we have noticed that it is more
natural for the developer to express properties about the application of rules
rather than based on the state of specific objects. Moreover, if we use the state
of an object (its attributes) in a property specification we would have to make
available the values of such attributes through global variables. While this ap-



Verification of Distributed Object-Based Systems 273

proach works for specifications with a static number of objects, it is not feasible
for specifications that have dynamic creation of objects because we would need
to dynamically create new global variables, a feature not supported by the tool.

Switching from the state-based approach presented above to an event-based
approach, besides being more natural from the OBGG point of view (a rule
application is seen as an event), we gain a more structured form to handle the
verification of specifications that have dynamic creation of objects.

In order to specify properties using rule applications as events we have some-
how to mark that a rule application is an event for verification. In our ap-
proach using events, every PROMELA model generated from the translation
has a global variable event RuleName. To generate events for the application of
rules, we include the name of the rules that will become events into the mtype
definition of this variable. Thus, when interesting events occur, i.e., the applica-
tion of rules that are relevant for verification, they are written (using the atomic
structure in PROMELA) into the event RuleName global variable.

It is then possible to write LTL formulas about the occurrence of rules
as being events, and these formulas need to inspect only the global variable
event RuleName. An event is the change of value of this global variable. For
instance, we can define an event eat as being the change of value of the variable
event RuleName from not Eating to Eating (where Eating is the rule applied).
We need to use the next temporal operator (X) to mark the change of value, for
instance (! Eating && X Eating). The idea of specifying LTL formulas using
events, and validating them with SPIN has been explored in [1].

As an example, we can define an LTL formula to specify that “it is always
possible that some philosopher will eat”, trying to prove that the specification is
deadlock free. For that, we generate the events Eating (the philosopher is eating),
SymStart (a philosopher is starting its execution), and AsymStart (a philosopher
is starting its execution). This property is specified by the formula ([] <> eat),
where ([]) is the always temporal operator and (<>) is the eventually temporal
operator. We were able to verify this formula for the symmetric and asymmetric
solutions of the dining philosophers problem. As expected, for the symmetric
solution the formula does not hold, but the formula does hold for the asymmetric
solution, where it used 530 Mb of memory, generated 6.21266e+06 states, and
took 9 minutes running in an Intel Xeon 2.2 GHz Processor with a limit of 1 Gb
of memory under SPIN.

Another property verified over the asymmetric and symmetric models con-
cerned mutual exclusion. In a setting with up to three philosophers it is sufficient
to prove that “no two philosophers might be in their critical sections (eating) at
the same time”. To prove such property we use the events Eating (the philoso-
pher enters in the critical section) and ReleaseForks (the philosopher leaves the
critical section). The formula ([] (eat && <> rel) → X (! eat U rel)) specifies
this property, where (U) is the strong until temporal operator. Like for the event
eat defined above, we define the event rel as being the change of value of the
event RuleName variable from not ReleaseForks to ReleaseForks (where Release-
Forks is the rule applied), leading to (! ReleaseForks && X ReleaseForks).



274 Fernando L. Dotti et al.

When verified, the formula for mutual exclusion was true and used 420 Mb of
memory, generated 2.67997e+06 states, and took 2 minutes running in the same
computer and configuration of the previous formula.

It is important to note that this approach implies in the use of the next
operator in SPIN. In order to use the partial order reduction algorithm available,
the SPIN model checker requires that, when using the next operator, the given
formula is closed under stuttering. [1] has proposed a group of useful formula
patterns for events that are closed under stuttering and can be directly applied
in our work.

An important feature of our approach based on events is that the developer
may write formulas looking only to the OBGG specification. It is not necessary
to know the structure of the translated PROMELA model.

6 Final Remarks

In this article we have defined a translation from OBGG specification to PRO-
MELA, and provided a way to verify properties over OBGG specifications based
on events. We have also discussed the semantic compatibility between an OBGG
specification and its corresponding PROMELA model.

The translation and integration between formal languages in order to use
model checking tools is becoming a common practice, since many times it is
easier (and more efficient) to reuse than to build a specific verification tool.
Nevertheless, such translations involve detailed comparisons, especially at the
semantic level. We can find in the literature various works focused on the verifi-
cation of object-based/oriented distributed systems. The work proposed in [10]
defines a visual and object-oriented language that can be mapped to the model
checker SPIN. In [2] PROMELA is extended considering the actors concurrency
model. [11] proposes a tool that tries to make available the automatic verification
of UML models, this approach consists in the mapping of UML models to PRO-
MELA. In [16] an integration of the formal specification language Object-Z with
ASM (Abstract State Machine) was introduced, creating the OZ-ASM notation.
After a series of translations, it is possible to verify OZ-ASM specifications using
the SMV tool. In contrast to some of these works, in this article we discussed the
semantic compatibility of our translation. Moreover, in our approach it is possi-
ble to specify the properties to be verified at the same level of abstraction of the
specified OBGG model, a feature that is not present in most of the approaches
that use translations.

For the verification of some aspects of a given specification, only the name of
the applied rule as event name may be too few information. For instance, if we
wish to prove the problem of fairness for the asymmetric solution of the dining
philosophers problem, we would need to specify formulas about the individual
behavior of a philosopher, like “for each philosopher i it is always possible that
philosopher i will eat”. To support such level of detail we need to add more
information to the event names. However, in doing so, we will have exponentially
more states in the LTS to be verified. We are currently working on an approach
to tackle this problem.



Verification of Distributed Object-Based Systems 275

References

1. M. Chechik and D. O. Păun. Events in property patterns. In 5th and 6th Int.
SPIN Workshops, volume 1680 of LNCS, pages 154–167, Germany, 1999. Springer.

2. Seung Mo Cho et al. Applying model checking to concurrent object-oriented soft-
ware. In 4th International Symposium on Autonomous Decentralized Systems,
pages 380–383, Japan, 1999. IEEE Computer Society Press.

3. B. Copstein, M. C. M0ra, and L. Ribeiro. An environment for formal modeling
and simulation of control systems. In 33rd Annual Simulation Symposium, pages
74–82, USA, 2000. IEEE Computer Society.

4. F. L. Dotti, L. M. Duarte, B. Copstein, and L. Ribeiro. Simulation of mobile
applications. In 2002 Communication Networks and Distributed Systems Modeling
and Simulation Conference, pages 261–267, USA, 2002. The Society for Modeling
and Simulation International.

5. F. L. Dotti, L. M. Duarte, F. A. Silva, and A. S. Andrade. A framework for sup-
porting the development of correct mobile applications based on graph grammars.
In 6th World Conference on Integrated Design & Process Technology, pages 1–9,
USA, 2002. Society for Design and Process Science.

6. F. L. Dotti and L. Ribeiro. Specification of mobile code systems using graph
grammars. In 4th International Conference on Formal Methods for Open Object-
Based Distributed Systems, volume 177 of IFIP Conference Proceedings, pages 45–
63, USA, 2000. Kluwer.

7. F. L. Dotti, O. M. Santos, and E. T. Rödel. On the use of formal specifications to
analyze fault behaviors of distributed systems. In 1st Latin-American Symposium
on Dependable Computing (accepted), LNCS, Germany, 2003. Springer.

8. H. Ehrig. Introduction to the algebraic theory of graph grammars. In 1st Interna-
tional Workshop on Graph Grammars and Their Application to Computer Science
and Biology, volume 73 of LNCS, pages 1–69, Germany, 1979. Springer.

9. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–295, 1997.

10. S. Leue and G. Holzmann. v-Promela: a visual, object oriented language for SPIN.
In 2nd International Symposium on Object-Oriented Real-Time Distributed Com-
puting, pages 14–23, France, 1999. IEEE Computer Society Press.

11. Johan Lilius and Ivan Porres Paltor. vUML: a tool for verifying UML models. In
14th International Conference on Automated Software Engineering, pages 255–258,
USA, 1999. IEEE Computer Society Press.

12. A. B. Loreto, L. Ribeiro, and L. V. Toscani. Decidability and tractability of a
problem in object-based graph grammars. In 17th IFIP World Computer Congress
- Theoretical Computer Science, volume 223 of IFIP Conference Proceedings, pages
396–408, Canada, 2002. Kluwer.

13. L. Ribeiro and B. Copstein. Compositional construction of simulation models using
graph grammars. In Application of Graph Transformations with Industrial Rele-
vance (AGTIVE’99), volume 1779 of LNCS, pages 87–94, Germany, 2000. Springer.

14. G. Rozenberg, editor. Handbook of graph grammars and computing by graph trans-
formation, volume 1: Foundations, Singapore, 1997. World Scientific.

15. C. Weise. An incremental formal semantics for PROMELA. In 3rd SPIN Workshop,
The Netherlands, 1997.

16. Kirsten Winter and Roger Duke. Model checking object-Z using ASM. In 3rd
International Conference on Integrated Formal Methods, volume 2335 of LNCS,
pages 165–184, Germany, 2002. Springer.

17. Promela language reference. http://spinroot.com/spin/Man/promela.html, 2003.


	1 Introduction
	2 The Specification Language OBGG
	2.1 The Dining Philosophers Problem

	3 Process/Protocol MEta LAnguage
	4 Translation of OBGG into PROMELA
	4.1 Syntactical Mapping of OBGG into PROMELA
	4.2 Semantic Compatibility

	5 Verification of OBGG Specifications
	6 Final Remarks
	References

