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Abstract

We consider the verification problem for Dynamic Register Automata (Dra). Dra extend clas-

sical register automata by process creation. In this setting, each process is equipped with a finite

number of registers in which the process IDs of other processes can be stored. A process can

communicate with processes whose IDs are stored in its registers and can send them the content

of its registers. The state reachability problem asks whether a Dra reaches a configuration where

at least one process is in an error state. We first show that this problem is in general undecidable.

This result holds even when we restrict the analysis to configurations where the maximal length

of the simple paths in their underlying (un)directed communication graphs are bounded by some

constant. Then we introduce the model of degenerative Dra which allows non-deterministic reset

of the registers. We prove that for every given Dra, its corresponding degenerative one has the

same set of reachable states. While the state reachability of a degenerative Dra remains undecid-

able, we show that the problem becomes decidable with nonprimitive-recursive complexity when

we restrict the analysis to strongly bounded configurations, i.e. configurations whose underlying

undirected graphs have bounded simple paths. Finally, we consider the class of strongly safe

Dra, where all the reachable configurations are assumed to be strongly bounded. We show that

for strongly safe Dra, the state reachability problem becomes decidable.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Verification, Reachability problem, Register automata

1 Introduction

Register automata are a well-known computational model for languages over infinite alphabets

(e.g. [21, 24, 25]). A register automaton is a finite state automaton equipped with a finite

number of registers which can store data for later comparison. The expressive power and

algorithmic properties of this model are well-studied (see e.g., [6, 24, 25, 29]). In addition,

several works consider the relationship between different classes of register automata and

logics for data words and trees (see e.g., [14, 16, 22, 20]).

Recently, register automata have been extended with dynamic creation of processes [8, 7].

In this setting, the behaviour of each process is described by a register automaton. Each

process has a unique identifier (ID). The registers of each process are used to store the IDs

of other process. The IDs stored in the registers of a process p correspond to the processes

known by p. Each process can perform two types of actions: (i) creating a new process and (ii)

exchanging messages and IDs with other processes. The class of extended register automata
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2 Verification of Dynamic Register Automata

can be used as: (1) a model of programs with process creation where the network topology

and the number of involved processes are not known in advance but change dynamically [8],

and (2) an implementation model for Dynamic Message Sequence Charts [8, 7].

In this paper, we consider the verification problem for Dynamic Register Automata (Dra),

where the communication between processes is synchronous (i.e., rendezvous based)1. The

synchronous communication involves two processes: sender and receiver. Besides creating

new processes, each process can send a message from a finite alphabet or an ID from one

of its registers (or its own ID). The receiver process can synchronize over the sent message

or store the incoming ID in its own registers. Thus, the system may create an unbounded

number of processes, and the communication topology can change dynamically.

As argued in [12, 13], the state reachability problem or the coverability problem are

adequate for capturing several interesting properties that arise in communicating systems

(e.g., Ad-Hoc networks). The problem consists in checking whether the system can start

from a given initial configuration and evolve to reach a configuration in which at least one of

the processes is in a given error state. To the best of our knowledge, this is the first work

addressing the control state reachability problem for a class of dynamic register automata.

In this paper, we first show that the state reachability problem is undecidable even in

the case that each process is equipped with only one register. Then, an important task is to

identify sub-classes of Dra for which algorithmic verification is possible. Inspired by some

recent works on the verification of Ad-Hoc networks [12, 1], we consider a restricted version

of the verification problem where we restrict the analysis to only bounded configurations, in

which the maximum length of directed simple paths in the induced communication graph is

bounded by a given natural number k. The communication graph represents the connectivity

of the network induced by a Dra. In this graph each process is represented by a node and

there is an edge from a node u to a node v if the process corresponding to u knows the

process corresponding to v. It turns out that the verification problem remains undecidable

for bounded Dra with at least two registers. Moreover, this undecidability holds even if

we restrict the analysis to strongly bounded configurations, in which we require that the

maximum length of simple paths in the undirected communication graph (i.e., regardless of

the direction of the edges) is bounded (unlike the case of Ad-hoc networks [12, 13, 11, 1]).

Then, we introduce the model of degenerative Dra, a Dra in which any register can be

reset in non-deterministic way. Degenerative Dra can be used to model unexpected loss of

communication links in mobile Ad-hoc networks. Given a Dra, we associate a degenerative

counterpart by allowing reset transitions at every state and for every register of the Dra.

We show that the degenerative counterpart of a Dra represents an over-approximation

of the original Dra in terms of reachable states. We prove that the approximation is

exact by showing that the degenerative Dra does not expose more states than its non-

degenerative counterpart. This implies that the reachability problem for degenerative Dra is

also undecidable. Therefore, we consider the subclass of strongly bounded degenerative Dra.

We show that degenerative Dra is a (strict) over-approximation of its non-degenerative

counterpart (in terms of reachable states) when both are restricted to strongly bounded

communication graphs. We also show that the state reachability problem for the class of

strongly bounded degenerative Dra is decidable. The decidability proof is carried out by

defining a symbolic backward reachability analysis based on a non-trivial instantiation of the

framework of well structured transition systems [2, 17]. Furthermore, we show that state

1 In [8, 7], processes of dynamic register automata communicate asynchronously via (bounded) FIFO
channels.
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reachability for the class of strongly bounded degenerative Dra is nonprimitive-recursive by

a reduction from reachability for lossy counter machines [26]. Hence, the class of strongly

bounded degenerative Dra represents a good candidate for a decidable sub-class of Dra.

We point out that bounded Dra with only one register is in fact strongly bounded. Thus,

the state reachability problem for bounded degenerative 1-register-Dra is also decidable.

Finally, we introduce (strongly) safe Dra where we assume that all the reachable

configurations are (strongly) bounded. We show that the state reachability problem for

strongly safe Dra becomes decidable while the undecidability still holds for safe Dra.

Related work. Communicating finite state machines [9] are a well-known computational

model for distributed systems where processes communicate through unbounded channels.

They serve, for instance, as an implementation model for Message Sequence Charts with

finitely many processes [5, 4, 19]. Several works address the verification problem, in particular

the state reachability problem, of different classes of this model [3, 23, 18]. However, in

contrary to our model, in most of these settings a fixed number of processes is considered

which restricts their applicability for dynamic systems.

Communicating finite state machines are also used as a formal model for wireless Ad-

Hoc networks [27, 28, 12, 13, 11, 1]. Every process in an Ad-Hoc network can perform

local, (selective) broadcast and receive actions. While in Dra processes perform 1-to-

1 communication, broadcast actions in Ad-Hoc networks involve multiple processes. By

performing a broadcast action a process sends a message to all its neighbour processes (whose

number is not bounded a priori). An important question in the realm of Ad-Hoc networks is

the state reachability problem, parametrized by the number of involved processes and by the

network topology: is there a number of processes and a network topology such that after a

finite number of transitions one process reaches a special state? Even though [27] and [12]

consider models where the topology of the network can change, the processes cannot perform

process creation, thus, the number of interacting processes is (arbitrary but) fixed.

Broadcast networks of register automata are introduced in [10]. The model is similar to

Dra in the sense that the automata are equipped with a finite set of registers which can

store some data. Besides this fact, the model of [10] does not support process creation and

exchanging process ID does not affect the network topology.

2 Preliminaries

Let N denote the set of natural numbers. Let A and B be two sets. We use |A| to denote

the cardinality of A (|A| = ω if A is infinite). For a partial function g : A ⇀ B and a ∈ A,

we write g (a) = ⊥ if g is undefined on a. We use ⊥A to denote the partial function which is

undefined on all elements of A, i.e. ⊥A (a) = ⊥ for every a ∈ A. Given a (partial) function

f : A → B, a ∈ A and b ∈ B, we denote by f [a ← b] the function f ′ defined by f ′ (a) = b

and f ′ (a′) = f (a′) for all a′ ∈ A with a 6= a′.

A transition system T is a triple 〈C, Cinit,−→〉, where C is a set of configurations,

Cinit ⊆ C is an initial set of configurations, and −→⊆ C × C is a transition relation. We

write c1 −→ c2 when 〈c1, c2〉 ∈−→ and −→∗ to denote the reflexive transitive closure of −→.

For every i ∈ N, we use −→i to denote the i-times composition of −→. A configuration

c ∈ C is said reachable in T if there is cinit ∈ Cinit such that cinit −→
∗ c.

A directed labeled graph (or simply graph) G is a tuple 〈V, Σv, Σe, λ, E〉 where V is a finite

set of vertices, Σv is a set of vertex labels, Σe is a set of edge labels, λ : V → Σv is the vertex

labeling function, and E ⊆ V × Σe × V is the set of edges. A path in G is a finite sequence

of vertices π = v1v2 . . . vk, k ≥ 1, where, for every i : 1 ≤ i < k, there is an a ∈ Σe such that
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〈vi, a, vi+1〉 ∈ E. We say that π is simple if all vertices in π are different, i.e. vi 6= vj for all

i, j : 1 ≤ i < j ≤ k, and we define length (π) := k− 1. We define the diameter of G, denoted

by �(G), to be the largest k such that there is a simple path π in G with length (π) = k.

3 Dynamic Register Automata

A Dynamic Register Automaton Dra consists of a set of processes that exchange messages

and create new processes. Each process is modelled as a finite state automaton equipped with

a finite number of registers. A register may contain the identifier (ID) of another process. A

process can perform a local action that changes its current state. It can also create (or spawn)

a new process, allowing the number of processes to increase over time. Communication is

allowed between two processes given that the sender has the ID of the receiver in one of

its registers. A process can send a message from a finite alphabet, its own ID as well as

the content of one of its registers. Below, we describe the syntax of Dra and introduce the

subclass of degenerative Dra where any register can be reset in a non-deterministic way.

Then, we define the operational semantics of a Dra, and its state reachability problem.

Definition. A (Dra) D is a tuple 〈Q, q0, M, X, δ〉 where Q is a finite set of control

states, q0 ∈ Q is the initial state, M is a finite set of messages, X = {x1, . . . , xn} is a

finite set of registers, and δ is a set of transitions, each of the form 〈q1, action, q2〉 where

q1, q2 ∈ Q are control states and action is of one of the following forms: (i) τ (local

action), (ii) x ֋ create(q, y) where x, y ∈ X and q ∈ Q, creates a new process with a

fresh ID in state q, stores the ID of the new process in register x of the creator process,

and stores the ID of the creating process in register y of the new process, (iii) x! 〈m〉 where

x ∈ X, m ∈M , sends message m to the process whose ID is stored in register x, (iv) x! 〈y〉

where x ∈ X, y ∈ X ∪ {self}, sends either the ID contained in register y or the ID of the

process itself (self) to the process whose ID is stored in x, (v) x? 〈m〉 where x ∈ X, m ∈M

(selective message reception), receives a message m from the process whose ID is stored in

register x, (vi) ⋆? 〈m〉 where m ∈M (nonselective message reception), receives a message m

from some other process, (vii) x? 〈y〉 where x ∈ X, y ∈ X (selective ID reception), receives

an ID to be stored in register y from a process whose ID is stored in x, (viii) ⋆? 〈y〉 where

y ∈ X (nonselective ID reception), receives an ID to be stored in register y from some other

process, and (ix) reset 〈x〉 where x ∈ X, resets register x so that it becomes undefined.

The Dra D is degenerative if for every state q ∈ Q and register x ∈ X, 〈q, reset 〈x〉 , q〉 ∈

δ. Given a Dra D = 〈Q, q0, M, X, δ〉, we define its degenerative counterpart Dra Deg (D)

by the tuple 〈Q, q0, M, X, δ′〉 with δ′ = δ ∪ {〈q, reset 〈x〉 , q〉 | q ∈ Q, x ∈ X}.

Configuration. We use P to denote the domain of all possible process IDs. Let D =

〈Q, q0, M, X, δ〉 be a Dra. We define a configuration c as the tuple 〈procs, s, r〉, where

procs ⊆ P is a finite set of processes, s : P ⇀ Q maps each process p ∈ procs to its current

state and r : P ⇀ {X ⇀ procs} is a partial function that maps every process p ∈ procs to

its registers contents. For two processes p1, p2 ∈ procs and x ∈ X, r (p1) (x) = p2 means that

register x of p1 contains the ID of p2. If r (p1) (x) is not defined then register x of p1 is empty.

We use q ∈ c to denote that there exists a process p ∈ procs such that s (p) = q. The set of all

possible configurations of D is denoted by C(D). A configuration c = 〈procs, s, r〉 ∈ C(D) is

said to be initial if it contains exactly one process (i.e., procs = {p} for some p ∈ P), which

is in the initial state (s (p) = q0) and whose registers are empty (r (p) (x) = ⊥,∀x ∈ X). The

set of initial configurations is denoted by Cinit(D).

Encoding of Configurations. The encoding of a configuration c is a graph enc (c) that

models its register mappings. Every process in the encoding is represented by a vertex labeled
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with the state of the process. Furthermore, there is an edge from vertex u to vertex v labeled

with x ∈ X if the process corresponding to u has the ID of the process corresponding to v in

its register x. Formally, the encoding of a configuration c = 〈procs, s, r〉 is defined as the

graph enc (c) := 〈procs, Q, X, s, E = {〈p, x, p′〉| r (p) (x) = p′}〉.

Transition Relation. We define a transition relation −→D on the set C(D) of configurations

of the Dra D. Given two configurations c = 〈procs, s, r〉 , c′ = 〈procs′, s′, r′〉 ∈ C(D), we

have c−→D c′ if one of the following conditions holds:

Local There is a transition 〈q1, τ, q2〉 ∈ δ and a process p ∈ procs such that (i) procs′ =

procs and r′ = r, i.e., the processes and registers are left unchanged, (ii) s (p) = q1, and

(iii) s′ = s[p← q2]. A local transition changes the state of one process.

Create There is a transition 〈q1, x ֋ create 〈q, y〉 , q2〉 ∈ δ and a process p ∈ procs such

that (i) s (p) = q1, i.e., p is in state q1, (ii) procs′ = procs ∪ {p′} for some process

p′ /∈ procs, i.e., a new process p′ is created, (iii) s′ = s[p← q2][p′ ← q], i.e., process p′ is

spawned in state q, while the new state of process p is q2, and (iv) r′ = r[p← r(p)[x←

p′]][p′ ← ⊥X [y ← p]], i.e., register x of process p is assigned the ID of the new process p′

and register y of process p′ is assigned the ID of process p.

Selective message sending There are two different processes p, p′ ∈ procs and two trans-

itions 〈q1, x! 〈m〉 , q2〉 , 〈q3, y? 〈m〉 , q4〉 ∈ δ such that (i) s (p) = q1 and s (p′) = q3, i.e., p

and p′ are in states q1 and q3, respectively, (ii) r (p) (x) = p′ and r (p′) (y) = p, i.e., the

sender p has the ID of p′ in its register x and the receiver p′ has the ID of p in its register

y, (iii) s′ = s[p ← q2][p′ ← q4], i.e., the states of both processes p and p′ are updated

simultaneously, and (iv) r′ = r, i.e., the registers are unchanged.

Selective ID sending There are two different processes p, p′ ∈ procs and two transitions

〈q1, x! 〈z1〉 , q2〉 , 〈q3, y? 〈z2〉 , q4〉 ∈ δ such that (i) s (p) = q1 and s (p′) = q3, (ii) r (p) (x) =

p′ and r (p′) (y) = p, (iii) s′ = s[p ← q2][p′ ← q4], (iv) either z1 = self or there exist

p′′ ∈ procs such that r (p) (z1) = p′′, i.e., the ID to be sent should be the ID of some

process, and (v) r′ = r[p′ ← r(p′)[z2 ← p]] if z1 = self or r′ = r[p′ ← r(p′)[z2 ← p′′]]

otherwise, i.e., register z2 of p′ is updated with what it receives from p.

Register resetting There is a transition 〈q1, reset 〈x〉 , q2〉 ∈ δ and a process p ∈ procs

such that (i) s (p) = q1 and s′ = s[p← q2], i.e., the state of process p is updated from q1

to q2, and (ii) r′ = r[p← r(p)[x← ⊥]], i.e., register x of process p′ is reset.

The only difference between Nonselective message sending and Nonselective ID

sending and their selective counterparts is that the receiver does not need to know the

sender, i.e., the ID of the sending process does not have to be in the registers of the receiver.

The formal definition of the nonselective sending actions and an example Dra implementing

a peer-to-peer protocol described in [7] can be found in appendices ?? and ??.

For a Dra D = 〈Q, q0, M, X, δ〉, we use reset−−−−→D ⊆ C(D) × C(D) to de-

note the set of transitions induced by the set of Register resetting transitions in

{〈q, reset 〈x〉 , q〉| q ∈ Q, x ∈ X} ⊆ δ.

State Reachability. Let T (D) denote the transition system defined by the triple

〈C(D), Cinit(D),−→D〉. Let target ∈ Q be a state of D. The state target is said to

be reachable if there exists a reachable configuration c with target ∈ c. The state reach-

ability problem consists in checking whether the state target is reachable or not. We use

StateReach(D, target) to denote the state reachability problem for D and target.

It is obvious that any degenerative Dra is an over-approximation of its non-degenerative

counterparts in terms of reachable states. Lemma 1 states that this approximation is exact.

◮ Lemma 1. Let D be a Dra. Then, D and Deg (D) reach the same set of control states.
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The idea of the proof is that a Dra D can simulate any run of its degenerative counterpart

D′ as follows: for every process p′ in the run of D′ and for every reset register x of p′, the

corresponding process p in the run of D avoids the use of this register in any transition unless

it has been updated. The proof can be found in appendix ??.

4 State Reachability for (Degenerative) Dra

In the following, we show that the state reachability for (degenerative) Dra with at least

one register is undecidable.

◮ Theorem 2. Given a (degenerative) Dra D = 〈Q, q0, M, X, δ〉 and a state qf ∈ Q,

StateReach(D, qf ) is undecidable. This undecidability holds even in the case where |X| = 1.

p
A p1

T
p2

T
p3

T
p

B

Figure 1 Transduction chain

The proof proceeds by reduction from the Transd

problem (described below). A sketched proof is given

here; a detailed one can be found in Appendix ??.

The Transd Problem. A transducer T is a tuple

〈Q, qinit, Σ, δ, F 〉 where Q is a finite set of states, qinit is the initial state, Σ is a finite alphabet,

δ ⊆ Q× Σ× Σ×Q is the transducer transition relation, and F is the set of accepting states.

Every transition t ∈ δ gets as input some symbol a ∈ Σ and outputs another symbol b ∈ Σ.

The transducer transition relation δ induces on Σ∗ a binary relation Rel, where w Rel w′ if w′

is the output of T when accepting w. Given a word w ∈ Σ∗, let T (w) := {v ∈ Σ∗| w Rel v}

denote the set of any possible transduction of w by T . We extend the notion of transduction

to a language L ⊆ Σ∗ by defining T (L) :=
⋃

w∈L T (w). In an iterative way, we define for

i ∈ N the ith transduction of L as T 0 (L) := L and T i+1 (L) := T
(

T i (L)
)

. Given a finite

state automaton A over the alphabet Σ, we denote by L (A) the regular language accepted

by A. An instance of the problem Transd consists of two finite state automata A and B,

and a transducer T , all over the same alphabet Σ. In Transd it is checked whether there is a

natural number i ∈ N such that T i (L (A))∩ L (B) 6= ∅. The problem Transd is known to be

undecidable [1], a sketched proof of this result is given in Appendix ??.

A Sketched proof of Thm. 2. Given an instance of Transd, i.e. two automata A and B

and a transducer T over the same alphabet, the encoding of Transd into the state reachability

problem of Dra consists of constructing a transduction chain, where the first element of the

chain is a process pA encoding A, the last one is a process pB encoding B and all intermediate

elements are processes pi
T encoding T (Figure 1). The simulation of the transduction works

as follows: The first process pA sends a word w ∈ Σ∗ symbol by symbol to its successor in the

chain. If w is a word accepted by A, pA sends a special acceptance symbol to its successor.

Meanwhile, each intermediate process simulating T sends for every incoming symbol from Σ

a corresponding output symbol to its successor. If it gets the acceptance symbol it checks

whether the so far received word is accepted by T . If it is the case, it transmits the acceptance

symbol to the next process. At the reception of the acceptance symbol, the last process

pB in the chain checks whether the received word is accepted by B. If it is the case, it

moves to the state qf , if not, it moves to an error (deadlock) state. Note that if there are no

intermediate processes simulating T , process pA sends the symbols directly to pB. It can

be shown by induction that there exists an i ≥ 0 with T i (L (A)) ∩ L (B) 6= ∅ if and only if

a transduction chain of length i + 2 which reaches qf can be constructed. Note that the

processes in the chain do not need more than one register and a correct transduction chain

can be constructed by a non-degenerative as well as a degenerative Dra.
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5 Bounded (Degenerative) Dra

The reduction from Transd to the state reachability for (degenerative) Dra relies on the fact

that the transduction chain can be made as long as desired, allowing for i ∈ N in T i (L (A))

to be as large as needed. One way to break the transducer chain proof would then be

to bound the diameter of the configuration encodings. In the following we show that this

condition is still not sufficient. Let us first define a transition system where only configurations

with bounded diameter are allowed. Let k be a natural number, D a Dra and T (D) =

〈C(D), Cinit(D),−→D〉 its corresponding transition system. We say that a configuration

c ∈ C(D) is k-bounded if the diameter of its encoding is bounded by k, i.e �(enc (c)) ≤ k.

Given a set B ⊆ C(D) of configurations, we use (B � k) to denote the set of k-bounded

configurations in B. The restriction of −→D to the set C(D)�k of k-bounded configurations is

denoted by −→�k
D :=−→D ∩((C(D)�k)×(C(D)�k)). We use T �k(D) to denote the resulting

transition system defined by
〈

(C(D) � k), (Cinit(D) � k),−→�k
D

〉

. Given a state target ∈ Q,

the k-bounded state reachability problem consists in checking whether a configuration c with

target ∈ c is reachable in T �k(D). We use BoundedStateReach (D, target, k) to denote

the k-bounded state reachability problem. We prove the following result:

◮ Theorem 3. Given a natural number k ∈ N, a (degenerative) Dra D = 〈Q, q0, M, X, δ〉

and a state qf ∈ Q, BoundedStateReach (D, qf , k) is undecidable. This undecidability still

holds even if k = 2 and |X| = 2.

The proof is done by a reduction from the Transd problem and can be find in Appendix ??.

Observe that there is no straightforward reduction from Thm. 3 to Thm. 2 and vice-versa.

6 Strongly Bounded (Degenerative) Dra

As we have seen, bounding the diameter of the configuration encoding is insufficient to get

the decidability of the state reachability problem. Therefore, we consider a new constraint

on the graph encoding of the configurations. The new constraint consists in restricting the

set of configurations such that the diameter of their graph encodings is bounded by some

natural number k, this time regardless of the direction of the edges in the graph. In order to

formally specify the new constraint, let us introduce the class of label-free undirected graphs.

Label-free Undirected Graph. A label-free undirected graph G is a graph whose edges

have no labels and no direction, i.e. G is a tuple 〈V, Σv, λ, E〉 where V is a finite set of

vertices, Σv is a finite set of vertex labels, λ : V → Σv is a vertex labeling function and

E ⊆ {{u, v}| u, v ∈ V } is a set of unlabeled and undirected edges. Notions of simple path and

diameter of a graph are extended in the natural way to label-free undirected graphs. Given

a (directed) graph G = 〈V, Σv, Σe, λ, E〉, we use closure (G) := 〈V, Σv, λ, F 〉 to denote the

undirected graph obtained from G by removing directions and labels from its edges, i.e.

F := {{u, v}| 〈u, a, v〉 ∈ E}.

Strongly Bounded Configurations. Let k be a natural number, D = 〈Q, q0, M, X, δ〉 a

Dra and T (D) = 〈C(D), Cinit(D),−→D〉 the transition system induced by D. Let c be a

configuration in C(D). We say that c is k-strongly bounded if �(closure (enc (c))) ≤ k.

Given B ⊆ C(D), we use (B �k) to denote the set of k-strongly bounded configurations in B,

i.e. (B �k) := {c ∈ B| �(closure (enc (c))) ≤ k}. We consider the transition relation −→�k
D

defined on (C(D)�k) by −→�k
D :=−→D ∩((C(D)�k)×(C(D)�k)). We define the transition

system T �k(D) :=
〈

(C(D) � k), (Cinit(D) � k),−→�k
D

〉

. Given a state target ∈ Q, the

k-strongly bounded state reachability problem consists in checking whether a configuration
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c with target ∈ c is reachable in T �k(D). We use StrongBoundStateReach (D, target, k)

to denote the k-strongly bounded state reachability problem.

◮ Theorem 4. Given k ∈ N, a Dra D = 〈Q, q0, M, X, δ〉 and a state target ∈ Q,

StrongBoundStateReach (D, target, k) is undecidable. This undecidability still holds even

if k = 4 and |X| = 2.

The proof of Thm. 4 is established by a reduction from the reachability problem for

Minsky’s 2-counter machines. The reduction is given in the appendix ??.

◮ Theorem 5. Given k ∈ N, a degenerative Dra D = 〈Q, q0, M, X, δ〉 and a state target ∈

Q, StrongBoundStateReach (D, target, k) is decidable and nonprimitive-recursive.

The decidability of the strongly bounded state reachability problem for degenerative Dra

is established by a non-trivial instantiation of the framework of well-quasi-ordered systems

[2, 17] (See Section 8). The nonprimitive-recursive lower bound is carried out through a

reduction from the reachability problem for Lossy Counter Machines [26] (see Appendix ??).

Furthermore, the set of k-strongly bounded reachable states by a Dra D is a subset of

the set of k-strongly bounded reachable states by its degenerative Dra counterpart Deg(D).

Moreover, the set of k-strongly bounded reachable states by the degenerative Dra Deg(D)

is a subset of the set of reachable states by D. Thus, the strongly bounded reachability

problem for Deg(D) is a good under-approximation of the state reachability problem for D.

This relation2 between the strongly bounded reachability problems for a Dra D and its

corresponding degenerative one Deg(D) is given by the following observation:

◮ Observation 1. Let k ∈ N be a natural number, D a Dra, and target a state of D. If

target is reachable in T �k(D) then it is reachable in T �k(Deg(D)). Furthermore, if target

is reachable in T �k(Deg(D)) then there is k′ ≥ k such that target is reachable in T �k′

(D).

The decidability of bounded degenerative Dra with one register (see Corollary 7) can be

inferred from Theorem 5 and the following lemma (its proof is given in Appendix ??):

◮ Lemma 6. Any k-bounded configuration of a Dra with one register is 2k-strongly bounded.

◮ Corollary 7. Given a natural number k ∈ N, a degenerative Dra D = 〈Q, q0, M, X, δ〉

with |X| = 1 and a state target ∈ Q, BoundedStateReach (D, target, k) is decidable.

7 (Strongly) Safe Dra

A k-strongly bounded Dra forbids transitions to configurations that are not k-strongly

bounded. This allows to simulate zero tests of the Minsky’s 2-counter machine in the proof

of Thm. 4. Therefore, we introduce k-(strongly) safe Dra, with k ∈ N, which is a Dra

where we assume that all its reachable configurations are k-(strongly) bounded. Formally, let

D be a Dra and T (D) its induced transition system. The Dra D is said to be k-(strongly)

safe iff every reachable configuration in T (D) is k-(strongly) bounded. We can state the

following observation.

◮ Observation 2. If D is a k-strongly safe Dra then Deg (D) is a k-strongly bounded Dra.

As an immediate consequence of Lemma 1, Observation 2 and Theorem 5, we infer the

following:

2 Observe that this relation holds also for the (bounded) reachability problem.
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◮ Corollary 8. Given a k-strongly safe Dra D = 〈Q, q0, M, X, δ〉 and a state qf ∈ Q,

StateReach(D, qf ) is decidable.

However, the state reachability problem is still undecidable for k-safe (degenerative) Dra.

◮ Theorem 9. Given a k-safe (degenerative) Dra D = 〈Q, q0, M, X, δ〉 and a state qf ∈ Q,

StateReach(D, qf ) is undecidable.

The proof is identical to the proof of Thm. 3 where the constructed degenerative Dra is

a 2-safe degenerative Dra.

8 Strongly Bounded Degenerative Dra: Proof of Theorem 5

The proof of the lower bound of the state reachability problem for the strongly bounded

degenerative Dra is given in appendix ??. This section is devoted to the decidability proof

by making use of the framework of Well-Structured Transition Systems (Wsts) [2, 17].

We briefly recall the framework of Wsts. Let C be a (possibly infinite) set and 4 be

a well-quasi order on C. Recall that a well-quasi order on C is a binary relation over C

that is reflexive and transitive and for every infinite sequence (ai)i≥0 of elements in C there

exist i, j ∈ N such that i < j and ai 4 aj . A set U ⊆ C is called upward closed if for

every a ∈ U and b ∈ C with a 4 b we have b ∈ U . The upward closure of U is defined

as U ↑:= {b ∈ C| ∃a ∈ U with a 4 b}. It is known that every upward closed set U can be

characterised by a finite minor set M ⊆ U such that (i) for every a ∈ U there is b ∈M such

that b 4 a, and (ii) if a, b ∈ M and a 4 b then a = b. We use min to denote the function

which for a given upward closed set U returns one minor set of U .

For a transition system T = 〈C, Cinit, 〉 and a subset U ⊆ C of its configurations we

define the set of predecessors of U as Pre (U) := {c| ∃c1 ∈ U, c c1}. For a configuration

c we denote the set min (Pre ({c}↑) ∪ {c}↑) as minpre (c). T is called well-structured if

there is a well-quasi ordering 4 on C such that is monotonic wrt. 4, i.e. given three

configurations c1, c2, c3 ∈ C, if c1 c2 and c1 4 c3 then there exists a fourth configuration

c4 ∈ C such that c3 c4 and c2 4 c4.

Given a configuration ctarget ∈ C, the coverability problem asks whether there is a

configuration c′ < ctarget reachable in T . For the decidability of this problem the following

conditions are sufficient: (i) For every two configurations c1 and c2 it is decidable whether

c1 4 c2, (ii) for every c ∈ C, we can check whether {c}↑ ∩Cinit 6= ∅, and (iii) for every c ∈ C,

the set minpre (c) is finite and computable.

The solution for the coverability problem of Wsts suggested in [2, 17] is based on a

backward analysis approach. It is shown that starting from U0 := {ctarget}, the sequence

(Ui)i≥0 with Ui+1 := min (Pre (Ui)↑ ∪ Ui↑), for i ≥ 0 reaches a fix point and is computable.

In the following, we instantiate the framework of Wsts to show the decidability of the

state reachability problem for strongly bounded degenerative Dra, but first we need to

introduce some notations.

Let k be a natural number, D = 〈Q, q0, M, X, δ〉 a degenerative Dra and target ∈ Q

a target state. Let Cinit = (Cinit (D) � k) and C = (C (D) � k). We use T �k(D) =
〈

C, Cinit,−→
�k
D

〉

to denote the corresponding k-strongly bounded transition system of D.

We introduce the reset prefix transition relation := reset−−−−→
∗

D ◦ −→
�k
D . Note that the

reflexive transitive closures of and −→�k
D are identical. Thus, the state reachability

of target in
〈

C, Cinit,−→
�k
D

〉

is equivalent to its corresponding problem in 〈C, Cinit, 〉.

Next, we will prove the decidability of the latter problem.
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We will show that 〈C, Cinit, 〉 is a well-structured transition system. Let ctarget =

〈{p} , s, r〉 be a configuration composed of a single process in state target (s (p) = target)

whose registers are empty (r (p) (x) = ⊥ for all x ∈ X). We will define the well-quasi ordering

on C in such a way that the upward closure of ctarget consists of all configurations c ∈ C with

target ∈ c. Then, it is clear that the coverability of ctarget in 〈C, Cinit, 〉 is equivalent

to the reachability of target in the same transition system.

In section 8.1, we define the well-quasi ordering 4 (Lemma 11) on C such that for every

c1, c2 ∈ C it is decidable whether c1 4 c2. The monotonicity of with respect to 4

is shown in section 8.2 (Lemma 12). The second sufficient condition for the decidability

of the coverability problem, namely checking whether an upward closed set contains an

initial configuration, is trivial (we check whether there is a minimal configuration containing

one process only, that the process is in state qinit and that its registers are empty). The

last sufficient condition is shown by the following lemma, whose proof can be found in

appendix ??.

◮ Lemma 10. Given a configuration c ∈ C, we can effectively compute minpre (c).

Lemma 10, Lemma 11 and Lemma 12 show that coverability of ctarget is decidable. Hence,

the state reachability problem for strongly bounded degenerative Dra is decidable.

8.1 A well-quasi order on configurations

a

b

c

c2

a

c

c1

a

b

c

c3

⊑sub ⊑sub

4 4

Figure 2 Subgraph embedding

In this section, we define a well-quasi ordering 4 over

the set of configurations C. Let us first introduce

the notion of subgraph embedding. We use ⊑sub to

denote the subgraph relation defined on graphs as

follows: 〈V1, Σv, Σe, λ1, E1〉 ⊑sub 〈V2, Σv, Σe, λ2, E2〉

if there exists an injective mapping t : V1 → V2 that is label and edge preserving, i.e.

∀v, u ∈ V and ∀a ∈ Σe we have λ1 (v) = λ2 (t (v)) and 〈v, a, u〉 ∈ E1 ⇒ 〈t (v) , a, t (u)〉 ∈ E2.

The subgraph relation over undirected (label-free) graphs are defined in a similar manner.

We define the ordering 4 over the set of configurations as follows: Given two configurations

c1 = 〈procs1, s1, r1〉 and c2 = 〈procs2, s2, r2〉, c1 4 c2 holds if enc (c1) ⊑sub enc (c2). Note

that c1 4 c2 is equivalent to say that there exists an injective mapping g : procs1 → procs2,

such that (i) for every p ∈ procs, s1 (p) = s2 (g (p)) (ii) for every p1, p2 ∈ procs1 and

every x ∈ X, if r1 (p1) (x) = p2 then r2 (g (p1)) (x) = g (p2). It is easy to see that for two

configurations c1, c2 we can check whether c1 4 c2.

◮ Lemma 11. The relation 4 is a well-quasi ordering on C.

We give here a sketch of the main ideas, a proof is given in appendix ??. From the

sequence (enc (ci))i≥0 of encodings of k-strongly bounded configurations, we get rid of the

edge labels by replacing each labeled edge by a vertex labeled with the same label. This

operation preserves the induced subgraph ordering and doubles the diameter of the directed

graph. Then we use a result from Ding [15] that shows that subgraph ordering on label-free

directed graphs is a well-quasi ordering if the underlying undirected graphs (namely the

closure) of the directed graphs have a bounded diameter, which is the case.

8.2 Monotonicity.
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a

b

c1

4

(
reset

−−−−→)r
◦ −→

�k

D

a

b

c

c3

(
reset

−−−−→)r
′ a

b

c

c◦

3

csub ∼ c1

(
reset

−−−−→)r
◦ −→

�k

D

e

f

c

c4

e

f

c2

4

Figure 3 Monotonicity and reset transitions (r =

1, r′ = 3)

Let c1, c2, c3 ∈ C be three configura-

tions such that c1 4 c3, i.e. the encod-

ing of c1 can be embedded in the en-

coding of c3, and c1 c2, i.e. there

exist c′
1 ∈ C and r ∈ N such that

c1( reset−−−−→D)rc′
1 and c′

1 −→
�k
D c2. In

order to prove monotonicity wrt.

4, we need to prove that there exists a

fourth configuration c4 ∈ C such that

c3 c4 and c2 4 c4. To that end, we proceed by isolating the sub-configuration csub

induced by the embedding of c1 into c3 (see Figure 3). After a certain number r′ of reset

transitions reset−−−−→D, one can obtain from c3 a configuration c◦
3 composed of the disjoint union

of the sub configuration csub and a set of isolated processes, i.e. processes whose registers

are empty. As a consequence, diameters of c◦
3 and c1 are equal. Furthermore, since csub is an

embedding of c1 into c◦
3, and since �(closure (enc (c◦

3))) = �(closure (enc (c1))), c◦
3 can

perform the same transition as c1 did in order to get to c2 without violating the bound k.

Thus, after two consecutive transitions whose composition ((
reset−−−−→D)r′

◦ ((
reset−−−−→D)r◦ −→�k

D

) = ( reset−−−−→D)r′
+r◦ −→�k

D ) is a -transition, c3 can reach a configuration where c2 can

be embedded. A detailed proof of the following lemma can be found in appendix ??.

◮ Lemma 12. The transition relation is monotonic w.r.t. 4.

9 Conclusion and Future Directions

Dra Non-Degenerative Degenerative

Bounded [5] undecidable undecidable

Strongly bounded [6] undecidable decidable [8]

Safe [7] undecidable undecidable

Strongly safe [7] decidable decidable

Figure 4 Decidability of the state reachability for dif-

ferent subclasses of Dra

We have presented the first work ad-

dressing the state reachability prob-

lem for Dra. We have shown that

this problem is undecidable and that

this undecidability holds even if we

restrict the analysis to the case where

transitions are only allowed between

(strongly) bounded configurations (i.e., simple paths of the underlying (undirected) graph

are bounded by some constant), unlike the case of Ad-hoc networks [12, 13, 11, 1]. Our main

goal was to identify subclasses of Dra for which the reachability problem is decidable. To

that end, we have introduced degenerative Dra for which any register can be reset in a

non-deterministic manner. We have shown that the sets of reachable states of a Dra and

its degenerative counterpart are identical. Moreover, we have shown that the reachability

problem for degenerative Dra becomes decidable but nonprimitive-recursive when we restrict

the analysis to strongly bounded configurations. Furthermore, we have considered (strongly)

safe Dra where we assume that all reachable configurations are (strongly) bounded. We have

shown that the state reachability problem is decidable for strongly safe Dra. A summary of

our main results is given in Fig. 4.

To the best of our knowledge these are the first results concerning the verification

of dynamic register automata. While the communication in Dra is rendezvous based,

the automata models considered in [8] and [7] use asynchronous communication through

unbounded channels. It is well-known that, even for finitely many processes communicating

through unbounded perfect FIFO channels, most of the interesting verification questions are

undecidable [9]. A possible direction of further research would be to investigate whether

our decidability result carries over to the case of asynchronous communication through
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“well-structured” channels (e.g., bounded, lossy, unordered).
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