
1

Verification of Infinite-Step Opacity and

Complexity Considerations

Anooshiravan Saboori and Christoforos N. Hadjicostis

Abstract

Motivated by security considerations in applications of discrete event systems, we describe and

analyze the complexity of verifying the notion of infinite-step opacity in systems that are modeled as

non-deterministic finite automata with partial observation on their transitions. Specifically, a system is

infinite-step opaque if the entrance of the system state at any particular instant to a set of secret states

remains opaque (uncertain), for the length of the system operation, to an intruder who observes system

activity through some projection map. In other words, based on observations through this map and

complete knowledge of the system model, the intruder can never be certain (and will never be certain)

that the system state at any fixed point in time evolves to (or has evolved through) the set of secret states.

Infinite-step opacity can be used to characterize the security requirements in many applications, including

encryption using pseudo-random generators, coverage properties in sensor networks, and anonymity

requirements in protocols for web transactions. We show that infinite-step opacity can be verified via

the construction of a set of appropriate state estimators and provide illustrative examples. We also

establish that the verification of infinite-step opacity is a PSPACE-hard problem.

I. INTRODUCTION

Motivated by the increased reliance on shared cyber-infrastructures in many application areas

(ranging from defense and banking to health care and power distribution systems), various notions

of security (in particular, privacy) have been receiving attention from researchers. Many such

This material is based upon work supported in part by the U.S. National Science Foundation, under NSF ITR Award 0426831

and NSF CNS Award 0834409. The research leading to these results has also received funding from the European Community

Seventh Framework Programme (FP7/2007-2013) under grant agreements INFSO-ICT-223844 and PIRG02-GA-2007-224877.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not

necessarily reflect the views of NSF or EC.

A. Saboori is with Microsoft; he was with the Coordinated Science Laboratory, and the Department of Electrical and Computer

Engineering, University of Illinois at Urbana-Champaign. C. N. Hadjicostis is with the Department of Electrical and Computer

Engineering, University of Cyprus, and with the Coordinated Science Laboratory, and the Department of Electrical and Computer

Engineering, University of Illinois at Urbana-Champaign. Corresponding author’s address: 75 Kallipoleos Avenue, P.O. Box

20537, 1678 Nicosia, Cyprus. E-mail: chadjic@ucy.ac.cy.

August 12, 2011 DRAFT

2

notions focus on characterizing the information flow from the system to the intruder [1], [2].

Opacity falls in this category and aims at determining whether a given system’s secret behavior

(i.e., a subset of the behavior of the system that is considered critical and is usually represented

by a predicate) can be revealed to outsiders [3]–[5]. More specifically, this requires that the

intruder (modeled as a passive observer of the system’s behavior) cannot establish the truth of

the predicate, perhaps within some pre-defined time interval.

In our earlier work [5], we considered opacity with respect to predicates that are state-based

in discrete event systems (DES) that can be modeled as non-deterministic finite automata with

partial observations on their transitions. Assuming that the initial state of the given system is

(partially) unknown, we defined the secret behavior of the system to be the evolution of the

system’s state to a subset of secret states S. The intruder has full knowledge of the system

model and tracks the observable transitions in the system via the observation of the associated

labels. Current-state opacity requires that the secret behavior of the system (i.e., the membership

of its current state to the set S) remain opaque (uncertain) until the system enters a state outside

the set of secret states S [5]. In [5], we extended this notion of opacity to K-step opacity (for

K ≥ 0) by requiring that the entrance of the system state to the set of secret states S at any

time during the past K observations remain opaque to the intruder. In other words, in a K-step

opaque system, after having observed n observations (n ≥ K), the intruder cannot determine

with certainty that the state of the system 0, 1, . . . , or K observations ago belonged to the

set of secret states S. This notion is suitable for cases where there is a bounded delay, after

which one does not care if the intruder can infer information about behavior that was previously

considered secret (e.g., because the secret transaction has completed or because the intrusion

will be detected). One can thus think of K-step opacity as a declassification process in which

the secret states are declassified after K observations.

Since in many applications the existence of the above bound K might not be viable, in this

work, we extend the notion of K-step opacity to infinite-step opacity by allowing the delay K

to extend arbitrarily. Specifically, for infinite-step opacity we require that, after having observed

an arbitrary sequence of n observations (for any finite n), the intruder cannot determine with

August 12, 2011 DRAFT

3

certainty that the state of the system 0, 1, 2, . . . , or n observations ago belonged to the set of

secret states S. There are many areas where infinite-step opacity can be used to characterize

security requirements and some concrete examples are provided later in this note.

The techniques to verify K-step opacity from [5] cannot be directly used to verify infinite-

step opacity because K goes to infinity1. Therefore, in order to verify infinite-step opacity, we

introduce a novel verification method that uses a combination of current-state estimation [6] and

initial-state estimation [7]. We analyze the state-complexity of this verification method and show

that it is exponential in the square of the number of states of the system. We also show that

the verification of infinite-step opacity is a PSPACE-hard problem, which is considered strong

evidence that no algorithm can verify this property in polynomial-time [8].

Our work in [5] introduces the notion of K-step opacity for deterministic and non-deterministic

automata, respectively, whereas this paper introduces the notion of infinite-step opacity for non-

deterministic automata and studies its verification method and its complexity. Apart from our

own work in [5], the developments in this paper are also related to other existing security work

in the area of DESs. In particular, [3] considers general labeled transition systems and introduces

various notions of opacity that, in several cases, are undecidable. References [9] and [10] focus

on finite state Petri nets and define opacity (current-state) with respect to state-based predicates.

Also, the authors of [4] study labelled trees where each path of the tree encodes a possible

execution of the system; by introducing the notion of path equivalence (in terms of observable

outputs), [4] uses temporal logic to specify information flow properties such as “agent A does

not reveal x (a secret) until agent B reveals y (a password).” This notion, essentially corresponds

to 0-step opacity. Our work in [5] and in this paper (i) considers the role of delay (via K-step

and infinite-step opacity) in such security requirements which is not present in either [3], [4],

[9], or [10], and (ii) studies and solves these problems for the case of finite automata. Due to our

assumption regarding the underlying system being a finite automaton, the problem of verifying

K-step (or infinite-step) opacity becomes decidable, unlike the case for the general framework

1In the sequel, we discuss a (high) complexity method that can be used to verify infinite-step opacity indirectly using the

technique in [5].

August 12, 2011 DRAFT

4

considered in [3], [9], [10].

The authors of [11] consider multiple intruders modeled as observers with different observation

capabilities (namely different natural projection maps) and require that no intruder be able to

determine that the actual trajectory of the system belongs to the secret language assigned to

that intruder. Assuming that the supervisor can observe/control all events, sufficient conditions

for the existence of a supervisor with a finite number of states (i.e., a regular supervisor) are

subsequently proposed. The assumptions on the controllability and observability of events are

partially relaxed in [12] where the authors consider a single intruder that might observe different

events than the ones observed/controlled by the supervisor. In contrast to [11] and [12], opacity

in our framework assumes that the states of the system can be partitioned into secret and non-

secret ones; this state-based formulation is what enables us to use various state estimators to

verify opacity. Also, note that the notions of opacity introduced here are not considered in [11]

and [12], and (as explained later in this note) they cannot be easily captured by the framework

of [11], [12].

Related to our work here is also the work in [13] where the authors partition the event

set into public level and private level events, and consider the verification of intransitive non-

interference, a property that captures the allowed information flow (e.g., the occurrence of certain

events) from private level events to public level events through a downgrading process. Also,

our model of the intruder’s capability (in terms of observability power) is different from [13]

which makes the two frameworks incomparable. When there is no downgrading process, the

notion of non-interference can be translated to an instance of 0-step opacity [5]. Note that in

this case, 0-step opacity is a more relaxed notion than non-interference since in a non-interferent

system with no down grading process, no information flow from private events to public events

is allowed, while opacity allows for some information flow in the system. Also, in general, one

cannot formulate the notion of K-step opacity for K > 0 in the framework of [13].

II. PRELIMINARIES AND BACKGROUND

Let Σ be an alphabet and denote by Σ∗ the set of all finite-length strings of elements of Σ,

including the empty string ǫ. A language L ⊆ Σ∗ is a subset of finite-length strings from Σ∗. For

August 12, 2011 DRAFT

5

a string ω, ω denotes the prefix-closure of ω and is defined as ω̄ = {t ∈ Σ∗| ∃s ∈ Σ∗ : ts = ω}

where ts denotes the concatenation of strings t and s. The post-string ω/t of ω after t ∈ ω̄ is

defined as ω/t = s, s ∈ Σ∗, such that ts = ω. For any string t, |t| denotes the length of t [14].

A DES is modeled in this paper as a non-deterministic finite automaton G = (X, Σ, δ, X0),

where X = {0, 1, . . . , N − 1} is the set of states, Σ is the set of events, δ : X × Σ → 2X

(where 2X is the power set of X) is the non-deterministic state transition function, and X0 ⊆ X

is the set of possible initial states. The function δ can be extended from the domain X × Σ

to the domain X × Σ∗ in the routine recursive manner: δ(i, rs) :=
⋃

j∈δ(i,r) δ(j, s) for r ∈ Σ

and s ∈ Σ∗ with δ(i, ǫ) := i. The behavior of DES G is captured by L(G) := {s ∈ Σ∗ | ∃i ∈

X0, δ(i, s) is non-empty}. We use L(G, i) = {s ∈ Σ∗| δ(i, s) is non-empty} to denote the set of

all traces that originate from state i of G (so that L(G) =
⋃

i∈X0
L(G, i)).

In general, only a subset Σobs of the events can be observed. Typically, one assumes that Σ can

be partitioned into two sets, the set of observable events Σobs and the set of unobservable events

Σuo (so that Σobs ∩Σuo = ∅ and Σobs ∪Σuo = Σ). The natural projection P : Σ∗ → Σ∗
obs can be

used to map any trace executed in the system to the sequence of observations associated with

it. This projection is defined recursively as P (rs) = P (r)P (s), r ∈ Σ, s ∈ Σ∗, with P (r) = r

if r ∈ Σobs and P (r) = ǫ if r ∈ Σuo ∪ {ǫ} [14].

Upon observing some string ω ∈ Σ∗
obs (sequence of observations), the state of the system

might not be identifiable uniquely due to the lack of knowledge of the initial state, the partial

observation of events, and/or the non-deterministic behavior of the system. We denote the set of

states that the system might reside in given that ω was observed as the current-state estimate.

The current-state estimator (or observer) is a deterministic automaton G0,obs which captures

these estimates [6] by having each state of G0,obs be associated with a unique subset of states of

the original DES G (so that there are at most 2|X| = 2N states and its initial state is associated2

with X0). For more details, refer to [6].

Example 1. Consider the DES G in Figure 1-a with X0 = X . Assuming that Σobs = {α, β},

2The common approach is to associate the current-state estimator’s initial state with UR(X0) instead of X0, where UR

denotes the unobservable reach of the set X0. Our choice of X0 is not restricted in this way but simplifies the construction and

does not change the results.

August 12, 2011 DRAFT

6

(c)

4

X
0

2 3

1

β

β αβ

δuo α

{4}{2, 4}

{2, 3, 4} {1, 4}

α

α

β

β

ααα

(b)(a)

α, β

5

642

1 3

0

δuo α

α α

α

δuo

Fig. 1. (a) G; (b) G0,obs; (c) DES G in Remark 5.

then the current-state estimator G0,obs in Figure 1-b is constructed as follows. Starting from the

initial states in X0 and observing α, the current state is any of the states in {2, 3, 4}; at this new

state, the set of possible transitions consists of all possible transitions in G for each of the states

in {2, 3, 4}. Following this procedure, G0,obs can be completed as in Figure 1-b. �

Given a finite automaton G = (X, Σ, δ, X0), a state mapping m ∈ 2X2
is a set whose elements

are pairs of states: the leftmost component of each element (pair) is the starting state and the

rightmost component is the ending state; thus, for a state mapping m ∈ 2X2
, we use m(1)

to denote the set of starting states and m(0) to denote the set of ending states. We define

the composition operator ◦ : 2X2
× 2X2

→ 2X2
for state mappings m1, m2 ∈ 2X2

as m1 ◦

m2 := {(j1, j3)|∃j2 ∈ X, (j1, j2) ∈ m1, (j2, j3) ∈ m2}. For any Z ⊆ X , we define the operator

⊙ : 2X → 2X2
as ⊙(Z) = {(i, i)|i ∈ Z}.

Definition 2 (ω-Induced State Mapping). Given a non-deterministic finite automaton G =

(X, Σ, δ, X0) and a projection map P with respect to the set of observable events Σobs (Σobs ⊆ Σ),

the ω-induced state mapping after observing string ω ∈ Σ∗
obs is defined as M(ω) = {(i, j)|i, j ∈

X, ∃t ∈ Σ∗, P (t) = ω, j ∈ δ(i, t)}. �

Note that M(ω) = ∅ denotes the fact the sequence of observations ω is not feasible in DES

G regardless of its initial state. For m = ∅, we define m(1) = m(0) = ∅.

We now briefly review some necessary results and definitions from complexity theory (see

[8] for further details). A problem is a parameterized question to be answered. An instance of

a problem is obtained by specifying particular values for all problem parameters. A decision

problem is one whose answer, depending on the instance, is either “yes” or “no”. An algorithm

August 12, 2011 DRAFT

7

solves a problem if it produces a correct answer when applied to any instance of the problem.

The class of decision problems that can be solved using space that is polynomial in the size

(encoding) of the problem is called PSPACE. A PSPACE-hard problem is a decision problem

such that any other decision problem in PSPACE can be reduced to this problem using a

polynomial-time algorithm. If a PSPACE-hard problem is in PSPACE, then it is called PSPACE-

complete [8]. Showing that a problem is PSPACE-complete is strong evidence that the problem

is computationally expensive.

III. INFINITE-STEP OPACITY AS THE LIMITING CASE OF K-STEP OPACITY

We first recall the notion of K-step opacity (which was initially defined in [5]).

Definition 3 (K-Step Opacity). Given a non-deterministic finite automaton G = (X, Σ, δ, X0),

a projection map P with respect to the set of observable events Σobs (Σobs ⊆ Σ), and a set of

secret states S ⊆ X , automaton G is K-step opaque (for a nonnegative integer K) with respect

to S and P (or (S, P, K)-opaque), if for all t ∈ Σ∗, t′ ∈ t̄, and i ∈ X0,

{|P (t)/P (t′)| ≤ K, ∃j ∈ S, j ∈ δ(i, t′), δ(j, t/t′) is non-empty} ⇒

{∃s ∈ Σ∗, ∃s′ ∈ s̄, P (s) = P (t), P (s′) = P (t′),

∃i′ ∈ X0, ∃j′ ∈ δ(i′, s′), j′ ∈ X − S, δ(j′, s/s′) is non-empty}. �

For t, s ∈ L(G) with P (s) = P (t) we say that t passes through state j when s passes through

state j′ if there exist t′ ∈ t̄, s′ ∈ s̄, and i, i′ ∈ X0 such that P (t′) = P (s′), j ∈ δ(i, t′), j′ ∈ δ(i′, s′)

and t/t′ and s/s′ have continuations from states j and j′, respectively. According to Definition

3, DES G is (S, P, K)-opaque if for every string t in L(G) that visits a state j in S within

the past K observations (and string t has a continuation from state j), there exists a string s in

L(G) with P (s) = P (t) such that when string t passes through the state j in S, string s passes

through a state j′ in X − S (and string s has a continuation from state j′).

Definition 4 (Infinite-Step Opacity). Given a non-deterministic finite automaton G = (X, Σ, δ, X0),

a projection map P with respect to the set of observable events Σobs (Σobs ⊆ Σ), and a set of

secret states S ⊆ X , automaton G is infinite-step opaque with respect to S and P (or (S, P,∞)-

opaque), if for all t ∈ Σ∗, t′ ∈ t̄, and i ∈ X0,

August 12, 2011 DRAFT

8

{∃j ∈ S, j ∈ δ(i, t′), δ(j, t/t′) is non-empty} ⇒

{∃s ∈ Σ∗, ∃s′ ∈ s̄, P (s) = P (t), P (s′) = P (t′),

∃i′ ∈ X0, ∃j′ ∈ δ(i′, s′), j′ ∈ X − S, δ(j′, s/s′) is non-empty}. �

According to Definition 4, DES G is (S, P,∞)-opaque if for every string t in L(G) that visits

a state j in S (and string t has a continuation from state j), there exists a string s in L(G) with

P (s) = P (t) such that when string t passes through the state j in S, string s passes through a

state j′ in X − S (and string s has a continuation from state j′).

Remark 5. The system in Figure 1-c is 2-step opaque with respect to S = {1, 6}, however, upon

observing αα, the intruder is certain that, regardless of the state sequence that has occurred, the

system has visited a secret state within the last 2 observations (although one cannot pinpoint

whether this happened after the first or after the second observation). This system can be

considered as insecure if the attacker is only interested in determining whether the system has

reached secret states at any point during the last K observations (or, more generally, at any

point during the observation sequence). A system for which this scenario does not occur will

be called trajectory-based K-step (or infinite-step) opaque. It is not hard to see that DES G is

trajectory-based K-step opaque if and only if for any given sequence of observations ω, there

always exists at least one compatible sequence of states such that G visits exclusively non-secret

states while generating the last K events in ω.

It can be easily shown that a system that is trajectory-based K-step (infinite-step) opaque is

also K-step (infinite-step) opaque; however, as the preceding example demonstrated, the converse

is not necessarily true. Note that the essential difference between K-step opacity and trajectory-

based K-step opacity is the time at which the state of the system is exposed. Depending on the

application, K-step opacity might be a more suitable requirement than trajectory-based K-step

opacity for characterizing security requirements. For instance, suppose the DES G in Figure 1-c

is a communication protocol for a bank transaction where a user has two options: communicate

important account information while at state 1 (secret state) and dummy information while at

states 3 and 5 (non-secret states), or communicate dummy information at states 2 and 4 (non-

August 12, 2011 DRAFT

9

secret states) and important account information while at state 6 (secret state). If an eavesdropper

does not know which of the two options the user has followed (due to the unobservable event δuo),

then (even though she/he knows that important account information has been communicated)

she/he does not know when this was done. Therefore, the fact that the system is not 2-step

opaque is critical (despite the fact that the system is not trajectory-based 2-step opaque). Related

examples with more patient eavesdroppers can be used to motivate infinite-step opacity.

Another example can be found in the context of sensor coverage of mobile agents in various

terrains, where one might be interested in characterizing the trajectories of a moving vehicle in

a grid of cells [15]: if we assume that the movement of the vehicle is monitored by cameras in

a subset of cells (i.e., there exists partial coverage) and that certain cells are considered strategic

(and hence secret), then the notion of infinite-step opacity can be used to characterize paths that

the vehicle can follow without exposing the exact time(s) (measured with respect to the snap-

shots provided by the cameras) that the vehicle goes through the strategic areas. An extensive

analysis of how existing tools can be adjusted to verify tracking properties can be found in [15].

�

IV. INFINITE-STEP OPACITY VERIFICATION

In [5], we introduced a method for verifying K-step opacity (Definition 3) using K-delay state

estimators. A K-delay state estimator is a deterministic finite automaton which captures the k-

delayed state estimates (0 ≤ k ≤ K) associated with a sequence of observations, i.e., estimates of

the state of the system k observations ago (0 ≤ k ≤ K) which are consistent with all observations,

including the last k observations. This method has state-complexity O((|Σobs|+1)K ×2N) where

N is the number of the states of the given automaton in Definition 3. In [5], we also showed

that for any K ′ > K ≥ 2N2
− 1, K-step opacity and K ′-step opacity become equivalent. Since

infinite-step opacity is the limiting case of K-step opacity as K → ∞, this implies that K-step

opacity for any K ≥ 2N2
− 1 (e.g., K = 2N2

− 1) is equivalent to infinite-step opacity (one

direction is obviously true: infinite-step opacity always implies K-step opacity regardless of

the value of K; the other direction needs a more careful argument). Therefore, one can verify

infinite-step opacity by constructing a (2N2
− 1)-delay state estimator and checking whether

August 12, 2011 DRAFT

10

(2N2
− 1)-step opacity holds; however, verifying infinite-step opacity in this way requires an

estimator with state-complexity O((|Σobs|+1)2N2
−1×2N) or equivalently, as long as |Σobs| ≥ 1,

O((|Σobs| + 1)2N2

).

In this section, we introduce a method for verifying infinite-step opacity that has significantly

lower complexity than the complexity of the above method. For our development, we first recall

the construction of the initial-state estimator in [7] and then discuss how it can be used to verify

infinite-step opacity.

A. Initial State Estimation

Given a DES and a sequence of observations ω, the initial-state estimation problem requires

the enumeration of all states that belong to the set of initial states X0 and could have generated

this sequence of observations ω. We call this estimate the initial-state estimate and denote it

by X̂0(ω) (note that X̂0(ω) ⊆ X0 for all ω). Our earlier work [7] focused on DESs that can

be modeled as non-deterministic finite automata under some projection map P with respect to

the set of observable events Σobs (Σobs ⊆ Σ), and introduced a deterministic finite automaton,

called initial-state estimator (ISE), to obtain initial-state estimates. The ISE utilizes the notion

of a state mapping to capture all the information that can be inferred by any sequence of

observations (of finite but arbitrary length) regarding compatible pairs of initial and final states

of the system. In particular, each state of the ISE is associated with a unique state mapping and,

since the initial state of the system belongs to X0, the mapping associated with the initial state

is the mapping ⊙(X0) (where starting and ending states are identical for all states in X0). The

following composition rule defines subsequent state transitions: given a new observation, the ISE

current state transitions into an ISE state whose associated state mapping is the composition of

the state mapping associated with the ISE current state and the state mapping induced by the

new observation. Continuing in this way we can build a structure which can be shown to provide

at any given time (through the state mapping associated with its current state) information about

the pairs of system initial states and current states that match the sequence of observations seen

so far. Note that this structure is guaranteed to be finite and has at most 2N2
states where N is

the number of states of DES G.

August 12, 2011 DRAFT

11

Definition 6 (Initial-State Estimator (ISE)). Given a non-deterministic finite automaton G =

(X, Σ, δ, X0) and a projection map P with respect to the set of observable events Σobs (Σobs ⊆ Σ),

the initial-state estimator is the deterministic automaton G∞,obs = AC(2X×X , Σobs, δ∞,obs, X∞,0)

with state set 2X×X (power set of X ×X), event set Σobs, initial state X∞,0 = ⊙(X0), and state

transition function δ∞,obs : 2X×X ×Σobs → 2X×X defined for α ∈ Σobs as m′ = δ∞,obs(m, α) :=

m ◦ M(α), where m, m′ ∈ 2X×X . [AC denotes the states of this automaton that are accessible

starting from state X∞,0.] �

Example 7. Consider the DES G of Figure 1-a with Σobs = {α, β}. Figure 2-a shows the ISE for

this system. The initial uncertainty is assumed to be equal to the state space (X0 = X) and hence

the initial state of the ISE is the state mapping m0 = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)}. Upon

observing α, the next state of the ISE becomes {(0, 2), (0, 3), (2, 2), (4, 4)} = m0 ◦M(α) ≡ m1,

where M(α) = {(0, 2), (0, 3), (2, 2), (4, 4)}. This means that if the initial state was 0, the current

state could be any of the states in {2, 3}; if the initial state was 2, the current state could only be

2; whereas, if the initial state was 4, the current state would be 4 (on the right of Figure 2-a we

use a graphical way to describe the pairs associated with the ISE). If, instead of α, we initially

observe β, the ISE transitions to {(0, 1), (1, 4), (3, 4)} = m0 ◦ M(β) ≡ m2 and implies that

β can be observed from states 0, 1, and 3 and the respective current state can be either 1, 4,

and 4. To take into account the observation α followed by observation β, we need to compose

the state mapping m1 with M(β) which results in {(0, 4)} ≡ m4. Using this approach for all

possible observations (from each state), the ISE construction can be completed as shown in

Figure 2-a. Note that if a sequence of observations ω is not feasible in G, e.g., ω = αββ, then

the state mapping associated with the state reachable in ISE via ω is empty. To avoid cluttering

our figures, we do not include this state and the transitions leading to it. �

B. Verifying Infinite-Step Opacity Using a Bank of ISEs

In order to verify that a system is infinite-step opaque, we need to verify that at any point

during the observation process, knowing the sequence of observations before reaching that point,

in addition to a future observation sequence (that is possible from that point onward), does not

August 12, 2011 DRAFT

12

(b)

1

2

3

1

2

3

4

0

1

2

3

4

0

1

2

3

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

0

1

2

3

1

2

3

4

0

4

0

1

2

3

0

1

2

3

1

2

3

4

0

4

0

1

2

3

0

1

2

3

0

1

2

3

1

2

3

4

0

αα

αα

α

β

β

m0 m1 m2

m3 m5m4

4

m0α

β
m2

m5m4

m1

m1

m0

m2

α

44

0 0

1

2

3

4

m1 m2m0

α α

β

4 44

m3

(a)

0

Fig. 2. (a) ISE G∞,obs for DES G in Figure 1-a; (b) ISE G
(4)
∞,obs corresponding to states {2, 3, 4}.

(and will not) allow us to determine whether the set of possible states at that point is a subset of

the set of secret states. We perform this verification using a two-phase approach: (i) finding all

possible estimates of the system’s current state along any possible sequence of observations, and

(ii) for each point in this trajectory (set of possible system states), calculating the information

that can be gained about the state at that point by observation sequences that are possible from

that point onward. The first phase can be achieved via a standard current-state estimator [5]

(see Example 1). The second phase requires the construction of an ISE-like state estimator for

each possible uncertainty about the current-state estimate (which is now used as the initial state

estimate for the ISE-like state estimator). In other words, for each set of state estimates Z ⊆ X

provided in the first phase, we construct an ISE whose initial state is associated with the state

mapping ⊙(Z). Clearly, if any of these ISEs contains a state with associated (non-empty) state

mapping m such that its set of starting states contains elements only in S (i.e., if m(1) ⊆ S),

then DES G is not infinite-step opaque. The following theorem formalizes the above discussion

and proves that the two-phase approach is correct. The proof can be found in [16].

Theorem 8. Consider a non-deterministic finite automaton G = (X, Σ, δ, X0), a projection map

P with respect to the set of observable events Σobs (Σobs ⊆ Σ), and a set of secret states S ⊆ X .

For each set of current-state estimates Zn associated with a state of its current-state estimator

G0,obs, construct the initial-state estimator G
(n)
∞,obs = AC(2X×X , Σobs, δ

(n)
∞,obs, X

(n)
∞,0) by setting its

initial state X
(n)
∞,0 to be ⊙(Zn). Then, DES G is (S, P,∞)-opaque if and only if

∀n, ∀m ∈ X
(n)
∞,obs : m(1) * S or m(1) = ∅, (1)

where X
(n)
∞,obs is the set of states in G

(n)
∞,obs that are reachable from X

(n)
∞,0 = ⊙(Zn) and m(1)

August 12, 2011 DRAFT

13

denotes the set of starting states of state mapping m. �

Remark 9. In practice, since the set of initial state estimates can only decrease with additional

observations [7], we only need to construct G
(n)
∞,obs for Zn’s which have at least one secret state.�

Example 10. In this example, we show that DES G in Figure 1-a is not ({3}, P,∞)-opaque.

To verify infinite-step opacity we need to first construct the current-state estimator G0,obs as

in Figure 1-b. This state estimator has five states Z1 = {4}, Z2 = {1, 4}, Z3 = {2, 4}, Z4 =

{2, 3, 4}, Z5 = {0, 1, 2, 3, 4}; hence, we need to construct five ISEs. Since only state mappings

Z5 = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)} and Z4 = {(2, 2), (3, 3), (4, 4)} contain the secret state

3, by Remark 9, we only need to construct two ISEs: (i) ISE G
(5)
∞,obs with initial state mapping

corresponding to Z5 is indeed the initial-state estimator in Figure 2-a which we constructed

previously in Example 7. It can be easily verified that the set of starting states of all (non-

empty) state mappings associated with this ISE has states outside the set of secret states. (ii)

The ISE G
(4)
∞,obs with initial state corresponding to Z4 is depicted in Figure 2-b (again ignoring

the empty state mapping reached via sequences of observations that cannot be generated by G).

State m2 = {(3, 4)} in G
(4)
∞,obs violates ({3}, P,∞)-opacity since its set of starting states only

contains state 3 which is a secret state. State m2 is reachable in G
(4)
∞,obs via β from m0. Moreover,

m0 in this ISE corresponds to the state in G0,obs (in Figure 1-b) that is reached via observation

α. Putting these two pieces of information together, we can conclude that observing αβ reveals

that the system has gone through state 3, which is a secret state. �

The verification of infinite-step opacity using Theorem 8 requires that for each state of the

current-state estimator, an ISE-like state estimator be constructed. Since there are at most 2N

states for the current-state estimator, this implies that the complexity of this method is O(2N ×

2N2
). This exponential complexity is not desirable for implementation purposes; as we show in

Section IV-C, however, verifying infinite-step opacity is PSPACE-hard and hence it is unlikely

that any algorithm can verify this property in polynomial-time [8].

C. Verification of Infinite-Step Opacity is PSPACE-Hard

In order to characterize the complexity class of the infinite-step opacity verification (INF)

problem, we first study the complexity of verifying initial-state opacity and show that each

August 12, 2011 DRAFT

14

instance of the initial-state opacity verification (INI) problem can be reduced (via an algorithm

which has complexity polynomial in the number of states of automaton G) to an instance of the

INF problem. This proves that the INF problem is at least as hard as the INI problem. Then,

we show that the INI problem, for |Σobs| > 1, is PSPACE-complete which in turn proves that

the INF problem is PSPACE-hard for |Σobs| > 1.

Definition 11 (Initial-State Opacity). Given a non-deterministic finite automaton G = (X, Σ, δ, X0),

a projection map P with respect to the set of observable events Σobs (Σobs ⊆ Σ), and a set of

secret states S ⊆ X , automaton G is initial-state opaque with respect to S and P (or (S, P,∞)

initial-state opaque), if for all i ∈ X0 ∩ S and for all t ∈ L(G, i) we have

∃j ∈ X0 − S, ∃s ∈ L(G, j), P (s) = P (t). �

If none of the secret states of system G is reachable after startup (i.e., if none of the strings in

the system can pass through the set of secret states except at startup), then it is not hard to see

that infinite-step opacity and initial-state opacity become equivalent. In the following lemma, we

use this insight to reduce each instance of the INI problem to an instance of the INF problem.

First, we need the following definition.

Definition 12. Given a non-deterministic finite automaton G = (X, Σ, δ, X0), define the non-

deterministic finite automaton Ĝ = (X̂, Σ, δ̂, X0) with state set X̂ = X ∪ X ′
0 constructed from

X by adding duplicates x′
0 for each x0 ∈ X0 (we denote this by x0

d
≡ x′

0, i.e., X ′
0 = {x′

0|x
′
0

d
≡

x0, x0 ∈ X0}) and state transition function δ̂ : X̂ × Σ → 2X̂ defined for α ∈ Σ and x ∈ X as

δ̂(x, α) = {y|y ∈ δ(x, α)−X0}∪ {y′|y ∈ δ(x, α)∩X0, y
d
≡ y′}, and for α ∈ Σ and x′ ∈ X̂ −X

as δ̂(x′, α) = δ̂(x, α), where x′ d
≡ x. �

Lemma 13. Given a non-deterministic finite automaton G = (X, Σ, δ, X0), a projection map P

with respect to the set of observable events Σobs (Σobs ⊆ Σ), and a set of secret states S ⊆ X ,

construct the non-deterministic finite automaton Ĝ as in Definition 12. Then,

(S, P,∞) initial-state opacity for G ⇔ (S ∩ X0, P,∞)-opacity for Ĝ. �

Note that the reduction technique introduced in Lemma 13 clearly has (state or time) complex-

ity that is polynomial in the number of states of G. We prove that the INI problem is PSPACE-

August 12, 2011 DRAFT

15

hard using a reduction from the language containment for non-deterministic finite automata (LC)

problem, which is known to be PSPACE-complete3 for |Σ| > 1 [17]. The proof can be found in

the Appendix.

Theorem 14. The INI problem is PSPACE-complete for |Σobs| > 1. �

Corollary 15. The INF problem is PSPACE-hard for |Σobs| > 1. �

Remark 16. While this paper was under review, reference [18] established that the verification

of 0-step opacity is PSPACE-complete. �

V. CONCLUSION

In this paper, we define, analyze, and characterize the notion of infinite-step opacity as an

extension of the notion of K-step opacity [5]. The notion of K-step opacity, for K ≥ 0, requires

that the entrance of a given non-deterministic finite automaton to a set of secret states S, at any

time during the past K observations, remain opaque to outsiders. We define infinite-step opacity

as the limiting case of K-step opacity as K approaches infinity, and introduce a novel method to

verify infinite-step opacity using a current-state estimator and a bank of initial-state estimators.

We also establish that the verification of infinite-step opacity is PSPACE-hard.

There are many interesting directions for future research. One important extension is to

introduce probabilistic metrics to this framework, e.g., by using information-theoretic metrics to

extend the notion of opacity to a probability distribution that captures the likelihood of states

given a sequence of observations. Another extension is to employ techniques from supervisory

control [14] to design minimally restrictive supervisors for a given discrete event system in a

way that enforces infinite-step opacity.

REFERENCES

[1] R. Focardi and R. Gorrieri, “A taxonomy of trace–based security properties for CCS,” in Proc. of the 7th Workshop on

Computer Security Foundations, June 1994, pp. 126–136.

[2] S. Schneider and A. Sidiropoulos, “CSP and anonymity,” in Proc. of the 4th European Symposium on Research in Computer

Security, September 1996, pp. 198–218.

[3] J. Bryans, M. Koutny, L. Mazare, and P. Ryan, “Opacity generalised to transition systems,” International Journal of

Information Security, vol. 7, no. 6, pp. 421–435, November 2008.

3The problem can be solved in polynomial time if |Σ| = 1.

August 12, 2011 DRAFT

16

[4] R. Alur, P. Černý, and S. Chaudhuri, “Model checking on trees with path equivalences,” in Proc. of the 13th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, March 2007, pp. 664–678.

[5] A. Saboori and C. N. Hadjicostis, “Verification of K-step opacity and analysis of its complexity,” in Proc. of the 48th

IEEE Conference on Decision and Control, December 2009, pp. 205–210.

[6] P. E. Caines, R. Greiner, and S. Wang, “Classical and logic–based dynamic observers for finite automata,” IMA Journal

of Mathematical Control and Information, vol. 8, no. 1, pp. 45–80, March 1991.

[7] A. Saboori and C. N. Hadjicostis, “Verification of initial–state opacity in security applications of DES,” in Proc. of the

9th International Workshop on Discrete Event Systems, May 2008, pp. 328–333.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability – A Guide to the Theory of NP-Completeness. Freeman,

1979.

[9] J. W. Bryans, M. Koutny, and P. Y. A. Ryan, “Modelling opacity using Petri nets,” Electronic Notes in Theoretical Computer

Science, vol. 121, pp. 101–115, February 2005.

[10] J. Bryans, M. Koutny, and P. Ryan, “Modelling dynamic opacity using Petri nets with silent actions,” in Formal Aspects

in Security and Trust. Springer, 2005, vol. 173, pp. 159–172.

[11] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and P. Darondeau, “Concurrent secrets,” Discrete Event

Dynamic Systems, vol. 17, no. 4, pp. 425–446, December 2007.

[12] J. Dubreil, P. Darondeau, and H. Marchand, “Opacity enforcing control synthesis,” in Proc. of the 9th International

Workshop on Discrete Event Systems, May 2008, pp. 28–35.

[13] N. Hadj-Alouane, S. Lafrance, L. Feng, J. Mullins, and M. Yeddes, “On the verification of intransitive noninterference

in multilevel security,” IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol. 35, no. 5, pp.

948–958, October 2005.

[14] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. Kluwer Academic Publishers, 2008.

[15] A. Saboori and C. N. Hadjicostis, “Coverage analysis of mobile agent trajectory via state-based opacity formulations,”

Control Engineering Practice (Special Issue on Selected Papers from 2nd International Workshop on Dependable Control

of Discrete Systems), vol. 19, no. 9, pp. 967–977, September 2011.

[16] A. Saboori, “Verification and enforcement of state-based notions of opacity in discrete event systems,” Ph.D. dissertation,

University of Illinois at Urbana Champaign, 2010.

[17] S. C. Kleene, “Representation of events in nerve nets and finite automata,” in Automata Studies, C. E. Shannon and

M. McCarthy, Eds. Princeton University Press, 1956, no. 34, pp. 3–41.

[18] F. Cassez, J. Dubreil, and H. Marchand, “Dynamic observers for the synthesis of opaque systems,” in Automated Technology

for Verification and Analysis, October 2009.

APPENDIX

In this section, we provide a formal proof for Theorem 14. First, we need the following

definition.

August 12, 2011 DRAFT

17

Definition 17 (Language Containment for Non-Deterministic Finite Automata (LC) problem).

Given two non-deterministic automata G1 = (X1 , Σ, δ1, X1,0) and G2 = (X2, Σ, δ2, X2,0) with

sets of initial states X1,0 and X2,0, is L(G1) ⊆ L(G2)? �

Proof of Theorem 14: We first prove that the INI problem is in PSPACE for |Σobs| > 1. We

introduce a polynomial-time algorithm which reduces every instance of the INI problem with

|Σobs| > 1 to an instance of the LC problem with |Σ| > 1, and since the LC problem is in

PSPACE for |Σ| > 1, this proves that the INI problem is also in PSPACE for |Σobs| > 1. Given

a non-deterministic automaton G = (X, Σ, δ, X0), we construct the non-deterministic automaton

Go = (X, Σobs, δo, X0) from G as follows. Define the unobservable reach for each state x of

G as the states reachable from x with a sequence of events which has only one observable

event and at least one unobservable event. Then, Go is constructed from G by removing all

unobservable events and connecting each state x to all states in its unobservable reach (each

such connection is associated with the observable event designated to that unobservable reach).

Computing the unobservable reach takes O(N3) time [14], where N denotes the number of

states of DES G. Next, we construct two non-deterministic automata G1 = (X, Σobs, δo, X1,0)

and G2 = (X, Σobs, δo, X2,0) which have the same set of states, event set, and state transition

function as Go, but differ in their set of initial states which are taken to be X1,0 = X0 ∩ S and

X2,0 = X0 − S. Since in constructing these two automata, the structure of Go is preserved and

only the set of initial-states is modified through set intersection, this construction requires O(N)

time. It can be shown (but the proof is omitted due to space limitations) that L(G1) ⊆ L(G2) if

and only if G is (S, P,∞) initial-state opaque.

Next, we show that the INI problem is PSPACE-hard for |Σobs| > 1. We reduce the LC problem

with |Σ| > 1 to an instance of the INI problem with |Σobs| > 1 via a polynomial-time algorithm.

Given two non-deterministic automata G1 = (X1, Σ, δ1, X1,0) and G2 = (X2, Σ, δ2, X2,0), define

the non-deterministic automaton G = (X, Σ, δ, X0) with the state set X = X1∪X2, set of initial

states X0 = X1,0∪X2,0, and state transition function δ : X×Σ → 2X given by4 δ(x, α) = δ1(x, α)

4Without loss of generality, we assume that X1 ∩ X2 = ∅ (one can always rename the states to achieve this).

August 12, 2011 DRAFT

18

if x ∈ X1 and δ2(x, α) if x ∈ X2. Note that the time and state-complexity of constructing G is

O(m2 + n2) where m = |X1| and n = |X2|, i.e., polynomial in the number of states of G1 and

G2. It can be shown (again, we omit the proof due to space limitations) that L(G1) ⊆ L(G2) if

and only if G is (S, P,∞) initial-state opaque where S ≡ X1,0 and projection map P is with

respect to the set of observable events Σobs = Σ. Since we assume that Σ = Σobs, this proves that

each instance of the LC problem with |Σ| > 1 can be reduced to an instance of the INI problem

with |Σobs| > 1 via a polynomial-time algorithm and therefore the INI problem is PSPACE-hard

for |Σobs| > 1.

August 12, 2011 DRAFT

